WO2015143940A1 - 利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法 - Google Patents

利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法 Download PDF

Info

Publication number
WO2015143940A1
WO2015143940A1 PCT/CN2015/071020 CN2015071020W WO2015143940A1 WO 2015143940 A1 WO2015143940 A1 WO 2015143940A1 CN 2015071020 W CN2015071020 W CN 2015071020W WO 2015143940 A1 WO2015143940 A1 WO 2015143940A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
wall
fusion reactor
improving
reactor according
Prior art date
Application number
PCT/CN2015/071020
Other languages
English (en)
French (fr)
Inventor
王波
胡德志
马栋
吕广宏
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Priority to US15/122,761 priority Critical patent/US10102928B2/en
Publication of WO2015143940A1 publication Critical patent/WO2015143940A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/13First wall; Blanket; Divertor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the invention belongs to the field of nuclear energy application, and relates to a method for improving plasma irradiation resistance of an inner wall of a nuclear fusion reaction device by using a laminated structure, and the invention is suitable for a plasma-facing surface on an inner wall of a fusion reaction device using a hydrogen isotope.
  • the resources of nuclear fusion energy are rich and safe, and have great application prospects, which may become the ultimate energy source for human beings.
  • the surface of the inner wall facing the plasma material (hereinafter referred to as "wall surface") is subjected to severe tests such as high thermal shock, high dose neutrons, and helium and neon plasma irradiation.
  • Refractory metals such as tungsten and molybdenum are the more commonly used plasma-oriented materials, of which metal tungsten is currently the preferred surface-oriented plasma material.
  • tungsten, molybdenum, etc. under the long-term irradiation of helium and neon plasma, hydrogen, helium and its isotopes accumulate under the surface layer to cause foaming on the surface; and there are still continuous temperature fluctuations in the operation of the fusion device.
  • the surface of the wall is subjected to a thermal fatigue effect, that is, a surface thermal fatigue crack is generated. These phenomena can cause damage to the wall surface, affect the service state of the wall surface material, and shorten the life of the wall material. Therefore, efforts to improve the "tolerance of fusion plasma irradiation performance" of wall materials is an important research content in the field of nuclear fusion materials.
  • This method can not only effectively reduce the accumulation of hydrogen, helium and its isotopes under the surface of the tungsten-based material, but also greatly reduce the blistering phenomenon on the surface. Reduce thermal fatigue crack damage.
  • a structure for improving plasma radiation resistance of an inner wall of a fusion reactor characterized in that a plurality of metal foils are present between the plasma and the copper substrate, and the plurality of metal foils are stacked together in a direction perpendicular to the wall surface And then combined with the copper matrix.
  • the fusion inner wall assembly of the invention changes the conventional block structure, and the improved laminated structure can not only avoid the blistering of the inner wall surface caused by the aggregation of hydrogen, helium and its isotopes, reduce the thermal fatigue crack damage, and significantly increase the radiation. Take the dose.
  • each of the metal foils has a thickness ranging from 1 micrometer to 1 millimeter. More preferably, when the thickness of the sheet is in the range of 1 micrometer to 20 micrometers, the irradiation dose of the laminate structure can be remarkably increased.
  • the metal foil material is a plasma facing material, preferably tungsten, tungsten alloy, molybdenum or molybdenum alloy.
  • the gap between the metal foils is in the range of 0.01 to 1 ⁇ m, preferably 0.5 to 1 ⁇ m.
  • the height of the fusion inner wall assembly formed by lamination of the metal foil of the present invention may be equivalent to the height of the block-shaped plasma-facing material in the conventional nuclear fusion device.
  • the invention also provides a preparation method for improving the plasma irradiation resistance of the inner wall of the fusion reactor: the material facing the plasma is made into a plurality of metal foils, and then the plurality of metal foils are laminated in a direction perpendicular to the wall surface. Together, they are compounded with a copper matrix.
