WO2015145956A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2015145956A1
WO2015145956A1 PCT/JP2015/000835 JP2015000835W WO2015145956A1 WO 2015145956 A1 WO2015145956 A1 WO 2015145956A1 JP 2015000835 W JP2015000835 W JP 2015000835W WO 2015145956 A1 WO2015145956 A1 WO 2015145956A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
display device
observer
virtual image
image
Prior art date
Application number
PCT/JP2015/000835
Other languages
English (en)
French (fr)
Inventor
祐亮 米谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP15769826.7A priority Critical patent/EP3096178A4/en
Publication of WO2015145956A1 publication Critical patent/WO2015145956A1/ja
Priority to US15/069,011 priority patent/US20160195719A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2360/00Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
    • B60K2360/20Optical features of instruments
    • B60K2360/33Illumination features
    • B60K2360/334Projection means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion

Definitions

  • the present disclosure relates to a display device that allows a viewer to visually recognize a virtual image using a projection optical system.
  • Patent Document 1 discloses a head-up display in which positioning protrusions are formed on a holder that supports a mirror to eliminate positional deviation when a drive mirror is attached.
  • Patent Document 2 discloses a head-up display that avoids breakage of a liquid crystal display device due to the entry of external light as much as possible by reflecting and transmitting light in a predetermined wavelength band.
  • the display device includes a display device that displays an image, and a projection optical system that projects the image displayed on the display device.
  • the projection optical system includes a first mirror and a second mirror in order from the display device side along the optical path from the display device to the viewpoint region of the observer.
  • the display device satisfies the following conditional expressions (1) and (2).
  • ⁇ y incident angle of incident light on the first mirror in the lateral direction of the display screen of the display device
  • D1 viewing area from the display device
  • T the distance from the observer's pupil to the virtual image
  • ⁇ h the angle formed by the first line and the second line
  • the first straight line is a straight line connecting one end in the horizontal direction of the virtual image visually recognized by the observer's pupil and the observer's pupil
  • the second straight line is the horizontal of the virtual image visually recognized by the observer's pupil. It is a straight line connecting the other end of the direction and the pupil of the observer.
  • the display device includes a display device that displays an image, and a projection optical system that projects an image displayed on the display device.
  • the projection optical system includes a first mirror and a second mirror in order from the display device side along the optical path from the display device to the viewpoint region of the observer. At least one reflecting surface of the first mirror and the second mirror has a concave shape. A light beam that reaches the center of the viewer's viewpoint area from the center of the display screen of the display device is used as a reference light beam, and an intersection point of the second mirror and a reference light beam that is incident on the second mirror is used as a reference intersection point.
  • a plane including the incident ray and the reflected ray is defined as a first reference plane
  • a plane perpendicular to the first reference plane is defined as a second reference plane
  • an intersection line between the second mirror and the second reference plane passing through the reference intersection Is the reference intersection line, and the vertical distance from the tangent plane of the reference intersection point on the reflecting surface of the second mirror to the second mirror is defined as the sag amount, the first sag amount at the first point on the tangent plane And the second sag amount at the second point on the tangential plane that is point-symmetric with the first point with respect to the reference intersection.
  • FIG. 1 is a schematic diagram of a vehicle equipped with the display device of the present disclosure.
  • FIG. 2 is a schematic diagram for explaining the display device according to the first and second embodiments.
  • FIG. 3 is a schematic diagram for explaining the display device according to the third to seventh embodiments.
  • FIG. 4 is a diagram for explaining the shape of the first mirror according to another embodiment.
  • FIG. 5 is a schematic diagram for explaining the sag amount of the second mirror.
  • FIG. 6 is a diagram showing a coordinate system based on the display device.
  • FIG. 7 is a schematic diagram for explaining an incident angle of incident light to the first mirror.
  • FIG. 8 is a schematic diagram for explaining the positional relationship between an observer's pupil and a virtual image.
  • FIG. 1 is a schematic diagram of a vehicle equipped with the display device of the present disclosure.
  • FIG. 2 is a schematic diagram for explaining the display device according to the first and second embodiments.
  • FIG. 3 is a schematic diagram for explaining the display device according to the
  • FIG. 9 is a diagram illustrating distortion of a virtual image visually recognized by an observer in Embodiment 1 (Numerical Example 1).
  • FIG. 10 is a diagram illustrating distortion of a virtual image visually recognized by an observer in Embodiment 2 (Numerical Example 2).
  • FIG. 11 is a diagram illustrating distortion of a virtual image visually recognized by an observer in Embodiment 3 (Numerical Example 3).
  • FIG. 12 is a diagram illustrating distortion of a virtual image visually recognized by an observer in Embodiment 4 (Numerical Example 4).
  • FIG. 13 is a diagram illustrating distortion of a virtual image visually recognized by an observer in Embodiment 5 (Numerical Example 5).
  • FIG. 14 is a diagram illustrating distortion of a virtual image visually recognized by an observer in Embodiment 6 (Numerical Example 6).
  • FIG. 15 is a diagram illustrating distortion of a virtual image visually recognized by an observer in Embodiment 7 (Numerical Example 7).
  • FIG. 1 is a schematic diagram illustrating a vehicle 200 equipped with the display device 10 according to the present disclosure.
  • FIG. 2 is a schematic diagram for explaining the display device 10 according to the first and second embodiments.
  • FIG. 3 is a schematic diagram for explaining the display device 10 according to the third to seventh embodiments.
  • the display device 10 is disposed inside the dashboard 210 below the windshield 220 of the vehicle 200.
  • the display device 10 includes a housing 100, a projection optical system 120, and a display device 101.
  • the display device 10 reflects an image displayed by the display device 101 through the windshield 220 and presents a virtual image I to an observer D inside the vehicle 200.
  • the housing 100 includes an opening 102.
  • This opening 102 may be provided with a transparent cover.
  • a lens-shaped cover as this transparent cover, it is possible to adjust the magnification of the virtual image.
  • the projection optical system 120 includes a first mirror 121 and a second mirror 122.
  • the light (image) output from the display device 101 is reflected in this order by the first mirror 121, the second mirror 122, and the windshield 220, reaches the viewpoint region 300 of the observer D, and is visually recognized by the observer D as a virtual image I.
  • the viewpoint area 300 refers to an area where the observer D can observe the entire virtual image I without losing the whole.
  • a liquid crystal display device Liquid Crystal Display
  • an organic light emitting diode electrospray
  • a plasma display or the like is used.
  • the display surface of the display device 101 is directed toward the first mirror 121.
  • the first mirror 121 has its reflection surface directed toward the second mirror 122 so that an image displayed by the display device 101 is reflected on the second mirror 122.
