WO2015143955A1 - 固体燃料分级气化-燃烧双床多联产系统与方法 - Google Patents

固体燃料分级气化-燃烧双床多联产系统与方法 Download PDF

Info

Publication number
WO2015143955A1
WO2015143955A1 PCT/CN2015/072219 CN2015072219W WO2015143955A1 WO 2015143955 A1 WO2015143955 A1 WO 2015143955A1 CN 2015072219 W CN2015072219 W CN 2015072219W WO 2015143955 A1 WO2015143955 A1 WO 2015143955A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasification
sent
unit
combustion
boiler
Prior art date
Application number
PCT/CN2015/072219
Other languages
English (en)
French (fr)
Inventor
倪建军
杨震
陈楠
Original Assignee
上海锅炉厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海锅炉厂有限公司 filed Critical 上海锅炉厂有限公司
Priority to KR1020157032333A priority Critical patent/KR101711181B1/ko
Priority to US14/900,985 priority patent/US10208948B2/en
Priority to AU2015237094A priority patent/AU2015237094B2/en
Publication of WO2015143955A1 publication Critical patent/WO2015143955A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/16Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids
    • C10K1/165Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids at temperatures below zero degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/005Fluidised bed combustion apparatus comprising two or more beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a solid fuel graded gasification-fuel twin-bed multi-generation system and method, and belongs to the technical field of polygeneration.
  • Coal-based polygeneration technology can be divided into two categories according to the application of the prior art.
  • the first type is based on gasification technology.
  • the product is mainly composed of syngas, which can produce some medium and low pressure steam.
  • the system can be synthesized.
  • Gas is used in gas turbine power generation, steam turbine power generation, syngas conversion into chemical raw materials, synthetic chemicals, and polygeneration systems that realize regional heating functions. From the perspective of technical classification, it can be divided into entrained flow coal gasification technology and fixed bed coal gasification.
  • Technology and fluidized bed coal gasification technology is the core coal-based polygeneration technology. For example, China's Shandong Yankuang Group's first 60MW-class IGCC power generation and 240,000 tons of methanol/year demonstration project are developed by East China University of Science and Technology.
  • Another technology is based on coal-based polygeneration technology for combustion power generation, combined with pyrolysis furnace to realize power generation, syngas, coal tar and other polygeneration systems, such as Chinese patents CN200910153522 and CN 201210064139, etc.
  • the technology is a coal-based power generation-pyrolysis multi-generation technology developed by Zhejiang University. The technology has built a 300MW class coal-fired circulating fluidized bed composite pyrolysis multi-generation unit in China and put it into trial operation.
  • the polygeneration technology realized by integrating the chemical reaction system based on the circulating fluidized bed boiler has relatively low investment and reliable technology, but it must give full play to the respective technological advantages of the two different professional directions of thermoelectricity and chemical industry, and integrate and integrate it optimally.
  • the circulating fluidized bed-pyrolysis polygeneration technology that has been put into operation has problems in that the tar is difficult to separate after pyrolysis, which leads to blockage and corrosion of pipelines and valve systems.
  • the pyrolysis system relies too much on the heat provided by the boiler system, and the load is limited. The system reliability and stability are seriously affected.
  • the object of the present invention is to provide a polygeneration technology which is easy to implement a large-scale enlargement, stable and reliable operation of a multi-generation system, and at the same time taking into account power generation, heating and coal chemical production.
  • one technical solution of the present invention provides a solid fuel hierarchical gasification-burning twin-cogeneration system, which comprises: a circulating fluidized bed combustion boiler and a circulating fluidized bed gasification boiler. Syngas purification unit and methanation unit:
  • the bottom of the circulating fluidized bed combustion boiler is provided with a lower slag port of the combustion furnace and a fluidized air inlet of the combustion furnace, and the fluidized wind enters the fluidized air inlet of the combustion furnace, and then communicates with the circulating fluidized bed combustion boiler through the combustion furnace distribution unit, and the fuel A part of the fuel enters the circulating fluidized bed combustion boiler through the fuel feed port of the combustion furnace, and the flue gas generated by the combustion enters at least the first-stage combustion furnace cyclone separation unit via the flue gas passage, and the separated flue gas is directly discharged, and the separated ash is directly discharged.
  • the slag particles are sent back to the circulating fluidized bed combustion boiler through the return leg of the combustion furnace, and the heat generated during the combustion process is used to generate the steam of the combustion furnace, and the steam of the combustion furnace is used for external supply and to the circulating fluidized bed gasification boiler. supply;
  • a semi-coke outlet and a fluidized air inlet of the gasifier are arranged at the bottom of the circulating fluidized bed gasification boiler, and the gasification agent required for gasification is sent into the gasification air inlet of the gasifier and then passed through the gasification furnace air distribution unit.
  • the water vapor in the gasifying agent is derived from the water vapor generated by the combustion furnace water vapor and/or the methanation unit
  • the carbon dioxide is derived from the carbon dioxide produced by the methanation unit
  • the other part of the fuel is vaporized.
  • the fuel feed port of the furnace enters the circulating fluidized bed gasification boiler, and the semi-coke generated by the gasification is discharged from the semi-coke outlet and sent to the fuel feed port of the combustion furnace, and the synthesis gas is synthesized from the top of the circulating fluidized bed gasification boiler.
  • the gas outlet enters at least one first-stage gasifier cyclone separation unit, and the separated synthesis gas is sent to the synthesis gas purification unit, and the separated ash particles are returned to the circulating fluidized bed gasification boiler through the gasification furnace return leg. And/or sent to the fuel feed port of the burner;
  • the syngas purification unit performs preliminary washing and dedusting of the syngas, and uses the water as a cooling medium to cool the syngas by heat exchange, and then sends it to the methanation unit, and at least part of the sewage generated during the cooling process is separated by oil and water, and separated. Impurities are either sent to the fuel feed port of the furnace, or sent to the fuel feed port of the gasifier, or deep processed for by-products;
  • the methanation unit uses the low-temperature methanol washing process and the methanation process to make the fed syngas into synthetic natural gas, and sends the carbon dioxide generated by the low-temperature methanol washing process to the fluidized air inlet of the gasification furnace, and the water vapor by-product of the methanation process. Or send it to the fluidized air inlet of the gasifier, or supplement the water vapor required by the methanation unit itself, or efflux for other purposes.
  • the gasifier cyclone separation unit adopts a secondary cyclone separation structure composed of a first-stage cyclone separator and a secondary cyclone separator, and the ash particles separated by the first-stage cyclone separator pass through the gasification furnace.
  • the material legs are sent back to the circulating fluidized bed gasification boiler, and the ash particles separated by the secondary cyclone separator are sent to the fuel feed port of the combustion furnace.
  • a side gasifying agent is further provided on the circulating fluidized bed gasification boiler to the inlet, and a side gasifying agent inlet is located above the fluidizing air inlet of the gasifier, and oxygen and water vapor are fed into the inlet.
  • the side gasifying agent is fed to the inlet.
  • the water vapor generated during the cooling of the syngas by the syngas purification unit is introduced into the gasification air inlet of the gasifier.
  • the syngas purification unit comprises a washing cooler, a waste heat boiler, a cooling unit, a first oil water separator, a second oil water separator and a sewage clarification tank, and the syngas is taken out of the gasifier cyclone separation unit or Delivered to the scrubber or sent to a waste heat boiler;
  • the washing cooler When the syngas is sent to the washing cooler, the washing cooler, the waste heat boiler and the cooling unit are cascaded in sequence, and the syngas fed by the washing cooler is initially washed and dedusted and cooled to enter the waste heat boiler, and the waste heat boiler is also synchronized.
  • the demineralized water is introduced into the scrubber as heat/steam after being exchanged with the syngas in the waste heat boiler, and the syngas after heat exchange enters the cooling unit, and the cooling unit is also synchronously connected to the clarification tank.
  • the synthesis gas is sent to the methanation unit after being discharged from the cooling unit; the sewage generated by the waste heat boiler and the cooling unit in the heat exchange process passes through the respective pipelines and the first oil-water separator and the first