  • the method of compounding the metal foil with the copper matrix is casting or brazing.
  • the technical solution adopted by the invention is to form a large number of flakes facing the plasma material, then laminate the individual flakes in a direction perpendicular to the wall surface, and then compound with the copper matrix by a conventional process such as casting or brazing. Together, a plasma-oriented fusion inner wall assembly is formed.
  • the laminated structure has the following features: 1) facing the plasma The material is not in the form of a block, but a sheet; 2) the plane of the sheet is oriented perpendicular to the surface of the wall, and the sheet is attached to the sheet; 3) the thickness of the sheet is in the range of 1 micron to 1 mm.
  • the gap between the laminations perpendicular to the wall surface can effectively release the two-dimensional plane stress, thereby effectively reducing the thermal fatigue crack damage of the wall surface. And since the laminations are perpendicular to the wall surface, there is no interface in the direction of heat diffusion, and thus it does not seriously affect the heat conduction function of the wall structure.
  • Each of the sheets in the laminated structure is perpendicular to the wall surface, and can simultaneously have the effects of suppressing foaming and mitigating thermal fatigue crack damage.
  • the lamination structure is more elaborated. Simple and convenient for mass production.
  • Figure 1 is a schematic cross-sectional view showing a laminated structure of the present invention facing the plasma surface on the inner wall;
  • the wall material After prolonged irradiation of the hydrogen isotope and helium plasma, the wall material will form bubbles under the surface layer, because the hydrogen isotope and helium enter the surface layer of the material during the plasma irradiation process, and aggregate into bubbles; Thermal cycling stress caused by temperature fluctuations also causes fatigue crack damage.
  • the present invention simultaneously reduces the damage in both of these aspects by replacing the generally monolithic bulk structure of the wall surface with a laminated structure.
  • the wall material refers to the inner wall of various metals currently used facing the plasma material, and mainly includes tungsten, tungsten alloy, molybdenum, molybdenum alloy and the like.
  • the preparation of the flakes can be carried out by conventional methods in current production, such as hot rolling, cold rolling and the like.
  • the sheet and the sheet are closely attached to each other, and the sheet made of the same wall material may be used, or the sheets made of a plurality of materials may be mixed and laminated.
  • the stacked wall material sheets and the copper substrate are joined together by fusion casting or welding to form a plasma-facing surface structural component of the inner wall of the fusion device. The following three embodiments are further introduced.
  • this is a typical form of the plasma facing surface of the laminated structure.
  • the laminated structure 2 in contact with the plasma 1 is composed of a plurality of sheets, and the sheets are made of tungsten material heat.
  • a tungsten sheet was produced by rolling, and the thickness of the sheet was 0.2 mm.
  • the direction of the sheet is oriented perpendicular to the inner wall surface, and the sheet is in intimate contact with the sheet.
  • a copper substrate 3 Closely connected to the underside of the laminated structure is a copper substrate 3 which is joined to the laminated structure by conventional casting.
  • the plasma-facing surface of the structure was placed under a helium and neon plasma beam for irradiation test.
  • the irradiation dose reached 5 ⁇ 10 25 m -2 , no foaming and thermal fatigue cracking occurred on the surface.
  • Example 2 The laminate structure of Example 2 was the same as that of Example 1, and the sheet was oriented perpendicular to the surface, except that the sheet was cold rolled from a molybdenum material.
  • the thickness of the molybdenum sheet is 1 micron.
  • the laminated structure composed of the molybdenum sheets is connected to the copper substrate, and the connection method is a conventional brazing method.
  • the plasma-facing surface of the structure was placed under a helium and neon plasma beam for irradiation test.