  • the reflecting surface of the first mirror 121 is a free-form surface having a convex shape.
  • the second mirror 122 is a concave mirror having a free curved surface shape.
  • the first mirror 121 and the second mirror 122 each have a free-form surface shape, which is to correct the distortion of the virtual image caused by the reflection so that a good virtual image can be seen over the entire viewpoint area. .
  • the first mirror 121 is a toroidal mirror having a convex shape. By making the first mirror 121 have a toroidal surface shape, the mirror can be easily manufactured.
  • a concave mirror having a free curved surface shape is used for the second mirror 122.
  • the first mirror 121 used in the display devices 10 of Embodiments 1 to 7 has a rotationally asymmetric shape. However, as shown in FIG. 4, the first mirror 121 may have a surface shape with different signs of curvature in the x direction and the y direction.
  • FIG. 5 is a schematic diagram for explaining the sag amount of the second mirror.
  • (1) in FIG. 5 is a diagram showing the relationship between the second mirror 122 and the reference plane.
  • a light beam that is emitted from the center of the display screen of the display device and reaches the center of the viewpoint region of the observer is referred to as a reference light beam.
  • a reference intersection point Pi in (1) of FIG. 5 is an intersection point of the second mirror and a reference ray incident on the second mirror.
  • the first reference plane P1 is a plane including incident light and reflected light on the second mirror.
  • the second reference plane P2 is a plane perpendicular to the first reference plane P1.
  • the reference intersection line li is an intersection line between the second mirror 122 and the second reference plane P2, and is an intersection line passing through the reference intersection point Pi.
  • FIG. 5 shows the reflecting surface (reference intersection line li) of the second mirror 122 on the second reference plane P2 shown in FIG. 5 (1) and the tangent plane Pt of the second mirror at the reference intersection point Pi.
  • a vertical distance from a point on the tangent plane Pt to the second mirror is defined as a sag amount.
  • An arbitrary point on the intersection line of the second reference plane P2 and the tangent plane Pt is defined as the first point A1, and the first point A1 and the target point with respect to the reference intersection point Pi are defined as the second point A2.
  • the sag amount Sag1 at the first point A1 is different from the sag amount Sag2 at the second point A2.
  • the second mirror is configured in this way, even when an image is displayed on a projection surface having a shape that is asymmetrical with respect to the reference intersection line, such as a windshield, the distortion and focal length change of the virtual image in the left-right direction can be reduced. Can be suppressed.
  • the windshield of the vehicle is increasingly curved toward the outside of the vehicle. Therefore, when the image projection area on the windshield is close to the outside of the vehicle, the distortion of the virtual image in the left-right direction and the change in focal length become large.
  • one of the quantities Sag1 and Sag2 is made larger than the other, so that it curves closer to the outside of the vehicle.
  • the free curved surface of the second mirror 122 is composed of a plurality of local surfaces.
  • the free-form surface of the second mirror 122 is divided into a surface above the reference intersection line li in the vertical direction and a surface below the reference intersection line li in the vertical direction, an arbitrary point on the upper surface is included.
  • the focal length of the local surface is different from the focal length of the local surface including an arbitrary point on the lower surface.
  • the focal lengths of any two local surfaces included in the surface above the reference intersection line li may be the same.
  • FIG. 6 is a diagram showing a coordinate system based on the display device 101. Below, it demonstrates using the XYZ coordinate system on the basis of a coordinate origin.
  • the coordinate origin is the center of the display screen 110 on the display device 101.
  • the X axis is an axis extending in the longitudinal direction of the display screen 110 (the horizontal direction of the pixel array).
  • the Y axis is an axis extending in the short direction of the display screen 110 (the vertical direction of the pixel array).
  • the Z axis is an axis orthogonal to the display screen 110.
  • the display device 10 of the present disclosure satisfies the following conditional expressions (1) and (2).
  • T the distance between the image display surface of the display device and the first mirror on the optical path of the light beam reaching the center of the image
  • T the distance from the observer's pupil to the virtual image
  • ⁇ h the angle formed by the first straight line and the second straight line
  • the first straight line is a straight line connecting one end in the horizontal direction of the virtual image visually recognized by the observer's pupil and the observer's pupil
  • the second straight line is the horizontal of the virtual image visually recognized by the observer's pupil. It is a straight line connecting the other end of the direction and the pupil of the observer.
  • FIG. 7 is a schematic diagram for explaining an incident angle of incident light on the first mirror. More specifically, (1) of FIG. 7 is a schematic diagram three-dimensionally showing the reflection of the incident light Lin by the first mirror 121.
  • the XYZ coordinate space shown in FIG. 5 is represented by a grid.
  • a normal ln shown in (1) of FIG. 7 is a straight line that passes through the point B on the first mirror 121 and is orthogonal to the tangential plane of the point B.
  • the first mirror 121 is disposed to be inclined with respect to the display device. Therefore, the normal line ln is inclined with respect to the Z axis.
  • the incident light Lin on the first mirror 121 enters the point B on the first mirror 121 and is reflected by the first mirror 121 toward the second mirror 122.
  • (2) in FIG. 7 shows the projection of the incident light Lin and the normal ln shown in (1) of FIG. 7 onto the XZ plane.
  • the incident angle ⁇ x of the incident light Lin in the longitudinal direction (X-axis direction) of the display screen of the display device is, as shown in (2) of FIG. 7, between the projection lpx of the normal line ln and the projection Lpx of the incident light Lin. It is an angle to make.
  • FIG. 7 shows the projection of the incident light Lin and the normal ln shown in FIG. 7 (1) onto the YZ plane.
  • the incident angle ⁇ y of the incident light Lin in the short direction (Y-axis direction) of the display screen of the display device is the projection lpy of the normal line ln and the projection Lpy of the incident light Lin. This is the angle formed by
  • Condition (1) is a condition that defines the magnitude relationship between the incident angle in the longitudinal direction of the display screen 110 of the display device 101 and the incident angle in the short direction of the display screen 110 of the display device 101. That is, it means that the incident angle ⁇ x in the longitudinal direction of the display screen 110 of the display device 101 is larger than the incident angle ⁇ y in the short direction of the display screen 110 of the display device 101.
  • the display device 101 is arranged so as to be largely displaced in the vertical direction with respect to the first mirror 121, and it becomes difficult to provide a thin display device in the vertical direction.
  • FIG. 8 is a schematic diagram for explaining the positional relationship between an observer's pupil and a virtual image.
  • T is the distance from the observer's pupil to the virtual image I.
  • the line segment lsh is a horizontal line segment that passes through the center of the virtual image I and bisects the virtual image I up and down.
  • Lh is the horizontal width of the virtual image I viewed by the observer (that is, the length of the line segment lsh).
