WO2015145797A1 - 止血用医薬組成物 - Google Patents

止血用医薬組成物 Download PDF

Info

Publication number
WO2015145797A1
WO2015145797A1 PCT/JP2014/070703 JP2014070703W WO2015145797A1 WO 2015145797 A1 WO2015145797 A1 WO 2015145797A1 JP 2014070703 W JP2014070703 W JP 2014070703W WO 2015145797 A1 WO2015145797 A1 WO 2015145797A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar chain
amino acid
polypeptide
pharmaceutical composition
hemostasis
Prior art date
Application number
PCT/JP2014/070703
Other languages
English (en)
French (fr)
Inventor
速人 西條
洋文 落合
泰治 下田
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Priority to JP2016509877A priority Critical patent/JPWO2015145797A1/ja
Priority to CN201480079324.7A priority patent/CN106659821A/zh
Priority to CA2943734A priority patent/CA2943734A1/en
Priority to SG11201607893TA priority patent/SG11201607893TA/en
Priority to KR1020167028412A priority patent/KR20160142843A/ko
Priority to AU2014388585A priority patent/AU2014388585B2/en
Priority to EP14887535.4A priority patent/EP3124058A4/en
Publication of WO2015145797A1 publication Critical patent/WO2015145797A1/ja
Priority to US15/128,802 priority patent/US20170119844A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0028Polypeptides; Proteins; Degradation products thereof
    • A61L26/0047Specific proteins or polypeptides not covered by groups A61L26/0033 - A61L26/0042
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/0066Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/008Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/418Agents promoting blood coagulation, blood-clotting agents, embolising agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding

Definitions

  • the present invention relates to a pharmaceutical composition for hemostasis comprising a sugar chain-polypeptide complex.
  • Biogels such as hydrogels and fibrin glues are used in research base materials such as three-dimensional culture, surgical base materials such as intraoperative / post-operative hemostatic agents and wound healing sheets, drug delivery systems (DDS), and the like.
  • research base materials such as three-dimensional culture
  • surgical base materials such as intraoperative / post-operative hemostatic agents and wound healing sheets
  • drug delivery systems DDS
  • fibrin glue is highly useful as a hemostatic agent at the time of surgery, but since the raw material is derived from human blood, when it is actually used at the time of surgery, the patient is infected with the hepatitis virus mixed in the fibrin glue Has become a major social problem. In addition, there is a problem in that a bio-derived biogel cannot always supply a gel of uniform quality.
  • An object of the present invention is to provide a pharmaceutical composition for hemostasis capable of forming a transparent and homogeneous hydrogel in a wide range of pH, which has higher usability than conventional hemogels using biogels.
  • the inventors have found that by attaching a sugar chain to a polypeptide comprising an amino acid sequence in which polar amino acid residues and nonpolar amino acid residues are alternately arranged.
  • the produced sugar chain-polypeptide complex surprisingly exhibits high water solubility in a wide pH range, particularly in the neutral range, and not only forms a transparent and homogeneous hydrogel, but this hydrogel is also a hemostatic agent.
  • the present invention was found to be extremely useful.
  • the present invention is a pharmaceutical composition for hemostasis comprising a sugar chain-polypeptide complex, wherein the polypeptide in the sugar chain-polypeptide complex has alternating polar amino acid residues and nonpolar amino acid residues.
  • the present invention provides a hemostatic pharmaceutical composition characterized by comprising a polypeptide comprising an amino acid sequence arranged in the above, wherein one or more sugar chains are bound to the polypeptide.
  • the polypeptide in the sugar chain-polypeptide complex has 8 to 34 amino acid residues in which polar amino acid residues and nonpolar amino acid residues are alternately arranged.
  • the sugar chain-polypeptide complex is capable of forming a hydrogel containing a ⁇ -sheet structure by self-assembly in an aqueous solution having a pH near neutral. It is characterized by.
  • the concentration of the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition is 0.1% by weight to 20% by weight.
  • the total number of sugar residues present in one or more sugar chains bound to the polypeptide is 5 or more.
  • the number of sugar chains bonded to the polypeptide is 1, 2, or 3.
  • the sugar chain is a branched sugar chain.
  • the pharmaceutical composition is in a hydrogel state.
  • the pharmaceutical composition for hemostasis according to the present invention has high water solubility in a wide pH range including a neutral range, and forms a uniform and transparent hydrogel. It can be used as a hemostatic agent with high usability. Moreover, since it can be used in a wide pH range, an application site (affected part) is not easily restricted.
  • the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition according to the present invention has high water solubility in a wide pH range including a neutral range, it forms a uniform and transparent hydrogel.
  • a sol state and a gel state can exist reversibly. That is, once a sugar chain-polypeptide complex is formed into a gel state, it can be again in a gel state even if it is converted into a sol state by mechanical stirring. Therefore, the gel can be distributed in a gel state (ie, Ready-to-Use state), and the gel is formed at a pH suitable for gelation (for example, acidic pH) like other peptide gels.
  • the sugar chain-polypeptide complex according to the present invention is very excellent in operability as compared with other peptide gels.
  • the pharmaceutical composition for hemostasis according to the present invention has a wide usable pH range, problems such as clogging of syringes and tubes during use are unlikely to occur.
  • the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition according to the present invention is modified by a sugar chain present in the living body of an animal, compared to a peptide without any modification, Antigenicity is reduced.
  • the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition according to the present invention has almost no risk of toxicity as seen with compounds modified with polyethylene glycol (PEG) or the like. Therefore, the pharmaceutical composition for hemostasis according to the present invention is highly safe when used for a living body.
  • the pharmaceutical composition for hemostasis according to the present invention forms a uniform and transparent hydrogel under physiological conditions (neutral range), and is less antigenic. Therefore, it is suitable as a hemostatic agent used in animal living bodies.
  • FIG. 1 shows the results of circular dichroism (CD) measurement for compositions obtained by dissolving C (DiGlcNAc)-(RADA) 4 in ultrapure water, saline or phosphate buffer solution.
  • FIG. 2 shows the results of circular dichroism (CD) measurement for compositions obtained by dissolving (RADA) 4 in ultrapure water, saline or phosphate buffer solution.
  • FIG. 3 shows a diagram comparing the fibrous structure-forming ability of C (DiGlcNAc)-(RADA) 4 and (RADA) 4.
  • FIG. 4 shows the storage modulus of C (DiGlcNAc)-(RADA) 4 and (RADA) 4 in the aqueous solution state.
  • FIG. 1 shows the results of circular dichroism (CD) measurement for compositions obtained by dissolving C (DiGlcNAc)-(RADA) 4 in ultrapure water, saline or phosphate buffer solution.
  • FIG. 3 shows a diagram
  • FIG. 5 shows the storage modulus of C (DiGlcNAc)-(RADA) 4 and (RADA) 4 after addition of salt.
  • FIG. 6 shows the distribution of hemostatic effect scores 3 minutes after application of C (DiGlcNAc)-(RADA) 4 or (RADA) 4 in a rat liver puncture model.
  • the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition according to the present invention may be derived from a living organism or produced by chemical synthesis. However, safety, quality stability, sugar chain From the standpoint of uniformity, it is preferably produced by chemical synthesis.
  • the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition according to the present invention includes, for example, interactions such as electrostatic interaction, hydrogen bonding, and hydrophobic interaction between peptide molecules in an aqueous solution.
  • interactions such as electrostatic interaction, hydrogen bonding, and hydrophobic interaction between peptide molecules in an aqueous solution.
  • the sugar chain-polypeptide complex “self-assembles” in an aqueous solution means that polypeptides interact with each other in an aqueous solution (for example, electrostatic interaction, hydrogen bonding, van der Waals, etc.). Means spontaneous assembly via forces, hydrophobic interactions, etc.) and should not be interpreted in a limited sense.
  • the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition according to the present invention can self-assemble in an aqueous solution to form a ⁇ sheet structure. Furthermore, a hydrogel can be formed by overlapping the ⁇ sheet structure several times.
  • the method for confirming that the sugar chain-polypeptide complex forms a ⁇ -sheet structure in the aqueous solution is not particularly limited. For example, circular dichroism (CD) of an aqueous solution containing the sugar chain-polypeptide complex This can be confirmed by measuring. Generally, as a characteristic of molecules having a ⁇ sheet structure, a maximum is observed at a wavelength near 197 nm and a minimum is observed at a wavelength near 216 nm. By confirming the peak, formation of the ⁇ sheet structure can be confirmed.
  • the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition according to the present invention comprises an amino acid sequence in which polar amino acid residues and nonpolar amino acid residues are alternately arranged, so that a ⁇ sheet structure can be formed in an aqueous solution.
  • a polar amino acid residue can be arranged on one side of the ⁇ sheet structure, and only a non-polar amino acid residue can be arranged on the other side. Therefore, such a ⁇ sheet structure can be aggregated so as to hide a hydrophobic surface (a surface on which only nonpolar amino acid residues are arranged) to form a two-layer structure.
  • a three-dimensional structure for example, hydrogel
  • the pH is near neutral means that the pH is around 7.0, more specifically, the pH is in the range of 5.0 to 9.0, preferably the pH. Is within the range of 6.0 to 8.0.
  • the concentration of the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition of the present invention can be appropriately adjusted by those skilled in the art according to the application symptom and application site of the present invention. % To 20% by weight, preferably 0.2% to 15% by weight, and more preferably 0.5% to 10% by weight. If the concentration of the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition is 0.1% by weight or less, the hydrogel may not be formed appropriately.
  • the hydrogel broadly means a gel-like or sol-like composition in which the dispersion medium is substantially water, and should not be interpreted in a limited sense.
  • the hemostatic pharmaceutical composition of the present invention may be used in an aqueous solution state or in a hydrogel state.
  • the method for preparing the aqueous solution or the hydrogel is not particularly limited.
  • a pharmaceutical composition for hemostasis in an aqueous solution state may be obtained by dissolving a sugar chain-polypeptide complex in ultrapure water.
  • a pharmaceutical composition for hemostasis in a hydrogel state may be obtained by further adding a salt-containing solvent (for example, physiological saline, PBS or the like) to an aqueous solution in which the peptide complex is dissolved in ultrapure water.
  • a salt-containing solvent for example, physiological saline, PBS or the like
  • the hemostatic pharmaceutical composition is not limited to those containing only a sugar chain-polypeptide complex and a solvent (water, PBS, physiological saline, etc.), and may contain various other components.
  • a medicine having a disinfecting / sterilizing component it is possible not only to stop bleeding from the wound, but also to sterilize / disinfect the wound at the same time.
  • the hemostatic pharmaceutical composition of the present invention has a low storage elastic modulus in an aqueous solution state and a high storage elastic modulus in a hydrogel state.
  • the pharmaceutical composition for hemostasis of the present invention forms a transparent hydrogel having a uniform fibrous structure in a wide pH range including a neutral range.
  • the application symptom and application site of the pharmaceutical composition for hemostasis of the present invention are not particularly limited, but due to the above properties, in particular, when there is a need for visual observation of the affected area such as during surgery, hemostasis at the bleeding site corresponding to the blind spot, It can be suitably used for hemostasis of a wide range of bleeding sites, hemostasis of bleeding sites of three-dimensional or complicated shapes, and the like.
  • the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition can self-assemble in an aqueous solution having a pH near neutral to form a hydrogel containing a ⁇ -sheet structure.
  • a hydrogel containing a ⁇ -sheet structure can self-assemble even in an aqueous solution whose pH is not near neutral.
  • the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition according to the present invention includes a polypeptide comprising an amino acid sequence in which polar amino acid residues and nonpolar amino acid residues are alternately arranged.
  • a polypeptide comprising an amino acid sequence in which polar amino acid residues and nonpolar amino acid residues are alternately arranged.
  • the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition according to the present invention includes a polypeptide comprising an amino acid sequence in which polar amino acid residues and nonpolar amino acid residues are alternately arranged.
  • Amino acid is used in its broadest sense and includes non-protein constituent amino acids such as amino acid variants and derivatives as well as protein constituent amino acids.
  • amino acids in the present invention include, for example, protein-modified L-amino acids; D-amino acids; chemically modified amino acids such as amino acid variants and derivatives; norleucine, ⁇ -alanine It will be appreciated that non-proteinogenic amino acids such as ornithine; and chemically synthesized compounds having properties known in the art that are characteristic of amino acids.
  • protein non-constituent amino acids include ⁇ -methyl amino acids (such as ⁇ -methylalanine), D-amino acids, histidine-like amino acids (2-amino-histidine, ⁇ -hydroxy-histidine, homohistidine, ⁇ -fluoromethyl-histidine and ⁇ -methyl-histidine etc.), amino acids with extra methylene in the side chain (“homo” amino acids) and amino acids in which the carboxylic acid functional amino acids in the side chain are replaced with sulfonic acid groups (eg cysteic acid) .
  • the amino acid used in the present invention may be a protein-constituting amino acid.
  • the polar amino acid residue is not particularly limited as long as the side chain can have polarity, and includes, for example, an acidic amino acid residue and a basic amino acid residue.
  • acidic amino acid residues include, for example, aspartic acid (Asp: D) residues, glutamic acid (Glu: E), etc.
  • basic amino acids include, for example, arginine (Arg: R), Includes lysine (Lys: K), histidine (His: H) and the like.
  • aspartic acid (Asp: D) or the like may be expressed as “Asp” in three letters or “D” in one letter as an abbreviation for aspartic acid. means.
  • amino acid residues containing a hydroxyl group, an acid amide group, a thiol group, and the like are assumed to be polar and are included in polar amino acid residues.
  • tyrosine (Tyr: Y), serine (Ser: S), threonine (Thr: T), asparagine (Asn: N), glutamine (Gln: Q), and cysteine (Cys: C) are polar. Included in amino acid residues.
  • the nonpolar amino acid residue is not particularly limited as long as the side chain has no polarity.
  • alanine Al: A
  • valine Val: V
  • leucine Leu: L
  • Isoleucine I
  • methionine Metal: M
  • phenylalanine Phe: F
  • tryptophan Trp: W
  • glycine Gly: G
  • proline Pro: P
  • the “amino acid sequence in which polar amino acid residues and nonpolar amino acid residues are alternately arranged” is preferably the amino acid sequence is It may be a repetitive sequence of “RADA” (2 to 8 repetitions, preferably 3 to 6 repetitions), more preferably the amino acid sequence is RADARADARADARADA (SEQ ID NO: 1) or RADARADARADARADARADA (SEQ ID NO: 2) It may be.
  • sugar chain refers to a compound in which one or more unit sugars (monosaccharides and / or derivatives thereof) are connected. When two or more unit sugars are connected, each unit sugar is bound by dehydration condensation by a glycosidic bond.
  • Such sugar chains include, for example, monosaccharides and polysaccharides (glucose, galactose, mannose, fucose, xylose, N-acetylglucosamine, N-acetylgalactosamine, sialic acid, and complexes thereof contained in the living body.
  • sugar chains that are decomposed or derived from complex biomolecules such as degraded polysaccharides, glycoproteins, proteoglycans, glycosaminoglycans, glycolipids, etc., but are not limited thereto.
  • the sugar chain may be linear or branched.
  • sugar chain also includes sugar chain derivatives.
  • sugar chain derivatives include sugars having a carboxy group (for example, at the C-1 position). Oxidized aldonic acid (for example, D-gluconic acid in which D-glucose is oxidized), uronic acid in which the terminal C atom is converted into carboxylic acid (D-glucuronic acid in which D-glucose is oxidized) )), Sugars having amino groups or derivatives of amino groups (eg, D-glucosamine, D-galactosamine, etc.), sugars having both amino groups and carboxy groups (eg, N-glycolneuraminic acid, N-acetyl) Muramic acid, etc.), deoxylated sugars (eg 2-deoxy-D-ribose), sulfated sugars containing sulfate groups, phosphorylated sugars containing phosphate groups, etc. But not limited to these.
  • the sugar chain bound to the polypeptide is not particularly limited. From the viewpoint of biocompatibility, complex carbohydrates (glycopeptides (or glycoproteins), proteoglycans in vivo It is preferable that the sugar chain exists as a glycolipid or the like. Examples of such sugar chains include N-linked sugar chains and O-linked sugar chains that are sugar chains bound to peptides (or proteins) as glycopeptides (or glycoproteins) in vivo.
  • the sugar chain bonded to the polypeptide is, for example, a Disialo sugar chain, an Asialo sugar chain, a Diglucnac (DiGlcNAc) sugar chain, or dimannose (DiMan).
  • Sugar chain, glucnac (GlcNAc) sugar chain, maltotriose sugar chain, maltose sugar chain, maltotetraose sugar chain, maltoheptaose sugar chain, ⁇ -cyclodextrin ( ⁇ A -cyclodextrin sugar chain or a ⁇ -cyclodextrin sugar chain can be used.
  • the sugar chain used in the present invention may be a disialo sugar chain represented by the following formula (1), an asialo sugar chain represented by the following formula (2), and the following formula: It may be a digluconac sugar chain represented by (3), a dimannose sugar chain represented by the following formula (4), a glucunac sugar chain represented by the following formula (5), or the following formula (6 ) May be a maltotriose sugar chain represented by the following formula (7), may be a maltotetraose sugar chain represented by the following formula (8), and the following formula It may be a maltoheptaose sugar chain represented by (9), a ⁇ -cyclodextrin sugar chain represented by the following formula (10), or a ⁇ -cyclodextrin sugar chain represented by the following formula (11).
  • a sugar chain in which one or a plurality of sugars are lost from the non-reducing end of the above-mentioned dicialo sugar chain, asialo sugar chain, diglucnac sugar chain, dimannose sugar chain, or maltoheptaose sugar chain can also be used.
  • the amino acid residue to which the sugar chain is bound is not particularly limited.
  • the sugar chain can be bound to cysteine (Cys: C) or asparagine (Asn: N), and preferably cysteine (Cys: C). ).
  • the method for binding a sugar chain to an amino acid is not particularly limited.
  • the sugar chain may be directly bound to an amino acid residue, or the sugar chain may be bound to an amino acid residue via a linker. .
  • amino acid residue to which the sugar chain is bonded may be directly bonded to the “amino acid sequence in which polar amino acid residues and nonpolar amino acid residues are alternately arranged”. It may be connected via.
  • Such a linker examples include an alkyl chain and a PEG chain having an amino group and a carboxy group at both ends so that an amino acid and a peptide can be bonded.
  • a linker is, for example, —NH— (CH 2 ) n —CO— (wherein n is an integer and is not limited as long as the desired linker function is not inhibited, but preferably 1 Represents an integer of ⁇ 15) or —NH— (CH 2 CH 2 O) m —CH 2 CH 2 —CO— (wherein m is an integer and is limited as long as the desired linker function is not inhibited) Although it is not a thing, Preferably it shows the integer of 1-7.) Etc. can be mentioned. More specifically, —NH— (CH 2 ) 11 —CO— (C12 linker), —NH— (CH 2 CH 2 O) 3 —CH 2 CH 2 —CO— (PEG linker), and the like can be given.
  • the sugar chain-polypeptide complex used in the present invention can be produced by incorporating a sugar chain addition step into a polypeptide synthesis method known to those skilled in the art.
  • a method using an enzyme represented by transglutaminase can also be used.
  • transglutaminase a method using an enzyme represented by transglutaminase
  • a large amount of sugar chain to be added is required, and purification after the final step becomes complicated.
  • problems such as restrictions on the position of the chain and the sugar chain that can be added, it can be used for small-scale synthesis for assays and the like, but it is a practical method for large-scale production. There may not be.
  • sugar chain-bound Asn (glycan-added Asn) is used, such as solid phase synthesis, liquid phase synthesis and the like.
  • a method for producing a sugar chain-polypeptide complex by applying the peptide synthesis method (Method A) and a polypeptide having an arbitrary amino acid residue as Cys are produced according to a known peptide synthesis method, A method (Method B) in which a sugar chain is added to Cys by chemical synthesis to produce a sugar chain-polypeptide complex is exemplified.
  • these A method and B method can be performed in combination of two or more.
  • a sugar chain elongation reaction by a transferase with the above method.
  • the method A is described in International Publication No. 2004/005330 pamphlet (US2005222382 (A1))
  • the method B is described in International Publication No. 2005/010053 pamphlet (US2007060543 (A1)).
  • International Publication No. 03/008431 pamphlet US2004181054 (A1)
  • 2004/058884 pamphlet (US2006228784 (A1)). )), International Publication No. 2004/058824 pamphlet (US2006009421 (A1)), International Publication No. 2004/070046 pamphlet (US200620039 (A1)), International Publication No. 2007/011055 pamphlet, and the like. are incorporated herein by reference in their entirety.
  • the sugar chain-polypeptide complex can be produced, for example, by solid phase synthesis using Asn to which a sugar chain is bound, as schematically shown below.
  • the carboxy group of an amino acid whose amino group nitrogen is protected with a fat-soluble protecting group is bonded to a resin (resin).
  • a resin resin
  • the amino group nitrogen of the amino acid is protected with a fat-soluble protecting group, self-condensation between amino acids is prevented, and the resin and amino acid react to form a bond.
  • the fat-soluble protecting group of the obtained reaction product is eliminated to form a free amino group.
  • the sugar chain can be bound to any position of the polypeptide.
  • the amino group nitrogen is protected with the fat-soluble protecting group in place of the amino acid in which the amino group nitrogen is protected with the fat-soluble protecting group at least twice.
  • sugar chains can be bound to any two or more positions of the polypeptide.
  • the lipophilic protecting group is removed to form a free amino group, and if the step (7) is performed immediately thereafter, a polypeptide having a glycosylated Asn at the N-terminus is obtained. Can do.
  • the resin (resin) that supplies the C-terminal as an amide group may be any resin (resin) that is usually used in solid phase synthesis.
  • a Rink-Amide-resin functionalized with an amino group manufactured by Merck
  • Rink-Amide-PEGA resin Merck
  • NH-SAL-resin Wanganabe Chemical
  • Fmoc-NH-SAL-resin-linker manufactured by Watanabe Chemical Co., Ltd.
  • Amino-PEGA-resin Merck Co., Ltd.
  • Examples of the resin (resin) when the C-terminal is a carboxylic acid include 2-chlorotrityl chloride resin functionalized with chlorine (manufactured by Merck) or an amino-PEGA resin functionalized with an amino group. (Merck), NovaSyn TGT alcohol resin having a hydroxyl group (Merck), Wang resin (Merck), HMPA-PEGA resin (Merck) and the like can be used.
  • a linker may be present between the amino-PEGA resin and the amino acid. Examples of such a linker include 4-hydroxymethylphenoxyacetic acid (HMPA), 4- (4-hydroxymethyl-3-methoxyphenoxy). ) -Butyl acetic acid (HMPB).
  • H-Cys (Trt) -Trity NovaPEG resin manufactured by Merck or the like in which the C-terminal amino acid is bonded to the resin in advance
  • a resin having a hydroxyl group or a resin functionalized with chlorine the bond between the resin and the amino acid whose amino group nitrogen is protected with a fat-soluble protecting group is obtained by esterifying the carboxy group of the amino acid to the resin.
  • a resin functionalized with an amino group the carboxy group of the amino acid is bonded to the resin by an amide bond.
  • the 2-chlorotrityl chloride resin is preferable because it can prevent racemization of Cys at the terminal when the peptide chain is extended in solid phase synthesis.
  • the sugar chain-polypeptide complex can be produced, for example, by liquid phase synthesis using Asn to which a sugar chain is bound, as schematically shown below.
  • a carboxy group of an amino acid in which the amino group nitrogen is protected with a fat-soluble protecting group is bonded to an amino acid in which the amino group is free and the carboxy group is protected or amidated.