  • the irradiation dose reached 4 ⁇ 10 25 m -2 , no foaming and thermal fatigue cracking occurred on the surface.
  • Example 3 The lamination structure of Example 3 was the same as that of Example 1, but in Example 3, the lamination structure was formed by alternately laminating two kinds of material sheets which were hot rolled by a tungsten-rhenium alloy and a tungsten-rhenium alloy material. The orientation of the sheet is perpendicular to the inner wall surface. The thickness of the tungsten-rhenium alloy sheet is 1 mm, and the thickness of the tungsten-rhenium alloy sheet is 0.5 mm. A laminated structure composed of a tungsten-rhenium alloy and a tungsten-rhenium alloy sheet is connected to the copper substrate, and the connection method is a conventional brazing method.
  • the plasma-facing surface of the structure was placed under a helium and neon plasma beam for irradiation test.
  • the irradiation dose reached 8 ⁇ 10 26 m -2 , no foaming and thermal fatigue cracking occurred on the surface.
  • the laminated structure is the same as that of Embodiment 1, except that the thickness of the tungsten sheet is alternately laminated by using two thicknesses of 0.02 mm and 0.01 mm.
  • the plasma-facing surface of the structure was placed under a helium and neon plasma beam for irradiation test.
  • the irradiation dose reached 1 ⁇ 10 27 m -2 , no foaming and thermal fatigue cracking occurred on the surface.
  • the laminate structure was the same as that of Example 4 except that the thickness of the tungsten sheet was 0.01 mm and 0.003 mm, respectively.
  • the plasma-facing surface of the structure was placed under a helium and neon plasma beam for irradiation test.
  • the irradiation dose reached 5 ⁇ 10 27 m -2 , no foaming and thermal fatigue cracking occurred on the surface.
  • the surface of the plasma facing surface of the laminated structure according to the present invention has a significantly increased irradiation dose when the thickness of the metal foil is in the range of 1 micrometer to 20 micrometers, and no bubbles and heat are generated on the surface. Fatigue cracks.
  • the laminate structure was the same as in Example 1 except that the gap between the metal foils was further limited to 1.0 ⁇ m.
  • the plasma-facing surface of the structure was placed under a helium and neon plasma beam for irradiation test.
  • the irradiation dose reached 5.5 ⁇ 10 27 m -2 , no foaming and thermal fatigue cracking occurred on the surface.
  • the laminate structure was the same as in Example 4 except that the gap between the metal foils was further limited to 0.1 ⁇ m.
  • the plasma-facing surface of the structure was placed under a helium and neon plasma beam for irradiation test.
  • the irradiation dose reached 4.8 ⁇ 10 27 m -2 , no foaming and thermal fatigue cracking occurred on the surface.
  • the laminate structure was the same as in Example 5 except that the gap between the metal foils was further limited to 0.01 ⁇ m.
  • the plasma-facing surface of the structure was placed under a helium and neon plasma beam for irradiation test.
  • the irradiation dose reached 4.5 ⁇ 10 27 m -2 , no foaming and thermal fatigue cracking occurred on the surface.
  • the surface of the plasma facing surface of the laminated structure according to the present invention has no bubbles and thermal fatigue cracks on the surface when the metal foil gap is in the range of 0.01 to 1 ⁇ m.
  • the dose was up to 4.5 ⁇ 10 27 m -2 .
  • the invention proposes a method for improving the plasma radiation resistance of the inner wall of the fusion reactor by using the laminated structure, and is suitable for the plasma-facing surface on the inner wall of the fusion reaction device using the hydrogen isotope.
  • the plasma-facing material is formed into a plurality of metal foils, and then the plurality of metal foils are laminated together in a direction perpendicular to the wall surface and then combined with the copper matrix.
  • the laminated structure of the invention can be applied to a nuclear fusion device in the field of nuclear energy, which can effectively reduce the accumulation of hydrogen, helium and its isotopes under the surface of the tungsten-based material, and greatly reduce the blistering phenomenon on the surface thereof. It can reduce the thermal fatigue crack damage, and the economic and social benefits are considerable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)
  • Particle Accelerators (AREA)
  • Plasma Technology (AREA)