  • ⁇ h represents Lh by an angle centered on the observer's pupil position. Specifically, ⁇ h is an angle formed by the straight line l1 and the straight line l2.
  • the straight line 11 is a straight line connecting the position C of the observer's pupil and one end in the horizontal direction of the virtual image I (that is, one end of the line segment lsd).
  • the straight line 12 is a straight line connecting the position C of the observer's pupil and the other end in the horizontal direction of the virtual image I (that is, the other end of the line segment lsd). Note that the following relationship holds between Lh and ⁇ h.
  • Condition (2) is a condition that defines the ratio between the surface distance between the display device 101 and the first mirror 121 and the horizontal size of the virtual image I.
  • the value of (T ⁇ 2 ⁇ tan ( ⁇ h / 2)) is equal to or greater than the upper limit value of the condition (2), the surface distance between the first mirror 121 and the second mirror 122 becomes too large, and a small display device is provided. It becomes difficult.
  • the value of (T ⁇ 2 ⁇ tan ( ⁇ h / 2)) is less than or equal to the lower limit value of the condition (2), the curvature of the second mirror 122 becomes large, and it becomes difficult to correct the screen distortion of the virtual image.
  • the display device 10 includes a display device 101 that displays an image and a projection optical system 120 that projects an image displayed on the display device 101.
  • the projection optical system 120 includes a first mirror 121 and a second mirror 122 in this order along the optical path X from the display device 101 to the observer D.
  • the display device 10 projects the image displayed on the display device 101 onto the windshield 220 and displays the virtual image I to the observer D. Thereby, the observer D can be made to visually recognize the image displayed on the display device 101 without obstructing the observer's front view.
  • the second mirror 122 has a free-form surface shape. Therefore, the screen distortion which generate
  • the first mirror 121 has a free-form surface shape. Thereby, screen distortion can be favorably corrected in the entire viewpoint area 300 of the observer D.
  • the first mirror 121 has a positive curvature. That is, the first mirror 121 is a convex surface. Thereby, the light beam incident on the second mirror 122 is narrowed, the second mirror 122 can be miniaturized, and the display device 10 can be miniaturized.
  • the outer shape of the first mirror 121 is a trapezoid. Thereby, an unnecessary area
  • the outer shape of the first mirror 121 is not limited to a trapezoid, and can be changed as appropriate according to the shape of the effective region.
  • FIGS. 9 to 15 are schematic diagrams of the virtual image I projected by the display device 10 according to the first to seventh embodiments and viewed from the viewpoint region 300 by the observer.
  • the viewpoint area 300 is a rectangle having a width of 135 mm and a height of 40 mm.
  • a broken line is an ideal shape of the virtual image I when viewed from the viewpoint region 300.
  • a solid line indicates a virtual image I projected using the display device 10 according to each embodiment.
  • (1) is a diagram showing the screen distortion when the virtual image I is viewed from the center position of the viewpoint region 300 when viewed from the observer D.
  • (2) is a diagram showing screen distortion when the virtual image I is viewed from the upper left position of the viewpoint area 300.
  • FIG. (3) is a diagram illustrating screen distortion when the virtual image I is viewed from the lower left position of the viewpoint area 300.
  • FIG. (4) is a diagram illustrating screen distortion when the virtual image I is viewed from the upper right position of the viewpoint region 300.
  • FIG. (5) is a diagram showing screen distortion when the virtual image I is viewed from the lower right position of the viewpoint area 300.
  • the screen distortion is corrected well over the entire viewpoint area 300. That is, in the viewpoint area 300, the observer D can visually recognize a good virtual image at any position.
  • z is a sag amount at coordinates (x, y) with respect to the axis defining the surface
  • r is a radius of curvature at the origin of the axis defining the surface
  • c is a curvature at the origin of the axis defining the surface
  • k the conic constant
  • C j is the coefficient of the monomial x m y n.
  • the reference coordinate origin is the center of the display screen of the display device, and as shown in FIG. 5, the X, Y, and Z axes passing through the coordinate origin are defined.
  • ADE is a rotation angle when the mirror is rotated about the X axis, and is the same as the order of the first quadrant to the fourth quadrant in the YZ orthogonal coordinate system.
  • the rotation angle in the direction is expressed as a positive value.
  • BDE is a rotation angle when the mirror is rotated around the Y axis, and in the XZ orthogonal coordinate system, a rotation angle in the same direction as the order of the first quadrant to the fourth quadrant is represented by a positive value.
  • CDE is a rotation angle when the mirror is rotated around the Z axis, and in the XY orthogonal coordinate system, the rotation angle in the reverse direction of the first to fourth quadrants is represented by a positive value.
  • the projection optical system of Numerical Example 1 corresponds to the projection optical system 120 of the first embodiment.
  • Table 1 shows configuration data of the projection optical system 120 of Numerical Example 1
  • Table 2 shows coefficients of the polynomial free-form surface.
  • the projection optical system according to Numerical Example 2 corresponds to the projection optical system 120 according to Embodiment 2.
  • Table 3 shows configuration data of the projection optical system of Numerical Example 2
  • Table 4 shows coefficients of the polynomial free-form surface.
  • the projection optical system of Numerical Example 4 corresponds to the projection optical system 120 of Embodiment 4.
  • Table 7 shows configuration data of the projection optical system of Numerical Example 4, and
  • Table 8 shows coefficients of the polynomial free-form surface.
  • the projection optical system according to Numerical Example 5 corresponds to the projection optical system 120 according to Embodiment 5.
  • Table 9 shows configuration data of the projection optical system of Numerical Example 5, and Table 10 shows coefficients of the polynomial free-form surface.
  • the projection optical system according to Numerical Example 6 corresponds to the projection optical system 120 according to Embodiment 6.
  • Table 11 shows configuration data of the projection optical system according to Numerical Example 6, and
  • Table 12 shows coefficients of the polynomial free-form surface.
  • the projection optical system according to Numerical Example 7 corresponds to the projection optical system 120 according to Embodiment 7.
  • Table 13 shows configuration data of the projection optical system according to Numerical Example 7, and Table 14 shows coefficients of the polynomial free-form surface.
  • Table 15 below shows the image size, virtual image size, and distance T from the pupil of the observer D to the virtual image in each numerical example.
  • Table 16 shows the corresponding values for each condition in each numerical example.
  • Table 17 below shows the sag amount of the second mirror in each numerical example.
  • the distance of the point on the right side of the vehicle from the reference intersection is expressed as a positive value.
  • the display device according to the present disclosure is suitable for a display device that requires high image quality such as a head-up display for in-vehicle use.
  • Display apparatus 100 Case 101 Display device 102 Opening 103 1st light shielding wall 104 2nd light shielding wall 105 1st edge part 106 2nd edge part 110 Display screen 120 Projection optical system 121 123 1st mirror 122 2nd mirror 200 Vehicle 210 Dashboard 220 Windshield 300 Viewpoint area D Observer I Virtual image X Optical path