  • the second oil-water separator is connected, the first oil-water separator, the second oil-water separator and the sewage clarification tank are cascaded in turn, and part of the sewage is separated by the first oil-water separator and introduced into the washing cooler as washing/cooling water, the first oil-water
  • the impurities separated by the separator and the second oil-water separator are sent to the fuel feed port of the furnace or sent to the fuel feed port of the gasifier, or as a by-product
  • part of the sewage is collected by the sewage clarification tank after passing through the first oil water separator and the second oil water separator, and the supernatant liquid after the preliminary treatment of the sewage clarification tank is sent to the cooling unit, and the obtained sediment is sent to the outside of the boundary
  • the waste heat boiler When the syngas is sent to the waste heat boiler, the waste heat boiler, the washing cooler and the cooling unit are cascaded in sequence, and the waste heat boiler is synchronously introduced into the demineralized water and the syngas from the cyclone separation unit of the gasifier, and the demineralized water is in the waste heat boiler.
  • the waste heat boiler After the heat exchange with the synthesis gas, water vapor is formed, and the steam is sent to the fluidized air inlet of the gasifier as a gasifying agent, and the heat exchanged syngas is sent into the washing cooler, and is fed by the washing cooler.
  • the syngas is initially washed and dedusted and cooled, and then enters the cooling unit.
  • the cooling unit is also synchronously connected to the sewage clarification tank.
  • the syngas is sent to the methanation unit after exiting the cooling unit; the sewage generated by the washing cooler and the cooling unit in the heat exchange process passes through the respective pipelines and the first oil-water separator and The second oil-water separator is connected, the first oil-water separator, the second oil-water separator and the sewage clarification tank are cascaded in turn, and part of the sewage is separated by the first oil-water separator and introduced into the washing cooler as washing/cooling water, first The impurities separated by the oil-water separator and the second oil-water separator are sent to the fuel feed port of the combustion furnace, or sent to the fuel feed port of the gasifier, or further processed for by-products, and some of the sewage passes through the first oil-water separator and the first After the second oil-water separator is collected by the sewage clarification tank, the supernatant liquid after the preliminary treatment of the sewage clarification tank is sent to the cooling unit, and the obtained sediment is sent to the outside of the boundary area for treatment
  • the waste heat boiler is connected to the first water separator via a heat exchanger when the syngas is sent to the scrubber cooler.
  • the outlet temperature of the syngas after passing through the scrubber cooler is from 150 ° C to 250 ° C; after the waste heat boiler, the outlet temperature is from 120 ° C to 180 ° C; The outlet temperature of the cooling unit is 25 ° C ⁇ 45 ° C.
  • the methanation unit comprises a cascade reaction reaction unit, a low temperature methanol washing unit and a methanation unit, and the synthesis gas is sequentially subjected to a shift reaction unit, a low temperature methanol washing unit and a methanation unit to form a synthetic natural gas, and the low temperature methanol washing
  • the carbon dioxide generated by the unit is sent to the fluidized air inlet of the gasifier, and the water vapor produced by the methanation unit is sent to the fluidized air inlet of the gasifier, or the water vapor required by the shift reaction unit itself is supplemented. Or efflux for other purposes.
  • Another technical solution of the present invention is to provide a polygeneration method using the solid fuel graded gasification-fuel twin-polygeneration system described above, which comprises the following steps:
  • Step 1) Dividing the fuel into two, one part is sent to the fuel feed port of the combustion furnace, a part is put into the fuel feed port of the gasifier, and the slag generated by the combustion of the fuel in the circulating fluidized bed combustion boiler is discharged from the slag mouth of the combustion furnace Exhaust, the generated flue gas is discharged from the top, and part of the particulate matter entrained in the flue gas is separated by the cyclone separation unit of the combustion furnace, and then further burned by the combustion furnace returning leg back to the circulating fluidized bed combustion boiler, and the water generated by the circulating fluidized bed combustion boiler is burned. Steam is used for power generation, heating, and other purposes. Circulating fluidized bed combustion boilers use air as the fluidizing air and oxidant;
  • Step 2) The semi-coke produced by the gasification of the circulating fluidized bed gasification boiler is discharged from the semi-coke outlet, sent back to the circulating fluidized bed combustion boiler for further combustion and utilization, and the syngas is discharged from the top, and the syngas contains some particulate matter. Collecting particulate matter through the cyclone separation unit of the gasifier, the particulate matter can be returned to the leg through the gasifier The circulating fluidized bed gasification boiler is further gasified or returned to the circulating fluidized bed combustion boiler for combustion utilization;
  • Step 3) preliminary cleaning and dedusting of the syngas by the syngas purifying unit, and cooling the syngas by heat exchange using water as a cooling medium, and then sending the syngas to the methanation unit to perform oil water on at least part of the sewage generated during the cooling process. Separating and separating the obtained impurities or sending them to the fuel feed port of the furnace, or to the fuel feed port of the gasifier, or performing deep processing for by-products;
  • the produced steam is either sent to the fluidized air inlet of the gasifier, or supplemented with the water vapor required by the methanation unit itself, or effluxed for other purposes.
  • the operating pressure of the circulating fluidized bed gasification boiler in step 2) is 0 to 8.0 MPa, and the temperature of the synthesis gas outlet reaches 650 ° C to 1050 ° C.
  • the invention has stable and reliable operation, is easy to enlarge and enlarge, and is environmentally friendly and energy-saving. Compared with the prior art, the invention also has the following beneficial effects:
  • the combination of combustion and gasification can be realized by the combination of dual fluidized bed, which can realize the grade utilization of solid fuels such as coal, and at the same time, it can produce a variety of environmentally friendly products such as electricity, heat, gas and oil lamps.
  • Coal technology can realize the grade utilization of solid fuels such as coal, and at the same time, it can produce a variety of environmentally friendly products such as electricity, heat, gas and oil lamps.
  • the fluidized bed gasification process is improved compared with the pyrolysis process, and the tar output is greatly reduced.
  • the tar oil entrained by a small amount of syngas can be burned back as a fluidized bed with a fuel, or it can be sold as a tar raw material. It solves the heavy burden caused by a large amount of tar in the pyrolysis process to the syngas treatment system.
  • the system black water adopts internal circulation and the water resource utilization efficiency is high.
  • the invention is suitable for the development of coal-based thermal and electrical polygeneration in the western region rich in coal and water shortage, and has a large-scale enlargement and popularization application prospect.
  • FIG. 1 is a schematic diagram of a solid fuel gasification-fuel double-cogeneration system for a solid fuel without a gasifying agent on the side of the gasifier;
  • FIG. 2 is a schematic diagram of a solid fuel gasification-fuel twin-cogeneration system in which a gasifying agent is disposed at the side of a gasifier to an inlet;
  • FIG. 3 is a schematic diagram of a waste heat recovery type solid fuel gasification-fuel double-cogeneration system.
  • a solid fuel staged gasification-burning twin-cogeneration system disclosed in the embodiment includes a circulating fluidized bed combustion boiler 1, a circulating fluidized bed gasification boiler 2, a syngas purification unit, and Methanation unit.
  • the fuel (in the present embodiment, the fuel is one of or a mixture of carbonaceous solid fuels such as coal, coal gangue, petroleum coke, biomass, etc.) is mainly divided into two parts, from the fuel supply port 4a of the combustion furnace and the gas.
  • the furnace fuel feed port 4b is fed to the circulating fluidized bed combustion boiler 1 and the circulating fluidized bed gasification boiler 2, respectively.
  • the oxidant required for the combustion of the circulating fluidized bed combustion boiler 1 from the combustion furnace fluidizing air inlet 5 enters the combustion furnace distribution unit 6a and enters the circulating fluidized bed combustion boiler 1.
  • the ash generated by the fuel combustion process is discharged from the lower slag port 7 of the combustion furnace, and the flue gas generated by the combustion is discharged from the flue gas duct 8 into the cyclone separator 3a and discharged from the top portion 9, and the separated ash particles pass through the combustion furnace.
  • the return leg 10a is returned to the circulating fluidized bed combustion boiler 1, and the heat generated by the combustion process is used to generate the combustion furnace water vapor 46a, which can be used for heating 46b, power generation 47, and circulation to the circulation via line 46c.