Abstract

一种利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法,包括将面对等离子体(1)的材料制成多片金属薄片,然后将多片金属薄片按照垂直于壁表面的方向叠压在一起,再与铜基体(3)复合在一起。这种方法属于核能应用领域,适用于采用氢同位素进行聚变反应装置中内壁上的面向等离子体表面。不仅可以有效降低氢、氦及其同位素等在钨基材料表层下面的聚集,大大降低其表面的起泡现象,同时还能减轻热疲劳裂纹损伤。

Description

利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法 技术领域
本发明属于核能应用领域,涉及一种利用叠片结构提高核聚变反应装置内壁耐等离子体辐照性能的方法,该发明适用于采用氢同位素进行聚变反应装置中内壁上的面向等离子体表面。
背景技术
核聚变能源的储量丰富并且安全,具有巨大的应用前景,将可能成为人类的终极能源。
在核聚变装置中,内壁的面对等离子体材料表面(以下简称“壁表面”)要经受高热冲击、高剂量的中子和氘、氦等离子体辐照等严酷考验。钨、钼等难熔金属是较常采用的面向等离子体材料,其中金属钨是目前较普遍接受的优选的面对等离子体材料。但钨、钼等在氘、氦等离子体长时间辐照下,氢、氦及其同位素在其表层下面聚集而导致表面产生起泡现象;并且,聚变装置运行中还存在着持续的温度波动,使壁表面产生热疲劳效应,即产生表面热疲劳裂纹。这些现象会使壁表面产生损伤,影响壁表面材料的服役状况,缩短壁材料的寿命。因此,努力提高壁表面材料的“耐受聚变等离子体辐照性能”是核聚变材料领域的一个重要研究内容。
为了抑制壁表面起泡,以前也有方法提出采用“梯度多孔结构”或“柱状晶”来实现这一目的。但它们都不能有效抑制热疲劳裂纹损伤,并且制备工艺上也较复杂。
发明内容
本发明的目的是提供利用叠片结构来提高壁表面材料耐等离子体辐照性能的方法。这种方法不仅可以有效降低氢、氦及其同位素等在钨基材料表层下面的聚集,大大降低其表面的起泡现象,同时还能 减轻热疲劳裂纹损伤。
一种提高聚变堆内壁耐等离子体辐照性能的结构,其特征在于:在等离子体和铜基体之间存在多片金属薄片,所述多片金属薄片按照垂直于壁表面的方向叠压在一起,再与铜基体复合在一起。
本发明所述的聚变内壁组件改变以往块状结构,改进后的叠片结构不仅可以避免由于氢、氦及其同位素等聚集引起的内壁表面起泡现象,减轻热疲劳裂纹损伤,而且显著提高辐照剂量。
进一步,每片金属薄片的厚度尺寸在1微米至1毫米的范围。更优选当薄片厚度在1微米至20微米的范围内时,可显著提高叠片结构的辐照剂量。
进一步,所述金属薄片材料为面向等离子体材料,优选为钨、钨合金、钼、钼合金。
进一步,所述金属薄片之间缝隙在0.01~1微米的范围,优选0.5~1微米。
本发明所述金属薄片经叠压后所组成的聚变内壁组件的高度可等同于常规核聚变装置中块体状面向等离子体材料的高度。
本发明还提供上述提高聚变堆内壁耐等离子体辐照性能的结构的制备方法:即将面对等离子体的材料制成多片金属薄片,然后将多片金属薄片按照垂直于壁表面的方向叠压在一起,再与铜基体复合在一起。
进一步,所述金属薄片与铜基体复合在一起的方法为熔铸或钎焊。