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Instrument Panels (AREA)

Abstract

 画像を表示するデバイスと、表示デバイスに表示された画像を投射する投射光学系とを備え、投射光学系は、表示デバイスから観察者の光路の順に、第1ミラーと第2ミラーを有し、(観察者の視点領域に導いて虚像を表示させる、)条件式θx>θy(θx:第1ミラーにおける画像長軸方向の入射角、θy:第1ミラーにおける画像短軸方向の入射角)、0.2<D1/Lh<0.9(D1:表示デバイスの画像表示面と第1ミラーとの間隔(視点領域の中心の光路長)、Lh:観察者によって視認される虚像の水平方向の幅)を満たす、表示装置。

Description

表示装置
 本開示は、投射光学系を用いて観察者に虚像を視認させる表示装置に関する。
 特許文献1は、ミラーを支持するホルダに位置決め突起を形成し、駆動ミラー取付け時の位置ずれをなくす、ヘッドアップディスプレイを開示する。
 特許文献2は、所定の波長帯域の光を反射および透過させることで、外光の入り込みによる液晶表示装置の破損を極力回避するヘッドアップディスプレイを開示する。
特開2013-125193号公報 特開2013-228442号公報
 本開示における表示装置は、画像を表示する表示デバイスと、表示デバイスに表示された画像を投射する投射光学系とを備える。投射光学系は、表示デバイスから観察者の視点領域までの光路に沿って、表示デバイス側から順に、第1ミラーと第2ミラーとを有する。該表示装置は、以下の条件式(1)、(2)を満たす。
  θx>θy ・・・(1)
  0.2<D1/(T×2×tan(θh/2))<0.9 ・・・(2)
ただし、
 θx:表示デバイスの表示画面の長手方向における第1ミラーへの入射光の入射角
 θy:表示デバイスの表示画面の短手方向における第1ミラーへの入射光の入射角
 D1:表示デバイスから視点領域の中心に到達する光線の光路上における、表示デバイスの画像表示面と第1ミラーとの間隔
 T:観測者の瞳から虚像までの距離
 θh:第1の直線と第2の直線とがなす角度であって、第1の直線は観察者の瞳に視認される虚像の水平方向の一方端と観察者の瞳とを結ぶ直線、第2の直線は観察者の瞳に視認される虚像の水平方向の他方端と観察者の瞳とを結ぶ直線
である。
 また、本開示における表示装置は、画像を表示する表示デバイスと、表示デバイスに表示された画像を投射する投射光学系とを備える。投射光学系は、表示デバイスから観察者の視点領域までの光路に沿って、表示デバイス側から順に、第1ミラーと第2ミラーとを有する。第1ミラー及び第2ミラーの少なくとも一方の反射面が凹面形状を有する。表示デバイスの表示画面の中心から観察者の視点領域の中心に到達する光線を基準光線とし、第2ミラーと、第2ミラーに入射する基準光線との交点を基準交点とし、第2ミラーへの入射光線と反射光線とを含む平面を第1基準平面とし、第1基準平面に対して垂直な平面を第2基準平面とし、基準交点を通る、第2ミラーと第2基準平面との交線を基準交線とし、第2ミラーの反射面上の基準交点の接平面から第2ミラーまでの垂直距離をサグ量と定義したとき、接平面上にある第1の点における第1のサグ量と、基準交点に対して第1の点と点対称な接平面上の第2の点における第2のサグ量とが異なる。
図1は、本開示の表示装置を搭載した車両の模式図である。 図2は、実施の形態1および2に係る表示装置を説明するための模式図である。 図3は、実施の形態3~7に係る表示装置を説明するための模式図である。 図4は、その他の実施の形態に係る第1ミラーの形状を説明するための図である。 図5は、第2ミラーのサグ量を説明するための模式図である。 図6は、表示デバイスを基準とした座標系を示す図である。 図7は、第1ミラーへの入射光の入射角を説明するための模式図である。 図8は、観察者の瞳と虚像との位置関係を説明するための模式図である。 図9は、実施の形態1(数値実施例1)において、観察者によって視認される虚像の歪みを示す図である。 図10は、実施の形態2(数値実施例2)において、観察者によって視認される虚像の歪みを示す図である。 図11は、実施の形態3(数値実施例3)において、観察者によって視認される虚像の歪みを示す図である。 図12は、実施の形態4(数値実施例4)において、観察者によって視認される虚像の歪みを示す図である。 図13は、実施の形態5(数値実施例5)において、観察者によって視認される虚像の歪みを示す図である。 図14は、実施の形態6(数値実施例6)において、観察者によって視認される虚像の歪みを示す図である。 図15は、実施の形態7(数値実施例7)において、観察者によって視認される虚像の歪みを示す図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (実施の形態1~7)
 [1.構成]
 本開示の表示装置10の具体的な実施の形態および実施例を、図面を参照して、以下、説明する。
 図1は、本開示に係る表示装置10を搭載した車両200を示す模式図である。図2は、実施の形態1、2に係る表示装置10を説明するための模式図である。図3は、実施の形態3から7に係る表示装置10を説明するための模式図である。
 図1に示すように、表示装置10は、車両200のウインドシールド220下部のダッシュボード210内部に配置される。また、表示装置10は、筐体100と、投射光学系120と、表示デバイス101とを備える。表示装置10は、表示デバイス101が表示する画像をウインドシールド220を介して反射させ、車両200の内部の観察者Dに対して虚像Iを提示するものである。
 図2に示すように、筺体100は開口102を備えている。この開口102には透明のカバーを設けてもよい。この透明のカバーとして、レンズ形状のものを用いることで、虚像の倍率を調整することも可能である。
 投射光学系120は、第1ミラー121と、第2ミラー122とを有している。表示デバイス101が出力した光(画像)は、第1ミラー121、第2ミラー122、ウインドシールド220によってこの順に反射され、観察者Dの視点領域300に届き、虚像Iとして観察者Dに視認される。ここで、視点領域300とは、観察者Dが虚像Iの全体を欠けることなく観察できる領域を指す。
 表示デバイス101には液晶表示装置(Liquid Crystal Display)や有機発光ダイオード(エレクトロルミネッセンス)、プラズマディスプレイなどが用いられる。
 実施の形態1では、表示デバイス101の表示面を第1ミラー121の方向に向けている。第1ミラー121は、表示デバイス101によって表示される画像が第2ミラー122に映るようにその反射面を第2ミラー122の方向に向けている。
 実施の形態1、2、3、4、6、7では、第1ミラー121の反射面は、凸面の形状を有する自由曲面である。第1ミラー121を凸面とすることで、第1ミラー121から第2ミラー122へ向かう光束が収斂され、第2ミラーの面積を小さくできる。第2ミラー122には自由曲面形状を有する凹面ミラーを用いている。第2ミラー122を凹面とすることで、第2ミラーで反射する光束が発散され、虚像が拡大される。また、第1ミラー121、第2ミラー122にそれぞれ自由曲面形状を採用しているが、これは反射で生じた虚像の歪みを、視点領域全域で良好な虚像が見えるように補正するためである。
 実施の形態5では、第1ミラー121は、凸面の形状を有するトロイダル面のミラーである。第1ミラー121をトロイダル面形状とすることで、ミラーの製造が容易になる。
 また、第2ミラー122には自由曲面形状を有する凹面のミラーを用いている。