  • the fat-soluble protecting group of the obtained reaction product is eliminated to form a free amino group.
  • This free amino group is subjected to an amidation reaction in a solution with a carboxy group of any amino acid whose amino group nitrogen is protected with a fat-soluble protecting group.
  • the amino group nitrogen of the amino acid on the N-terminal side is protected with a fat-soluble protecting group, and the carboxy group on the C-terminal side is protected or amidated, so that self-condensation between amino acids is prevented and free Amino group and carboxy group react to form a bond.
  • the above fat-soluble protecting group is eliminated to form a free amino group.
  • the C-terminal carboxy group to which any number of arbitrary amino acids are linked is protected or amidated, and a free amino group is formed at the N-terminal. Is obtained.
  • a peptide having a desired amino acid sequence can be obtained by cleaving the side chain fat-soluble protecting group with an acid.
  • Method 3 for producing a sugar chain-polypeptide complex The sugar chain-polypeptide complex can be produced, for example, by a fragment synthesis method using Asn to which a sugar chain is bound, as schematically shown below.
  • a polypeptide or sugar chain in which an amino group nitrogen is protected with an acetyl group or a fat-soluble protecting group by the above method (Method A)
  • (1)-(6) for producing a sugar chain-polypeptide complex -Synthesize the polypeptide complex on the resin (1)
  • a polypeptide or a sugar chain-polypeptide complex is cleaved from a resin under conditions where the side chain protecting group is not deprotected, has a free carboxy at the C terminus, and an acetyl group or a lipophilic protecting group at the N terminus
  • a polypeptide or sugar chain-polypeptide complex in which the amino group nitrogen is protected is protected.
  • the obtained polypeptide or sugar chain-polypeptide complex in which the amino group nitrogen is protected with an acetyl group or a fat-soluble protecting group is linked to a resin or polypeptide by solid phase synthesis or liquid phase synthesis. Let (4) The above fat-soluble protecting group is eliminated to form a free amino group.
  • a peptide in which an arbitrary number of arbitrary amino acids are linked is obtained.
  • a peptide having a desired amino acid sequence can be obtained by cleaving the resin with an acid.
  • the fat-soluble protective group examples include carbonate-based or amide groups such as 9-fluorenylmethoxycarbonyl (Fmoc) group, t-butyloxycarbonyl (Boc) group, benzyl group, allyl group, allyloxycarbonyl group, and acetyl group.
  • Protecting groups of the system can be mentioned.
  • a fat-soluble protecting group into an amino acid, for example, when introducing an Fmoc group, it can be introduced by adding 9-fluorenylmethyl-N-succinimidyl carbonate and sodium hydrogen carbonate to carry out the reaction. The reaction is carried out at 0 to 50 ° C., preferably at room temperature, for about 1 to 5 hours.
  • amino acids can also be used as the amino acid protected with a fat-soluble protecting group.
  • amino acids protected with a fat-soluble protecting group and having a protecting group introduced in the side chain include, for example, Fmoc-Arg (Pbf) -OH, Fmoc-Asn (Trt) -OH, Fmoc-Asp (OtBu ) -OH, Fmoc-Cys (Acm) -OH, Fmoc-Cys (StBu) -OH, Fmoc-Cys (tBu) -OH, Fmoc-Cys (Trt) -OH, Fmoc-Glu (OtBu) -OH, Fmoc -Gln (Trt) -OH, Fmoc-His (Trt) -OH, Fmoc-Lys (Boc) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Thr (tBu) -OH, Fmoc-Trp (Boc) -
  • a linker is to be added to the amino acid sequence of the sugar chain-polypeptide conjugate, in the process of solid phase synthesis, instead of the amino acid protected with the above-mentioned fat-soluble protecting group, a fat-soluble protecting group is used.
  • the linker can be inserted at a preferred position.
  • esterification can be carried out by using a base such as diisopropylethylamine (DIPEA), triethylamine, pyridine, 2,4,6-collidine and the like.
  • DIPEA diisopropylethylamine
  • known esterification catalysts such as 1-mesitylenesulfonyl-3-nitro-1,2,4-triazole (MSNT), dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), etc.
  • MSNT 1-mesitylenesulfonyl-3-nitro-1,2,4-triazole
  • DCC dicyclohexylcarbodiimide
  • DIC diisopropylcarbodiimide
  • the dehydration condensing agent can be used.
  • the proportion of amino acid and dehydrating condensing agent used is usually 1 to 10 equivalents, preferably 2 to 5 equivalents in the latter with respect to 1 equivalent in the former.
  • the esterification reaction is preferably performed, for example, by placing a resin in a solid phase column, washing the resin with a solvent, and then adding an amino acid solution.
  • the cleaning solvent include dimethylformamide (DMF), 2-propanol, dichloromethane, and the like.
  • solvents that dissolve amino acids include dimethyl sulfoxide (DMSO), DMF, dichloromethane, and the like.
  • the esterification reaction is carried out at 0 to 50 ° C., preferably at room temperature, for about 10 minutes to 30 hours, preferably about 15 minutes to 24 hours.
  • the elimination of the lipophilic protecting group can be carried out, for example, by treatment with a base.
  • a base include piperidine and morpholine.
  • a solvent examples include DMSO, DMF, methanol and the like.
  • amidation reaction between the free amino group and the carboxy group of any amino acid whose amino group nitrogen is protected with a fat-soluble protecting group is preferably carried out in the presence of an activator and a solvent.
  • activator examples include dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSC / HCl), diphenylphosphoryl azide (DPPA), carbonyldiimidazole (CDI).
  • DCC dicyclohexylcarbodiimide
  • WSC / HCl 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • DPPA diphenylphosphoryl azide
  • CDI carbonyldiimidazole
  • Diethyl cyanophosphonate (DEPC), benzotriazol-1-yloxy-trispyrrolidinophosphonium (DIPCI), benzotriazol-1-yloxy-trispyrrolidinophosphonium hexafluorophosphate (PyBOP), 1-hydroxybenzotriazole (HOBt), Hydroxysuccinimide (HOSu), dimethylaminopyridine (DMAP), 1-hydroxy-7-azabenzotriazole (HOAt), hydroxyphthalimide (HOP) t), pentafluorophenol (Pfp-OH), 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), 1- [bis (dimethyl Amino) methylene] -5-chloro-1H-benzotriazolium 3-oxide hexafluorophosphate (HCTU), O- (7-azabenzotriazol-1-yl)
  • the activator is used in an amount of 1 to 20 equivalents, preferably 1 to 10 equivalents, more preferably 1 to 5 equivalents with respect to any amino acid in which the amino group nitrogen is protected with a fat-soluble protecting group. Is preferred.
  • Examples of the solvent include DMSO, DMF, and dichloromethane.
  • the reaction is carried out at 0 to 50 ° C., preferably at room temperature, for about 10 minutes to 30 hours, preferably about 15 minutes to 24 hours.
  • the elimination of the lipophilic protecting group can be carried out in the same manner as described above.
  • Rink-Amide-resin functionalized with amino group (Merck), Rink-Amide-PEGA resin (Merck), NH-SAL-resin (Watanabe Chemical), NH-SAL-resin-linker
  • an amino acid at the C-terminal is introduced into Amino-PEGA-resin (Merck) or the like to which is bound, can be introduced using the above-mentioned amidation reaction.
  • the acid include trifluoroacetic acid (TFA) and hydrogen fluoride (HF).
  • the carboxy group of the sialic acid is protected by a protecting group.
  • the protecting group include benzyl group, allyl group, diphenylmethyl group, phenacyl group and the like. The introduction of the protecting group and the removal of the protecting group can be performed by known methods.
  • the sugar chain-polypeptide complex can also be produced by a method of first synthesizing a polypeptide and then adding a sugar chain to the synthesized polypeptide.
  • a polypeptide containing Cys at the position where a sugar chain is to be added is produced by a solid phase synthesis method, a liquid phase synthesis method, a method of synthesizing with a cell, a method of separating and extracting a naturally occurring one, and the like.
  • amino acids may be linked one residue at a time, or polypeptides may be linked.
  • Cys that does not add a sugar chain such as Cys at a position where a disulfide bond is to be formed, is protected with, for example, an acetamidomethyl (Acm) group.
  • Cys that does not add a sugar chain and is not used to form a disulfide bond is introduced into a sugar chain-polypeptide complex, Cys is protected during the sugar chain addition step and the disulfide bond formation step. Cys can be introduced such that it is protected by a group and then deprotected. Examples of such a protecting group include tert-butyl (tBu) and 4-methoxybenzyl.
  • Cys that introduces a sugar chain is first unprotected, and Cys that introduces a different sugar chain is then protected by StBu or the like. It is possible to introduce different sugar chains. Specifically, when a polypeptide is synthesized by solid phase synthesis or the like, Cys to which a first sugar chain is to be introduced is unprotected, and Cys to which a second sugar chain is to be introduced is Fmoc-Cys (StBu)- Cys having a protecting group is obtained using OH or the like. Thereafter, a sugar chain is introduced into unprotected Cys while retaining a protecting group such as StBu.
  • the deprotection of the StBu group can be deprotected by reacting with a reducing agent such as tris (2-carboxyethyl) phosphine hydrochloride (TCEP), dithiothreitol (DTT), tributylphosphine.
  • TCEP tris (2-carboxyethyl) phosphine hydrochloride
  • DTT dithiothreitol
  • tributylphosphine tributylphosphine.
  • the above reaction is usually carried out at 0 to 80 ° C., preferably 5 to 60 ° C., more preferably 10 to 35 ° C.
  • the reaction time is preferably about 30 minutes to 5 hours. After completion of the reaction, it may be appropriately purified by a known method (for example, high performance liquid column chromatography (HPLC)).
  • HPLC high performance liquid column chromatography
  • introducing a different sugar chain it is preferable to introduce it from a more stable sugar chain with respect to the reducing conditions in the Cys deprotection step and the acidic conditions in the purification step such as HPLC.
  • introducing a sialic acid-containing sugar chain it is preferable to introduce a sugar chain that does not have sialic acid or a sugar chain having a small number of sialic acid residues first.
  • a linker when a linker is to be added to the amino acid sequence of the sugar chain-polypeptide complex, for example, in the process of solid-phase synthesis, it is protected with a fat-soluble protecting group instead of an amino acid protected with a fat-soluble protecting group.
  • the linker By using the prepared linker, the linker can be inserted at a preferred position of the synthesized polypeptide.
  • the sugar chain is reacted with the thiol group of unprotected Cys and bonded to the peptide.
  • the above reaction is usually performed at 0 to 80 ° C., preferably 10 to 60 ° C., more preferably 15 to 35 ° C. in a phosphate buffer, Tris-HCl buffer, citrate buffer, or a mixed solution thereof. Good to do.
  • the reaction time is usually about 10 minutes to 24 hours, preferably about 30 minutes to 5 hours. After completion of the reaction, it may be appropriately purified by a known method (for example, HPLC).
  • the haloacetylated sugar chain derivative is, for example, a hydroxyl group bonded to the 1-position carbon of an asparagine-linked sugar chain, represented by —NH— (CH 2 ) a — (CO) —CH 2 X
  • X is a halogen atom, a Is an integer and is not limited as long as the desired linker function is not inhibited, but preferably represents an integer of 0 to 4.
  • a haloacetylated complex type sugar chain derivative and a Cys-containing polypeptide are reacted in a phosphate buffer at room temperature. After completion of the reaction, a sugar chain-polypeptide complex having Cys to which a sugar chain is bound can be obtained by purification with HPLC.
  • the reaction can be carried out in a mixed solution of an organic solvent such as DMSO, DMF, methanol, acetonitrile, and the above buffer solution.
  • an organic solvent such as DMSO, DMF, methanol, acetonitrile, and the above buffer solution.
  • the ratio of the organic solvent can be added to the buffer solution in the range of 0 to 99% (v / v).
  • Peptides containing unprotected Cys with low solubility in a buffer solution are preferable because the solubility in a reaction solution can be improved by adding such an organic solvent.
  • the reaction can be carried out in an organic solvent such as DMSO, DMF, methanol, acetonitrile, or a mixed solution thereof.
  • a base examples include DIPEA, triethylamine, pyridine, 2,4,6-collidine and the like.
  • the reaction can also be performed in a mixed solution in which guanidine hydrochloride or urea is added to the buffer solution. Guanidine hydrochloride and urea can be added to the buffer so that the final concentration is 1M to 8M. Addition of guanidine hydrochloride or urea is preferable because it can improve the solubility of a peptide having low solubility in a buffer solution.
  • TCEP 2,2-carboxyethyl) phosphine hydrochloride
  • DTT dithiothreitol
  • the carboxy group of sialic acid on the sugar chain to be introduced is A sialic acid-containing sugar chain protected with a benzyl (Bn) group, an allyl group, a diphenylmethyl group, a phenacyl group, or the like can be used.
  • a step of deprotecting the sialic acid protecting group can be performed after the step of forming a disulfide bond in the sugar chain-polypeptide complex described later.
  • the separation / purification step by HPLC or the like in the production step becomes easy. Further, the protection of the carboxy group of sialic acid can also prevent the elimination of acid-labile sialic acid.
  • the protection reaction of the carboxy group of sialic acid on the sugar chain can be performed by methods well known to those skilled in the art.
  • the carboxy protecting group of sialic acid can be deprotected by hydrolysis under basic conditions.
  • the above reaction is usually carried out at 0 to 50 ° C., preferably 0 to 40 ° C., more preferably 0 to 30 ° C.
  • the reaction time is preferably about 5 minutes to 5 hours.
  • the reaction solution is neutralized with a weak acid such as phosphoric acid or acetic acid, and then appropriately purified by a known method (for example, HPLC). *
  • the amino acid to be reacted with the haloacetylated complex sugar chain derivative in Method B is not particularly limited as long as it is an amino acid containing a thiol group.
  • D-form cysteine (D-Cys) D-form cysteine
  • homocysteine homocysteine
  • norcysteine norcysteine
  • Penicillamine Penicillamine and the like can be used in the same manner as Cys.
  • the type of sugar chain bound to the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition according to the present invention is not particularly limited, but the sugar present in the sugar chain bound to the sugar chain-polypeptide complex.
  • the total number of residues is preferably 5 or more.
  • one or more sugar chains of 5 sugars or more may be added, and by adding multiple sugar chains of 5 sugars or less, they are present in the sugar chain added to one sugar chain-polypeptide complex.
  • the number of sugar residues may be 5 or more.
  • the types of sugar chains bound to one peptide may be the same, or different types of sugar chains may be combined and bound, but they may be the same. preferable.
  • the total number of sugar residues present in the sugar chain bound to the sugar chain-polypeptide complex is 5
  • One maltotriose sugar chain may be bonded to each other.
  • the total number of sugar residues present in the sugar chain bonded to the sugar chain-polypeptide complex is 6, three maltose sugar chains may be bound, and maltotriose sugar chains Two may be combined.
  • the total number of sugar residues present in the sugar chain bound to the sugar chain-polypeptide complex is 7, two maltose sugar chains and one maltotriose sugar chain are bound.
  • one diglucnac sugar chain having seven sugar residues may be bound.
  • the total number of sugar residues present in the sugar chain bonded to the sugar chain-polypeptide complex is 8 or more, various combinations of sugar chains may be bonded.
  • the number of sugar chains bound to the sugar chain-polypeptide complex contained in the hemostatic pharmaceutical composition according to the present invention is such that the sugar chain-polypeptide complex self-assembles in an aqueous solution having a pH near neutral.
  • the characteristic that the ⁇ sheet structure can be formed is not lost.
  • it may be 1, 2, 3, 4, 5, or 6, and preferably 1, 2, or 3.
  • the position of the amino acid residue to which the sugar chain binds is determined in an aqueous solution where the sugar chain-polypeptide complex has a pH near neutral.
  • a feature is not limited as long as the characteristic that a ⁇ -sheet structure can be formed is lost.
  • the position of the amino acid residue to which the sugar chain binds may be on the N-terminal side and / or C-terminal side of the polypeptide, and may be a position other than the N-terminal side and the C-terminal side.
  • all amino acids up to the x-th from the amino acid residue located at the N-terminus of the polypeptide and all amino acids up to the y-th from the amino acid residue located at the C-terminus are integers, x ⁇ 0, y ⁇ 0, and x + y is the sum of the number of sugar chains bound to the polypeptide.
  • the one sugar chain is an amino acid residue located at the N-terminus of the polypeptide or the C-terminus. It may be combined with an amino acid residue located at.
  • the two sugar chains are bound to an amino acid residue selected from the group consisting of the following (1) to (3): You may do it.
  • (1) First and second amino acid residues counted from the amino acid residue located at the N-terminus of the polypeptide (2) First and second amino acids counted from the amino acid residue located at the C-terminus of the polypeptide Residue (3) an amino acid residue located at the N-terminus of the polypeptide and an amino acid residue located at the C-terminus of the polypeptide
  • the three sugar chains are any amino acid residues selected from the group consisting of the following (1) to (4): It may be bonded to a group.
  • (1) First, second and third amino acid residues counted from the amino acid residue located at the N-terminus of the polypeptide (2) First counted from the amino acid residue located at the C-terminus of the polypeptide
  • the second and third amino acid residues (3) the first and second amino acid residues counted from the N-terminal amino acid residue of the polypeptide, and the amino acid located at the C-terminal of the polypeptide Residue (4) amino acid residue located at the N-terminus of the polypeptide and amino acid residues located at the first and second positions from the C-terminus of the polypeptide
  • a sugar chain bonded to a polypeptide is a “branched sugar chain”, for example, a single sugar chain such as a dicialo sugar chain, an asialog glycan, or a diglucnac glycan. It is not limited to the case where there is a branch in the state. For example, a state in which a sugar chain has a branch as a whole peptide by adding a plurality of linear sugar chains to one polypeptide. In some cases. For example, a case where two or more linear sugar chains such as maltose sugar chain and maltotriose sugar chain are bonded to one peptide is also included in the “branched sugar chain” in the present invention. .
  • the evaluation method for the strength and properties of the hydrogel is not particularly limited, but can be evaluated by, for example, a steel ball loading test or kinematic viscosity measurement.
  • the strength of the hydrogel is determined by, for example, loading a steel ball of a predetermined weight on the surface of the hydrogel formed in the Durham tube and observing whether the steel ball stays on the surface of the hydrogel or sinks. Can be evaluated.
  • the transparency in the hydrogel and the presence or absence of insoluble matter / precipitation can be visually confirmed.
  • a change in the strength of the hydrogel with time can be measured by measuring the kinematic viscosity of the target hydrogel using a galvanometer.
  • first, second, etc. may be used to represent various elements, but these elements should not be limited by those terms. These terms are only used to distinguish one element from another, for example, the first element is referred to as the second element, and similarly, the second element is the first element. Can be made without departing from the scope of the present invention.
  • DiGlcNAc-BrAc indicates a bromoacetylated diglucnac sugar chain.
  • C (DiGlcNAc)-(RADA) 4 indicates that a cysteine residue to which a diglucnac sugar chain is attached is bonded to the N-terminal of a polypeptide having the amino acid sequence of RADARADARADARADA. .
  • TFA trifluoroacetic acid
  • Example 1 A self-assembling peptide such as circular dichroism (CD) measurement and analysis (RADA) 4 forms a ⁇ -sheet structure by intermolecular interaction, and the structure is in the presence of ions in several layers. It is known that a hydrogel is formed by overlapping. CD measurement is known as an effective method for confirming this ⁇ sheet structure. Generally, the CD spectrum in the case of having a ⁇ sheet structure shows a positive maximum near 197 nm and a negative maximum near 216 nm. Thus, by performing CD measurement, it was confirmed that the composition of the present invention forms a ⁇ sheet structure in a wide range of pH.
  • CD circular dichroism
  • FIG. 1 shows the measurement results of the composition containing C (DiGlcNAc)-(RADA) 4, and FIG. 2 shows the measurement results of the composition containing (RADA) 4.
  • both C (DiGlcNAc)-(RADA) 4 and (RADA) 4 showed a positive maximum near 197 nm and a negative maximum near 216 nm. It was confirmed that a structure was formed. On the other hand, in the phosphate buffer solution, only C (DiGlcNAc)-(RADA) 4 was confirmed to form a ⁇ sheet structure.
  • Example 2 Confirmation of fibrous structure formation C (DiGlcNAc)-(RADA) 4 synthesized in Synthesis Example 1 and control (RADA) 4 were each dissolved in ultrapure water to prepare a 1 wt% aqueous solution. . Each prepared aqueous solution was diluted with ultrapure water, 1.8% saline or phosphate buffer solution (pH 7.4) so as to be 0.5% by weight. 1 ⁇ L of the obtained diluted solution was dropped onto each cleaved mica substrate (trade name: MICA Grade V-4, manufactured by SPI suppliers). Thereafter, excess compounds on the mica substrate were washed away with 100 ⁇ L of distilled water. The substrate was then air dried at room temperature (25 ° C.).
  • the dried peptide on the mica substrate was observed using an atomic force microscope (trade name: nanoscale hybrid microscope, VN-8000, manufactured by Keyence Corporation). The result is shown in FIG.
  • FIG. 4 shows the storage elastic modulus of C (DiGlcNAc)-(RADA) 4 and (RADA) 4 in an aqueous solution state.
  • C (DiGlcNAc)-(RADA) 4 showed a low value.
  • C (DiGlcNAc)-(RADA) 4 and (RADA) 4 showed the same value.
  • C (DiGlcNAc)-(RADA) 4 has a feature that it has a low storage elastic modulus in an aqueous solution state and is easy to handle, while it immediately gels when a salt is added. It was.
  • C (DiGlcNAc)-(RADA) 4 is highly water-soluble, a hydrogel having a high storage elastic modulus can be provided without forming an aggregate even when the peptide concentration is increased.
  • Example 4 Evaluation of hemostatic action In order to confirm whether the hydrogel of the present invention has a hemostatic action in a living body, an evaluation test was conducted in a bleeding model by rat liver puncture.
  • test substance C (DiGlcNAc)-(RADA) 4, (RADA) 4
  • medium purified water, PBS
  • puncture site was administered locally by instillation.
  • C (DiGlcNAc)-(RADA) 4 was dissolved in PBS (pH 7.4, phosphate buffered saline) to 0.5% by weight and used for evaluation.
  • (RADA) 4 was dissolved in purified water to 0.5% by weight and used for evaluation.
  • the evaluation results of the hemostatic effect are shown in Table 2.
  • the score distribution for the hemostatic effect after 3 minutes is shown in FIG. Individuals with persistent bleeding until 3 minutes later were 12 cases (75%) in 16 cases in the PBS application group and 13 cases (87%) in 15 cases in the purified water application group.
  • the C (DiGlcNAc)-(RADA) 4 application group 4 (27%) of the 15 cases showed persistent bleeding until 3 minutes later, and in the (RADA) 4 application group 3 minutes later. 3 out of 15 individuals (20%) were found to have sustained bleeding until.
  • Other individuals formed a gel-like solid or film within 3 minutes after puncturing, and blood flow from the bleeding site stopped or the flow rate decreased.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