  • Fluidized bed gasification boiler 2 is used to generate the combustion furnace water vapor 46a, which can be used for heating 46b, power generation 47, and circulation to the circulation via line 46c.
  • the gasifying agent required for the gasification of the circulating fluidized bed gasification boiler 2 is derived from the combustion furnace water vapor 46a sent from the line 46c and the water vapor 44 from the methanation unit, and the oxygen is derived from the outside of the boundary 51, carbon dioxide 53 From the methanation unit.
  • the gasification agent enters the circulating fluidized bed gasification boiler 2 through the fluidized gas inlets 11a, 11b of the gasifier and the gas distribution unit 6b, and the semi-coke generated by the gasification is discharged from the semi-coke outlet 49, and the syngas is discharged from the syngas.
  • the outlet 13 is separated into the syngas cooling and purifying unit through the first cyclone separator 3b and the secondary cyclone separator 3c, and the syngas guiding tube 14 is connected between the first cyclone separator 3b and the secondary cyclone separator 3c.
  • a syngas line 15 is connected between the stage cyclone separator 3c and the syngas cooling and purifying unit.
  • the syngas purification unit includes a wash cooler 16, a waste heat boiler 19, a cooling unit 22, a first oil water separator 25, a second oil water separator 26, and a sewage clarification tank 36.
  • the washing cooler 16, the waste heat boiler 19, and the cooling unit 22 are sequentially cascaded through the syngas lines 18, 21, and the cooling unit 22 is connected to the methanation unit through the syngas line 23.
  • the syngas enters the scrubber 16 first, and then enters the waste heat boiler 19 after preliminary washing and dedusting and cooling, and the waste water 48 generated by the scrubber 16 is discharged.
  • the waste heat boiler 19 is simultaneously introduced into the demineralized water, and the brine is absorbed to partially preheat the syngas. Thereafter, it is connected to the washing cooler 16 as a washing/cooling water via the circulating water line 17. Part of the preheating of the syngas is recovered by the demineralized water and then enters the cooling unit 22.
  • the cooling unit 22 can be provided with 1 to 3 stages of staged cooling.
  • the waste water generated by the waste heat boiler 19 and the cooling unit 22 during the heat exchange process is sent to the first oil water separator 25 and the second oil water separator 26 through the respective condenser tubes 24, respectively, in the waste heat boiler 19 and the first oil water separator 25.
  • a heat exchanger 20 is also disposed between the condensation tubes.
  • the first oil water separator 25, the second oil water separator 26 and the sewage clarification tank 36 are cascaded through the sewage pipelines 34 and 35 in turn, and part of the sewage is separated by oil and water through the first oil water separator 25, and then sent through the circulating water pipeline 27
  • the impurities 28, 29 produced by separating the impurities such as tar by the first oil water separator 25 and the second oil water separator 26 are partially combustible materials, and the combustible component content can reach 5% wt-40% wt. It is recycled to the circulating fluidized bed combustion boiler 1 or the circulating fluidized bed gasification boiler 2 through the system fuel mixing circuit 50 through the circulation circuits 30, 33, or sent to the deep processing 31, 32 as a by-product.
  • the generated supernatant 38 is returned to the cooling unit 22 through the circulation circuit 38, and partially discharged to the boundary area for sewage treatment 52, and the remaining sediment 37 is sent to the outside of the boundary area for treatment.
  • the outlet temperature is 150 ° C to 250 ° C; after the waste heat boiler 19, the outlet temperature is 120 ° C to 180 ° C; after the cooling unit 22, the outlet temperature is 25 ° C to 45 ° C.
  • the syngas is treated by cooling, dedusting, etc. of the syngas purification unit, and then enters the methanation unit.
  • the methanation unit includes a shift reaction unit 39, a low temperature methanol washing unit 41, and a methanation unit 43 which are sequentially cascaded.
  • the shift reaction unit 39, the low temperature methanol washing unit 41, and the methanation unit 43 are connected to each other through the synthesis gas lines 40, 42.
  • the syngas is finally subjected to a qualified artificial natural gas 45 after a low-temperature methanol washing process and a methanation process.
  • the low temperature methanol washing unit 41 generates dioxide during the low temperature methanol washing process.
  • Carbon 53 can be sent to the circulating fluidized bed gasification boiler 2 as a gasification agent, and can also be used as a product for deep processing. 54.
  • the methanation unit 43 can produce a water vapor 44 by-product in the methanation process to a circulating fluidized bed gasification boiler. 2 as a gasifying agent or for other uses.
  • a solid fuel staged gasification-burning twin-cogeneration system disclosed in this embodiment differs from Embodiment 1 in that the present embodiment is in a circulating flow according to the gasification load and the demand of the coal type.
  • the side gasification agent 2 is provided with a side gasifying agent to the inlets 11c and 11d, and oxygen and water vapor are sent to the side gasifying agent to the inlets 11c and 11d to enhance the gasification intensity and accelerate the decomposition of the tar generated by the gasification process. Increase system gas production rate.
  • the other structure is the same as in the first embodiment.
  • the waste heat boiler 19, the washing cooler 16 and the cooling unit 22 are cascaded in sequence, and the waste heat boiler 19 is synchronously introduced into the demineralized water 55 and the syngas from the secondary cyclone separator 3c, and the demineralized water 55 is combined in the waste heat boiler 19 and synthesized.
  • water vapor is formed, which is sent as a gasifying agent to the gasification air inlets 11a, 11b of the gasifier, and the heat exchanged syngas is sent to the washing cooler 16 and sent by the washing cooler 16
  • the incoming syngas is initially washed and dedusted and cooled to enter the cooling unit 22.
  • the sewage generated by the washing cooler 16 during the heat exchange is connected to the first oil water separator 25 through the condensing pipe 24. Part of the sewage is separated by the first oil water separator 25 and introduced into the washing cooler 16 as a washing/cooling water through the circulating water line 57.
  • the shift reaction unit 39 requires water vapor, and the water vapor 44 by-produced by the methanation unit 43 during the methanation process is sent to the shift reaction unit 39 through the line 58.
  • the other structure is the same as in the first embodiment.
  • the present invention also provides a polygeneration method using the solid fuel gasification-combustion twin-polygeneration system of any one of the above embodiments 1 to 4, characterized in that it comprises the following steps:
  • Step 1) Dividing the fuel into two, one part is sent to the fuel supply port 4a of the combustion furnace, a part is put into the fuel supply port 4b of the gasifier, and the slag generated by the combustion of the fuel in the circulating fluidized bed combustion boiler 1 is discharged from the combustion furnace.
  • the lower slag port 7 is discharged, and the generated flue gas is discharged from the top, and part of the particulate matter entrained in the flue gas is separated by the cyclone separation unit of the combustion furnace, and then is further burned by returning to the circulating fluidized bed combustion boiler 1 through the combustion furnace return leg 10a.
  • the steam generated by the circulating fluidized bed combustion boiler 1 is used for power generation, heating and other purposes, and the circulating fluidized bed combustion boiler 1 uses air as the fluidizing wind and the oxidant;
  • Step 2) The semi-coke produced by the gasification of the circulating fluidized bed gasification boiler 2 is discharged from the semi-coke outlet 49, sent back to the circulating fluidized bed combustion boiler 1 for further combustion and utilization, and the syngas is discharged from the top, and the syngas is entrained.
  • Part of the particulate matter is collected by the cyclone separation unit of the gasifier, and the particulate matter can be further recycled to the circulating fluidized bed gasification boiler 2 by the gasification furnace returning leg 10b and recycled to the circulating fluidized bed combustion boiler 1 for combustion utilization;
  • the circulating fluidized bed gasification boiler 2 can be set as a normal pressure or pressurized system, and the operating pressure is 0 to 8.0 MPa, and the temperature of the synthesis gas outlet is 650 to 1050 °C.
  • Step 3) preliminary cleaning and dedusting of the syngas by the syngas purifying unit, and cooling the syngas by heat exchange using water as a cooling medium, and then sending the syngas to the methanation unit to perform oil water on at least part of the sewage generated during the cooling process. Separating and separating the obtained impurities or sending them to the fuel feed port 4a of the furnace, or to the fuel feed port 4b of the gasifier, or performing deep processing for by-products;
  • the furnace fluidizing air inlets 11a, 11b, the water vapor 44 by-product from the methanation process or sent to the gasification air inlets 11a, 11b of the gasifier, or the water vapor required to supplement the methanation unit itself, or the efflux is used for other purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Industrial Gases (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