 実施の形態1~7の表示装置10で使用している第1ミラー121は回転非対称な形状を有する。ただし、第1ミラー121は、図4に示すように、x方向とy方向で曲率の符号が異なる面形状を有しても良い。
 図5は、第2ミラーのサグ量を説明するための模式図である。
 より詳細には、図5の(1)は、第2ミラー122と、基準平面等との関係を示す図である。以下では、表示デバイスの表示画面の中心から出射されて観察者の視点領域の中心に到達する光線を基準光線という。図5の(1)の基準交点Piは、第2ミラーと、第2ミラーに入射する基準光線との交点である。第1基準平面P1は、第2ミラーへの入射光と反射光とを含む平面である。第2基準平面P2は、第1基準平面P1に対して垂直な平面である。基準交線liは、第2ミラー122と第2基準平面P2との交線であって、基準交点Piを通過する交線である。
 図5の(2)は、図5の(1)に示した第2基準平面P2上における第2ミラー122の反射面(基準交線li)と、基準交点Piにおける第2ミラーの接平面Ptとの関係を示す図である。ここで、接平面Pt上の点から第2ミラーまでの垂直距離をサグ量と定義する。第2基準平面P2と接平面Ptとの交線上にある任意の点を第1の点A1とし、基準交点Piに対して第1の点A1と対象な点を第2の点A2とすると、上記の実施の形態における第2ミラー122では、第1の点A1おけるサグ量Sag1と、第2の点A2におけるサグ量Sag2とが異なる。第2ミラーをこのように構成すると、ウインドシールドのように、基準交線に対して左右非対称な形状を有する投射面に画像を表示させる場合でも、虚像の左右方向における歪みや焦点距離の変化を抑制することができる。特に、車両のウインドシールドは、車両の外側に向かうにつれて湾曲が大きくなっている。したがって、ウインドシールド上の画像投射領域が車両の外側に近い場合などには、虚像の左右方向における歪みや焦点距離の変化が大きくなる。そこで、基準光線(基準交点Pi)から第1の点A1及び第2の点A2のそれぞれまでの距離にかかわらず、量Sag1及びSag2の一方が他方より大きくすることによって、車両の外側に近く湾曲の大きい画像投射領域に画像を表示させる場合に、虚像の歪みや焦点距離の変化を抑制することができる。
 また、第2ミラー122の自由曲面は、複数の局所面から構成される。第2ミラー122の自由曲面を、基準交線liよりも鉛直方向上側の面と、基準交線liよりも鉛直方向下側の面とに分割した場合、上側の面上の任意の点を含む局所面の焦点距離と、下側の面上の任意の点を含む局所面の焦点距離とが異なる。第2ミラー122をこのように構成した場合、ウインドシールドのように上下方向の曲率が異なる面に対しても歪みなく画像を投射することができる。尚、基準交線liよりも上側の面に含まれる任意の2つの局所面の焦点距離は同じであっても良い。
 [2.望ましい条件]
 以下、実施の形態1~7に係る表示装置10が満足することが望ましい条件を説明する。なお、各実施の形態に係る表示装置10に対して、複数の好ましい条件が規定されるが、これら複数の条件すべてを満足する構成が最も望ましい。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏する表示装置を得ることも可能である。
 図6は、表示デバイス101を基準とした座標系を示す図である。以下では、座標原点を基準とするXYZ座標系を用いて説明する。座標原点は表示デバイス101上の表示画面110の中心である。X軸は、表示画面110の長手方向(画素配列の水平方向)に延びる軸である。Y軸は、表示画面110の短手方向(画素配列の垂直方向)に延びる軸である。Z軸は、表示画面110に直交する軸である。
 本開示の表示装置10は次の条件式(1)と(2)を満足することが望ましい。
  θx>θy ・・・(1)
  0.2<D1/(T×2×tan(θh/2))<0.9 ・・・(2)
 ここで、
 θx:表示デバイスの表示画面の長手方向における第1ミラーへの入射光の入射角
 θy:表示デバイスの表示画面の短手方向における第1ミラーへの入射光の入射角
 D1:表示デバイスから視点領域の中心に到達する光線の光路上における、表示デバイスの画像表示面と第1ミラーとの間隔
 T:観察者の瞳から虚像までの距離
 θh:第1の直線と第2の直線とがなす角度であって、第1の直線は観察者の瞳に視認される虚像の水平方向の一方端と観察者の瞳とを結ぶ直線、第2の直線は観察者の瞳に視認される虚像の水平方向の他方端と観察者の瞳とを結ぶ直線
である。
 図7は、第1ミラーへの入射光の入射角を説明するための模式図である。より詳細には、図7の(1)は、第1ミラー121による入射光Linの反射を立体的に示した模式図である。図7の(1)においては、説明の便宜上、図5で示したXYZ座標空間をグリッドによって表現している。図7の(1)に示す法線lnは、第1ミラー121上の点Bを通過し、点Bの接平面と直交する直線である。第1ミラー121は、表示デバイスに対して傾けて配置される。したがって、法線lnは、Z軸に対して傾斜する。図7の(1)に示すように、第1ミラー121への入射光Linは、第1ミラー121上の点Bに入射し、第1ミラー121によって第2ミラー122側へと反射される。
 図7の(2)は、図7の(1)に示した入射光Lin及び法線lnのXZ平面への射影を示す。表示デバイスの表示画面の長手方向(X軸方向)における入射光Linの入射角θxは、図7の(2)に示すように、法線lnの射影lpxと、入射光Linの射影Lpxとのなす角度である。
 図7の(3)は、図7(1)に示した入射光Lin及び法線lnのYZ平面への射影を示す。表示デバイスの表示画面の短手方向(Y軸方向)における入射光Linの入射角θyは、図7の(3)に示すように、法線lnの射影lpyと、入射光Linの射影Lpyとのなす角度である。
 条件(1)は、表示デバイス101の表示画面110の長手方向における入射角と、表示デバイス101の表示画面110の短手方向における入射角との大小関係を規定する条件である。すなわち、表示デバイス101の表示画面110の長手方向の入射角θxが、表示デバイス101の表示画面110の短手方向の入射角θyよりも大きくなることを意味している。条件(1)を満足しない場合、表示デバイス101が第1ミラー121に対して鉛直方向に大きくずれて配置されることとなり、鉛直方向に薄型な表示装置を提供することが困難になる。
 図8は、観察者の瞳と虚像との位置関係を説明するための模式図である。
 図8において、Tは、観察者の瞳から虚像Iまでの距離である。線分lshは、虚像Iの中心を通過し、虚像Iを上下に二分する水平方向の線分である。Lhは、観察者によって視認される虚像Iの水平方向の幅(すなわち、線分lshの長さ)である。θhは、観察者の瞳位置を中心とする角度によってLhを表したものである。詳細には、θhは、直線l1と直線l2とがなす角度である。ここで、直線l1は、観察者の瞳の位置Cと、虚像Iの水平方向における一方端(すなわち、線分lsdの一方端)とを結ぶ直線である。直線l2は、観察者の瞳の位置Cと、虚像Iの水平方向における他方端(すなわち、線分lsdの他方端)とを結ぶ直線である。尚、Lhとθhとの間には、次の関係が成り立つ。
  Lh=T×2×tan(θh/2)
 条件(2)は、表示デバイス101と第1ミラー121との面間隔と、虚像Iの横のサイズとの比率を規定する条件である。(T×2×tan(θh/2))の値が条件(2)の上限値以上の場合、第1ミラー121と第2ミラー122の面間隔が大きくなりすぎ、小型な表示装置を提供することが困難になる。(T×2×tan(θh/2))の値が条件(2)の下限値以下の場合、第2ミラー122の曲率が大きくなり、虚像の画面歪みを補正することが困難となる。
 また、さらに以下の条件(2’)を満足することにより上記効果をさらに奏功させることができる。