 【課題】 本発明は、従来のバイオゲルを用いた止血剤と比較してユーザビリティが高く、広範囲なpHにおいて透明で均質なヒドロゲルを形成し得る止血用医薬組成物を提供することを課題とした。 【解決手段】 糖鎖-ポリペプチド複合体を含む止血用医薬組成物であって、前記糖鎖-ポリペプチド複合体における前記ポリペプチドが、極性アミノ酸残基と非極性アミノ酸残基が交互に配置されたアミノ酸配列を含むポリペプチドであり、前記ポリペプチドに1または複数の糖鎖が結合していることを特徴とする、止血用医薬組成物を提供する。

Description

止血用医薬組成物
 本発明は、糖鎖-ポリペプチド複合体を含む止血用医薬組成物に関する。
 ヒドロゲルやフィブリン糊などのバイオゲルは、三次元培養等の研究用基材、術中/術後の止血剤や創傷治癒シート等の外科用基材、ドラッグデリバリーシステム(DDS)などに利用されている。
 しかし、これらの多くは生物由来材料を用いたものであることから、使用の際には、ウイルス等の微生物の感染、免疫原性、疾患の伝搬等のリスクが存在する。例えば、フィブリン糊は手術時の止血剤として利用価値が高いが、原料がヒト血液由来であるため、実際に手術時に使用した際に、患者がフィブリン糊に混入していた肝炎ウイルスに感染する事故が多発し、大きな社会問題となっている。また、生物由来のバイオゲルでは、必ずしも均質な品質のゲルを供給できないという問題点も存在する。
 生物由来のバイオゲルに対し、化学合成によって製造されたバイオゲルは、感染のリスクがなく、均質な品質のゲルが提供できることが知られている(特許文献1)。しかし、これまでに知られているバイオゲルは、ゲルを形成させる際にバッファー交換や置換、多剤混合などの手順が必要であり、操作が複雑である。また、pH域によっては難溶解性となるため、併用する試薬や溶媒が限定されるだけでなく、適用できる部位(患部)が限られることや、使用時にシリンジやチューブが詰まってしまうなどの問題がある。また、特に生体のpHに近い、中性域において難溶解性(すなわち、透明でない)であると、例えば手術野などの視認性を必要とする場面において、用いることが困難である。
米国特許第5670483号
 本発明は、これまでのバイオゲルを用いた止血剤と比較してユーザビリティが高く、広範囲なpHにおいて透明で均質なヒドロゲルを形成し得る止血用医薬組成物を提供することを課題とした。
 発明者らは、前記課題を解決するために鋭意研究を行った結果、極性アミノ酸残基と非極性アミノ酸残基が交互に配置されたアミノ酸配列を含むポリペプチドに、糖鎖を結合させることによって製造された糖鎖-ポリペプチド複合体が、驚くべきことに、広範なpH域、特に中性域において高い水溶性を示し、透明で均質なヒドロゲルを形成するだけでなく、このヒドロゲルが止血剤として極めて有用であることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、糖鎖-ポリペプチド複合体を含む止血用医薬組成物であって、前記糖鎖-ポリペプチド複合体における前記ポリペプチドが、極性アミノ酸残基と非極性アミノ酸残基が交互に配置されたアミノ酸配列を含むポリペプチドであり、前記ポリペプチドに1または複数の糖鎖が結合していることを特徴とする、止血用医薬組成物を提供する。
 また、本発明の一実施態様においては、前記糖鎖-ポリペプチド複合体における前記ポリペプチドが、極性アミノ酸残基と非極性アミノ酸残基が交互に配置された、8~34個のアミノ酸残基からなるアミノ酸配列を含むポリペプチドであることを特徴とする。
 また、本発明の一実施態様においては、前記糖鎖-ポリペプチド複合体が、pHが中性付近の水溶液中において自己集合することにより、βシート構造を含むヒドロゲルを形成しうるものであることを特徴とする。
 また、本発明の一実施態様においては、前記止血用医薬組成物に含まれる前記糖鎖-ポリペプチド複合体の濃度が0.1重量%~20重量%であることを特徴とする。
 また、本発明の一実施態様においては、前記ポリペプチドに結合している1または複数の糖鎖に存在する糖残基の数の合計が5以上であることを特徴とする。
 また、本発明の一実施態様においては、前記ポリペプチドに結合している糖鎖の数が、1、2、または、3本であることを特徴とする。
 また、本発明の一実施態様においては、前記ポリペプチドのN末端に位置するアミノ酸残基から数えて、x番目までの全てのアミノ酸、および、C末端に位置するアミノ酸残基から数えて、y番目までの全てのアミノ酸(ここで、xおよびyは整数であり、x≧0であり、y≧0であり、x+yは、ポリペプチドに結合している糖鎖の数の合計である)に糖鎖が結合していることを特徴とする。
 また、本発明の一実施態様においては、前記糖鎖が、分岐を有する糖鎖であることを特徴とする。
 また、本発明の一実施態様においては、前記医薬組成物が、ヒドロゲルの状態にあることを特徴とする。
 以上述べた本発明の一又は複数の特徴を任意に組み合わせた発明も、本発明の範囲に含まれることを、当業者であれば理解するであろう。
 本発明に係る止血用医薬組成物は、中性域を含む広範なpH域において高い水溶性を有し、均一で透明なヒドロゲルを形成することから、併用する試薬や溶媒の制限を受けにくく、ユーザビリティの高い止血剤として用いることができる。また、広範なpH域において用いられ得ることから、適用部位(患部)が制限されにくい。
 また、本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体は、中性域を含む広範なpH域において高い水溶性を有し、均一で透明なヒドロゲルを形成することから、中性pHにおいてゾル状態とゲル状態が可逆的に存在し得る。すなわち、糖鎖-ポリペプチド複合体は、一旦ゲル状態を形成した後に、機械的撹拌によってゾル状態になっても、再びゲル状態となることができる。したがって、ゲル状態(すなわち、Ready-to-Useの状態)で流通させることができ、他のペプチド性のゲルのように、ゲル化に適したpH(例えば、酸性pH)でゲルを形成させた後に、中性pHにするためのバッファー交換(または置換)を行うなど、煩雑な操作を必要としない。
すなわち、本発明に係る糖鎖-ポリペプチド複合体は、他のペプチド性のゲルと比較して、操作性に非常に優れている。また、本発明に係る止血用医薬組成物は、使用できるpH域が広いため、使用時にシリンジやチューブが詰まってしまうなどの問題が生じにくい。
 また、本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体は、動物の生体内に存在する糖鎖によって修飾されているため、なんら修飾を有しないペプチドと比較して、抗原性が低減されている。また、本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体は、ポリエチレングリコール(PEG)などによって修飾された化合物で見られるような毒性が生じる危険性もほとんどない。したがって、本発明に係る止血用医薬組成物は、生体への使用に際して安全性が高い。
 また、本発明に係る止血用医薬組成物は、生理的条件下(中性域)において均一で透明なヒドロゲルを形成し、抗原性も少ないため、動物の生体に用いる止血剤として好適である。
図1は、C(DiGlcNAc)-(RADA)4を超純水、食塩水またはリン酸緩衝溶液に溶解した組成物について、それぞれ円偏光二色性(CD)測定を行った結果を示す。 図2は、(RADA)4を超純水、食塩水またはリン酸緩衝溶液に溶解した組成物について、それぞれ円偏光二色性(CD)測定を行った結果を示す。 図3は、C(DiGlcNAc)-(RADA)4と(RADA)4との繊維状構造形成能を比較した図を示す。 図4は、C(DiGlcNAc)-(RADA)4及び(RADA)4の、水溶液状態における貯蔵弾性率を示す。 図5は、C(DiGlcNAc)-(RADA)4及び(RADA)4の、塩添加後の貯蔵弾性率を示す。 図6は、ラット肝穿刺モデルにおいて、C(DiGlcNAc)-(RADA)4又は(RADA)4を適用した場合の、適用3分後における止血効果スコアの分布を示す。
 本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体は、生物由来であってもよく、化学合成によって製造されたものでもよいが、安全性や品質の安定性、糖鎖の均一性の面から、化学合成によって製造されたものであることが好ましい。
 本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体は、例えば、水溶液中において、ペプチド分子間の静電的相互作用、水素結合、および、疎水性相互作用などの相互作用を介して自己集合しうる。本明細書において、糖鎖-ポリペプチド複合体が水溶液中で「自己集合する」とは、水溶液中においてポリペプチド同士が、何らかの相互作用(例えば、静電的相互作用、水素結合、ファンデルワールス力、疎水性相互作用等)を介して、自発的に集合することを意味し、限定的な意味で解釈されてはならない。
 本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体は、水溶液中において自己集合し、βシート構造を形成しうる。さらに、そのβシート構造が何重にも重なることにより、ヒドロゲルを形成し得る。水溶液中において糖鎖-ポリペプチド複合体がβシート構造を形成していることの確認方法は特に限定されないが、例えば、糖鎖-ポリペプチド複合体を含む水溶液の円偏光二色性(CD)を測定することにより、確認することができる。一般的に、βシート構造を有する分子の特徴として、197nm付近の波長に極大がみられ、216nm付近の波長に極小がみられることから、円偏光二色性の測定により、これらの波長付近のピークを確認することによって、βシート構造の形成を確認することができる。
 本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体は、極性アミノ酸残基と非極性アミノ酸残基が交互に配置されたアミノ酸配列を含むことにより、水溶液中においてβシート構造を形成した際に、βシート構造の一方の面には極性アミノ酸残基のみが配置され得、他方の面に非極性アミノ酸残基のみが配置されうる。したがって、かかるβシート構造は、疎水面(非極性アミノ酸残基のみが配置された面)を隠すように集合して二層構造を形成しうる。そして、分子の自己集合が進むにつれてこのβシートの層構造が伸長してゆき、三次元の立体構造(例えば、ヒドロゲル)を形成しうる。
 本発明において、「pHが中性付近」であるとは、pHが7.0付近であることを意味し、より具体的にはpHが5.0~9.0の範囲、好ましくは、pHが6.0~8.0の範囲内であることを意味する。
 本発明の止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体の濃度は、本発明の適用症状や適用部位に応じて当業者が適宜調節することができるが、例えば、0.1重量%~20重量%であってよく、好ましくは0.2重量%~15重量%であってよく、さらに好ましくは0.5重量%~10重量%であってよい。止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体の濃度が0.1重量%以下であると適切にヒドロゲルが形成されない可能性がある。なお、本明細書において、ヒドロゲルとは、分散媒が実質的に水である、ゲル状又はゾル状の組成物を広く意味し、限定的な意味で解釈されてはならない。
 本発明の止血用医薬組成物は水溶液の状態で用いてもよく、ヒドロゲルの状態で用いてもよい。前記水溶液や前記ヒドロゲルの調製方法は特に限定されないが、例えば、糖鎖-ポリペプチド複合体を超純水に溶解することによって水溶液状態の止血用医薬組成物を得てもよく、糖鎖-ポリペプチド複合体を超純水に溶解した水溶液に、さらに塩を含む溶媒(例えば、生理食塩水、PBS等)を加えてヒドロゲル状態の止血用医薬組成物を得てもよい。
 また、止血用医薬組成物とは、糖鎖-ポリペプチド複合体と溶媒(水、PBS、生理食塩水等)のみを含むものに限定されず、その他の様々な成分を含んでいてもよい。例えば、消毒・殺菌成分を有する薬剤を含むことにより、傷口からの出血を止めるだけでなく、同時に傷口の殺菌・消毒も行うことができる。
 本明細書の実施例でも示されているとおり、本発明の止血用医薬組成物は、水溶液の状態において貯蔵弾性率が低く、ヒドロゲルの状態において貯蔵弾性率が高い。また、本発明の止血用医薬組成物は、中性域を含む幅広いpHの範囲で均一な繊維状構造を有する透明なヒドロゲルを形成する。本発明の止血用医薬組成物の適用症状や適用部位は特に限定されないが、上記のような性質から、特に、手術中など患部状況の目視が必要な場合の止血、死角にあたる出血部位の止血、広範囲の出血部位の止血、立体または複雑な形状の出血部位の止血等に好適に用いることができる。
 本発明の一実施形態においては、止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体が、pHが中性付近の水溶液中において自己集合してβシート構造を含むヒドロゲルを形成しうるものであることを特徴とするが、当該特徴を有している限り、pHが中性付近以外の水溶液中においても自己集合してβシート構造を含むヒドロゲルを形成しうるものを除外するものではない。
 本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体は、極性アミノ酸残基と非極性アミノ酸残基が交互に配置されたアミノ酸配列を含むポリペプチドを含むが、当該アミノ酸配列の長さは限定されず、好ましくは8~34個のアミノ酸残基からなるアミノ酸配列であってよく、より好ましくは12~25個のアミノ酸残基からなるアミノ酸配列であってよく、さらに好ましくは16~21個のアミノ酸残基からなるアミノ酸配列であってよい。
 本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体は、極性アミノ酸残基と非極性アミノ酸残基が交互に配置されたアミノ酸配列を含むポリペプチドを含むが、本発明において、「アミノ酸」とは、その最も広い意味で用いられ、タンパク質構成アミノ酸のみならずアミノ酸変異体および誘導体といったようなタンパク質非構成アミノ酸を含む。当業者であれば、この広い定義を考慮して、本発明におけるアミノ酸として、例えば、タンパク質構成L-アミノ酸;D-アミノ酸;アミノ酸変異体および誘導体などの化学修飾されたアミノ酸;ノルロイシン、β-アラニン、オルニチンなどのタンパク質非構成アミノ酸;およびアミノ酸の特徴である当業界で公知の特性を有する化学的に合成された化合物などが挙げられることを理解するであろう。タンパク質非構成アミノ酸の例として、α-メチルアミノ酸(α-メチルアラニンなど)、D-アミノ酸、ヒスチジン様アミノ酸(2-アミノ-ヒスチジン、β-ヒドロキシ-ヒスチジン、ホモヒスチジン、α-フルオロメチル-ヒスチジンおよびα-メチル-ヒスチジンなど)、側鎖に余分のメチレンを有するアミノ酸(「ホモ」アミノ酸)および側鎖中のカルボン酸官能基アミノ酸がスルホン酸基で置換されるアミノ酸(システイン酸など)が挙げられる。本発明の好ましい態様において、本発明において用いられるアミノ酸は、タンパク質構成アミノ酸であってよい。
 本発明において、極性アミノ酸残基は、側鎖が極性を有しうるアミノ酸残基であれば特に限定されないが、例えば、酸性アミノ酸残基と塩基性アミノ酸残基が含まれる。本明細書において、酸性アミノ酸残基は、例えば、アスパラギン酸(Asp:D)残基、および、グルタミン酸(Glu:E)などを含み、塩基性アミノ酸とは、例えば、アルギニン(Arg:R)、リジン(Lys:K)、ヒスチジン(His:H)などを含む。
 なお、本明細書中において、例えば「アスパラギン酸(Asp:D)」などの表記は、アスパラギン酸の略号として、三文字表記で「Asp」、一文字表記で「D」を用いることがあることを意味する。
 また、本明細書において、中性アミノ酸残基のうち、水酸基、酸アミド基、チオール基等を含むアミノ酸残基は、極性を有するものとして、極性アミノ酸残基に含まれるものとする。例えば、本明細書において、チロシン(Tyr:Y)、セリン(Ser:S)、トレオニン(Thr:T)、アスパラギン(Asn:N)、グルタミン(Gln:Q)、システイン(Cys:C)は極性アミノ酸残基に含まれる。
 本明細書において、非極性アミノ酸残基は、側鎖が極性を有しないアミノ酸であれば特に限定されないが、例えば、アラニン(Ala:A)、バリン(Val:V)、ロイシン(Leu:L)、イソロイシン(Ile:I)、メチオニン(Met:M)、フェニルアラニン(Phe:F)、トリプトファン(Trp:W)、グリシン(Gly:G)、プロリン(Pro:P)などを含む。
 本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体において、「極性アミノ酸残基と非極性アミノ酸残基が交互に配置されたアミノ酸配列」は、好ましくは、当該アミノ酸配列は「RADA」の繰り返し配列(繰り返しが2~8回、好ましくは繰り返しが3~6回)であってよく、より好ましくは、当該アミノ酸配列は、RADARADARADARADA(配列番号1)またはRADARADARADARADARADA(配列番号2)であってよい。
 本発明において、「糖鎖」とは、単位糖(単糖および/またはその誘導体)が1つ以上連なってできた化合物をいう。単位糖が2つ以上連なる場合、各々の単位糖同士の間は、グリコシド結合による脱水縮合によって結合する。このような糖鎖としては、例えば、生体中に含有される単糖類および多糖類(グルコース、ガラクトース、マンノース、フコース、キシロース、N-アセチルグルコサミン、N-アセチルガラクトサミン、シアル酸並びにそれらの複合体および誘導体)の他、分解された多糖、糖タンパク質、プロテオグリカン、グリコサミノグリカン、糖脂質などの複合生体分子から分解または誘導された糖鎖など広範囲なものが挙げられるがそれらに限定されない。糖鎖は直鎖型であっても分岐鎖型であってもよい。
 また、本発明において、「糖鎖」には糖鎖の誘導体も含まれ、糖鎖の誘導体としては、例えば、糖鎖を構成する糖が、カルボキシ基を有する糖(例えば、C-1位が酸化されてカルボン酸となったアルドン酸(例えば、D-グルコースが酸化されたD-グルコン酸)、末端のC原子がカルボン酸となったウロン酸(D-グルコースが酸化されたD-グルクロン酸))、アミノ基またはアミノ基の誘導体を有する糖(例えば、D-グルコサミン、D-ガラクトサミンなど)、アミノ基およびカルボキシ基を両方とも有する糖(例えば、N-グリコイルノイラミン酸、N-アセチルムラミン酸など)、デオキシ化された糖(例えば、2-デオキシ-D-リボース)、硫酸基を含む硫酸化糖、リン酸基を含むリン酸化糖などである糖鎖が挙げられるがこれらに限定されない。
 本発明に係る糖鎖-ポリペプチド複合体において、ポリペプチドに結合される糖鎖は特に限定されないが、生体適合性の観点から、生体内で複合糖質(糖ペプチド(または糖タンパク質)、プロテオグリカン、糖脂質等)として存在する糖鎖であることが好ましい。かかる糖鎖としては、生体内で糖ペプチド(または糖タンパク質)としてペプチド(またはタンパク質)に結合している糖鎖であるN-結合型糖鎖、O-結合型糖鎖等が挙げられる。
 本発明に係る糖鎖-ポリペプチド複合体において、ポリペプチドに結合される糖鎖は、例えば、ジシアロ(Disialo)糖鎖、アシアロ(Asialo)糖鎖、ジグルクナック(DiGlcNAc)糖鎖、ジマンノース(DiMan)糖鎖、グルクナック(GlcNAc)糖鎖、マルトトリオース(Maltotriose)糖鎖、マルトース(Maltose)糖鎖、マルトテトラオース(Maltotetraose)糖鎖、マルトヘプタオース(Maltoheptaose)糖鎖、β-シクロデキストリン(β-cyclodextrin)糖鎖、γ-シクロデキストリン(γ-cyclodextrin)糖鎖を用いることができる。
 より具体的には、本発明に用いられる糖鎖は、以下の式(1)で示すジシアロ糖鎖であってよく、以下の式(2)で示すアシアロ糖鎖であってよく、以下の式(3)で示すジグルクナック糖鎖であってよく、以下の式(4)で示すジマンノース糖鎖であってよく、以下の式(5)で示すグルクナック糖鎖であってよく、以下の式(6)で示すマルトトリオース糖鎖であってよく、以下の式(7)で示すマルトース糖鎖であってよく、以下の式(8)で示すマルトテトラオース糖鎖であってよく、以下の式(9)で示すマルトヘプタオース糖鎖であってよく、以下の式(10)で示すβ-シクロデキストリン糖鎖であってよく、以下の式(11)で示すγ-シクロデキストリン糖鎖であってよい。
Figure JPOXMLDOC01-appb-C000001