一种固体燃料分级气化-燃烧双床多联产系统,包括燃烧系统、气化系统、合成气冷却净化系统和合成气甲烷化系统,燃烧系统通过循环回料系统与气化系统关联。燃烧系统采用循环流化床燃烧方式,气化系统采用流化床不完全气化方法,产生的半焦回燃烧系统再利用,合成气冷却净化系统采用水循环和可燃物再循环利用的方法,在合成气甲烷化系统中副产的CO 2和水蒸汽在固体燃料分级气化-燃烧双床多联产系统中实现循环利用,使系统内能量利用效率实现最大化。

Description

固体燃料分级气化-燃烧双床多联产系统与方法 技术领域
本发明涉及一种固体燃料分级气化-燃料双床多联产系统与方法,属于多联产技术领域。
背景技术
以煤炭资源替代部分油、气资源,是我国经济建设可持续发展的必由之路。我国能源结构的特点决定了寻求油、气的替代能源是我国经济发展与能源战略安全的长远战略。现代煤化工技术发展以洁净煤利用为前提,正在以煤为原料朝着多元化利用为目标方向发展。
煤基多联产技术,按照现有技术应用情况可分为两类,一类是以气化技术为龙头技术,产品以合成气为主,可副产部分中低压蒸汽,该系统可实现合成气用于燃气轮机发电、蒸汽轮机发电、合成气转化成化工原料合成化学品,以及实现区域供暖等功能的多联产系统,从技术分类的角度可划分为气流床煤气化技术、固定床煤气化技术和流化床煤气化技术为核心的煤基多联产技术,如中国山东兖矿集团建设的我国首座60MW级IGCC发电和24万吨甲醇/年示范工程即以华东理工大学等开发的气流床煤气化技术为基础。另外一种技术是基于燃烧发电的煤基多联产技术,联合热解炉实现发电、合成气、煤焦油等为主要产品的多联产系统,如中国专利CN200910153522和CN 201210064139等,具有代表性的技术为浙江大学等开发的煤基发电-热解多联产技术,该技术在国内已建成了300MW等级燃煤循环流化床复合热解多联产装置,并投入试运行。以循环流化床锅炉为基础集成化工反应系统实现的多联产技术相对投资低、技术可靠,但必须充分发挥热电和化工两个不同专业方向各自的技术优势,将其最佳融合和集成,才能实现多联产系统的高效、稳定和经济运行。目前已投运的循环流化床-热解多联产技术存在热解后焦油难分离,导致管道、阀门系统堵塞和腐蚀等问题,热解系统过分依赖锅炉系统提供的热量,负荷受限,使系统可靠性和稳定性收严重影响。
发明内容
本发明的目的是提供一种易于执行大型化放大、运行稳定可靠的多联产系统,同时兼顾发电、供暖和煤化工生产的多联产技术。
为了解决上述技术问题,本发明的一个技术方案是提供了一种固体燃料分级气化-燃烧双床多联产系统,其特征在于:包括循环流化床燃烧锅炉、循环流化床气化锅炉、合成气净化单元及甲烷化单元:
在循环流化床燃烧锅炉底部设有燃烧炉下渣口及燃烧炉流化风入口,流化风进入燃烧炉流化风入口后经由燃烧炉布风单元与循环流化床燃烧锅炉相通,燃料中的一部分通过燃烧炉燃料给料口进入循环流化床燃烧锅炉内,燃烧产生的烟气经由烟风道进入至少一级燃烧炉旋风分离单元,分离后的烟气直接排出,分离下来的灰渣颗粒通过燃烧炉回料腿送回循环流化床燃烧锅炉内,燃烧过程中产生的热量被用于产生燃烧炉水蒸汽,燃烧炉水蒸汽用于外供及向循环流化床气化锅炉供应;
在循环流化床气化锅炉底部设有半焦出口及气化炉流化风入口,气化所需的气化剂被送入进入气化炉流化风入口后经由气化炉布风单元与循环流化床气化锅炉相通,气化剂中的水蒸汽来自燃烧炉水蒸汽和/或甲烷化单元产生的水蒸汽,二氧化碳来自甲烷化单元产生的二氧化碳,燃料中的另一部分通过气化炉燃料给料口进入循环流化床气化锅炉内,气化产生的半焦自半焦出口排出后送入燃烧炉燃料给料口,合成气则自循环流化床气化锅炉顶部的合成气出口进入至少一级气化炉旋风分离单元,分离后的合成气被送入合成气净化单元,分离下来的灰渣颗粒则通过气化炉回料腿送回循环流化床气化锅炉内和/或送至燃烧炉燃料给料口;
合成气净化单元,对合成气进行初步洗涤除尘,并利用水为冷却介质采用热交换方式对合成气进行冷却后送至甲烷化单元,对冷却过程中产生的至少部分污水进行油水分离,分离得到的杂质或送至燃烧炉燃料给料口,或送至气化炉燃料给料口,或为副产品进行深加工;
甲烷化单元,利用低温甲醇洗过程及甲烷化过程将送入的合成气制成为合成天然气,将低温甲醇洗过程产生的二氧化碳送至气化炉流化风入口,甲烷化过程副产的水蒸汽或送至气化炉流化风入口,或补充甲烷化单元自身所需水蒸汽,或外排作为其他用途。
优选地,所述气化炉旋风分离单元采用由一级旋风分离器及二级旋风分离器组成的二级旋风分离结构,一级旋风分离器分离下来的灰渣颗粒通过所述气化炉回料腿送回所述循环流化床气化锅炉内,二级旋风分离器分离下来的灰渣颗粒送至所述燃烧炉燃料给料口。
优选地,在所述循环流化床气化锅炉上还设有侧气化剂给入口,侧气化剂给入口位于所述气化炉流化风入口的上方,氧气及水蒸汽被送入该侧气化剂给入口。
优选地,所述合成气净化单元对所述合成气进行冷却过程中产生的水蒸汽被引入所述气化炉流化风入口。
优选地,所述合成气净化单元包括洗涤冷却器、废热锅炉、冷却单元、第一油水分离器、第二油水分离器及污水澄清罐,合成气出所述气化炉旋风分离单元后或被送入洗涤冷却器,或被送入废热锅炉;
当合成气被送入洗涤冷却器时,洗涤冷却器、废热锅炉及冷却单元依次级联,由洗涤冷却器对送入的合成气初步洗涤除尘和降温后进入废热锅炉,废热锅炉还同步通入除盐水,除盐水在废热锅炉内与合成气换热后作为洗涤/冷却水被引入洗涤冷却器中,换热后的合成气再进入冷却单元,冷却单元还同步接入自污水澄清罐送出的作为冷却介质的上清液,合成气出冷却单元后被送入所述甲烷化单元;废热锅炉及冷却单元在换热过程中产生的污水分别通过各自的管路与第一油水分离器及第二油水分离器相连,第一油水分离器、第二油水分离器及污水澄清罐依次级联,部分污水经过第一油水分离器分离后作为洗涤/冷却水被引入洗涤冷却器中,第一油水分离器及第二油水分离器分离得到的杂质或送至燃烧炉燃料给料口,或送至气化炉燃料给料口,或为副产品进行深加工,部分污水经过第一油水分离器及第二油水分离器后被污水澄清罐收集,污水澄清罐初步处理后的上清液送至冷却单元,得到的沉积物送界区外处理,剩余送至界区外进行污水处理;
当合成气被送入废热锅炉时,废热锅炉、洗涤冷却器及冷却单元依次级联,废热锅炉同步通入除盐水及来自所述气化炉旋风分离单元的合成气,除盐水在废热锅炉内与合成气换热后形成水蒸汽,该水蒸汽作为气化剂被送入所述气化炉流化风入口,换热后的合成气送入洗涤冷却器内,由洗涤冷却器对送入的合成气初步洗涤除尘和降温后进入冷却单元,冷却单元还同步接入自污水澄清罐送出的作 为冷却介质的上清液,合成气出冷却单元后被送入所述甲烷化单元;洗涤冷却器及冷却单元在换热过程中产生的污水分别通过各自的管路与第一油水分离器及第二油水分离器相连,第一油水分离器、第二油水分离器及污水澄清罐依次级联,部分污水经过第一油水分离器分离后作为洗涤/冷却水被引入洗涤冷却器中,第一油水分离器及第二油水分离器分离得到的杂质或送至燃烧炉燃料给料口,或送至气化炉燃料给料口,或为副产品进行深加工,部分污水经过第一油水分离器及第二油水分离器后被污水澄清罐收集,污水澄清罐初步处理后的上清液送至冷却单元,得到的沉积物送界区外处理,剩余送至界区外进行污水处理。
优选地,当合成气被送入洗涤冷却器时,所述废热锅炉经由换热器与所述第一油水分离器相连。
优选地,当合成气被送入洗涤冷却器时,合成气经所述洗涤冷却器后出口温度为150℃~250℃;经所述废热锅炉后出口温度为120℃~180℃;经所述冷却单元后出口温度为25℃~45℃。
优选地,所述甲烷化单元包括依次级联的变换反应单元、低温甲醇洗单元及甲烷化单元,合成气依次经过变换反应单元、低温甲醇洗单元及甲烷化单元后形成合成天然气,低温甲醇洗单元产生的二氧化碳送至所述气化炉流化风入口,甲烷化单元副产的水蒸汽或送至所述气化炉流化风入口,或补充所述变换反应单元自身所需水蒸汽,或外排作为其他用途。
本发明的另一个技术方案是提供了一种使用上述的固体燃料分级气化-燃料双床多联产系统的多联产方法,其特征在于,包括以下步骤:
步骤1):将燃料一分为二,一部分送入燃烧炉燃料给料口,一部分投入气化炉燃料给料口,燃料在循环流化床燃烧锅炉内燃烧产生的渣从燃烧炉下渣口排出,产生的烟气从顶部排出,烟气中夹带的部分颗粒物通过燃烧炉旋风分离单元分离后通过燃烧炉回料腿回循环流化床燃烧锅炉进一步燃烧,循环流化床燃烧锅炉产生的水蒸汽用于发电、供暖和其他用途,循环流化床燃烧锅炉采用空气作为流化风和氧化剂;
步骤2):循环流化床气化锅炉气化产生的半焦从半焦出口排出,被送回循环流化床燃烧锅炉进一步燃烧利用,合成气则从顶部排出,合成气中夹带有部分颗粒物,通过气化炉旋风分离单元后收集颗粒物,颗粒物可通过气化炉回料腿回 循环流化床气化锅炉进一步气化利用或返回循环流化床燃烧锅炉燃烧利用;
步骤3):由合成气净化单元对合成气进行初步洗涤除尘,并利用水为冷却介质采用热交换方式对合成气进行冷却后送至甲烷化单元,对冷却过程中产生的至少部分污水进行油水分离,分离得到的杂质或送至燃烧炉燃料给料口,或送至气化炉燃料给料口,或为副产品进行深加工;