本发明所采用的技术方案是将面对等离子体材料制成大量的薄片状,然后将各个薄片按照垂直于壁表面的方向叠压在一起,再与铜基体通过熔铸或钎焊等常规工艺复合在一起,从而形成面向等离子体的聚变内壁组件。所述的叠片结构具有以下特征:1)面向等离子体 材料不是制成块体状,而是薄片状;2)薄片的平面按照垂直于壁表面的取向,片与片之间贴在一起;3)薄片的厚度尺寸在1微米至1毫米的范围,并且同种材质下薄片越薄越有利于提高抗等离子体辐照损伤作用;4)本发明所述叠片结构中金属薄片按照常规叠压在一起并利用熔铸或钎焊等方法复合铜基体上即能够解决现有“梯度多孔结构”或“柱状晶”结构辐照时存在的裂纹问题,然而在进一步研究中发现,当金属薄片之间缝隙在0.01~1微米的范围内时,可以承受更大的辐照剂量,且不产生起泡或裂纹现象。
本发明所述的叠片结构中存在许多垂直于壁表面的缝隙,并且这些缝隙都贯通于壁表面。等离子体辐照过程中进入壁材料的氢、氦会通过横向扩散进入这些缝隙,再经过这些缝隙作为通道快速扩散到壁表面并回到等离子体中,避免了氢、氦在壁材料中的积累,从而抑制了起泡问题。同时,由于壁表面在法线方向没有约束,聚变装置运行时产生的持续性温度波动在壁表面形成的热循环应力是垂直于法线方向上的二维平面应力。而用叠片结构取代块体结构以后,各个叠片间的垂直于壁表面的缝隙可以有效释放该二维平面应力,因此可以有效减轻壁表面的热疲劳裂纹损伤。并且由于叠片都是垂直于壁表面,在热量扩散的方向上没有界面,因此不会对壁结构的热传导功能产生严重影响。
虽然以往已经有利用“梯度多孔结构”或“柱状晶”来抑制起泡的方法提出过,然而目前为止,还没有人提出利用垂直于壁表面的叠片结构来抑制壁材料的等离子体辐照起泡并降低热疲劳损伤的方法。
本发明的优点在于:
(1)叠片结构中各个片垂直于壁表面,可以同时具有抑制起泡和减轻热疲劳裂纹损伤的作用。
(2)相比梯度多孔结构和柱状晶结构,叠片结构的制作工艺更 简单且利于批量生产。
附图说明
图1是内壁上的面向等离子体表面采用了本发明的叠片结构的截面示意图;
图中:1.等离子体;2.叠片结构;3.铜基体。
具体实施方式
下面结合附图和实施例对本发明采用的叠片结构进一步说明。
壁材料在氢同位素和氦的等离子体长时间辐照后,会在表层下面形成气泡,是由于氢同位素和氦在等离子体辐照过程下进入到材料的表层,并聚集成气泡;同时,持续的温度波动引起的热循环应力也引起疲劳裂纹损伤。针对这两方面的问题,本发明通过采用叠片结构来替换壁表面通常的整体块材结构,从而在这两方面同时减轻损伤。
一种利用叠片结构提高核聚变反应装置内壁表面耐等离子体辐照性能的方法,所述的叠片结构是由许多的壁材料薄片叠在一起组成,薄片方向要采取垂直于内壁表面的取向。所述壁材料是指目前常用的各种金属类的内壁面向等离子体材料,主要有钨、钨合金、钼、钼合金等。薄片的制备可以用目前生产中的常规方法都可以制备,例如热轧、冷轧等工艺。薄片与薄片紧贴在一起,可以采用同一种壁材料制作的薄片,也可以采用多种材料制作的薄片混合叠压在一起。将叠在一起的壁材料薄片与铜基体通过熔铸或焊接等方法连接在一起,就组成了聚变装置内壁的面向等离子体表面结构组件。以下用三个实施例来进一步介绍。
实施例1:
如图1所示,这是叠片结构的面向等离子体表面的典型形式。与等离子体1向接触的叠片结构2由许多的薄片组成,薄片采用钨材料热 轧制作的钨片,所述薄片的厚度采用0.2毫米。薄片的方向是采用垂直于内壁表面取向,薄片与薄片之间紧密接触。叠片结构的下面紧密连接的是铜基体3,铜基体3是通过常规熔铸的方式与叠片结构形成连接。