式(1)ジシアロ糖鎖
Figure JPOXMLDOC01-appb-C000002

式(2)アシアロ糖鎖
Figure JPOXMLDOC01-appb-C000003

式(3)ジグルクナック糖鎖
Figure JPOXMLDOC01-appb-C000004

式(4)ジマンノース糖鎖
Figure JPOXMLDOC01-appb-C000005

式(5)グルクナック糖鎖
Figure JPOXMLDOC01-appb-C000006

式(6)マルトトリオース糖鎖
Figure JPOXMLDOC01-appb-C000007

式(7)マルトース糖鎖
Figure JPOXMLDOC01-appb-C000008

式(8)マルトテトラオース糖鎖
Figure JPOXMLDOC01-appb-C000009

式(9)マルトヘプタオース糖鎖
Figure JPOXMLDOC01-appb-C000010

式(10)β-シクロデキストリン糖鎖
Figure JPOXMLDOC01-appb-C000011

式(11)γ-シクロデキストリン糖鎖
 本発明において、上記のジシアロ糖鎖、アシアロ糖鎖、ジグルクナック糖鎖、ジマンノース糖鎖、またはマルトヘプタオース糖鎖の非還元末端から1または複数の糖を失った糖鎖も用いることができる。
 本発明において、糖鎖が結合されるアミノ酸残基は特に限定されないが、例えば糖鎖をシステイン(Cys:C)またはアスパラギン(Asn:N)に結合させることができ、好ましくはシステイン(Cys:C)に結合させることができる。
 本発明において、アミノ酸に糖鎖を結合させる方法は特に限定されず、例えば、アミノ酸残基に糖鎖を直接結合してもよく、アミノ酸残基にリンカーを介して糖鎖を結合させてもよい。
 また、本発明において、糖鎖が結合したアミノ酸残基は、「極性アミノ酸残基と非極性アミノ酸残基が交互に配置されたアミノ酸配列」に対して直接結合していてもよく、例えば、リンカーを介して結合していてもよい。
 このようなリンカーとしては、例えば、アミノ酸とペプチド結合できるように、両末端にアミノ基およびカルボキシ基を有するアルキル鎖やPEG鎖等を挙げることができる。このようなリンカーとしては、例えば、-NH-(CH-CO-(式中、nは整数であり、目的とするリンカー機能を阻害しない限り限定されるものではないが、好ましくは1~15の整数を示す。)や-NH-(CHCHO)-CHCH-CO-(式中、mは整数であり、目的とするリンカー機能を阻害しない限り限定されるものではないが、好ましくは1~7の整数を示す。)等を挙げることができる。より具体的には、-NH-(CH11-CO-(C12linker)や-NH-(CHCHO)-CHCH-CO-(PEGlinker)等を挙げることができる。
 本発明に用いられる糖鎖-ポリペプチド複合体は、当業者に公知のポリペプチド合成方法に、糖鎖付加工程を組み込むことで製造することができる。糖鎖付加に際しては、トランスグルタミナーゼに代表される、酵素を利用する方法も用いることができるが、この場合、付加する糖鎖が大量に必要になる、最終工程後の精製が煩雑になる、糖鎖の付加位置および付加可能な糖鎖が制限される、等の問題があるため、アッセイ用等の少量の合成には用いることが可能でも、大規模な製造には実用的な方法とは言えないことがある。
 本発明に用いられる糖鎖-ポリペプチド複合体の簡便な製造方法の具体例として、以下、糖鎖が結合したAsn(糖鎖付加Asn)を使用し、固相合成、液相合成等の公知のペプチド合成方法を適用することにより糖鎖-ポリペプチド複合体を製造する方法(A法)、および、任意のアミノ酸残基をCysとしたポリペプチドを公知のペプチド合成方法に従って製造し、その後、Cysに化学合成により糖鎖を付加し、糖鎖-ポリペプチド複合体を製造する方法(B法)を例示する。これらの製造方法を参考に、当業者であれば様々な方法で糖鎖-ポリペプチド複合体を製造することが可能である。
 また、これらのA法およびB法は、2つ以上を組み合わせて行うことも可能である。アッセイなどに用いる少量の合成であれば、さらに、上記の方法に、転移酵素による糖鎖伸長反応を組み合わせることも可能である。なお、A法は、国際公開第2004/005330号パンフレット(US2005222382(A1))に、B法は、国際公開第2005/010053号パンフレット(US2007060543(A1))に、それぞれ記載されており、その開示は全体として本明細書に参照により組み込まれる。また、A法およびB法において用いられる糖鎖構造が均一な糖鎖の製造に関しては、国際公開第03/008431号パンフレット(US2004181054(A1))、国際公開第2004/058984号パンフレット(US2006228784(A1))、国際公開第2004/058824号パンフレット(US2006009421(A1))、国際公開第2004/070046号パンフレット(US2006205039(A1))、国際公開第2007/011055号パンフレット等に記載されており、その開示は全体として本明細書に参照により組み込まれる。
糖鎖-ポリペプチド複合体を製造する方法(A法)
 糖鎖-ポリペプチド複合体は、例えば、以下に概略を示すように、糖鎖が結合したAsnを用いた固相合成によって製造することができる。
(1)脂溶性保護基でアミノ基窒素が保護されたアミノ酸のカルボキシ基を樹脂(レジン)へ結合させる。この場合、アミノ酸のアミノ基窒素を脂溶性保護基で保護しているので、アミノ酸同士の自己縮合は防止され、レジンとアミノ酸とが反応して結合が起こる。
(2)得られた反応物の脂溶性保護基を脱離して遊離アミノ基を形成させる。
(3)この遊離アミノ基と、脂溶性保護基でアミノ基窒素が保護された任意のアミノ酸のカルボキシ基とを、アミド化反応させる。
(4)上記脂溶性保護基を脱離して遊離アミノ基を形成させる。
(5)上記(3)および(4)の工程を1回以上繰り返すことにより、任意の数の任意のアミノ酸が連結した、末端にレジンを結合し、他端に遊離アミノ基を有するペプチドが得られる。
(6)上記(5)で合成したペプチドの遊離アミノ基をアセチル基で保護する場合、無水酢酸、酢酸等を用いてアセチル化することも好ましい。
(7)最後に、酸でレジンを切断することにより、所望のアミノ酸配列を有するペプチドを得ることができる。
 ここで、(1)において、脂溶性保護基でアミノ基窒素が保護されたアミノ酸の代わりに、脂溶性保護基でアミノ基窒素が保護された糖鎖付加Asnを用い、当該アスパラギン部分のカルボキシ基とレジンの水酸基とを反応させれば、C末端に糖鎖付加Asnを有するペプチドを得ることができる。
 また、(2)の後、または、(3)と(4)を1回以上の任意の回数繰り返した後、(3)において、脂溶性保護基でアミノ基窒素が保護されたアミノ酸の代わりに、脂溶性保護基でアミノ基窒素が保護された糖鎖付加Asnを用いれば、ポリペプチドの任意の箇所に糖鎖を結合させることができる。
 このように、(1)および(3)のいずれかの工程で、2回以上、脂溶性保護基でアミノ基窒素が保護されたアミノ酸の代わりに、脂溶性保護基でアミノ基窒素が保護された糖鎖付加Asnを用いることで、ポリペプチドの任意の2ヶ所以上に糖鎖を結合させることができる。
 糖鎖付加Asnを結合させた後、脂溶性保護基を脱離して遊離アミノ基を形成させ、その直後に工程(7)を行えば、N末端に糖鎖付加Asnを有するポリペプチドを得ることができる。
 C末端をアミド基として供給する樹脂(レジン)としては、通常、固相合成で使用する樹脂(レジン)であればよく、例えば、アミノ基で官能化されたRink-Amide-レジン(メルク社製)、Rink-Amide-PEGAレジン(メルク社製)や、NH-SAL-レジン(渡辺化学社製)を用いることが好ましい。また、アミノ基で官能化されたAmino-PEGA-レジン(メルク社製)等にFmoc-NH-SAL-レジン-リンカー(渡辺化学社製)等を結合させてもよい。このレジンとペプチドを酸で切断することにより、ペプチドのC末端アミノ酸をアミド化することができる。
 また、C末端をカルボン酸にする場合の樹脂(レジン)としては、例えば、塩素で官能化された2-クロロトリチルクロリド樹脂(メルク社製)や、アミノ基で官能化されたAmino-PEGAレジン(メルク社製)、水酸基を有するNovaSyn TGTアルコール樹脂(メルク社製)、Wangレジン(メルク社製)、HMPA-PEGAレジン(メルク社製)等を用いることができる。また、Amino-PEGAレジンとアミノ酸との間にリンカーを存在させてもよく、このようなリンカーとして、例えば、4-ヒドロキシメチルフェノキシ酢酸(HMPA)、4-(4-ヒドロキシメチル-3-メトキシフェノキシ) -ブチル酢酸(HMPB)等を挙げることができる。C末端のアミノ酸が樹脂にあらかじめ結合したH-Cys(Trt)-Trityl NovaPEG樹脂(メルク社製)等も用いることができる。
 樹脂と脂溶性保護基でアミノ基窒素が保護されたアミノ酸との結合は、例えば、水酸基を有する樹脂や塩素で官能化された樹脂を使用するには、アミノ酸のカルボキシ基を樹脂へエステル結合させる。また、アミノ基で官能化された樹脂を使用する場合には、アミノ酸のカルボキシ基を樹脂にアミド結合により結合させる。
 なお、2-クロロトリチルクロリド樹脂は、固相合成においてペプチド鎖を伸長する際、末端にあるCysのラセミ化を防止することができる点において、好ましい。
糖鎖-ポリペプチド複合体を製造する方法-2(A法)
 糖鎖-ポリペプチド複合体は、例えば、以下に概略を示すように、糖鎖が結合したAsnを用いた液相合成によって製造することができる。
(1)脂溶性保護基でアミノ基窒素が保護されたアミノ酸のカルボキシ基をアミノ基が遊離でカルボキシ基が保護またはアミド化されたアミノ酸へ結合させる。
(2)得られた反応物の脂溶性保護基を脱離して遊離アミノ基を形成させる。
(3)この遊離アミノ基と、脂溶性保護基でアミノ基窒素が保護された任意のアミノ酸のカルボキシ基とを、溶液中でアミド化反応させる。この場合、N末端側のアミノ酸のアミノ基窒素を脂溶性保護基で保護しており、C末端側のカルボキシ基は保護またはアミド化されているので、アミノ酸同士の自己縮合は防止され、遊離のアミノ基とカルボキシ基とが反応して結合が起こる。
(4)上記脂溶性保護基を脱離して遊離アミノ基を形成させる。
(5)上記(3)および(4)の工程を1回以上繰り返すことにより、任意の数の任意のアミノ酸が連結した、C末端のカルボキシ基が保護またはアミド化され、N末端に遊離アミノ基を有するペプチドが得られる。
(6)上記(5)で合成したペプチドの遊離アミノ基をアセチル基で保護する場合、無水酢酸、酢酸等を用いてアセチル化することも好ましい。
(7)最後に、酸で側鎖の脂溶性保護基を切断することにより、所望のアミノ酸配列を有するペプチドを得ることができる。
糖鎖-ポリペプチド複合体を製造する方法-3(A法)
 糖鎖-ポリペプチド複合体は、例えば、以下に概略を示すように、糖鎖が結合したAsnを用いたフラグメント合成法によって製造することができる。
(1)上記の糖鎖-ポリペプチド複合体を製造する方法(A法)の(1)-(6)によって、アセチル基または脂溶性保護基でアミノ基窒素が保護されたポリペプチドまたは糖鎖-ポリペプチド複合体を樹脂上に合成する。
(2)側鎖保護基が脱保護されない条件で、レジンからポリペプチドまたは糖鎖-ポリペプチド複合体を切断し、C末端に遊離のカルボキシを有し、N末端がアセチル基または脂溶性保護基でアミノ基窒素が保護されたポリペプチドまたは糖鎖-ポリペプチド複合体を得る。
(3)得られたアセチル基または脂溶性保護基でアミノ基窒素が保護されたポリペプチドまたは糖鎖-ポリペプチド複合体を、固相合成法または液相合成法により、樹脂またはポリペプチドと連結させる。
(4)上記脂溶性保護基を脱離して遊離アミノ基を形成させる。
(5)上記(3)および(4)の工程を1回以上繰り返すことにより、任意の数の任意のアミノ酸が連結したペプチドが得られる。
(6)最後に、酸でレジンを切断することにより、所望のアミノ酸配列を有するペプチドを得ることができる。
 脂溶性保護基としては、例えば9-フルオレニルメトキシカルボニル(Fmoc)基、t-ブチルオキシカルボニル(Boc)基、ベンジル基、アリル基、アリルオキシカルボニル基、アセチル基等の、カーボネート系またはアミド系の保護基等を挙げることができる。アミノ酸に脂溶性保護基を導入するには、例えばFmoc基を導入する場合には9-フルオレニルメチル-N-スクシニミジルカーボネートと炭酸水素ナトリウムを加えて反応を行うことにより導入できる。反応は0~50℃、好ましくは室温で、約1~5時間程度行うのが良い。
 脂溶性保護基で保護したアミノ酸としては、市販のものも使用することができる。例えば、Fmoc-Ser-OH、Fmoc-Asn-OH、Fmoc-Val-OH、Fmoc-Leu-OH、Fmoc-Ile-OH、Fmoc-AIa-OH、Fmoc-Tyr-OH、Fmoc-Gly-OH、Fmoc-Lys-OH、Fmoc-Arg-OH、Fmoc-His-OH、Fmoc-Asp-OH、Fmoc-Glu-OH、Fmoc-Gln-OH、Fmoc-Thr-OH、Fmoc-Cys-OH、Fmoc-Met-OH、Fmoc-Phe-OH、Fmoc-Trp-OH、Fmoc-Pro-OHを挙げることができる。
 また、脂溶性保護基で保護したアミノ酸であって、側鎖に保護基を導入したものとして、例えば、Fmoc-Arg(Pbf)-OH、Fmoc-Asn(Trt)-OH、Fmoc-Asp(OtBu)-OH、Fmoc-Cys(Acm)-OH、Fmoc-Cys(StBu)-OH、Fmoc-Cys(tBu)-OH、Fmoc-Cys(Trt)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Gln(Trt)-OH、Fmoc-His(Trt)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Ser(tBu)-OH、Fmoc-Thr(tBu)-OH、Fmoc-Trp(Boc)-OH、Fmoc-Tyr(tBu)-OHを挙げることができる。
 また、糖鎖-ポリペプチド結合体のアミノ酸配列中に、リンカーを付加させたい場合には、固相合成の過程において、上記の脂溶性保護基で保護したアミノ酸の代わりに、脂溶性保護基で保護したリンカーを使用することで、好ましい位置に、リンカーを挿入することができる。
 2-クロロトリチルクロリド樹脂を用いる場合、ジイソプロピルエチルアミン(DIPEA)、トリエチルアミン、ピリジン、2,4,6-コリジン等の塩基を用いることでエステル化を行うことができる。また、水酸基を有する樹脂を用いる場合、エステル化触媒として、例えば1-メシチレンスルホニル-3-ニトロ-1,2,4-トリアゾール(MSNT)、ジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIC)等の公知の脱水縮合剤を用いることができる。アミノ酸と脱水縮合剤との使用割合は、前者1等量に対して、後者が、通常1~10等量、好ましくは2~5等量である。
 エステル化反応は、例えば、固相カラムにレジンを入れ、このレジンを溶剤で洗浄し、その後アミノ酸の溶液を加えることにより行うのが好ましい。洗浄用溶剤としては、例えばジメチルホルムアミド(DMF)、2-プロパノール、ジクロロメタン等を挙げることができる。アミノ酸を溶解する溶媒としては、例えばジメチルスルホキシド(DMSO)、DMF、ジクロロメタン等を挙げることができる。エステル化反応は0~50℃、好ましくは室温で、約10分~30時間程度、好ましくは15分~24時間程度行うのが良い。
 この時固相上の未反応の基を、無水酢酸等を用いてアセチル化してキャッピングすることも好ましい。
 脂溶性保護基の脱離は、例えば塩基で処理することにより行うことができる。塩基としては、例えばピペリジン、モルホリン等を挙げることができる。その際、溶媒の存在下で行うのが好ましい。溶媒としては、例えばDMSO、DMF、メタノール等を挙げることができる。
 遊離アミノ基と、脂溶性保護基でアミノ基窒素が保護された任意のアミノ酸のカルボキシ基とのアミド化反応は、活性化剤および溶媒の存在下行うのが好ましい。
 活性化剤としては、例えば、ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド・塩酸塩(WSC/HCl)、ジフェニルホスホリルアジド(DPPA)、カルボニルジイミダゾール(CDI)、ジエチルシアノホスホネート(DEPC)、ベンゾトリアゾール-1-イルオキシ-トリスピロリジノホスホニウム(DIPCI)、ベンゾトリアゾール-1-イルオキシ-トリスピロリジノホスホニウムヘキサフルオロホスフェート(PyBOP)、1-ヒドロキシベンゾトリアゾール(HOBt)、ヒドロキシスクシンイミド(HOSu)、ジメチルアミノピリジン(DMAP)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)、ヒドロキシフタルイミド(HOPht)、ペンタフルオロフェノール(Pfp-OH)、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HBTU)、1-[ビス(ジメチルアミノ)メチレン]-5-クロロ-1H-ベンゾトリアゾリウム 3-オキシド ヘキサフルオロホスフェート(HCTU)、O-(7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスホネート(HATU)、O-ベンゾトリアゾール-1-イル-1,1,3,3-テトラメチルウロニウムテトラフルオロボレート(TBTU)、3,4-ジヒドロ-3-ヒドロジ-4-オキサ-1,2,3-ベンゾトリアジン(Dhbt)、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルフォリニウム クロライド n-ハイドレート(DMT-MM)等を挙げることができる。