步骤4):由甲烷化单元利用低温甲醇洗过程及甲烷化过程将送入的合成气制成为合成天然气,将低温甲醇洗过程产生的二氧化碳送至气化炉流化风入口,甲烷化过程副产的水蒸汽或送至气化炉流化风入口,或补充甲烷化单元自身所需水蒸汽,或外排作为其他用途。
优选地,步骤2)中所述循环流化床气化锅炉的操作压力为0~8.0MPa,合成气出口的温度达到650℃~1050℃。
本发明运行稳定可靠、易于大型化放大、环保节能,相比现有技术,本发明还具有如下有益效果:
第一、采用双流化床组合实现燃烧、气化的有机结合,可对煤炭等固体燃料实现分级利用,同时副产电、热、气和油灯多种环保产品,属于多元化利用的清洁燃煤技术;
第二、利用气化炉还原性气氛下很难实现燃料完全燃烧的特性,解放气化效率的束缚,将未气化完全的残炭回炉至流化床燃烧炉燃烧,可使系统燃料实现彻底的利用,碳转化率远远高于本技术领域其他气化技术;
第三、将气化与电站锅炉、化工合成相结合,利用电站锅炉产汽、甲烷化过程产汽,以及低温甲醇洗过程产CO2的特性,将水蒸汽与CO2混合氧气作为气化炉的气化剂回炉,大大提高了副产物的利用效率;
第四、流化床气化过程相比于热解过程问题提高,焦油产量大大降低,少量合成气夹带的焦油经初步分离可作为流化床伴烧燃料回炉燃烧,也可作为焦油原料出售,解决了热解过程大量焦油给合成气处理系统带来的沉重负担,系统黑水采用内部循环,水资源利用效率高。
本发明适合于富煤缺水的西部地区发展煤基热电气多联产,并具有大规模放大和推广应用前景。
附图说明
图1为一种气化炉侧面不设置气化剂给入口的固体燃料分级气化-燃料双床多联产系统示意图;
图2为一种气化炉侧面设置气化剂给入口的固体燃料分级气化-燃料双床多联产系统示意图;
图3为一种余热回收式固体燃料分级气化-燃料双床多联产系统示意图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
如图1所示,本实施例公开的一种固体燃料分级气化-燃烧双床多联产系统,包括循环流化床燃烧锅炉1、循环流化床气化锅炉2、合成气净化单元及甲烷化单元。
燃料(在本实施例中,燃料为煤、煤矸石、石油焦、生物质等含碳固体燃料的一种或其混合物)主要被分为两部分给入,从燃烧炉燃料给料口4a和气化炉燃料给料口4b分别给入循环流化床燃烧锅炉1和循环流化床气化锅炉2。循环流化床燃烧锅炉1燃烧燃料所需的氧化剂从燃烧炉流化风入口5进入燃烧炉布风单元6a后进入循环流化床燃烧锅炉1。燃料燃烧过程产生的灰渣从燃烧炉下渣口7排出,燃烧产生的烟气则从烟风道8进入旋风分离器3a后从其顶部9排出,被分离下来的灰渣颗粒则通过燃烧炉回料腿10a回入循环流化床燃烧锅炉1中,燃烧过程产生的热量被用于产生燃烧炉水蒸汽46a,燃烧炉水蒸汽46a可用于供暖46b、发电47和经由管路46c输往循环流化床气化锅炉2。
循环流化床气化锅炉2的气化所需的气化剂来自经由管路46c送来的燃烧炉水蒸汽46a和来自甲烷化单元的水蒸汽44,氧气则来自界区外51,二氧化碳53来自甲烷化单元。气化剂经气化炉流化风入口11a、11b及气化炉布风单元6b进入循环流化床气化锅炉2,气化产生的半焦从半焦出口49排出,合成气从合成气出口13经过一级旋风分离器3b和二级旋风分离器3c分离后进入合成气冷却净化单元,一级旋风分离器3b和二级旋风分离器3c之间连接有合成气导流管14,二级旋风分离器3c与合成气冷却净化单元之间则连接有合成气管路15。一 级旋风分离器3b分离下来的灰渣颗粒通过气化炉回料腿10b送回循环流化床气化锅炉2内,二级旋风分离器3c分离下来的灰渣颗粒经由集渣斗12收集后送至燃烧炉燃料给料口4a或气化炉燃料给料口4b。
合成气净化单元包括洗涤冷却器16、废热锅炉19、冷却单元22、第一油水分离器25、第二油水分离器26及污水澄清罐36。在本实施例中,洗涤冷却器16、废热锅炉19及冷却单元22通过合成气管路18、21依次级联,冷却单元22通过合成气管路23连接甲烷化单元。
合成气首先进入洗涤冷却器16,经过初步洗涤除尘和降温后进入废热锅炉19,洗涤冷却器16产生的废水48则排出,废热锅炉19同步通入除盐水,除盐水吸收合成气的部分预热后经由循环水管路17作为洗涤/冷却水接至洗涤冷却器16。合成气的部分预热被除盐水回收后进入冷却单元22。冷却单元22可设置1~3级分级冷却。废热锅炉19及冷却单元22在换热过程中产生的污水则分别通过各自冷凝管24被送至第一油水分离器25、第二油水分离器26,在废热锅炉19与第一油水分离器25之间的冷凝管上还设置了一个换热器20。第一油水分离器25、第二油水分离器26及污水澄清罐36则依次通过污水管路34、35级联,部分污水经由第一油水分离器25进行油水分离后,通过循环水管路27送至洗涤冷却器16,由第一油水分离器25及第二油水分离器26分离焦油等杂质后产生的杂质28、29为部分可燃物质,其可燃组分含量可达到5%wt-40%wt,其通过循环回路30、33经系统燃料混合回路50回循环流化床燃烧锅炉1或循环流化床气化锅炉2再利用,或作为副产品送深加工31、32。污水澄清罐36收集的污水经过初步处理后,产生的上清液38通过循环回路38回冷却单元22,部分到界区外进行污水处理52,剩余沉积物37送界区外处理。合成气经洗涤冷却器16后出口温度为150℃~250℃;经废热锅炉19后出口温度为120℃~180℃;经冷却单元22后出口温度为25℃~45℃。
合成气经合成气净化单元的降温除尘等处理后进入甲烷化单元。在本实施例中,甲烷化单元包括依次级联的变换反应单元39、低温甲醇洗单元41及甲烷化单元43。变换反应单元39、低温甲醇洗单元41及甲烷化单元43之间分别通过合成气管路40、42相连。合成气经过低温甲醇洗过程及甲烷化过程后最终得到合格的人造天然气45。其中低温甲醇洗单元41在低温甲醇洗过程中产生二氧化 碳53可送循环流化床气化锅炉2作为气化剂,也可作为产品用于深加工54,甲烷化单元43在甲烷化过程中副产的水蒸汽44可送循环流化床气化锅炉2作为气化剂或作为其他用途。
实施例2
如图2所示,本实施例公开的一种固体燃料分级气化-燃烧双床多联产系统与实施例1的区别在于,本实施例根据气化负荷和煤种的需求,在循环流化床气化锅炉2侧面设置侧气化剂给入口11c、11d,氧气及水蒸汽被送入该侧气化剂给入口11c、11d,增强气化强度,加速气化过程产生的焦油分解,提高系统产气率。
其他结构同实施例1。
实施例3
如图3所示,本实施例与实施例1的区别在于:
第一、废热锅炉19、洗涤冷却器16及冷却单元22依次级联,废热锅炉19同步通入除盐水55及来自二级旋风分离器3c的合成气,除盐水55在废热锅炉19内与合成气换热后形成水蒸汽,该水蒸汽作为气化剂被送入气化炉流化风入口11a、11b,换热后的合成气送入洗涤冷却器16内,由洗涤冷却器16对送入的合成气初步洗涤除尘和降温后进入冷却单元22。洗涤冷却器16在换热过程中产生的污水通过冷凝管24与第一油水分离器25相连。部分污水经过第一油水分离器25分离后作为洗涤/冷却水经过循环水管路57被引入洗涤冷却器16中。
第二、在甲烷化单元中,变换反应单元39需要水蒸汽,由甲烷化单元43在甲烷化过程中副产的水蒸汽44通过管路58送入变换反应单元39。
其他结构同实施例1。
本发明还提供一种采用上述实施例1至4中任意一种固体燃料分级气化-燃烧双床多联产系统的多联产方法,其特征在于,包括以下步骤:
步骤1):将燃料一分为二,一部分送入燃烧炉燃料给料口4a,一部分投入气化炉燃料给料口4b,燃料在循环流化床燃烧锅炉1内燃烧产生的渣从燃烧炉下渣口7排出,产生的烟气从顶部排出,烟气中夹带的部分颗粒物通过燃烧炉旋风分离单元分离后通过燃烧炉回料腿10a回循环流化床燃烧锅炉1进一步燃烧, 循环流化床燃烧锅炉1产生的水蒸汽用于发电、供暖和其他用途,循环流化床燃烧锅炉1采用空气作为流化风和氧化剂;
步骤2):循环流化床气化锅炉2气化产生的半焦从半焦出口49排出,被送回循环流化床燃烧锅炉1进一步燃烧利用,合成气则从顶部排出,合成气中夹带有部分颗粒物,通过气化炉旋风分离单元后收集颗粒物,颗粒物可通过气化炉回料腿10b回循环流化床气化锅炉2进一步气化利用或返回循环流化床燃烧锅炉1燃烧利用;循环流化床气化锅炉2可设为常压或者加压系统,其操作压力为0~8.0MPa,合成气出口的温度达到650℃~1050℃。
步骤3):由合成气净化单元对合成气进行初步洗涤除尘,并利用水为冷却介质采用热交换方式对合成气进行冷却后送至甲烷化单元,对冷却过程中产生的至少部分污水进行油水分离,分离得到的杂质或送至燃烧炉燃料给料口4a,或送至气化炉燃料给料口4b,或为副产品进行深加工;
步骤4):由甲烷化单元利用低温甲醇洗过程及甲烷化过程将送入的合成气制成为合成天然气,天然气中CH4含量达到96%以上,将低温甲醇洗过程产生的二氧化碳送至气化炉流化风入口11a、11b,甲烷化过程副产的水蒸汽44或送至气化炉流化风入口11a、11b,或补充甲烷化单元自身所需水蒸汽,或外排作为其他用途。