将该结构的面向等离子体表面置于氘、氦等离子体束下进行辐照试验,辐照剂量达5×1025m-2时,表面不产生起泡和热疲劳裂纹。
实施例2:
实施例2的叠片结构与实施例1的一样,薄片的取向要垂直于表面,只是其中薄片采用钼材料冷轧而成的钼片。钼片的厚度采用1微米。钼片组成的叠片结构下面连接铜基体,连接方式采用常规钎焊方法。
将该结构的面向等离子体表面置于氘、氦等离子体束下进行辐照试验,辐照剂量达4×1025m-2时,表面不产生起泡和热疲劳裂纹。
实施例3:
实施例3的叠片结构与实施例1的一样,但在实施例3中,叠片结构采用钨铌合金和钨铈合金材料热轧制作的两种材料薄片轮换叠压而成。薄片的取向垂直于内壁表面。钨铌合金薄片的厚度采用1毫米,钨铈合金薄片厚度采用0.5毫米。钨铌合金和钨铈合金片组成的叠片结构下面连接铜基体,连接方式采用常规钎焊方法。
将该结构的面向等离子体表面置于氘、氦等离子体束下进行辐照试验,辐照剂量达8×1026m-2时,表面不产生起泡和热疲劳裂纹。
实施例4:
所述叠片结构与实施例1相同,区别在于:钨片的厚度分别采用0.02毫米和0.01毫米两种厚度交替叠压而成。
将该结构的面向等离子体表面置于氘、氦等离子体束下进行辐照试验,辐照剂量达1×1027m-2时,表面不产生起泡和热疲劳裂纹。
实施例5:
所述叠片结构与实施例4相同,区别在于:钨片的厚度分别采用0.01毫米和0.003毫米。
将该结构的面向等离子体表面置于氘、氦等离子体束下进行辐照试验,辐照剂量达5×1027m-2时,表面不产生起泡和热疲劳裂纹。
由实施例4、5可知,采用本发明所述的叠片结构的面向等离子体表面,其金属薄片厚度在1微米至20微米的范围内时辐照剂量显著提高,且表面不产生气泡和热疲劳裂纹。
实施例6:
所述叠片结构与实施例1相同,区别在于:进一步限定金属薄片间的间隙为1.0微米。
将该结构的面向等离子体表面置于氘、氦等离子体束下进行辐照试验,辐照剂量达5.5×1027m-2时,表面不产生起泡和热疲劳裂纹。
实施例7:
所述叠片结构与实施例4相同,区别在于:进一步限定金属薄片间的间隙为0.1微米。
将该结构的面向等离子体表面置于氘、氦等离子体束下进行辐照试验,辐照剂量达4.8×1027m-2时,表面不产生起泡和热疲劳裂纹。
实施例8:
所述叠片结构与实施例5相同,区别在于:进一步限定金属薄片间的间隙为0.01微米。
将该结构的面向等离子体表面置于氘、氦等离子体束下进行辐照试验,辐照剂量达4.5×1027m-2时,表面不产生起泡和热疲劳裂纹。
由实施例6-8的辐照结果可知,采用本发明所述的叠片结构的面向等离子体表面,其金属薄片间隙在0.01~1微米的范围内时表面不产生气泡和热疲劳裂纹的辐照剂量达4.5×1027m-2
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
工业实用性
本发明提出利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法,适用于采用氢同位素进行聚变反应装置中内壁上的面向等离子体表面。将面对等离子体的材料制成多片金属薄片,然后将多片金属薄片按照垂直于壁表面的方向叠压在一起,再与铜基体复合在一起。本发明所述的叠片结构可应用于核能领域的核聚变装置中,不仅可以有效降低氢、氦及其同位素等在钨基材料表层下面的聚集,大大降低其表面的起泡现象,同时还能减轻热疲劳裂纹损伤,经济效益、社会效益十分可观。