 活性化剤の使用量は、脂溶性の保護基でアミノ基窒素が保護された任意のアミノ酸に対して、1~20当量、好ましくは1~10当量、さらに好ましくは、1~5当量とするのが好ましい。
 溶媒としては、例えばDMSO、DMF、ジクロロメタン等を挙げることができる。反応は0~50℃、好ましくは室温で、約10分~30時間程度、好ましくは15分~24時間程度行うのが良い。脂溶性保護基の脱離は、上記と同様に行うことができる。
 アミノ基で官能化されたRink-Amide-レジン(メルク社製)、Rink-Amide-PEGAレジン(メルク社製)、NH-SAL-レジン(渡辺化学社製)や、NH-SAL-レジン-リンカーが結合したAmino-PEGA-レジン(メルク社製)等にC末端のアミノ酸を導入する場合、上記のアミド化反応を用いて導入することができる。
 樹脂(レジン)からペプチド鎖を切断するには酸で処理するのが好ましい。酸としては、例えばトリフルオロ酢酸(TFA)、弗化水素(HF)等を挙げることができる。
 このようにして、所望の位置に糖鎖付加Asnを有する糖鎖-ポリペプチド複合体を得ることができる。
 なお、本発明の一実施態様において、固相合成に用いる糖鎖付加Asnにおける糖鎖上の非還元末端にシアル酸を含む場合には、酸処理によりシアル酸が切断されるのを防ぐために、当該シアル酸のカルボキシ基を、保護基により保護していることが好ましい。保護基としては、例えば、ベンジル基、アリル基、ジフェニルメチル基、フェナシル基等を挙げることができる。保護基の導入および保護基の脱離の方法は、公知の方法により行うことができる。
糖鎖-ポリペプチド複合体を製造する方法(B法)
 糖鎖-ポリペプチド複合体は、まずポリペプチドを合成し、後で合成したポリペプチドへ糖鎖を付加する方法によっても製造することができる。具体的には、糖鎖を付加したい位置にCysを含むポリペプチドを、固相合成法、液相合成法、細胞により合成する方法、天然に存在するものを分離抽出する方法等により製造する。ポリペプチドを固相合成法または液相合成法により合成する場合、アミノ酸は一残基ずつ連結させても良く、ポリペプチドを連結させてもよい。ここで、ジスルフィド結合を形成する予定の位置にあるCys等、糖鎖を付加しないCysに対しては、例えばアセトアミドメチル(Acm)基で保護しておく。また、糖鎖を付加せず、かつ、ジスルフィド結合の形成にも使用しないCysを糖鎖-ポリペプチド複合体に導入する場合には、糖鎖付加工程およびジスルフィド結合形成工程の間、Cysを保護基により保護しておき、その後脱保護するようにしてCysを導入することができる。このような保護基としては、例えば、tert-ブチル(tBu)や4-メトキシベンジルを挙げることができる。
 また、1つのポリペプチド中のCysに、異なる糖鎖を付加する場合には、最初に糖鎖を導入するCysを無保護とし、次に異なる糖鎖を導入するCysを、StBu等により保護しておくことで、異なる糖鎖を導入することができる。具体的には、固相合成等によりポリペプチドを合成する際、第一の糖鎖を導入したいCysを無保護とし、かつ、第二の糖鎖を導入したいCysをFmoc-Cys(StBu)-OH等を用いて、保護基を有するCysとする。その後、StBu等の保護基を保持したまま、無保護のCysへ糖鎖を導入する。次に、StBu基等を脱保護することで、無保護となったCysへ異なる糖鎖を導入することができる。なお、第一の糖鎖を導入したいCysおよび第二の糖鎖を導入したいCysは、1つ又は複数個とすることができる。
 なお、StBu基の脱保護は、トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)、ジチオトレイトール(DTT)、トリブチルホスフィン等の還元剤を用いて反応させることにより脱保護することができる。上記反応は、通常0~80℃、好ましくは、5~60℃、更に好ましくは10~35℃で行うのが良い。反応時間は、好ましくは、通常30分~5時間程度である。反応終了後は、適宜、公知の方法(例えば、高速液体カラムクロマトグラフィー(HPLC))で精製するのが良い。
 異なる糖鎖を導入する際には、Cysの脱保護工程における還元条件やHPLC等の精製工程における酸性条件に対して、より安定な糖鎖から導入することが好ましい。特に、シアル酸含有糖鎖を導入する際には、シアル酸を有さない糖鎖又はシアル酸残基数が少ない糖鎖から、先に導入することが好ましい。
 また、糖鎖-ポリペプチド複合体のアミノ酸配列中に、リンカーを付加させたい場合には、例えば固相合成の過程において、脂溶性保護基で保護したアミノ酸の代わりに、脂溶性保護基で保護したリンカーを使用することで、合成したポリペプチドの好ましい位置に、リンカーを挿入することができる。
 次に、ハロアセチル化糖鎖誘導体を上記で得た無保護のCysを含むペプチドと反応させることにより、糖鎖を無保護のCysのチオール基と反応させ、ペプチドに結合させる。上記反応は、リン酸緩衝液、トリス‐塩酸緩衝液、クエン酸緩衝液、またはこれらの混合溶液中において、通常0~80℃、好ましくは、10~60℃、更に好ましくは15~35℃で行うのが良い。反応時間は、通常10分~24時間、好ましくは、通常30分~5時間程度である。反応終了後は、適宜、公知の方法(例えば、HPLC)で精製するのが良い。
 ハロアセチル化糖鎖誘導体は、例えば、アスパラギン結合型糖鎖の1位の炭素に結合している水酸基を、-NH-(CH-(CO)-CHX(Xはハロゲン原子、aは整数であり、目的とするリンカー機能を阻害しない限り限定されるものではないが、好ましくは0~4の整数を示す。)で置換した化合物である。
 具体的には、ハロアセチル化複合型糖鎖誘導体とCys含有ポリペプチドとをリン酸緩衝液中、室温で反応させる。反応終了後、HPLCで精製することにより糖鎖が結合したCysを有する糖鎖-ポリペプチド複合体を得ることができる。
 また、DMSO、DMF、メタノール、アセトニトリルといった有機溶媒と、上記の緩衝液との混合溶液中で反応を行うこともできる。このとき、有機溶媒の比率は、0~99%(v/v)の範囲で、上記緩衝液に添加することができる。緩衝液への溶解性が低い無保護のCysを含むペプチドは、このような有機溶媒を添加することにより反応溶液への溶解性を向上させることができ、好ましい。
 または、DMSO、DMF、メタノール、アセトニトリルといった有機溶媒や、それらの混合溶液中で反応を行うこともできる。その際、塩基の存在下で行うのが好ましい。塩基としては、例えばDIPEA、トリエチルアミン、ピリジン、2,4,6-コリジン等を挙げることができる。また、グアニジン塩酸塩や尿素を緩衝溶液に加えた混合溶液中においても反応を行うことができる。なお、グアニジン塩酸塩や尿素は、最終濃度が1M~8Mとなるように上記緩衝液に加えることができる。グアニジン塩酸塩や尿素の添加によっても、緩衝液への溶解性の低いペプチドの溶解性を向上させることができ、好ましい。
 さらに、無保護のCysを含むポリペプチドが、ジスルフィド結合を介した2量体を形成することを防止するために、トリス(2-カルボキシエチル)ホスフィン塩酸塩(TCEP)やジチオトレイトール(DTT)を緩衝液に添加して反応させることもできる。TCEPやDTTは、最終濃度が10μM~10mMとなるように緩衝液に加えることができる。
 また、ジシアロ糖鎖やモノシアロ糖鎖等のシアル酸含有糖鎖をペプチド配列中に複数本有する糖鎖-ポリペプチド複合体を製造する際には、導入する糖鎖上のシアル酸のカルボキシ基が、ベンジル(Bn)基、アリル基、ジフェニルメチル基、フェナシル基等により保護されたシアル酸含有糖鎖を用いることができる。
 シアル酸のカルボキシ基が保護された糖鎖を導入した際には、後述する糖鎖-ポリペプチド複合体におけるジスルフィド結合の形成工程の後、シアル酸保護基の脱保護の工程をすることができる。
 このように、シアル酸のカルボキシ基をベンジル基等で保護することにより、製造工程におけるHPLC等による分離・精製工程が容易となる。また、シアル酸のカルボキシ基の保護は、酸に不安定なシアル酸の脱離を防ぐことも可能である。
 糖鎖上のシアル酸のカルボキシ基の保護反応は、当業者に周知の方法により行うことができる。また、糖鎖-ポリペプチド複合体において、シアル酸のカルボキシ基の保護基は、塩基性条件下で加水分解することによって脱保護できる。上記反応は、通常0~50℃、好ましくは、0~40℃、更に好ましくは0~30℃で行うのが良い。反応時間は、好ましくは、通常5分~5時間程度である。反応終了後は、リン酸や酢酸などの弱酸によって中和した後、適宜、公知の方法(例えば、HPLC)で精製するのが良い。 
 また、B法においてハロアセチル化複合型糖鎖誘導体と反応させるアミノ酸は、チオール基を含有するアミノ酸であれば特に限定されず、例えば、D体のシステイン(D-Cys)、ホモシステイン、ノルシステイン、ペニシラミンなどもCysと同様に用いることが可能である。
 本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体に結合する糖鎖の種類は特に限定されないが、糖鎖-ポリペプチド複合体に結合している糖鎖に存在する糖残基の数の合計が5以上であることが好ましい。例えば、5糖以上の糖鎖を1本以上付加してもよく、5糖以下の糖鎖を複数本付加することにより、1つの糖鎖-ポリペプチド複合体に付加された糖鎖に存在する糖残基の数が5以上になるようにしてもよい。糖鎖を複数本付加する場合には、1つのペプチドに結合される糖鎖の種類は同一であってもよく、異なる種類の糖鎖を組み合わせて結合してもよいが、同一であることが好ましい。
 例えば、糖鎖-ポリペプチド複合体に結合している糖鎖に存在する糖残基の数の合計が5の場合、2つの糖残基を有するマルトース糖鎖と、3つの糖残基を有するマルトトリオース糖鎖がそれぞれ1本ずつ結合していてもよい。また、糖鎖-ポリペプチド複合体に結合している糖鎖に存在する糖残基の数の合計が6の場合、マルトース糖鎖が3本結合されていてもよく、マルトトリオース糖鎖が2本結合されていてもよい。また、糖鎖-ポリペプチド複合体に結合している糖鎖に存在する糖残基の数の合計が7の場合、マルトース糖鎖が2本およびマルトトリオース糖鎖が1本結合していてもよく、7つの糖残基を有するジグルクナック糖鎖が1本結合していてもよい。同様に、糖鎖-ポリペプチド複合体に結合している糖鎖に存在する糖残基の数の合計が8以上の場合においても、様々な組み合わせの糖鎖が結合していてもよい。
 本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体に結合する糖鎖の数は、糖鎖-ポリペプチド複合体が、pHが中性付近の水溶液中において自己集合することにより、βシート構造を形成しうるという特徴を失わない限り限定されない。例えば、1、2、3、4、5、または、6本であってよく、好ましくは、1、2、または、3本であってよい。
 本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体において、糖鎖が結合するアミノ酸残基の位置は、糖鎖-ポリペプチド複合体が、pHが中性付近の水溶液中において自己集合することにより、βシート構造を形成しうるという特徴を失わない限り限定されない。例えば、糖鎖が結合するアミノ酸残基の位置はポリペプチドのN末端側および/またはC末端側であってよく、N末端側およびC末端側以外の位置であってもよい。
 好ましくは、ポリペプチドのN末端に位置するアミノ酸残基から数えて、x番目までの全てのアミノ酸、および、C末端に位置するアミノ酸残基から数えて、y番目までの全てのアミノ酸(ここで、xおよびyは整数であり、x≧0であり、y≧0であり、x+yは、ポリペプチドに結合している糖鎖の数の合計である)に糖鎖が結合していてもよい。
 より具体的には、ポリペプチドに結合している糖鎖の数が1本の場合には、当該1本の糖鎖は、前記ポリペプチドのN末端に位置するアミノ酸残基、または、C末端に位置するアミノ酸残基と結合してもよい。
 また、ポリペプチドに結合している糖鎖の数が2本の場合には、当該2本の糖鎖は、次の(1)~(3)からなる群から選択されるアミノ酸残基と結合していてもよい。
(1)ポリペプチドのN末端に位置するアミノ酸残基から数えて1番目および2番目のアミノ酸残基
(2)ポリペプチドのC末端に位置するアミノ酸残基から数えて1番目および2番目のアミノ酸残基
(3)ポリペプチドのN末端に位置するアミノ酸残基、および、前記ポリペプチドのC末端に位置するアミノ酸残基
 また、ポリペプチドに結合している糖鎖の数が3本の場合には、当該3本の糖鎖は、次の(1)~(4)からなる群から選択されるいずれかのアミノ酸残基と結合していてもよい。
(1)ポリペプチドのN末端に位置するアミノ酸残基から数えて1番目、2番目、および、3番目のアミノ酸残基
(2)ポリペプチドのC末端に位置するアミノ酸残基から数えて1番目、2番目、および、3番目のアミノ酸残基
(3)ポリペプチドのN末端に位置するアミノ酸残基から数えて1番目および2番目のアミノ酸残基、ならびに、ポリペプチドのC末端に位置するアミノ酸残基
(4)ポリペプチドのN末端に位置するアミノ酸残基、ならびに、ポリペプチドのC末端から数えて1番目および2番目に位置するアミノ酸残基
 本発明に係る止血用医薬組成物に含まれる糖鎖-ポリペプチド複合体に付加される糖鎖は、分岐を有していることが好ましい。ここで、本発明において、ポリペプチドに結合された糖鎖が「分岐を有する糖鎖」であるとは、例えば、ジシアロ糖鎖、アシアロ糖鎖、ジグルクナック糖鎖のように、1つの糖鎖の中で分岐を有している場合に限定されず、例えば、1つのポリペプチドに複数本の直鎖状の糖鎖が付加されることにより、ペプチド全体として糖鎖が分岐を有している状態にある場合も含まれる。例えば、1つのペプチドにマルトース糖鎖やマルトトリオース糖鎖等の直鎖状の糖鎖が2本以上結合している場合も、本発明において「分岐を有する糖鎖」に含まれることとする。
 本発明において、ヒドロゲルの強度や性質についての評価方法は特に限定されないが、例えば、スチール球載荷試験や動粘液度測定によって評価することができる。スチール球載荷試験では、例えば、ダーラム管内で形成させたヒドロゲルの表面に所定の重量のスチール球を載荷し、スチール球がヒドロゲルの表面に留まるか、沈むかを観察することによって、ヒドロゲルの強度を評価することができる。また、スチール球載荷試験では、ヒドロゲル中の透明度や、不溶物・沈殿の有無を目視で確認することができる。ヒドロゲルの動粘液度測定では、対象となるヒドロゲルについて、検流計を用いて動粘度を測定することにより、時間の経過にともなうヒドロゲルの強度の変化を測定することができる。
 なお、本明細書において用いられる用語は、特定の実施形態を説明するために用いられるのであり、発明を限定する意図ではない。
 また、本明細書において用いられる「含む」との用語は、文脈上明らかに異なる理解をすべき場合を除き、記述された事項(部材、ステップ、要素、数字など)が存在することを意図するものであり、それ以外の事項(部材、ステップ、要素、数字など)が存在することを排除しない。
 異なる定義が無い限り、ここに用いられるすべての用語(技術用語及び科学用語を含む。)は、本発明が属する技術の当業者によって広く理解されるのと同じ意味を有する。ここに用いられる用語は、異なる定義が明示されていない限り、本明細書及び関連技術分野における意味と整合的な意味を有するものとして解釈されるべきであり、理想化され、又は、過度に形式的な意味において解釈されるべきではない。
 第一の、第二のなどの用語が種々の要素を表現するために用いられる場合があるが、これらの要素はそれらの用語によって限定されるべきではないことが理解される。これらの用語は一つの要素を他の要素と区別するためのみに用いられているのであり、例えば、第一の要素を第二の要素と記し、同様に、第二の要素は第一の要素と記すことは、本発明の範囲を逸脱することなく可能である。
 以下、実施例により本発明をより具体的に説明するが、しかしながら、本発明はいろいろな形態により具現化することができ、ここに記載される実施例に限定されるものとして解釈されてはならない。
 本明細書において、例えば、DiGlcNAc-BrAcと示した場合には、ブロモアセチル化されたジグルクナック糖鎖を示す。また、例えば、C(DiGlcNAc)-(RADA)4と示した場合には、RADARADARADARADAのアミノ酸配列を有するポリペプチドのN末端に、ジグルクナック糖鎖が結合したシステイン残基が結合していることを示す。
(合成例1) C(DiGlcNAc)-(RADA)4の合成
(合成例1-1)DiGlcNAc-BrAcの合成
 WO2005/010053に記載の方法と同様の手法で合成を行い、下記式(12)であらわされるDiGlcNAc-BrAcを得た。
Figure JPOXMLDOC01-appb-C000012