Claims (10)

  1. 一种固体燃料分级气化-燃烧双床多联产系统,其特征在于:包括循环流化床燃烧锅炉(1)、循环流化床气化锅炉(2)、合成气净化单元及甲烷化单元:
    在循环流化床燃烧锅炉(1)底部设有燃烧炉下渣口(7)及燃烧炉流化风入口(5),流化风进入燃烧炉流化风入口(5)后经由燃烧炉布风单元(6a)与循环流化床燃烧锅炉(1)相通,燃料中的一部分通过燃烧炉燃料给料口(4a)进入循环流化床燃烧锅炉(1)内,燃烧产生的烟气经由烟风道(8)进入至少一级燃烧炉旋风分离单元,分离后的烟气直接排出,分离下来的灰渣颗粒通过燃烧炉回料腿(10a)送回循环流化床燃烧锅炉(1)内,燃烧过程中产生的热量被用于产生燃烧炉水蒸汽(46a),燃烧炉水蒸汽(46a)用于外供及向循环流化床气化锅炉(2)供应;
    在循环流化床气化锅炉(2)底部设有半焦出口(49)及气化炉流化风入口(11a、11b),气化所需的气化剂被送入进入气化炉流化风入口(11a、11b)后经由气化炉布风单元(6b)与循环流化床气化锅炉(2)相通,气化剂中的水蒸汽自燃烧炉水蒸汽(46a)和/或甲烷化单元产生的水蒸汽(44),二氧化碳来自甲烷化单元产生的二氧化碳(53),燃料中的另一部分通过气化炉燃料给料口(4b)进入循环流化床气化锅炉(2)内,气化产生的半焦自半焦出口(49)排出后送入燃烧炉燃料给料口(4a),合成气则自循环流化床气化锅炉(2)顶部的合成气出口(13)进入至少一级气化炉旋风分离单元,分离后的合成气被送入合成气净化单元,分离下来的灰渣颗粒则通过气化炉回料腿(10b)送回循环流化床气化锅炉(2)内和/或送至燃烧炉燃料给料口(4a);
    合成气净化单元,对合成气进行初步洗涤除尘,并利用水为冷却介质采用热交换方式对合成气进行冷却后送至甲烷化单元,对冷却过程中产生的至少部分污水进行油水分离,分离得到的杂质或送至燃烧炉燃料给料口(4a),或送至气化炉燃料给料口(4b),或为副产品进行深加工;
    甲烷化单元,利用低温甲醇洗过程及甲烷化过程将送入的合成气制成为合成天然气,将低温甲醇洗过程产生的二氧化碳送至气化炉流化风入口(11a、11b),甲烷化过程副产的水蒸汽(44)或送至气化炉流化风入口(11a、11b),或补充甲烷化单元自身所需水蒸汽,或外排作为其他用途。
  2. 如权利要求1所述的一种固体燃料分级气化-燃烧双床多联产系统,其特征在于:所述气化炉旋风分离单元采用由一级旋风分离器(3b)及二级旋风分离器(3c)组成的二级旋风分离结构,一级旋风分离器(3b)分离下来的灰渣颗粒通过所述气化炉回料腿(10b)送回所述循环流化床气化锅炉(2)内,二级旋风分离器(3c)分离下来的灰渣颗粒送至所述燃烧炉燃料给料口(4a)。
  3. 如权利要求1所述的一种固体燃料分级气化-燃烧双床多联产系统,其特征在于:在所述循环流化床气化锅炉(2)上还设有侧气化剂给入口(11c、11d),侧气化剂给入口(11c、11d)位于所述气化炉流化风入口(11a、11b)的上方,氧气及水蒸汽被送入该侧气化剂给入口(11c、11d)。
  4. 如权利要求1所述的一种固体燃料分级气化-燃烧双床多联产系统,其特征在于:所述合成气净化单元对所述合成气进行冷却过程中产生的水蒸汽被引入所述气化炉流化风入口(11a、11b)。
  5. 如权利要求1所述的一种固体燃料分级气化-燃烧双床多联产系统,其特征在于:所述合成气净化单元包括洗涤冷却器(16)、废热锅炉(19)、冷却单元(22)、第一油水分离器(25)、第二油水分离器(26)及污水澄清罐(36),合成气出所述气化炉旋风分离单元后或被送入洗涤冷却器(16),或被送入废热锅炉(19);
    当合成气被送入洗涤冷却器(16)时,洗涤冷却器(16)、废热锅炉(19)及冷却单元(22)依次级联,由洗涤冷却器(16)对送入的合成气初步洗涤除尘和降温后进入废热锅炉(19),废热锅炉(19)还同步通入除盐水(55),除盐水(55)在废热锅炉(19)内与合成气换热后作为洗涤/冷却水被引入洗涤冷却器(16)中,换热后的合成气再进入冷却单元(22),冷却单元(22)还同步接入自污水澄清罐(36)送出的作为冷却介质的上清液(38),合成气出冷却单元(22)后被送入所述甲烷化单元;废热锅炉(19)及冷却单元(22)在换热过程中产生的污水分别通过各自的管路与第一油水分离器(25)及第二油水分离器(26)相连,第一油水分离器(25)、第二油水分离器(26)及污水澄清罐(36)依次级联,部分污水经过第一油水分离器(25)分离后作为洗涤/冷却水被引入洗涤冷却器(16)中,第一油水分离器(25)及第二油水分离器(26)分离得到的杂质或送至燃烧炉燃料给料口(4a),或送至气化炉燃料给料口(4b),或为副产品进行深加工,部分污水经过第一油水分离器(25)及第二油水分离器(26)后被污 水澄清罐(36)收集,污水澄清罐(36)初步处理后的上清液(38)送至冷却单元(22),得到的沉积物(37)送界区外处理,剩余送至界区外进行污水处理(52);
    当合成气被送入废热锅炉(19)时,废热锅炉(19)、洗涤冷却器(16)及冷却单元(22)依次级联,废热锅炉(19)同步通入除盐水(55)及来自所述气化炉旋风分离单元的合成气,除盐水(55)在废热锅炉(19)内与合成气换热后形成水蒸汽,该水蒸汽作为气化剂被送入所述气化炉流化风入口(11a、11b),换热后的合成气送入洗涤冷却器(16)内,由洗涤冷却器(16)对送入的合成气初步洗涤除尘和降温后进入冷却单元(22),冷却单元(22)还同步接入自污水澄清罐(36)送出的作为冷却介质的上清液(38),合成气出冷却单元(22)后被送入所述甲烷化单元;洗涤冷却器(16)及冷却单元(22)在换热过程中产生的污水分别通过各自的管路与第一油水分离器(25)及第二油水分离器(26)相连,第一油水分离器(25)、第二油水分离器(26)及污水澄清罐(36)依次级联,部分污水经过第一油水分离器(25)分离后作为洗涤/冷却水被引入洗涤冷却器(16)中,第一油水分离器(25)及第二油水分离器(26)分离得到的杂质或送至燃烧炉燃料给料口(4a),或送至气化炉燃料给料口(4b),或为副产品进行深加工,部分污水经过第一油水分离器(25)及第二油水分离器(26)后被污水澄清罐(36)收集,污水澄清罐(36)初步处理后的上清液(38)送至冷却单元(22),得到的沉积物(37)送界区外处理,剩余送至界区外进行污水处理(52)。
  6. 如权利要求5所述的一种固体燃料分级气化-燃烧双床多联产系统,其特征在于:当合成气被送入洗涤冷却器(16)时,所述废热锅炉(19)经由换热器(20)与所述第一油水分离器(25)相连。
  7. 如权利要求5所述的一种固体燃料分级气化-燃烧双床多联产系统,其特征在于:当合成气被送入洗涤冷却器(16)时,合成气经所述洗涤冷却器(16)后出口温度为150℃~250℃;经所述废热锅炉(19)后出口温度为120℃~180℃;经所述冷却单元(22)后出口温度为25℃~45℃。
  8. 如权利要求1所述的一种固体燃料分级气化-燃烧双床多联产系统,其特征在于:所述甲烷化单元包括依次级联的变换反应单元(39)、低温甲醇洗单元(41)及甲烷化单元(43),合成气依次经过变换反应单元(39)、低温甲醇洗单元(41)及甲烷化单元(43)后形成合成天然气,低温甲醇洗单元(41)产生的二氧化碳 送至所述气化炉流化风入口(11a、11b),甲烷化单元(43)副产的水蒸汽(44)或送至所述气化炉流化风入口(11a、11b),或补充所述变换反应单元(39)自身所需水蒸汽,或外排作为其他用途。
  9. 一种使用如权利要求1所述的固体燃料分级气化-燃料双床多联产系统的多联产方法,其特征在于,包括以下步骤:
    步骤1):将燃料一分为二,一部分送入燃烧炉燃料给料口(4a),一部分投入气化炉燃料给料口(4b),燃料在循环流化床燃烧锅炉(1)内燃烧产生的渣从燃烧炉下渣口(7)排出,产生的烟气从顶部排出,烟气中夹带的部分颗粒物通过燃烧炉旋风分离单元分离后通过燃烧炉回料腿(10a)回循环流化床燃烧锅炉(1)进一步燃烧,循环流化床燃烧锅炉(1)产生的水蒸汽用于发电、供暖和其他用途,循环流化床燃烧锅炉(1)采用空气作为流化风和氧化剂;
    步骤2):循环流化床气化锅炉(2)气化产生的半焦从半焦出口(49)排出,被送回循环流化床燃烧锅炉(1)进一步燃烧利用,合成气则从顶部排出,合成气中夹带有部分颗粒物,通过气化炉旋风分离单元后收集颗粒物,颗粒物可通过气化炉回料腿(10b)回循环流化床气化锅炉(2)进一步气化利用或返回循环流化床燃烧锅炉(1)燃烧利用;
    步骤3):由合成气净化单元对合成气进行初步洗涤除尘,并利用水为冷却介质采用热交换方式对合成气进行冷却后送至甲烷化单元,对冷却过程中产生的至少部分污水进行油水分离,分离得到的杂质或送至燃烧炉燃料给料口(4a),或送至气化炉燃料给料口(4b),或为副产品进行深加工;
    步骤4):由甲烷化单元利用低温甲醇洗过程及甲烷化过程将送入的合成气制成为合成天然气,将低温甲醇洗过程产生的二氧化碳送至气化炉流化风入口(11a、11b),甲烷化过程副产的水蒸汽(44)或送至气化炉流化风入口(11a、11b),或补充甲烷化单元自身所需水蒸汽,或外排作为其他用途。
  10. 如权利要求9所述的固体燃料分级气化-燃料双床多联产系统多联产方法,其特征在于,步骤2)中所述循环流化床气化锅炉(2)的操作压力为0~8.0MPa,合成气出口的温度达到650℃~1050℃。
PCT/CN2015/072219 2014-03-28 2015-02-04 固体燃料分级气化-燃烧双床多联产系统与方法 WO2015143955A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157032333A KR101711181B1 (ko) 2014-03-28 2015-02-04 고체 연료 분급 가스화-연소 이중층 병산 시스템과 방법
US14/900,985 US10208948B2 (en) 2014-03-28 2015-02-04 Solid fuel grade gasification-combustion dual bed poly-generation system and method thereof
AU2015237094A AU2015237094B2 (en) 2014-03-28 2015-02-04 Solid fuel staged gasification-combustion dual-bed polygeneration system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410120861.3A CN103897743B (zh) 2014-03-28 2014-03-28 固体燃料分级气化-燃烧双床多联产系统与方法
CN201410120861.3 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015143955A1 true WO2015143955A1 (zh) 2015-10-01