Claims (10)

  1. 一种提高聚变堆内壁耐等离子体辐照性能的结构,其特征在于,在等离子体和铜基体之间存在多片金属薄片,所述多片金属薄片按照垂直于壁表面的方向叠压在一起,并与铜基体复合在一起。
  2. 根据权利要求1所述提高聚变堆内壁耐等离子体辐照性能的结构,其特征在于,所述每片金属薄片的厚度尺寸在1微米至1毫米的范围。
  3. 根据权利要求2所述提高聚变堆内壁耐等离子体辐照性能的结构,其特征在于,所述每片金属薄片的厚度尺寸在1微米至20微米的范围。
  4. 根据权利要求1所述提高聚变堆内壁耐等离子体辐照性能的结构,其特征在于,所述金属薄片材料为面向等离子体材料。
  5. 根据权利要求4所述提高聚变堆内壁耐等离子体辐照性能的结构,其特征在于,所述面向等离子体材料为钨、钨合金、钼、钼合金。
  6. 根据权利要求5所述提高聚变堆内壁耐等离子体辐照性能的结构,其特征在于,所述金属薄片由同一种面向等离子体材料制成薄片叠压在一起,或者采用多种面向等离子体材料制成薄片混合叠压在一起。
  7. 根据权利要求5所述提高聚变堆内壁耐等离子体辐照性能的结构,其特征在于,所述金属薄片采用热轧或冷轧制成。
  8. 根据权利要求1所述一种提高聚变堆内壁耐等离子体辐照性能的结构,其特征在于,所述金属薄片之间缝隙为0.01~1微米的范围。
  9. 权利要求1-8任一所述所述提高聚变堆内壁耐等离子体辐照性能的结构的方法,其特征在于,将面对等离子体的材料制成多片金 属薄片,然后将多片金属薄片按照垂直于壁表面的方向叠压在一起,再与铜基体复合在一起。
  10. 根据权利要求9所述的方法,其特征在于,所述金属薄片与铜基体通过熔铸法或钎焊法复合连接在一起。
PCT/CN2015/071020 2014-03-26 2015-01-19 利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法 WO2015143940A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/122,761 US10102928B2 (en) 2014-03-26 2015-01-19 Method for improving resistance of fusion reactor inner wall to plasma irradiation by using lamination structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410117811.XA CN103886919B (zh) 2014-03-26 2014-03-26 利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法
CN201410117811.X 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015143940A1 true WO2015143940A1 (zh) 2015-10-01

Family

ID=50955771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071020 WO2015143940A1 (zh) 2014-03-26 2015-01-19 利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法

Country Status (3)

Country Link
US (1) US10102928B2 (zh)
CN (1) CN103886919B (zh)
WO (1) WO2015143940A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103886919B (zh) 2014-03-26 2016-02-17 北京工业大学 利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法
EP3398192B1 (en) 2015-12-28 2020-08-05 Ustav materialov a mechaniky strojov SAV Composite for heat transfer with high-temperature resistance
CN109147984B (zh) * 2018-07-24 2020-03-27 北京工业大学 一种提高表面耐强束脉冲热疲劳的方法
CN113488202A (zh) * 2021-06-18 2021-10-08 中国科学院合肥物质科学研究院 一种快速移能聚变堆偏滤器水冷钨靶模块及冷却靶板结构
CN114420314A (zh) * 2021-12-20 2022-04-29 核工业西南物理研究院 用于聚变堆高剂量中子辐照和兆瓦级热负荷的第一壁结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630875A1 (en) * 1988-04-28 1994-12-28 Mitsubishi Jukogyo Kabushiki Kaisha Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
US6565988B1 (en) * 1999-05-21 2003-05-20 Plansee Aktiengesellschaft Composite for high thermal stress
CA2462491A1 (en) * 2003-04-02 2004-10-02 Plansee Aktiengesellschaft Laminated component for fusion reactors
JP2011122883A (ja) * 2009-12-09 2011-06-23 Kawasaki Heavy Ind Ltd 炭素材と銅合金材を冶金的に接合する高熱負荷機器製造方法
CN103886919A (zh) * 2014-03-26 2014-06-25 北京工业大学 利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126102A (en) * 1990-03-15 1992-06-30 Kabushiki Kaisha Toshiba Fabricating method of composite material
JPH10282276A (ja) * 1997-04-01 1998-10-23 Asahi Chem Ind Co Ltd 核融合炉用炉壁材
US5975410A (en) * 1997-09-02 1999-11-02 Mcdonnell Douglas Corporation Process of bonding a metal brush structure to a planar surface of a metal substrate
US5988488A (en) * 1997-09-02 1999-11-23 Mcdonnell Douglas Corporation Process of bonding copper and tungsten
AT8158U1 (de) * 2004-10-27 2006-02-15 Plansee Ag Monoblock kühleinrichtungskomponente
AT8485U1 (de) * 2005-03-22 2006-08-15 Plansee Se Erste-wand-komponente für fusionsreaktor
AT9000U1 (de) * 2005-12-23 2007-03-15 Plansee Se Wärmesenke aus einer kupferlegierung
CN102337487A (zh) * 2011-09-17 2012-02-01 中国科学院等离子体物理研究所 基于深度塑性变形工艺的聚变堆面向等离子体钨基材料
CN102560214B (zh) * 2012-02-09 2013-04-10 北京航空航天大学 一种面对等离子体材料中抗起泡的梯度多孔结构
CN102610285A (zh) * 2012-03-16 2012-07-25 中国科学院等离子体物理研究所 一种利用金属钨作为磁约束反应堆的第一壁材料的结构
CN103088427A (zh) * 2013-01-23 2013-05-08 北京航空航天大学 一种利用柱状晶抑制钨基面对等离子体材料起泡的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630875A1 (en) * 1988-04-28 1994-12-28 Mitsubishi Jukogyo Kabushiki Kaisha Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
US6565988B1 (en) * 1999-05-21 2003-05-20 Plansee Aktiengesellschaft Composite for high thermal stress
CA2462491A1 (en) * 2003-04-02 2004-10-02 Plansee Aktiengesellschaft Laminated component for fusion reactors
JP2011122883A (ja) * 2009-12-09 2011-06-23 Kawasaki Heavy Ind Ltd 炭素材と銅合金材を冶金的に接合する高熱負荷機器製造方法
CN103886919A (zh) * 2014-03-26 2014-06-25 北京工业大学 利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法