式(12)
(合成例1-2)Ac-C(RADA)4-NH の合成
 固相合成用カラムにRink amide PEGA樹脂(100μmol)を取り、DMFおよびジクロロメタンで洗浄後、Fmoc-Ala-OH(124.5mg、400μmol)と1-ビスジメチルアミノメチレン-5-クロロ-1H-ベンゾトリアゾリウム 3-オキシドヘキサフルオロホスフェイト(HCTU)(157.2mg、380μmol)とジイソプロピルエチルアミン(DIPEA)(104.5μL、600μmol)のDMF(2.5mL)溶液を加え、15分間振盪した。ジクロロメタンおよびDMFで洗浄後、Fmoc保護基を、DMF中の20%のピペリジンで処理することにより除去した。DMFで洗浄後、Prelude(商標)ペプチド合成機を用いて、Fmoc法によるペプチド固相合成法にて保護された下記式(13)で表わされる、樹脂に結合した状態にあるポリペプチド(配列番号3)を合成した。縮合反応は、縮合剤としてHCTUを使用してDMF中で行った。
Figure JPOXMLDOC01-appb-C000013

式(13)
 Fmoc保護基を、DMF中の20%のピペリジンで処理することにより除去した。DMFおよびジクロロメタンで洗浄後、無水酢酸及びピリジンを加え1時間振盪した。DMFおよびジクロロメタンで洗浄後、トリフルオロ酢酸(TFA):水:トリイソプロピルシラン:エタンジチオール(=90:2.5:5:2.5)を加え、4時間室温で振盪した。樹脂をろ過して除き、ろ液に冷却したジエチルエーテルを加え、粗ペプチドを沈殿として得た。粗ペプチドの一部をHPLC[カラム:SHISEIDO CAPCELL PAK C18 UG‐120(5μm)、φ20x250mm、流速:7.0mL/分、展開溶媒 A:0.1%TFA水 B:0.09%TFA/10%水/90%アセトニトリル、グラジエント A:B=88:12→78:22 11分 直線濃度勾配溶出]を用いて精製し、下記式(14)で表わされるポリペプチド(配列番号4)(32.7mg)を得た。
Figure JPOXMLDOC01-appb-C000014

式(14)
(合成例1-3)C(DiGlcNAc)-(RADA)4の合成
 合成例1-2で合成したポリペプチド(配列番号4)(25.3mg、13.9μmol)と、合成例1-1で合成したDiGlcNAc-BrAc(30.0mg、20.9μmol、ペプチド1に対して1.5等量)を33μMのTCEPおよび8Mグアニジン塩酸塩を含む0.2Mリン酸緩衝液(pH7.3、4.7mL)に溶解し、室温で3時間反応させた。
 反応溶液を、HPLC[カラム:SHISEIDO CAPCELL PAK C18 UG-120(5μm)、φ20x250mm、流速:7.0mL/分、展開溶媒 A:0.1%TFA水 B:0.09%TFA/10%水/90%アセトニトリル グラジエント A:B=88:12→81:19 10分 直線濃度勾配溶出]を用いて精製し、下記式(15)で表わされる糖鎖-ポリペプチド複合体(配列番号5)(23.9mg、7.53μmol、収率54%)を得た。
Figure JPOXMLDOC01-appb-C000015