Family

ID=50989326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072219 WO2015143955A1 (zh) 2014-03-28 2015-02-04 固体燃料分级气化-燃烧双床多联产系统与方法

Country Status (5)

Country Link
US (1) US10208948B2 (zh)
KR (1) KR101711181B1 (zh)
CN (1) CN103897743B (zh)
AU (1) AU2015237094B2 (zh)
WO (1) WO2015143955A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107118809A (zh) * 2017-06-27 2017-09-01 安徽科达洁能股份有限公司 一种气流床与循环流化床组合循环气化系统及其两段式气化方法
CN108753370A (zh) * 2018-08-22 2018-11-06 安徽科达洁能股份有限公司 一种耦合式煤气化系统及方法
CN114923169A (zh) * 2022-06-02 2022-08-19 哈尔滨工业大学 一种采用多场耦合强化宽筛分粒径固废燃尽的装置
CN115287099A (zh) * 2022-07-03 2022-11-04 中国船舶重工集团公司第七0三研究所 一种车载式小型具有生物质气化装置及蒸汽发生器的系统
CN115449404A (zh) * 2022-09-09 2022-12-09 中国科学院青岛生物能源与过程研究所 一种固体燃料分级热解气化系统及其方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897743B (zh) * 2014-03-28 2016-02-03 上海锅炉厂有限公司 固体燃料分级气化-燃烧双床多联产系统与方法
CN104449872B (zh) * 2014-12-11 2016-08-10 余传林 一种细粒子生物质或固体化石燃料的气化工艺系统
CN104787761B (zh) * 2015-04-16 2017-08-15 山东大学 一种粉末活性焦快速制备装置和方法
CN105462617A (zh) * 2015-12-01 2016-04-06 大唐国际化工技术研究院有限公司 制备移动床气化炉所需过热蒸汽的设备和方法
CN107841346A (zh) * 2017-11-01 2018-03-27 浙江大学 煤炭空气部分气化热电燃气多联产装置及方法
CN110129100B (zh) * 2019-05-28 2023-12-22 彭万旺 高效燃烧系统及方法
CN112413573B (zh) * 2019-08-21 2022-12-27 中国科学院工程热物理研究所 一种循环流化床富氧燃烧系统及富氧燃烧方法
CN110591761A (zh) * 2019-09-12 2019-12-20 浙江大学 一种煤炭流化床部分气化联产装置及工艺
CN110715303A (zh) * 2019-11-05 2020-01-21 西安热工研究院有限公司 一种城市生活垃圾热解气化发电系统及方法
CN114763765B (zh) * 2021-01-11 2023-02-28 中国石油天然气集团有限公司 燃气处理系统
CN113958954B (zh) * 2021-11-16 2024-04-16 沈阳航空航天大学 一种多源有机固废分级燃烧/气化多功能实验炉
CN114543553B (zh) * 2022-03-24 2023-06-30 重庆科技学院 一种间歇式的循环流化床锅炉底渣余热回收耦合co2固定装置
CN117053185B (zh) * 2023-06-21 2024-04-09 西安交通大学 一种循环流化床锅炉压火调峰的改造系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754945A (zh) * 2004-09-30 2006-04-05 中国科学院工程热物理研究所 双循环流化床煤气-蒸汽联产方法及装置
CN101735008A (zh) * 2009-12-07 2010-06-16 中国科学院山西煤炭化学研究所 一种煤制合成气联产低碳醇和天然气的技术
CN101768488A (zh) * 2009-12-07 2010-07-07 赛鼎工程有限公司 一种碎煤熔渣气化生产煤制天然气的工艺
DE102012200221A1 (de) * 2012-01-10 2013-07-11 Highterm Research Gmbh Verfahren zur Erzeugung eines methanreichen Gases
CN103897743A (zh) * 2014-03-28 2014-07-02 上海锅炉厂有限公司 固体燃料分级气化-燃烧双床多联产系统与方法
CN204058390U (zh) * 2014-03-28 2014-12-31 上海锅炉厂有限公司 固体燃料分级气化-燃烧双床多联产系统