  0.2<D1/(T×2×tan(θh/2))<0.6 ・・・(2’)
 また、さらに以下の条件(2’’)を満足することにより上記効果をより一層奏功させることができる。
  0.25<D1/(T×2×tan(θh/2))<0.4 ・・・(2’’)
 [3.効果等]
 以上のように構成された表示装置10の効果を以下に説明する。
 実施の形態1~7に係る表示装置10は、画像を表示する表示デバイス101と、表示デバイス101に表示された画像を投射する投射光学系120とを備える。当該投射光学系120は、表示デバイス101から観察者Dに至る光路Xに沿って、第1ミラー121と、第2ミラー122とをこの順に有する。
 実施の形態1~7に係る表示装置10は、表示デバイス101に表示された画像を、ウインドシールド220に投影し、虚像Iを観察者Dに表示させている。これにより、観察者Dの前方視界を遮ることなく、表示デバイス101に表示された画像を観察者Dに視認させることができる。
 本開示の表示装置10において、第2ミラー122は自由曲面形状を有している。これにより、ウインドシールド220で発生する画面歪みを良好に補正することができる。
 本開示の表示装置10において、第1ミラー121は自由曲面形状であることが望ましい。これにより、観察者Dの視点領域300全域で画面歪みを良好に補正することができる。
 本開示の表示装置10において、第1ミラー121は、正の曲率を有する。すなわち、第1ミラー121が凸面である。これにより、第2ミラー122へ入射する光束が狭められ、第2ミラー122を小型化することができ、表示装置10を小型化することができる。
 本開示の表示装置10において、第1ミラー121の外形形状が台形である。これにより、第1ミラー121で像が反射される領域以外の不要な領域を削減でき、表示装置10を小型化することができる。なお、第1ミラー121の外形形状は台形に限られず、有効領域の形状に応じて適宜変更できるものである。
 図9~15は、実施の形態1~7にかかる表示装置10が投射した虚像Iであって、観察者によって視点領域300から視認される虚像Iの模式図である。本開示の表示装置10において、視点領域300は、横135mm×縦40mmの矩形である。破線は視点領域300から見た場合の虚像Iの理想の形状である。実線は各実施の形態にかかる表示装置10を用いて投射した虚像Iを示している。
 図9~15において、(1)は観察者Dから見て、視点領域300の中心の位置から虚像Iを見たときの画面歪みを示す図である。(2)は視点領域300の左上の位置から虚像Iを見たときの画面歪みを示す図である。(3)は視点領域300の左下の位置から虚像Iを見たときの画面歪みを示す図である。(4)は視点領域300の右上の位置から虚像Iを見たときの画面歪みを示す図である。(5)は視点領域300の右下の位置から虚像Iを見たときの画面歪みを示す図である。
 本開示の表示装置10を用いることによって、視点領域300の全域で画面歪みが良好に補正される。すなわち、視点領域300内において観察者Dはどの位置で観察しても良好な虚像を視認することが可能である。
 (数値実施例)
 以下、実施の形態1~7に係る表示装置を具体的に実施した数値実施例を説明する。なお、各数値実施例において、各表の長さの単位はすべて「mm」であり、角度の単位はすべて「°」である。また、各数値実施例において、自由曲面は次式で定義している。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、zは面を定義する軸を基準とした座標(x,y)におけるサグ量、rは面を定義する軸の原点における曲率半径、cは面を定義する軸の原点における曲率、kはコーニック定数、Cは単項式xの係数である。
 また、各数値実施例において、基準となる座標原点は表示デバイスの表示画面の中心であり、図5で示したように、座標原点を通過するX,Y,Z軸を定義している。
 さらに、各数値実施例中の偏心データにおいて、ADEは、ミラーをX軸を中心として回転させたときの回転角度であって、YZ直交座標系において、第1象限~第4象限の順と同じ方向の回転角度を正の値で表す。また、BDEは、ミラーをY軸を中心として回転させたときの回転角度であって、XZ直交座標系において、第1象限~第4象限の順と同じ方向の回転角度を正の値で表す。CDEは、ミラーをZ軸を中心としてとして回転させたときの回転角度であって、XY直交座標系において、第1象限~第4象限の順と逆方向の回転角度を正の値で表す。
 (数値実施例1)
 数値実施例1の投射光学系は、実施の形態1の投射光学系120に対応する。数値実施例1の投射光学系120の構成データを表1に、多項式自由曲面の係数を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (数値実施例2)
 数値実施例2の投射光学系は、実施の形態2の投射光学系120に対応する。数値実施例2の投射光学系の構成データを表3に、多項式自由曲面の係数を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 (数値実施例3)
 数値実施例3の投射光学系は、実施の形態3の投射光学系120に対応する。数値実施例3の投射光学系の構成データを表5に、多項式自由曲面の係数を表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 (数値実施例4)
 数値実施例4の投射光学系は、実施の形態4の投射光学系120に対応する。数値実施例4の投射光学系の構成データを表7に、多項式自由曲面の係数を表8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 (数値実施例5)
 数値実施例5の投射光学系は、実施の形態5の投射光学系120に対応する。数値実施例5の投射光学系の構成データを表9に、多項式自由曲面の係数を表10に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 (数値実施例6)
 数値実施例6の投射光学系は、実施の形態6の投射光学系120に対応する。数値実施例6の投射光学系の構成データを表11に、多項式自由曲面の係数を表12に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 (数値実施例7)
 数値実施例7の投射光学系は、実施の形態7の投射光学系120に対応する。数値実施例7の投射光学系の構成データを表13に、多項式自由曲面の係数を表14に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 以下の表15に、各数値実施例における表示する画像サイズ、虚像サイズ、観察者Dの瞳から虚像までの距離Tを示す。
Figure JPOXMLDOC01-appb-T000015
 以下の表16に、各数値実施例における各条件の対応値を示す。
Figure JPOXMLDOC01-appb-T000016
 以下の表17に、各数値実施例における第2ミラーのサグ量を示す。尚、表17において、基準交点より車両の右側にある点の距離を正の値で表す。
Figure JPOXMLDOC01-appb-T000017
 本開示にかかる表示装置は、車載用などのヘッドアップディスプレイといった高画質が要求される表示装置に好適である。
 10 表示装置
 100 筐体
 101 表示デバイス
 102 開口
 103 第1遮光壁
 104 第2遮光壁
 105 第1端部
 106 第2端部
 110 表示画面
 120 投射光学系
 121 123 第1ミラー
 122 第2ミラー
 200 車両
 210 ダッシュボード
 220 ウインドシールド
 300 視点領域
 D 観察者
 I 虚像
 X 光路