式(15)
(実施例1) 円偏光二色性(CD)測定および解析
 (RADA)4などの自己組織化ペプチドは、分子間相互作用によりβシート構造を形成し、さらにその構造がイオン存在下、何重にも重なることで、ヒドロゲルが形成されることが知られている。このβシート構造を確認する有効な手法として、CD測定が知られている。一般的に、βシート構造を有する場合のCDスペクトルは、197nm付近の正の極大と216nm付近の負の極大を示す。そこで、CD測定を行うことにより、本発明の組成物が広範なpHにおいてβシート構造を形成することを確認した。
 合成例1で合成したC(DiGlcNAc)-(RADA)4および対照となる(RADA)4(商品名:PuraMatrix、3D Matrix社製、製品番号:354250)をそれぞれ超純水に溶解し、1重量%水溶液を調製した。この水溶液に、同量の超純水、1.8%食塩水、または0.3Mリン酸緩衝溶液(pH7.4)を加え、それぞれ0.5重量%水溶液及びヒドロゲルを作製した。その後、各溶液のペプチド濃度が100mMになるように超純水で希釈した。これらの溶液を光路長0.1cmの石英セルに移した。そして、円二色性分散計(J-805、Jasco)を用いて、波長190-260nmで、CDスペクトルを測定した。平均残基楕円型性(Mean residue ellipticity)θは以下の式を用いて算出した。
[θ]=(θobs/10・l・c)/r
ここでθobsはミリ度で測定した楕円形性、lはセル長さ(cm)、cは濃度(M)、そしてrはアミノ酸の残基数を表す。
 図1にC(DiGlcNAc)-(RADA)4を含む組成物の測定結果を、図2に(RADA)4を含む組成物の測定結果をそれぞれ示す。
 水溶液中及び生理食塩水溶液中においては、C(DiGlcNAc)-(RADA)4及び(RADA)4ともに、197nm付近の正の極大と216nm付近の負の極大を示したことから、両ペプチドはβシート構造を形成していることが確認された。一方、リン酸緩衝溶液中においては、C(DiGlcNAc)-(RADA)4のみβシート構造の形成が確認された。
(実施例2) 繊維状構造形成の確認
 合成例1で合成したC(DiGlcNAc)-(RADA)4及び対照となる(RADA)4をそれぞれ超純水に溶解し、1重量%水溶液を調製した。調製したそれぞれの水溶液を0.5重量%になるように、超純水、1.8%食塩水又はリン酸緩衝溶液(pH7.4)を用いてそれぞれ希釈した。得られた希釈液1μLを、劈開させたマイカ基板(商品名:MICA Grade V-4、SPI supplies社製)上にそれぞれ滴下した。その後、前記マイカ基板上の余分な化合物を、100μLの蒸留水で洗い流した。ついで、室温(25℃)で基板を空気乾燥させた。
 乾燥後のマイカ基板上のペプチドを、原子間力顕微鏡(商品名:ナノスケールハイブリット顕微鏡 VN-8000、キーエンス社製)を用いて観察した。その結果を、図1に示す。
 図3に示されるように、C(DiGlcNAc)-(RADA)4は、いずれの条件下においても自己組織化して繊維状構造を形成することが分かった。一方、(RADA)4は、リン酸緩衝溶液中では凝集物のようなものが観察され、繊維状構造を形成しないことが分かった。
(実施例3) 動粘度測定及び解析
 動粘度の測定には、0.3mmのギャップ高を有する直径40mmのステンレス鋼平行プレートを備えた検流計(Discovery HR-2、TAインスツルメント社製)を用いた。C(DiGlcNAc)-(RADA)4を超純水に溶解し、0.5-5重量%のペプチド水溶液を調製した。また、対照となる(RADA)4も超純水に溶解し、0.5―1重量%のペプチド水溶液を調製した。その後、これらの水溶液を25℃に設定した検流計に移し、Preshearを30秒間、100S-1の回転速度で行った後、各種物性データを時間経過に従ってモニターした(周波数=1Hz、歪み=10%)。この測定結果を図4に示す。
 C(DiGlcNAc)-(RADA)4を超純水に溶解後、同量のリン酸緩衝液(300mM、pH7.4)を添加することで、0.5―5重量%のヒドロゲルを作成した。また、(RADA)4を超純水に溶解後、同量の1.8%の食塩水を添加することで、0.5―1重量%のヒドロゲルを作製した。なお、(RADA)4は2重量%以上の濃度において完全に溶解せず、操作が困難であり、試験を実施することができなかった。これらのヒドロゲルの動粘度を、上記と同様の条件で測定した。この測定結果を図5に示す。
 図4ではC(DiGlcNAc)-(RADA)4および(RADA)4の水溶液状態での貯蔵弾性率を示している。1重量%のC(DiGlcNAc)-(RADA)4と1重量%の(RADA)4の水溶液状態における貯蔵弾性率を比較すると、C(DiGlcNAc)-(RADA)4が低い値を示した。一方、図5に示した、塩を添加した後のヒドロゲル状態におけるそれぞれの貯蔵弾性率を同様に比較すると、C(DiGlcNAc)-(RADA)4と(RADA)4とが同等の値を示した。これらの結果から、C(DiGlcNAc)-(RADA)4は、水溶液状態では貯蔵弾性率が低く扱いが容易である一方、塩を添加すると即座にゲル化するという特徴を有していることがわかった。また、C(DiGlcNAc)-(RADA)4は水溶性が高いため、ペプチド濃度を高くしても凝集物を生じることなく、高い貯蔵弾性率を有するヒドロゲルを提供することができる。
(実施例4) 止血作用の評価
 本発明のヒドロゲルが生体において止血作用を有するかを確認するため、ラットの肝臓穿刺による出血モデルでの評価試験を行った。
 9週齢のCrlj:SDラットをイソフルランにて麻酔し、尾静脈からヘパリンナトリウム注(200 U/rat、味の素製薬株式会社)を投与した。ラットを開腹し、肝臓の外側左葉または内側右葉の下側にプラスチックパラフィンフィルムをあて、肝臓表面を露出させた。肝葉の同一部位を針器具(ピンを直径7mm程度に束ね、深さ3~4mmまで刺さるようにしたもの)で3回刺して肝穿刺モデルとした。穿刺後から10秒間の出血は脱脂綿にて除去し、その後直ちに被験物質(C(DiGlcNAc)-(RADA)4、(RADA)4)、または、媒体(精製水、PBS)を各100μL、穿刺部位に滴下にて局所投与した。投与後1.5分および3分の時点で下記のスコア基準により止血および出血状態を確認し被験物質の止血効果を評価した。C(DiGlcNAc)-(RADA)4はPBS(pH7.4,phosphate buffered saline)によって0.5重量%となるように溶解し評価に使用した。(RADA)4は精製水によって0.5重量%となるように溶解し評価に使用した。
Figure JPOXMLDOC01-appb-T000016
 止血効果の評価結果を表2に示した。また、3分後の止血効果についてスコア分布を図6に示した。3分後まで持続的な出血が認められた個体は、PBS適用群では16例中12例(75%)、精製水適用群では15例中13例(87%)であった。一方、C(DiGlcNAc)-(RADA)4適用群では3分後まで持続的な出血が認められた個体は15例中4例(27%)であり、(RADA)4適用群では3分後まで持続的な出血が認められた個体は15例中3例(20%)であった。その他の個体は穿刺後3分までにゲル状の固形物または被膜等を形成し、出血部位からの血液の流出が止まるか、流出量が減少した。
 本試験系ではラットに被験物質を投与する前にヘパリンを投与し、内因性血液凝固系を抑制した条件下で検討を行っていることから、上記の結果は、被験物質自体が持つ止血効果を示している。

Figure JPOXMLDOC01-appb-T000017
 以上の結果から、(C(DiGlcNAc)-(RADA)4は、(RADA)4と比較して高いユーザビリティを備えておりながら、(RADA)4と同等の止血効果を示すことがわかった。すなわち、本発明のヒドロゲルは止血用医薬組成物として極めて高い利用価値を有することが示された。

Claims (9)

  1.  糖鎖-ポリペプチド複合体を含む止血用医薬組成物であって、
     前記糖鎖-ポリペプチド複合体における前記ポリペプチドが、極性アミノ酸残基と非極性アミノ酸残基が交互に配置されたアミノ酸配列を含むポリペプチドであり、
     前記ポリペプチドに1または複数の糖鎖が結合していることを特徴とする、
    止血用医薬組成物。
  2.  請求項1に記載の止血用医薬組成物であって、
     前記糖鎖-ポリペプチド複合体における前記ポリペプチドが、極性アミノ酸残基と非極性アミノ酸残基が交互に配置された、8~34個のアミノ酸残基からなるアミノ酸配列を含むポリペプチドであることを特徴とする、
    止血用医薬組成物。
  3.  請求項1または2に記載の止血用医薬組成物であって、
     前記糖鎖-ポリペプチド複合体が、pHが中性付近の水溶液中において自己集合することにより、βシート構造を含むヒドロゲルを形成しうるものであることを特徴とする、
    止血用医薬組成物。
  4.  請求項1に記載の止血用医薬組成物であって、
     前記止血用医薬組成物に含まれる前記糖鎖-ポリペプチド複合体の濃度が0.1重量%~20重量%であることを特徴とする、
    止血用医薬組成物。
  5.  請求項1に記載の止血用医薬組成物であって、
     前記ポリペプチドに結合している1または複数の糖鎖に存在する糖残基の数の合計が5以上であることを特徴とする、
    止血用医薬組成物。
  6.  請求項5に記載の止血用医薬組成物であって、
     前記ポリペプチドに結合している糖鎖の数が、1、2、または、3本であることを特徴とする、
    止血用医薬組成物。
  7.  請求項5に記載の止血用医薬組成物であって、
     前記ポリペプチドのN末端に位置するアミノ酸残基から数えて、x番目までの全てのアミノ酸、および、C末端に位置するアミノ酸残基から数えて、y番目までの全てのアミノ酸(ここで、xおよびyは整数であり、x≧0であり、y≧0であり、x+yは、ポリペプチドに結合している糖鎖の数の合計である)に糖鎖が結合していることを特徴とする、
    止血用医薬組成物。
  8.  請求項1に記載の止血用医薬組成物であって、
     前記糖鎖が、分岐を有する糖鎖であることを特徴とする、
    止血用医薬組成物。
  9.  請求項1~8のいずれか1項に記載の止血用医薬組成物であって、
     前記医薬組成物が、ヒドロゲルの状態にあることを特徴とする、
    止血用医薬組成物。
PCT/JP2014/070703 2014-03-28 2014-08-06 止血用医薬組成物 WO2015145797A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016509877A JPWO2015145797A1 (ja) 2014-03-28 2014-08-06 止血用医薬組成物
CN201480079324.7A CN106659821A (zh) 2014-03-28 2014-08-06 止血用药物组合物
CA2943734A CA2943734A1 (en) 2014-03-28 2014-08-06 Hemostatic pharmaceutical composition
SG11201607893TA SG11201607893TA (en) 2014-03-28 2014-08-06 Hemostatic pharmaceutical composition
KR1020167028412A KR20160142843A (ko) 2014-03-28 2014-08-06 지혈용 약학 조성물
AU2014388585A AU2014388585B2 (en) 2014-03-28 2014-08-06 Hemostatic pharmaceutical composition
EP14887535.4A EP3124058A4 (en) 2014-03-28 2014-08-06 Hemostatic pharmaceutical composition
US15/128,802 US20170119844A1 (en) 2014-03-28 2016-08-06 Hemostatic pharmaceutical composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-068333 2014-03-28
JP2014068333 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015145797A1 true WO2015145797A1 (ja) 2015-10-01

Family

ID=54194377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070703 WO2015145797A1 (ja) 2014-03-28 2014-08-06 止血用医薬組成物

Country Status (9)

Country Link
US (1) US20170119844A1 (ja)
EP (1) EP3124058A4 (ja)
JP (1) JPWO2015145797A1 (ja)
KR (1) KR20160142843A (ja)
CN (1) CN106659821A (ja)
AU (1) AU2014388585B2 (ja)
CA (1) CA2943734A1 (ja)
SG (2) SG11201607893TA (ja)
WO (1) WO2015145797A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217376A (ja) * 2006-02-17 2007-08-30 Nagoya Institute Of Technology 自己組織化ペプチド組成物
JP2008539257A (ja) * 2005-04-25 2008-11-13 マサチューセッツ・インスティテュート・オブ・テクノロジー 止血および他の生理学的活性を促進するための組成物および方法
WO2010041636A1 (ja) * 2008-10-06 2010-04-15 株式会社スリー・ディー・マトリックス 組織閉塞剤
JP2010521495A (ja) * 2007-03-14 2010-06-24 アーチ セラピューティクス, インコーポレイテッド 漏出性または損傷を受けたタイトジャンクションの処置および細胞外マトリクスの増強

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943763B2 (en) * 2002-07-05 2011-05-17 Otsuka Chemical Holdings Co., Ltd. Process for preparing glycopeptides having asparagine-linked oligosaccharides, and the glycopeptides
CN101514225B (zh) * 2008-10-13 2011-09-14 西安蓝晶生物科技有限公司 自聚体多肽及其制备方法和应用
DK2980098T3 (en) * 2013-03-30 2019-01-28 Glytech Inc (Sugar chain) -POLYPEPTIDKOMPLEKS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539257A (ja) * 2005-04-25 2008-11-13 マサチューセッツ・インスティテュート・オブ・テクノロジー 止血および他の生理学的活性を促進するための組成物および方法
JP2007217376A (ja) * 2006-02-17 2007-08-30 Nagoya Institute Of Technology 自己組織化ペプチド組成物
JP2010521495A (ja) * 2007-03-14 2010-06-24 アーチ セラピューティクス, インコーポレイテッド 漏出性または損傷を受けたタイトジャンクションの処置および細胞外マトリクスの増強
WO2010041636A1 (ja) * 2008-10-06 2010-04-15 株式会社スリー・ディー・マトリックス 組織閉塞剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124058A4 *

Also Published As

Publication number Publication date
AU2014388585B2 (en) 2018-10-04
JPWO2015145797A1 (ja) 2017-04-13
EP3124058A4 (en) 2017-11-29
CN106659821A (zh) 2017-05-10
CA2943734A1 (en) 2015-10-01
SG11201607893TA (en) 2016-11-29
EP3124058A1 (en) 2017-02-01
AU2014388585A1 (en) 2016-10-27
US20170119844A1 (en) 2017-05-04
KR20160142843A (ko) 2016-12-13
SG10201808583SA (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6460978B2 (ja) 糖鎖−ポリペプチド複合体
TW200918551A (en) Method for producing peptide
JP6219308B2 (ja) 糖鎖付加リンカー、糖鎖付加リンカーと生理活性物質とを含む化合物またはその塩、及びそれらの製造方法
TWI548645B (zh) A method for producing a glycopeptide having a sialic acid sugar chain, a sialic acid sugar chain addition amino acid derivative used in the production method, and a glycopeptide
AU2012317325B2 (en) Glycosylated polypeptide and pharmaceutical composition containing same
WO2015145797A1 (ja) 止血用医薬組成物
JP7142286B2 (ja) セレン含有アミノ酸を含む糖鎖-ポリペプチド複合体、および、その医薬用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509877

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2943734

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15128802

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014887535

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014887535

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167028412

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014388585

Country of ref document: AU

Date of ref document: 20140806

Kind code of ref document: A