Also Published As

Publication number Publication date
CN103886919A (zh) 2014-06-25
CN103886919B (zh) 2016-02-17
US20170076824A1 (en) 2017-03-16
US10102928B2 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2015143940A1 (zh) 利用叠片结构提高聚变堆内壁耐等离子体辐照性能的方法
US9620434B1 (en) High temperature bonding processes incorporating metal particles and bonded substrates formed therefrom
US10101094B2 (en) Heat receiving tile formed of carbon fiber composite material and method of manufacturing the same
CN108827994B (zh) 一种车载加速器中子源固态锂靶系统
TWI637932B (zh) 氟化鎂燒結體的製造方法及中子緩和劑的製造方法
TWI259828B (en) Ozonizer
KR20180055696A (ko) 종합성능이 양호한 방열구조부재 및 그 제조 공정
US9018605B2 (en) Nuclear fusion reactor first wall component and production process thereof
EP3660894A1 (en) Heat dissipation element and preparation method therefor, and igbt module
CN112582278A (zh) 一种dcb覆铜基板的制备方法
US10784523B2 (en) Fuel cell stack presenting reinforced structure
EP3104368B1 (en) Carbon-fiber-composite heat-collecting tile and method for producing same
CN104776742A (zh) 超薄热管用复合吸液芯及其制造方法
JP7154731B2 (ja) X線管アノード装置
JP5853907B2 (ja) 磁気冷凍材料熱交換器の製造方法
JP3187697U (ja) 安全合わせガラス構造
CN110428912B (zh) 含有金刚石的第一壁材料及其制备方法
US11437338B2 (en) Semiconductor device, sintered metal sheet, and method for manufacturing sintered metal sheet
US4246960A (en) Fail safe heat exchanger
CN106269958B (zh) 一种不固溶金属体系叠层金属复合方法
Wu et al. Joining multiple-layer Al-Cu thin foils by a novel Resistance Rolling Welding method for battery application
CN110767340A (zh) 一种高含钨量钨硼交联聚乙烯新型复合屏蔽材料
Borts et al. Production of dissimilar metals materials by the method of solid-state joining
Chen et al. Development and experimental study of beryllium window for ITER radial X-ray camera
JPH03122064A (ja) 黒鉛・銅接合体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15122761

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768769

Country of ref document: EP

Kind code of ref document: A1