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1458983A (en) * 1921-09-19 1923-06-19 William K Kirby Process and apparatus for treating oil shales
US2579398A (en) * 1945-08-08 1951-12-18 Standard Oil Dev Co Method for handling fuels
US2680065A (en) * 1948-05-26 1954-06-01 Texas Co Gasification of carbonaceous solids
US3030297A (en) * 1958-03-11 1962-04-17 Fossil Fuels Inc Hydrogenation of coal
US2945075A (en) * 1958-05-19 1960-07-12 Phillips Petroleum Co Preparation of reactor effluent for recovery of acetylene and the like therefrom
US2987386A (en) * 1958-05-29 1961-06-06 Texaco Inc Production of carbon monoxide and hydrogen
US2992906A (en) * 1958-05-29 1961-07-18 Texaco Inc Carbon recovery method
US3017259A (en) * 1958-06-24 1962-01-16 Texaco Inc Calcium carbide process
US3232727A (en) * 1961-12-13 1966-02-01 Texaco Inc Synthesis gas generation
US3565784A (en) * 1968-12-26 1971-02-23 Texaco Inc Hydrotorting of shale to produce shale oil
US3615297A (en) * 1970-06-12 1971-10-26 Texaco Inc Carbon recovery process
US3717700A (en) * 1970-08-25 1973-02-20 Us Interior Process and apparatus for burning sulfur-containing fuels
US3985519A (en) * 1972-03-28 1976-10-12 Exxon Research And Engineering Company Hydrogasification process
US3970524A (en) * 1972-05-12 1976-07-20 Funk Harald F Treating waste materials to produce usable gases
US3960702A (en) * 1974-08-08 1976-06-01 Marathon Oil Company Vapor phase water process for retorting oil shale
US4032305A (en) * 1974-10-07 1977-06-28 Squires Arthur M Treating carbonaceous matter with hot steam
US3971639A (en) * 1974-12-23 1976-07-27 Gulf Oil Corporation Fluid bed coal gasification
US4057402A (en) * 1976-06-28 1977-11-08 Institute Of Gas Technology Coal pretreatment and gasification process
JPS5829998B2 (ja) * 1979-07-11 1983-06-25 国井 大藏 可燃物質の単一流動層における熱分解ガス化方法
US4936047A (en) * 1980-11-12 1990-06-26 Battelle Development Corporation Method of capturing sulfur in coal during combustion and gasification
US5068010A (en) * 1986-12-22 1991-11-26 Petroleo Brasileiro S.A. - Petrobras Apparatus for securing oil, gas and by-products from pyrobituminous shale and other matter impregnated with hydrocarbons
US5134944A (en) * 1991-02-28 1992-08-04 Keller Leonard J Processes and means for waste resources utilization
CN1029689C (zh) * 1992-01-23 1995-09-06 浙江大学 循环流化床燃气蒸汽联产工艺及装置
US5284550A (en) * 1992-06-18 1994-02-08 Combustion Engineering, Inc. Black liquier gasification process operating at low pressures using a circulating fluidized bed
US5937652A (en) * 1992-11-16 1999-08-17 Abdelmalek; Fawzy T. Process for coal or biomass fuel gasification by carbon dioxide extracted from a boiler flue gas stream
WO1999019667A1 (en) * 1997-10-14 1999-04-22 Ebara Corporation Method and apparatus for generating electric power by combusting wastes
WO2001012755A1 (en) * 1999-08-19 2001-02-22 Manufacturing And Technology Conversion International, Inc. System integration of a steam reformer and fuel cell
JP2003097806A (ja) * 2001-09-21 2003-04-03 Ebara Corp 廃棄物のリサイクルシステム
US20040244289A1 (en) * 2001-09-28 2004-12-09 Fumiaki Morozumi Process for reforming inflammable gas, apparatus for reforming inflammable gas and gasification apparatus
US7301060B2 (en) * 2003-03-28 2007-11-27 Ab-Cwt, Llc Process for conversion of organic, waste, or low-value materials into useful products
US7476296B2 (en) * 2003-03-28 2009-01-13 Ab-Cwt, Llc Apparatus and process for converting a mixture of organic materials into hydrocarbons and carbon solids
WO2007117590A2 (en) * 2006-04-05 2007-10-18 Woodland Biofuels Inc. System and method for converting biomass to ethanol via syngas
CN101139532B (zh) * 2006-09-08 2010-12-29 中国科学院过程工程研究所 固体燃料解耦流化床气化方法及气化装置
US20090049748A1 (en) * 2007-01-04 2009-02-26 Eric Day Method and system for converting waste into energy
AU2007348497B2 (en) * 2007-03-01 2010-08-19 Ihi Corporation Method for gasification in fluidized bed
CA2727267A1 (en) * 2007-06-13 2009-12-24 Wormser Energy Solutions, Inc. Mild gasification combined-cycle powerplant
JP5256811B2 (ja) * 2008-03-25 2013-08-07 株式会社Ihi ガス発生炉のパージ方法及び装置
WO2010099626A1 (en) * 2009-03-05 2010-09-10 G4 Insights Inc. Process and system for thermochemical conversion of biomass
US8349504B1 (en) * 2009-03-24 2013-01-08 Michael John Radovich Electricity, heat and fuel generation system using fuel cell, bioreactor and twin-fluid bed steam gasifier
WO2011060556A1 (en) * 2009-11-18 2011-05-26 G4 Insights Inc. Sorption enhanced methanation of biomass
PL2516926T3 (pl) * 2009-12-22 2017-11-30 Accordant Energy, Llc Przerobione surowce paliwowe zawierające sorbent
CZ2010807A3 (cs) * 2010-11-08 2010-12-22 Key@Group@Holding@@s@r@o Zpusob@zpracování@organického@odpadu@@zarízení@najeho@zpracování@a@použití@zpracovaných@produktu
CN103189481B (zh) * 2010-11-19 2016-06-22 普莱克斯技术有限公司 制备合成天然气的方法
WO2012079499A1 (zh) * 2010-12-14 2012-06-21 上海华畅环保设备发展有限公司 油母页岩干馏系统油-水-泥密闭回收利用方法与装置
FI124422B (fi) * 2011-03-14 2014-08-29 Valmet Power Oy Menetelmä tuhkan käsittelemiseksi ja tuhkan käsittelylaitos
WO2012145755A1 (en) * 2011-04-22 2012-10-26 Re Community Energy, Llc A process for cogasifying and cofiring engineered fuel with coal
US9388980B2 (en) * 2011-12-15 2016-07-12 Kellogg Brown + Root LLC Systems and methods for gasifying a hydrocarbon feedstock
CN102585916B (zh) * 2011-12-29 2014-11-26 武汉凯迪工程技术研究总院有限公司 用于制油的生物质合成气负压净化工艺方法和系统配置
CN102660339B (zh) * 2012-04-27 2014-04-30 阳光凯迪新能源集团有限公司 基于生物质气化与甲烷化的燃气-蒸汽高效联产工艺及系统
CN103484180B (zh) * 2012-06-15 2016-07-06 新奥科技发展有限公司 一种燃煤自供热的催化气化制天然气的工艺和系统
JP6123310B2 (ja) * 2013-01-28 2017-05-10 株式会社Ihi 放散システム
KR101271793B1 (ko) * 2013-02-26 2013-06-07 효성에바라엔지니어링 주식회사 이중 반응기형 유동층 가스화 장치
JP6111769B2 (ja) * 2013-03-21 2017-04-12 株式会社Ihi ガス化ガス生成システム
CN103468322B (zh) * 2013-07-25 2015-08-12 易高环保能源研究院有限公司 一种由固体有机物水蒸气气化制取富氢气体的方法
US20150118723A1 (en) * 2013-10-30 2015-04-30 Derek Christopher Duzoglou Apparatus and method for generating eco-conscious products from waste
US10202286B2 (en) * 2015-06-22 2019-02-12 Eureka Resources, Llc Method and system for treating wastewater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754945A (zh) * 2004-09-30 2006-04-05 中国科学院工程热物理研究所 双循环流化床煤气-蒸汽联产方法及装置
CN101735008A (zh) * 2009-12-07 2010-06-16 中国科学院山西煤炭化学研究所 一种煤制合成气联产低碳醇和天然气的技术
CN101768488A (zh) * 2009-12-07 2010-07-07 赛鼎工程有限公司 一种碎煤熔渣气化生产煤制天然气的工艺
DE102012200221A1 (de) * 2012-01-10 2013-07-11 Highterm Research Gmbh Verfahren zur Erzeugung eines methanreichen Gases
CN103897743A (zh) * 2014-03-28 2014-07-02 上海锅炉厂有限公司 固体燃料分级气化-燃烧双床多联产系统与方法
CN204058390U (zh) * 2014-03-28 2014-12-31 上海锅炉厂有限公司 固体燃料分级气化-燃烧双床多联产系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107118809A (zh) * 2017-06-27 2017-09-01 安徽科达洁能股份有限公司 一种气流床与循环流化床组合循环气化系统及其两段式气化方法
CN107118809B (zh) * 2017-06-27 2023-08-11 安徽科达洁能股份有限公司 一种气流床与循环流化床组合循环气化系统及其两段式气化方法
CN108753370A (zh) * 2018-08-22 2018-11-06 安徽科达洁能股份有限公司 一种耦合式煤气化系统及方法
CN108753370B (zh) * 2018-08-22 2024-03-29 安徽科达洁能股份有限公司 一种耦合式煤气化系统及方法
CN114923169A (zh) * 2022-06-02 2022-08-19 哈尔滨工业大学 一种采用多场耦合强化宽筛分粒径固废燃尽的装置
CN115287099A (zh) * 2022-07-03 2022-11-04 中国船舶重工集团公司第七0三研究所 一种车载式小型具有生物质气化装置及蒸汽发生器的系统
CN115449404A (zh) * 2022-09-09 2022-12-09 中国科学院青岛生物能源与过程研究所 一种固体燃料分级热解气化系统及其方法
CN115449404B (zh) * 2022-09-09 2024-04-05 中国科学院青岛生物能源与过程研究所 一种固体燃料分级热解气化系统及其方法

Also Published As

Publication number Publication date
US20170321889A1 (en) 2017-11-09
KR20160018484A (ko) 2016-02-17
AU2015237094B2 (en) 2018-02-15
US10208948B2 (en) 2019-02-19
AU2015237094A1 (en) 2015-11-12
KR101711181B1 (ko) 2017-02-28
CN103897743B (zh) 2016-02-03
CN103897743A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
WO2015143955A1 (zh) 固体燃料分级气化-燃烧双床多联产系统与方法
CN107418634B (zh) 一种循环流化床煤气化多级降温除尘工艺及装置
CN103758592B (zh) Co2气化焦炭的化学链燃烧发电系统及方法
CN102517089B (zh) 一种生物质气化熔融制取高热值可燃气的装置及方法
CN103740409B (zh) 一种多级配气高温煤气化装置及方法
CN102146301A (zh) 一种复合外热固定床两段式煤气化的方法及煤气炉
CN109181776B (zh) 一种集成燃料电池发电的煤基多联产系统及方法
CN204058390U (zh) 固体燃料分级气化-燃烧双床多联产系统
CN102199450A (zh) 双流化床固体燃料气化燃烧耦合方法和系统
CN210006832U (zh) 一种水煤气化燃料电池发电系统
CN104804774A (zh) 一种以高灰煤为原料制备燃气的方法和装置
CN109945557B (zh) 一种基于生物质能的制冷系统及工艺
CN107165688A (zh) 一种利用燃气和蒸汽联合发电的设备及方法
CN203096004U (zh) 一种基于煤炭的碳氢组分分级转化的发电系统
CN105441131A (zh) 一种煤气化灰渣氧化脱碳制灰分联产蒸汽的方法
CN102260538B (zh) 生物质气浮流态高温换热气化方法与装置
CN209508170U (zh) 耦合煤热解与空气气化的联合循环发电系统
CN106190333A (zh) 基于粉煤空气分级热解气化的整体气化联合发电装置
CN206942820U (zh) 一种利用燃气和蒸汽联合发电的设备
CN202390394U (zh) 一种生物质气化熔融制取高热值可燃气的装置
CN112646609A (zh) 一种生物质气化制氢的装置及方法
CN207294702U (zh) 生物质气化-循环流化床锅炉联合发电系统
CN218232280U (zh) 半焦热载体法生物质热解燃烧联产油气焦热电的系统
CN212961507U (zh) 带多联产的150mw超高压cfb锅炉
CN109517628B (zh) 耦合煤热解与空气气化的联合循环发电系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157032333

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015237094

Country of ref document: AU

Date of ref document: 20150204

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14900985

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769862

Country of ref document: EP

Kind code of ref document: A1