Claims (8)

  1.  観察者に虚像を視認させる表示装置であって、
     画像を表示する表示デバイスと、
     前記表示デバイスに表示された画像を投射する投射光学系とを備え、
     前記投射光学系は、前記表示デバイスから観察者の視点領域までの光路に沿って、前記表示デバイス側から順に、第1ミラーと第2ミラーとを有し、
     以下の条件式(1)、(2)を満たす、表示装置:
      θx>θy ・・・(1)
      0.2<D1/(T×2×tan(θh/2))<0.9 ・・・(2)
    ただし、
     θx:表示デバイスの表示画面の長手方向における第1ミラーへの入射光の入射角
     θy:表示デバイスの表示画面の短手方向における第1ミラーへの入射光の入射角
     D1:表示デバイスから視点領域の中心に到達する光線の光路上における、表示デバイスの画像表示面と第1ミラーとの間隔
     T:観察者の瞳から虚像までの距離
     θh:第1の直線と第2の直線とがなす角度であって、前記第1の直線は観察者の瞳に視認される虚像の水平方向の一方端と観察者の瞳とを結ぶ直線、前記第2の直線は観察者の瞳に視認される虚像の水平方向の他方端と観察者の瞳とを結ぶ直線
    である。
  2.  ウインドシールドを有する移動体に搭載され、
     前記投射光学系は、前記ウインドシールドに前記画像を投影し、該画像を虚像として観察者に視認させることを特徴とする、請求項1に記載の表示装置。
  3.  前記第2ミラーは自由曲面形状であることを特徴とする、請求項1に記載の表示装置。
  4.  前記第1ミラーが回転非対称の形状であることを特徴とする、請求項3に記載の表示装置。
  5.  前記第1ミラーが凸面形状であることを特徴とする、請求項4に記載の表示装置。
  6.  前記第2ミラーが凹面形状であることを特徴とする、請求項5に記載の表示装置。
  7.  観察者に虚像を視認させる表示装置であって、
     画像を表示する表示デバイスと、
     前記表示デバイスに表示された画像を投射する投射光学系とを備え、
     前記投射光学系は、前記表示デバイスから観察者の視点領域までの光路に沿って、前記表示デバイス側から順に、第1ミラーと第2ミラーとを有し、
     前記第1ミラー及び前記第2ミラーの少なくとも一方の反射面が凹面形状を有しており、
     前記表示デバイスの表示画面の中心から出射された光が観察者の前記視点領域の中心に到達する光線を基準光線とし、
     前記第2ミラーと、前記第2ミラーに入射する前記基準光線との交点を基準交点とし、
     前記第2ミラーへの入射光線と反射光線とを含む平面を第1基準平面とし、
     前記第1基準平面に対して垂直な平面を第2基準平面とし、
     前記基準交点を通る、前記第2ミラーと前記第2基準平面との交線を基準交線とし、
     前記第2ミラーの反射面上の前記基準交点の接平面から前記第2ミラーまでの垂直距離をサグ量と定義したとき、
     前記接平面上にある第1の点における第1のサグ量と、前記基準交点に対して前記第1の点と点対称な前記接平面上の第2の点における第2のサグ量とが異なる、表示装置。
  8.  前記第2ミラーを、前記基準交線よりも鉛直方向上側の面と、前記基準交線よりも鉛直方向下側の面とに分割したとき、前記上側の面上の任意の点を含む局所面の焦点距離と、前記下側の面上の任意の点を含む局所面の焦点距離とが異なることを特徴とする、請求項7に記載の表示装置。
PCT/JP2015/000835 2014-03-27 2015-02-23 表示装置 WO2015145956A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15769826.7A EP3096178A4 (en) 2014-03-27 2015-02-23 Display apparatus
US15/069,011 US20160195719A1 (en) 2014-03-27 2016-03-14 Display apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-065196 2014-03-27
JP2014065196 2014-03-27
JP2015003661A JP2015194707A (ja) 2014-03-27 2015-01-09 表示装置
JP2015-003661 2015-01-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/069,011 Continuation US20160195719A1 (en) 2014-03-27 2016-03-14 Display apparatus

Publications (1)

Publication Number Publication Date
WO2015145956A1 true WO2015145956A1 (ja) 2015-10-01

Family

ID=54194518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000835 WO2015145956A1 (ja) 2014-03-27 2015-02-23 表示装置

Country Status (4)

Country Link
US (1) US20160195719A1 (ja)
EP (1) EP3096178A4 (ja)
JP (1) JP2015194707A (ja)
WO (1) WO2015145956A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582245B2 (ja) * 2014-11-19 2019-10-02 パナソニックIpマネジメント株式会社 ヘッドアップディスプレイ及び車両
CN109073887B (zh) 2016-04-26 2021-02-19 麦克赛尔株式会社 信息显示装置
WO2017199441A1 (ja) 2016-05-20 2017-11-23 日立マクセル株式会社 投影光学系、ヘッドアップディスプレイ装置及び自動車
US11487115B2 (en) 2016-07-07 2022-11-01 Maxell, Ltd. Head-up display apparatus
WO2018029999A1 (ja) * 2016-08-08 2018-02-15 マクセル株式会社 ヘッドアップディスプレイ装置
JP6762807B2 (ja) 2016-08-30 2020-09-30 マクセル株式会社 情報表示装置
JP6638077B2 (ja) 2016-09-06 2020-01-29 マクセル株式会社 ヘッドアップディスプレイ装置とそのための映像表示装置
US11169376B2 (en) 2016-10-04 2021-11-09 Maxell, Ltd. Projection optical system and head-up display device
WO2018066062A1 (ja) 2016-10-04 2018-04-12 マクセル株式会社 投影光学系、及びヘッドアップディスプレイ装置
JP2018084596A (ja) 2016-11-21 2018-05-31 マクセル株式会社 情報表示装置
JP6857800B2 (ja) 2016-12-21 2021-04-14 パナソニックIpマネジメント株式会社 虚像表示装置
US11448877B2 (en) 2017-07-04 2022-09-20 Maxell, Ltd. Projection optical system and head-up display
TWM554175U (zh) * 2017-09-01 2018-01-11 Opticser Co Ltd 光學投影裝置
US11921287B2 (en) 2017-09-04 2024-03-05 Maxell, Ltd. Information display apparatus
JP6876580B2 (ja) 2017-09-15 2021-05-26 マクセル株式会社 情報表示装置
JP6940361B2 (ja) 2017-10-10 2021-09-29 マクセル株式会社 情報表示装置
JP6987341B2 (ja) 2017-10-24 2021-12-22 マクセル株式会社 情報表示装置およびその空間センシング装置
JP2019082601A (ja) * 2017-10-31 2019-05-30 パナソニックIpマネジメント株式会社 表示システム、及び移動体
CN109752847A (zh) * 2017-11-01 2019-05-14 和全丰光电股份有限公司 光学投影系统及其装置
US11131864B2 (en) * 2018-04-06 2021-09-28 Magna Closures, Inc. Holographic display within a vehicle external part
CN110365952B (zh) 2018-04-11 2022-05-31 京东方科技集团股份有限公司 一种用于投射显示装置的视角测试方法和测试系统
JP7122919B2 (ja) 2018-09-21 2022-08-22 マクセル株式会社 情報表示装置およびそれに用いる反射ミラー
CN113260900B (zh) * 2018-11-29 2024-02-20 康宁公司 用于抬头显示系统的具有反曲率的非球面镜及其形成方法
FR3090141B1 (fr) * 2018-12-18 2022-05-27 Valeo Comfort & Driving Assistance Miroir de puissance pour dispositif d’affichage tête-haute, dispositif d’affichage tête-haute comportant un tel miroir et moule de fabrication d’un tel miroir
JP7202191B2 (ja) 2019-01-17 2023-01-11 マクセル株式会社 車両用情報表示システム
WO2021002121A1 (ja) 2019-07-04 2021-01-07 マクセル株式会社 鋭角な拡散特性を有する情報表示システムとそれに用いる映像光制御フィルム
CN114706225B (zh) * 2022-04-19 2023-08-01 业成科技(成都)有限公司 抬头显示器与光学反射结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101829A (ja) * 2002-09-09 2004-04-02 Denso Corp 車両用ヘッドアップディスプレイ
JP2004226469A (ja) * 2003-01-20 2004-08-12 Denso Corp 車両用ヘッドアップディスプレイ装置
JP2011203680A (ja) * 2010-03-26 2011-10-13 Denso Corp ヘッドアップディスプレイ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950010029B1 (ko) * 1989-11-30 1995-09-06 휴우즈 에어크라프트 캄파니 차량 계기 장치용 이중-미러 허상 디스플레이
US5121099A (en) * 1990-08-31 1992-06-09 Hughes Aircraft Company Two-page automotive virtual image display
JPH07159718A (ja) * 1993-12-02 1995-06-23 Fujitsu Ltd ヘッドアップディスプレイ
JP3433587B2 (ja) * 1995-09-20 2003-08-04 株式会社島津製作所 表示装置
JPH1164779A (ja) * 1997-08-08 1999-03-05 Shimadzu Corp 自動車用ヘッドアップディスプレイ
JP2002031774A (ja) * 2000-07-17 2002-01-31 Denso Corp 車両用ヘッドアップディスプレイ
JP3912234B2 (ja) * 2002-09-09 2007-05-09 株式会社デンソー 車両用ヘッドアップディスプレイ
JP2007183671A (ja) * 2004-04-27 2007-07-19 Mitsubishi Electric Corp 画像投写装置
DE102005017207A1 (de) * 2005-04-14 2006-10-19 Carl Zeiss Jena Gmbh Projektionseinheit für ein Head-Up-Display
EP2728394A4 (en) * 2011-07-01 2015-01-21 Pioneer Corp DISPLAY DEVICE
JP5370427B2 (ja) * 2011-07-24 2013-12-18 株式会社デンソー ヘッドアップディスプレイ装置
JP2013061554A (ja) * 2011-09-14 2013-04-04 Ricoh Co Ltd 画像形成装置、画像形成装置を搭載した車両
WO2013061439A1 (ja) * 2011-10-27 2013-05-02 アスミタステクノロジー株式会社 立体映像表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101829A (ja) * 2002-09-09 2004-04-02 Denso Corp 車両用ヘッドアップディスプレイ
JP2004226469A (ja) * 2003-01-20 2004-08-12 Denso Corp 車両用ヘッドアップディスプレイ装置
JP2011203680A (ja) * 2010-03-26 2011-10-13 Denso Corp ヘッドアップディスプレイ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3096178A4 *

Also Published As

Publication number Publication date
US20160195719A1 (en) 2016-07-07
EP3096178A1 (en) 2016-11-23
EP3096178A4 (en) 2017-02-01
JP2015194707A (ja) 2015-11-05

Similar Documents

Publication Publication Date Title
WO2015145956A1 (ja) 表示装置
WO2016079926A1 (ja) ヘッドアップディスプレイ及び車両
JP6650584B2 (ja) ヘッドアップディスプレイおよびヘッドアップディスプレイを搭載した移動体
JP6630921B2 (ja) ヘッドアップディスプレイおよびヘッドアップディスプレイを搭載した移動体
US9791702B2 (en) Display device
US11448877B2 (en) Projection optical system and head-up display
US9958936B2 (en) Head mounted display device
JP6893335B2 (ja) ヘッドアップディスプレイ
JP2017134141A (ja) ヘッドアップディスプレイ装置
WO2016038767A1 (ja) ヘッドアップディスプレイ及び移動体
JP6561323B2 (ja) ヘッドアップディスプレイ
JP2022189851A (ja) 結像光学系および結像光学系を搭載した移動体
US20150331243A1 (en) Display device
JP6283826B2 (ja) ヘッドアップディスプレイおよびヘッドアップディスプレイを搭載した移動体
JP6857800B2 (ja) 虚像表示装置
JPWO2018186149A1 (ja) ヘッドアップディスプレイシステム、およびヘッドアップディスプレイシステムを備える移動体
US9696461B2 (en) Lens array and image display device
JP6664555B2 (ja) ヘッドアップディスプレイ装置
JP6628873B2 (ja) 投影光学系、ヘッドアップディスプレイ装置及び自動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769826

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015769826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769826

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE