WO2015143876A1 - 有机电致发光器件及其制备方法、显示装置 - Google Patents

有机电致发光器件及其制备方法、显示装置 Download PDF

Info

Publication number
WO2015143876A1
WO2015143876A1 PCT/CN2014/090561 CN2014090561W WO2015143876A1 WO 2015143876 A1 WO2015143876 A1 WO 2015143876A1 CN 2014090561 W CN2014090561 W CN 2014090561W WO 2015143876 A1 WO2015143876 A1 WO 2015143876A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
substrate
transition layer
index material
ito electrode
Prior art date
Application number
PCT/CN2014/090561
Other languages
English (en)
French (fr)
Inventor
侯文军
刘则
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2015143876A1 publication Critical patent/WO2015143876A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to the field of organic electroluminescent devices, and in particular, to an organic electroluminescent device, a method for fabricating the same, and a display device.
  • the structure is sequentially provided with a substrate, a transparent ITO (indium tin oxide) electrode, an organic layer, and a second electrode layer.
  • the organic layer has a refractive index of usually 1.7-2.0
  • the ITO electrode layer has a refractive index of 1.8-1.9
  • the substrate usually glass
  • the substrate has a refractive index of about 1.5, since the light beam is in the organic layer/ITO electrode layer and the ITO electrode layer.
  • the difference in refractive index between the basal layer and the basal layer/air creates a total reflection phenomenon, so that the beam has to be confined in the ITO electrode layer or the substrate and cannot be emitted to cause loss of luminescence, thereby affecting the efficiency of the external quantum. Low, only 20%.
  • the existing method mainly reduces the substrate mode between the ITO electrodes/substrate layers by modifying the inner surface of the substrate.
  • U.S. Patent No. 7,795,261 achieves light scattering or diffraction between ITO/glass substrates by using a thin layer of particles having a nanostructure on a glass substrate, thereby increasing light extraction efficiency.
  • the nanoparticle layer provided on the substrate scatters the light beam, the direction of the light beam is changed, not only can the light be emitted in the desired direction, but also the light beam is increased at the ITO electrode.
  • the possibility of total reflection between the layers/substrate layers is such that the beam cannot be efficiently extracted, and the purpose of enhancing the light extraction efficiency of the device cannot be achieved.
  • Embodiments of the present invention provide an organic electroluminescent device, a preparation method thereof, and a display device to enhance the light extraction efficiency of the device.
  • the present invention provides an organic electroluminescent device comprising a substrate disposed in sequence, a transparent ITO electrode, an organic light emitting layer and a second electrode, characterized in that:
  • a transition layer is disposed between the substrate and the transparent ITO electrode
  • the refractive index of the transition layer is gradually increased from the substrate side to the transparent ITO electrode side;
  • the refractive index of the transition layer adjacent to the transparent ITO electrode is greater than or equal to the refractive index of the transparent ITO electrode, and the refractive index of the transition layer adjacent to the substrate is less than or equal to the refractive index of the substrate.
  • the transition layer comprises a high refractive index material and a low refractive index material, and a refractive index of the high refractive index material is greater than or equal to a refractive index of the transparent ITO electrode, and a refractive index of the low refractive index material Less than or equal to the refractive index of the substrate.
  • the high refractive index material has a refractive index greater than or equal to 1.8.
  • the high refractive index material is selected from the group consisting of (poly(tert-butyl 6-(methylthio)-5-(2-(propylsulfonyl)ethylthio)bicyclo[2,2,1]g Alkane-2-carboxylic acid tert-butyl ester)), polyimide, fluorine-containing polyimide polyimide/titanium dioxide composite, polyimide/lead sulfide composite, polythiocarbamate/ One of a lead sulfide composite or a sulfur-containing polyetheretherketone.
  • polyimide fluorine-containing polyimide polyimide/titanium dioxide composite
  • polyimide/lead sulfide composite polythiocarbamate/ One of a lead sulfide composite or a sulfur-containing polyetheretherketone.
  • the low refractive index material has a refractive index of less than or equal to 1.5.
  • the low refractive index material is selected from the group consisting of polysiloxane, polymethyl acrylate, polyacrylic acid, polyvinyl chloride, polyethylene oxide, polyvinyl ether, polypropylene oxide, polyvinyl alcohol, or One of polyvinyl methyl ketones.
  • the invention provides a display device comprising the organic electroluminescent device provided by any of the above technical solutions.
  • the present invention provides a method of fabricating an organic electroluminescent device according to any of the above aspects, characterized in that it comprises the following steps of forming a substrate/transition layer/transparent ITO electrode structure:
  • the transparent ITO electrode is formed on the transition layer.
  • the forming the transition layer on the substrate comprises:
  • the high refractive index material has a refractive index greater than or equal to the transparent ITO electrode a refractive index, the refractive index of the low refractive index material being less than or equal to a refractive index of the substrate;
  • the transition layer is peeled off from the substrate and the low refractive index side of the transition layer is attached to the substrate.
  • the organic solvent is a mixture of two or more solvents
  • the phase separation of the thin film layer includes:
  • Phase separation is performed using the difference in solubility of the high refractive index material and the low refractive index material in the two or more solvents.
  • performing phase separation on the film layer includes:
  • Phase separation is performed using a difference in glass transition temperatures of the high refractive index material and the low refractive index material.
  • the film layer is formed on the substrate by spin coating, knife coating or ink jet printing.
  • the invention provides an organic electroluminescent device, a preparation method thereof and a display device.
  • a transition layer with a refractive index gradient is provided between the ITO electrode layer/substrate layer.
  • the refractive index of the transition layer adjacent to the transparent ITO electrode is greater than or equal to the refractive index of the transparent ITO electrode, and the refractive index of the transition layer adjacent to the substrate is less than or equal to the refractive index of the substrate.
  • the substrate structure is an ITO/glass structure as an example. Total reflection occurs when light is transmitted from the optically dense medium to the light-diffusing medium.
  • the total reflection angle ⁇ arcsin(n2/n1), when ITO is in direct contact with the glass, n2 is the refractive index of the glass, and n1 is the refractive index of ITO;
  • the structure is glass/transition layer/refractive index
  • light is incident from the ITO surface. Since the refractive index of the transition layer adjacent to the ITO is greater than or equal to the refractive index of the ITO, no full emission occurs at the interface between the ITO and the transition layer, and then The light is transmitted in a single medium with a gradient of refractive index, and the light is transmitted to the interface between the transition layer and the glass. Since the refractive index of the transition layer adjacent to the glass is less than or equal to the glass, the light does not occur. emission. Therefore, in the whole process, there is no total loss of light in the light, and therefore, the light extraction efficiency is improved.
  • the present invention combines a solution method and a phase separation method to prepare a transition layer between the ITO electrode layer/substrate layer by a one-step method, which has a simple process and low equipment cost, and can be widely applied to preparation of an organic electroluminescence device.
  • FIG. 1 is a schematic diagram of an ITO electrode/transition layer/substrate structure of an organic electroluminescent device according to an embodiment of the present invention
  • FIG. 2 is a process flow diagram of a step of forming an ITO electrode/transition layer/substrate structure of a method for fabricating an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an ITO electrode/transition layer/substrate structure of an organic electroluminescent device according to an embodiment of the present invention.
  • an organic electroluminescent device 10 according to an embodiment of the present invention has an ITO electrode/transition layer/substrate structure including: a substrate 11 , a transition layer 12 and a transparent ITO electrode 13 disposed in sequence, in use, light Shooting from the side of the transparent ITO electrode 13 toward the substrate 11 side;
  • the transition layer 12 gradually increases in refractive index in a direction perpendicular to the substrate 11 and directed from the substrate 11 toward the transparent ITO electrode 13;
  • the refractive index of the transition layer 12 adjacent to the transparent ITO electrode 13 is greater than or equal to the refractive index of the transparent ITO electrode 13 , and the refractive index of the transition layer 12 adjacent to the substrate 11 is less than or equal to the refractive index of the substrate 11 .
  • the transition layer 12 comprises at least one high refractive index material and one low refractive index.
  • the material is a material, and the refractive index of the high refractive index material is greater than or equal to the refractive index of the transparent ITO electrode 13, and the refractive index of the low refractive index material is less than or equal to the refractive index of the substrate 11.
  • the adhesion to the transparent ITO electrode 13 is substantially composed of the high refractive index material in the transition layer 12, and the substrate 11 is substantially composed of the low refractive index material in the transition layer 12, and is high.
  • the refractive index gradually decreases between the refractive index side and the low refractive index side.
  • the present invention provides an organic electroluminescent device which is different from the prior art organic electroluminescent device in that a transition layer having a refractive index gradient is provided between the ITO electrode layer/substrate layer, wherein the transition layer is The refractive index of the adjacent ITO electrode is high, and the refractive index of the adjacent substrate is low, so that when the light beam passes through the ITO/transition layer interface, since the refractive index of the transition layer adjacent to the transparent ITO electrode is greater than or equal to the refractive index of the transparent ITO electrode, Avoid total reflection; when passing through the transition layer/substrate layer, since the refractive index at the adjacent substrate is less than or equal to the refractive index of the substrate, it will not cause full emission, and since the refractive index in the transition layer is gradual It can also effectively avoid the light loss caused by the sudden change of the refractive index, thereby achieving the purpose of enhancing the light extraction efficiency of the device.
  • the high refractive index side of the transition layer 12 is bonded to the transparent ITO electrode 13.
  • the refractive index of the transparent ITO electrode 13 is between 1.8 and 1.9, so in order to avoid the transparent ITO electrode layer. Total reflection occurs between the 13/substrate layer 11, and the refractive index of the transition layer adjacent to the ITO electrode on the high refractive index side is greater than or equal to the refractive index of the ITO electrode.
  • the refractive index of the high refractive index side is greater than or equal to 1.8, for example, 1.8, 1.82, 1.84, 1.86, 1.88, 1.9.
  • the high refractive index material may be selected from (poly(tert-butyl 6-(methylthio)-5-(2-(propylsulfonyl)ethylthio))bicyclic ring [2,2,1]heptane-2-carboxylic acid tert-butyl ester)), polyimide, fluorine-containing polyimide polyimide/titanium dioxide composite, polyimide/lead sulfide composite, One of a polythiocarbamate/lead sulfide composite or a sulfur-containing polyetheretherketone.
  • the high refractive index material exemplified in the examples of the present invention is a polymer material, and since the number of functional groups and repeating units in the polymer material may vary, the various compounds thus formed
  • the refractive index of the derivative is also different, so within the optional range of the high refractive index material described in this embodiment, the relevant polymer compound derived from the selected material should also be included, which is a technology in the art. The staff will be obvious.
  • the low refractive index side of the transition layer 12 is bonded to the substrate 11, wherein the substrate 11 can be a glass substrate.
  • the refractive index of the glass substrate is about 1.5, so in order to avoid the transition layer.
  • 12/substrate layer 11 undergoes reflection or total reflection, optionally, the low refraction
  • the refractive index of the rate side is less than or equal to 1.5, such as 1.5, 1.48, 1.46, 1.44, 1.42, 1.4.
  • the low refractive index material may be selected from the group consisting of polysiloxane, polymethyl acrylate, polyacrylic acid, polyvinyl chloride, polyethylene oxide, polyvinyl ether, polyepoxy.
  • propane, polyvinyl alcohol, or polyvinyl methyl ketone One of propane, polyvinyl alcohol, or polyvinyl methyl ketone. It should be noted that the low refractive index materials listed in the present embodiment only serve as an explanation, and should not be construed as limiting the range of the low refractive index materials, and those skilled in the art may also be based on actual conditions. It is selected as long as the refractive index of the low refractive index film layer is less than or equal to 1.5.
  • Still another aspect of the present invention provides a display device characterized by comprising the organic electroluminescent device of any of the above embodiments.
  • the display device provided by the embodiment of the present invention includes a transition layer having a refractive index gradient provided between the ITO electrode layer/substrate layer, wherein a refractive index of the transition layer adjacent to the transparent ITO electrode is greater than or equal to a refractive index of the transparent ITO electrode, a refractive index of the transition layer adjacent to the substrate is less than or equal to a refractive index of the substrate, and a refractive index is gradually changed between the ITO electrode layer/substrate layer, which not only can effectively avoid the occurrence of all
  • the reflection can also effectively avoid the light loss caused by the sudden change of the refractive index, thereby achieving the purpose of enhancing the light extraction efficiency of the device, thereby effectively improving the performance of the display device.
  • Another aspect of the present invention provides a method of fabricating an organic electroluminescent device comprising any of the above embodiments, as shown in FIG. 2, comprising:
  • a substrate is provided.
  • the substrate may be a glass substrate. It can be understood that the substrate may also be selected from a plastic substrate. It is further understood that since the refractive index of the plastic substrate is between 1.5 and 1.65, when the substrate is selected from a plastic substrate, the corresponding bonding is low. The refractive index film material also needs to be adjusted accordingly to meet the need to adjust the refractive index.
  • a high refractive index material and a low refractive index material are mixed in an organic solvent to obtain a mixed solution.
  • the high refractive index material and the low refractive index material are dissolved by the organic solvent
  • the organic solvent may be selected from the group consisting of tetrahydrofuran, N,N-dimethylacetamide, dimethyl sulfoxide, Trichloromethane, etc.
  • the organic solvent used in the examples of the present invention may be a single solvent or a mixed solvent composed of two or more solvents, except The purpose of better dissolving the high refractive index material and the low refractive index material is achieved, and the basis for further phase separation in the solvent can be laid.
  • the mixed solution is formed into a film layer on the substrate.
  • the backing material used herein examples include: glass, quartz, polyethylene terephthalate, polyethylene naphthalate, polyimide, polycarbonate.
  • a film layer is formed on the substrate using spin coating, knife coating or ink jet printing. It can be understood that the treatment of the mixed solution to form a film is not limited to the above enumeration, and those skilled in the art can also select according to actual needs, as long as the mixed solution can finally form a uniform film layer. Just fine.
  • phase separation of the film layer means controlling the difference in properties (rigidity or polarity) of the high refractive index material and the low refractive index material in the mixed solution, the boiling point of the mixed solvent, or the post-treatment condition difference of the film.
  • the film layer is prepared as a gradient index transition layer having a high refractive index side on the lower and lower refractive index sides.
  • phase separation of the thin film layer may include: utilizing a difference in solubility of the high refractive index material and the low refractive index material to perform phase separation in the solvent. That is, the high refractive index material and the low refractive index material solution can be dissolved in the mixed solution, and the volatilization temperature of each solvent in the mixed solution is controlled by the difference in solubility between the two in the respective solvents of the mixed solution, thereby being high
  • the refractive index material and the low refractive index material are adjusted, for example, to preferentially volatilize the low boiling point solvent, and in the volatilization process, the low refractive index material having good solubility in the low boiling point solvent migrates to the surface along with the volatilized solvent to The surface of the film layer is enriched to form a low refractive index side of the transition layer, and then the high boiling point solvent is volatilized so that the high refractive index material having good solubility in the high boiling solvent forms high refraction in the lower
  • phase separation of the thin film layer may include utilizing a difference in glass transition temperatures of the high refractive index material and the low refractive index material to perform phase separation in the solvent. That is, the glass transition temperature of the two materials is different.
  • the high refractive index material has a rigid molecular structure, a high glass transition temperature, and a low refractive index material has a flexible molecular structure and a low glass transition temperature. For example, by selecting the temperature and time of high temperature annealing, the temperature of high temperature annealing is made.
  • the degree is intermediate between the two, so that by controlling the annealing temperature, the flexible segment of the material having a low refractive index is preferentially moved to move and aggregate toward the surface of the film layer, and the rigid segment of high refractive index does not move, and finally A phase separation film having a refractive index from low to high is formed.
  • the phase separation method enumerated in the embodiments of the present invention is simpler and more practical than other methods, but can also combine other physical properties and solvent characteristics of the high refractive index material and the low refractive index material, and adopt other methods. Perform phase separation.
  • the method of peeling the transition layer from the bottom plate includes mechanical peeling, laser peeling, or etching peeling.
  • the method of attaching the transition layer to the substrate includes: adhesive bonding.
  • the adhesive used in the adhesive attachment is epoxy or acrylic, and its refractive index is the same as that of the adjacent transition layer of the glass.
  • the transition layer obtained as described above since the finally formed are phase separation films having a high refractive index under and a low refractive index, which makes the phase separation film layer better. Bonding with the transparent ITO electrode and the substrate layer to avoid total reflection, it is necessary to reversely attach the transition layer so that the low refractive index side is bonded to the substrate layer, and the high refractive index side is transparent The ITO electrode layers are bonded together.
  • a transparent ITO electrode is formed on the transition layer.
  • a transparent ITO electrode may be sequentially formed on the transition layer by a conventional method.
  • a transparent ITO electrode layer can be formed on the transition layer by vacuum sputtering.
  • an organic light-emitting layer and a metal conductive electrode, that is, a second electrode are sequentially formed on the transparent ITO electrode layer by a method of generally preparing an organic electroluminescent device to finally form an organic electroluminescent device.
  • the invention provides a preparation method of an organic electroluminescence device, which is prepared by a combination of a solution method and a phase separation method, and a transition layer between the ITO electrode layer/substrate layer can be prepared by a one-step method.
  • the method has the advantages of simple process and low equipment cost, and the organic electroluminescent device prepared thereby can effectively avoid total reflection and light loss caused by sudden change of refractive index, thereby achieving the purpose of enhancing the light extraction efficiency of the device, and thus can be widely used.
  • Suitable for the preparation of organic electroluminescent devices In order to better illustrate the organic electroluminescent device provided by the present invention And its preparation method and display device will be described below by way of specific embodiments.
  • the polysiloxane having good solubility in tetrahydrofuran is accompanied by the migration of volatilized tetrahydrofuran to the surface to be enriched on the surface of the film, and due to the rigid structure of the polyimide and The solubility in tetrahydrofuran is poor, and the polyimide layer is concentrated under the film to form a transition layer having a low to high refractive index.
  • transition layer formed in the above step was annealed at 120 ° C for 10 min to remove residual solvent, and a transition layer dry film having a refractive index from low to high was prepared.
  • a transparent ITO electrode layer is formed on the transition layer by vacuum sputtering.
  • Low temperature annealing is used to remove dimethyl sulfoxide (temperature below 100 ° C) to form an organic dry film. Since the glass transition temperature of the fluorinated polyimide is higher than 250 ° C, the glass transition temperature of the polypropylene oxide is lower than 180 ° C.
  • the high temperature annealing temperature is selected to be 200 ° C (higher than the glass transition temperature of the polypropylene oxide, lower than the glass transition temperature of the fluorinated polyimide), the time is 60 min,
  • the polypropylene oxide having a soft segment having a low refractive index is preferentially moved to move and aggregate toward the surface of the film layer, eventually forming a transition layer having a low to high refractive index.
  • the transition layer reverse adhesive formed in the above step is attached to the glass substrate, and the low refractive index side is bonded to the glass substrate.
  • a transparent ITO electrode layer is formed on the transition layer by vacuum sputtering.
  • the chloroform is removed by low temperature annealing (temperature below 50 ° C) to form an organic dry film. Since the above-mentioned sulfur-based compound has a glass transition temperature of about 200 ° C, the polyvinyl methyl ketone has a glass transition temperature of less than 150 ° C. Using the different glass transition temperatures of the two polymers, the high temperature annealing temperature is selected to be 180 ° C (higher than the glass transition temperature of the polyvinyl methyl ketone, lower than the glass transition temperature of the sulfur-based compound), and the time is 120 min. Polyvinylmethylketones having a low refractive index and a plurality of flexible methyl groups preferentially move to move and aggregate toward the surface of the film layer, eventually forming a transition layer having a low to high refractive index.
  • the transition layer reverse adhesive formed in the above step is attached to the glass substrate, and the low refractive index side is bonded to the glass substrate.
  • a transparent ITO electrode layer is formed on the transition layer by vacuum sputtering.
  • An organic electroluminescence display device is prepared by a layer, a hole transport layer, a light-emitting layer, an electron injection layer, an electron transport layer, and a cathode.
  • An organic electroluminescence display device was prepared by the same method as described above on the basis of an ITO/glass substrate.
  • the organic electroluminescent display device based on the present invention was tested to have a light-emitting efficiency of 5-9% based on the ITO/glass substrate.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件及其制备方法、显示装置,属于有机电致发光器件领域,以增强器件的出光效率。所述有机电致发光器件(10)包括:依次设置的基板(11)、过渡层(12)和透明ITO电极(13);所述过渡层(12)的折射率由从所述基板(11)侧到所述透明ITO电极(13)侧逐渐增高;所述过渡层(12)邻接所述透明ITO电极(13)处的折射率大于或等于所述透明ITO电极(13)的折射率,所述过渡层(12)邻接所述基板(11)处的折射率小于或等于所述基板(11)的折射率,该方法可用于有机电致发光器件的制造。

Description

有机电致发光器件及其制备方法、显示装置 技术领域
本发明涉及有机电致发光器件领域,尤其涉及一种有机电致发光器件及其制备方法、显示装置。
背景技术
在传统的有机电致发光器件中,其结构依次设置有基板、透明ITO(氧化铟锡)电极、有机层和第二电极层。其中,有机层的折射率通常为1.7-2.0,ITO电极层的折射率为1.8-1.9,基板(通常是玻璃)的折射率约为1.5,由于光束在有机层/ITO电极层、ITO电极层/基底层间、以及基底层/空气间的折射率差异产生了全反射现象,使得光束不得不被局限在ITO电极层或基板内无法放射出来而造成发光的损失,从而影响外部量子的效率非常低,仅为20%。
由于ITO电极层/基板层间的折射率差异相对较大,所以对于光的提取效率也影响较大,所以改变ITO电极层/基板层间的衬底模态对于整体的光的提取效率至关重要。现有的方法主要是通过对基板内表面进行修饰,以减小ITO电极/基板层之间的衬底模态。其中,美国专利US7957621通过在玻璃基板上采用具有纳米结构的颗粒薄层实现了ITO/玻璃基板之间光散射或者衍射,从而增加了光取出效率。
但在应用上述专利时发现,由于基板上设有的纳米颗粒层会对光束进行散射,使得光束的方向会被改变,不但不能按照所需方向将光进行射出,还加大了光束在ITO电极层/基板层间发生全反射的可能,从而不能对光束进行有效地提取,无法达到增强器件的出光效率的目的。
发明内容
本发明实施例提供了一种有机电致发光器件及其制备方法、显示装置,以增强器件的出光效率。
为达到上述目的,本发明的实施例采用如下技术方案:
一方面,本发明提供了一种有机电致发光器件,包括依次设置的基板、 透明ITO电极、有机发光层和第二电极,其特征在于:
在所述基板和所述透明ITO电极之间设置有过渡层,
其中,所述过渡层的折射率由从所述基板侧到所述透明ITO电极侧逐渐增高;
所述过渡层邻接所述透明ITO电极处的折射率大于或等于所述透明ITO电极的折射率,所述过渡层邻接所述基板处的折射率小于或等于所述基板的折射率。
可选的,所述过渡层包含高折射率材料和低折射率材料,且所述高折射率材料的折射率大于或等于所述透明ITO电极的折射率,所述低折射率材料的折射率小于或等于所述基板的折射率。
可选的,所述高折射率材料的折射率大于或等于1.8。
优选的,所述高折射率材料选自(聚(叔丁基6-(甲硫基)-5-(2-(丙基磺酰基)乙硫基)二环[2,2,1]庚烷-2-羧酸叔丁酯))、聚酰亚胺、含氟聚酰亚胺聚酰亚胺/二氧化钛复合物、聚酰亚胺/硫化铅复合物、聚硫代氨基甲酸酯/硫化铅复合物、或含硫聚醚醚酮中的一种。
可选的,所述低折射率材料的折射率小于或等于1.5。
优选的,所述低折射率材料选自聚硅氧烷、聚丙烯酸甲酯、聚丙烯酸、聚氯乙烯、聚环氧乙烷、聚乙烯基醚、聚环氧丙烷、聚乙烯基醇、或聚乙烯基甲基酮中的一种。
另一方面,本发明提供了一种显示装置,包括上述任一技术方案所提供的有机电致发光器件。
又一方面,本发明提供了一种包括上述任一技术方案所提供的有机电致发光器件的制备方法,其特征在于,包括以下形成基板/过渡层/透明ITO电极结构的步骤:
提供所述基板;
在所述基板上形成所述过渡层;
在所述过渡层上形成所述透明ITO电极。
可选的,所述在所述基板上形成所述过渡层包括:
将一种高折射率材料和一种低折射率材料在有机溶剂中混合,以得到混合溶液,其中所述高折射率材料的折射率大于或等于所述透明ITO电极 的折射率,所述低折射率材料的折射率小于或等于所述基板的折射率;
将所述混合溶液在底板上形成薄膜层;
对所述薄膜层进行相分离,以形成其中所述高折射率材料由上至下浓度渐高且所述低折射率材料由下至上浓度渐高的过渡层;
将所述过渡层从所述底板剥离,并将所述过渡层的低折射率侧贴附在所述基板上。
可选的,所述有机溶剂是由两种以上溶剂混合而成的,且所述对所述薄膜层进行相分离包括:
利用所述高折射率材料和所述低折射率材料在所述两种以上溶剂中溶解度的不同进行相分离。
可选的,对所述薄膜层进行相分离包括:
利用所述高折射率材料和所述低折射率材料的玻璃化转变温度的不同进行相分离。
可选的,通过旋涂、刮涂或喷墨打印在底板上形成所述薄膜层。
本发明提供了一种有机电致发光器件及其制备方法、显示装置,与现有的有机电致发光器件相比不同的是,在ITO电极层/基板层间设有折射率渐变的过渡层;过渡层邻接所述透明ITO电极处的折射率大于或等于所述透明ITO电极的折射率,所述过渡层邻接所述基板处的折射率小于或等于所述基板的折射率。这就使得光束在通过ITO/过渡层界面时,由于过渡层邻接透明ITO电极处的折射率大于或等于透明ITO电极的折射率,使其避免发生全反射;在通过过渡层/基板层时,由于过渡层邻接基板处的折射率小于或等于基板的折射率,使其也不会发生全发射,并且,由于过渡层中的折射率是渐变的,还可有效地避免因折射率突变所造成的光损失,从而达到增强器件的出光效率的目的。以基板结构是ITO/玻璃结构为例。光从光密介质传输到光疏介质会发生全反射,全反射角θ=arcsin(n2/n1),当ITO与玻璃直接接触时n2是玻璃的折射率,n1是ITO的折射率;当基板结构为玻璃/过渡层/折射率时,光从ITO面射入,由于过渡层临近ITO处的折射率大于或者等于ITO的折射率,在ITO与过渡层的界面不会发生全发射,然后是光在折射率渐变的单一介质中传输,光传输到过渡层和玻璃的界面,由于临近玻璃的过渡层折射率小于或者等于玻璃,不会发生全 发射。因此整个过程中,光的不存在全反射的光损失,因此,出光效率会提高。
此外,本发明将溶液法和相分离法相结合,通过一步法制备得到位于ITO电极层/基板层间的过渡层,工艺简单,设备成本低,可广泛适用于有机电致发光器件的制备中。
附图说明
图1为本发明实施例提供的有机电致发光器件的ITO电极/过渡层/基板构造的示意图;
图2为本发明实施例提供的有机电致发光器件制备方法的ITO电极/过渡层/基板结构的形成步骤工艺流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图对本发明实施例提供的有机电致发光器件及其制备方法、显示装置进行详细描述。
图1为本发明实施例提供的有机电致发光器件的ITO电极/过渡层/基板构造的示意图。如图1所示,本发明实施例提供的有机电致发光器件10,其ITO电极/过渡层/基板构造包括:依次设置的基板11、过渡层12和透明ITO电极13,在使用中,光线从透明ITO电极13侧射向基板11侧;
过渡层12在垂直于基板11并且从基板11指向透明ITO电极13的方向上折射率逐渐增高;
其中,过渡层12邻接透明ITO电极13处的折射率大于或等于透明ITO电极13的折射率,过渡层12邻接基板11处的折射率小于或等于基板11的折射率。
在本实施例中,过渡层12至少包含一种高折射率材料和一种低折射 率材料,且所述高折射率材料的折射率大于或等于透明ITO电极13的折射率,所述低折射率材料的折射率小于或等于基板11的折射率。换言之,与透明ITO电极13相贴合处基本上由过渡层12中的高折射率材料构成,与基板11相贴合处基本上由过渡层12中的低折射率材料构成,并且,在高折射率侧和低折射率侧之间折射率逐渐降低。
本发明提供了一种有机电致发光器件,与现有的有机电致发光器件相比不同的是,在ITO电极层/基板层间设有由折射率渐变的过渡层,其中,过渡层中邻接ITO电极处折射率高,邻接基板处折射率低,就使得光束在通过ITO/过渡层界面时,由于过渡层邻接透明ITO电极处的折射率大于或等于透明ITO电极的折射率,使其避免发生全反射;在通过过渡层/基板层时,由于邻接基板处的折射率小于或等于基板的折射率,使其也不会发生全发射,并且,由于过渡层中的折射率是渐变的,还可有效地避免因折射率突变所造成的光损失,从而达到增强器件的出光效率的目的。
在本实施例中,过渡层12中的高折射率侧与透明ITO电极13相贴合,通常情况下,透明ITO电极13的折射率在1.8-1.9之间,所以为了避免在透明ITO电极层13/基板层11间发生全反射,与ITO电极邻接的过渡层的高折射率侧的折射率大于或者等于ITO电极的折射率。可选的,所述高折射率侧的折射率大于或等于1.8,例如,1.8、1.82、1.84、1.86、1.88、1.9。
在本发明的又一实施例中,所述高折射率材料可选自(聚(叔丁基6-(甲硫基)-5-(2-(丙基磺酰基)乙硫基)二环[2,2,1]庚烷-2-羧酸叔丁酯))、聚酰亚胺、含氟聚酰亚胺聚酰亚胺/二氧化钛复合物、聚酰亚胺/硫化铅复合物、聚硫代氨基甲酸酯/硫化铅复合物、或含硫聚醚醚酮中的一种。需要说明的是,本发明实施例中所列举的高折射率材料为高分子材料,由于所述高分子材料中的官能团、重复单元数量可有多种变化,所以由此形成的各类化合物的衍生物的折射率也就不尽相同,所以在本实施例所述高折射率材料的可选范围内,由所选材料衍生得到的相关高分子化合物也应包括在内,这对于本领域技术人员将是显而易见的。
在本实施例中,过渡层12中的低折射率侧与基板11相贴合,其中,基板11可为玻璃基板,通常情况下,玻璃基板的折射率约为1.5,所以为了避免在过渡层12/基板层11间发生反射或全反射,可选的,所述低折射 率侧的折射率小于或等于1.5,例如1.5、1.48、1.46、1.44、1.42、1.4。
在本发明的又一实施例中,所述低折射率材料可选自聚硅氧烷、聚丙烯酸甲酯、聚丙烯酸、聚氯乙烯、聚环氧乙烷、聚乙烯基醚、聚环氧丙烷、聚乙烯基醇、或聚乙烯基甲基酮中的一种。需要说明的是,在本实施例中所列举的低折射率材料只起到解释说明的作用,并不应当被理解为对低折射率材料的范围进行限制,本领域技术人员还可根据实际情况对其进行选择,只要保证所述低折射率膜层的折射率小于或等于1.5即可。
本发明的又一方面还提供了一种显示装置,其特征在于包括上述任一实施例所述的有机电致发光器件。在本发明实施例提供的显示装置中,包括有在ITO电极层/基板层间设有的折射率渐变的过渡层,其中,过渡层邻接所述透明ITO电极处的折射率大于或等于所述透明ITO电极的折射率,所述过渡层邻接所述基板处的折射率小于或等于所述基板的折射率,且折射率在ITO电极层/基板层间渐变,这不仅可有效的避免发生全反射,还可有效地避免因折射率突变所造成的光损失,从而达到增强器件的出光效率的目的,进而可有效地提高显示装置的性能。
本发明的另一方面还提供了一种包括上述任一实施例的有机电致发光器件的制备方法,如图2所示,包括:
21:提供一基板。
在本步骤中,所述基板可为玻璃基板。可以理解的是,所述基板还可以选自塑料基板,进一步可以理解的是,由于塑料基板的折射率在1.5-1.65之间,所以当所述基板选用塑料基板时,与其相应贴合的低折射率膜层材料也需进行相应的调整,以满足调控折射率的需要。
22:在所述基板上形成折射率渐变的过渡层。
在本步骤中,可进一步包括四个小步骤,具体为:
1):将一种高折射率材料和一种低折射率材料在有机溶剂中混合,以得到混合溶液。
在本步骤中,利用所述有机溶剂将高折射率材料和低折射率材料进行溶解,其中,所述有机溶剂可选自四氢呋喃、N,N-二甲基乙酰胺、二甲基亚砜、三氯甲烷等。需要说明的是,在本发明实施例中所使用的有机溶剂可以为单一溶剂,也可以为两种或两种以上溶剂组成的混合溶剂,除了要 达到将高折射率材料和低折射率材料进行更好溶解的目的,还可为其后续在该溶剂中进行更好地相分离奠定基础。
2):将所述混合溶液在底板上形成薄膜层。
此处所用的底板材料的实例包括:玻璃、石英、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰亚胺、聚碳酸酯。在本步骤中,可选的,使用旋涂、刮涂或喷墨打印在底板上形成薄膜层。可以理解的是,将所述混合溶液处理形成薄膜的处理方式并不局限于上述的列举中,本领域技术人员还可根据实际需求进行选择,只要能够让所述混合溶液最终形成均匀的薄膜层即可。
3):对所述薄膜层进行相分离,以形成其中高折射率材料由上至下浓度渐高且低折射率材料由下至上浓度渐高的过渡层。
在本步骤中,对所述薄膜层进行相分离指的是通过控制混合溶液中高折射率材料和低折射率材料的性质差异(刚性或极性)、混合溶剂的沸点或薄膜的后处理条件差异等将薄膜层制备成高折射率侧在下、低折射率侧在上的折射率渐变过渡层。
其中,可选的,对所述薄膜层进行相分离可包括:利用所述高折射率材料和低折射率材料的溶解度的不同以在所述溶剂中进行相分离。即,可将高折射率材料和低折射率材料溶液溶解在混合溶液中,通过二者在混合溶液的各项溶剂中的溶解度的不同,控制混合溶液中各项溶剂的挥发温度,从而对高折射率材料和低折射率材料进行调节,例如,可使低沸点溶剂优先挥发,在挥发过程中,在低沸点溶剂中溶解性好的低折射率材料随着挥发的溶剂向表面迁移,以向薄膜层表面富集而形成过渡层的低折射率侧,随后让高沸点溶剂进行挥发,以使在高沸点溶剂中溶解性好的高折射率材料随着挥发富集在薄膜的下层形成高折射率侧,从而形成折射率由低到高的相分离薄膜。
可选的,对所述薄膜层进行相分离可包括:利用所述高折射率材料和低折射率材料的玻璃化转变温度的不同以在所述溶剂中进行相分离。即,利用两种材料的玻璃化转变温度不同,一般高折射率材料具有刚性的分子结构,玻璃化转变温度较高,低折射率的材料具有柔性分子结构,玻璃化转变温度较低。例如,通过选择高温退火的温度、时间,使高温退火的温 度介于二者中间,这样通过控制退火温度就可使具有低折射率的材料的柔性链段优先发生移动,以向薄膜层表面运动并聚集,高折射率的刚性链段不发生运动,最终形成折射率由低到高的相分离薄膜。可以理解的是,在本发明实施例中所列举的相分离的方法相对其它方法更加简便、实用,但是还可结合高折射率材料和低折射率材料的其它物理特性以及溶剂特性,采用其它方法进行相分离。
4):将所述过渡层从底板剥离,并将所述过渡层的低折射率侧贴附在所述基板上。
将过渡层从底板剥离的方法包括:机械剥离、激光剥离或者是蚀刻剥离。
将过渡层贴附在基板上的方法包括:背胶贴附。背胶贴附中所用的粘合剂为环氧树脂类或者丙烯酸类,其折射率与玻璃临近的过渡层相同。
在本步骤中,根据上述得到的过渡层来看,由于最终形成的均是高折射率在下且低折射率在上的相分离薄膜,这就使得如果要让所述相分离膜层更好地与透明ITO电极和基板层相贴合从而避免发生全反射,这就必须要将所述过渡层进行反向贴附,以使低折射率侧与基板层相贴合,高折射率侧与透明ITO电极层相贴合。
23:在所述过渡层上形成透明ITO电极。
在本步骤中,在将所述过渡层形成在所述基板层上后,可利用常规方法在所述过渡层上依次形成透明ITO电极。例如,可采用真空溅射的方法在过渡层上形成透明ITO电极层。
此后,采用一般制备有机电致发光器件的方法,在透明ITO电极层上再依次形成有机发光层和金属导电电极即第二电极,以最终形成有机电致发光器件。
本发明提供了一种有机电致发光器件的制备方法,该方法采用将溶液法和相分离法相结合的方法进行制备,通过一步法即可制备得到位于ITO电极层/基板层间的过渡层,该方法工艺简单,设备成本低,且由此制备得到的有机电致发光器件可有效地避免全反射以及因折射率突变所造成的光损失,从而达到增强器件的出光效率的目的,因此可广泛适用于有机电致发光器件的制备中。为了能够更好地说明本发明提供的有机电致发光器 件及其制备方法、显示装置,下面将以具体实施例进行描述,
实施例1
1)选择具有刚性结构的聚酰亚胺(折射率大于1.8)作为高折射率材料,选择柔性的聚硅氧烷(折射率小于1.4)作为低折射率材料,采用四氢呋喃和N,N-二甲基乙酰胺作为混合溶剂。将上述的聚酰亚胺和聚硅氧烷按照50∶50重量%溶解于四氢呋喃和N,N-二甲基乙酰胺(体积比为1∶1)的混合溶剂中,然后将上述混合溶液在室温(20℃)下在玻璃底板上旋涂,形成厚度均一的薄膜层。
2)利用聚硅氧烷在四氢呋喃中的良好溶解性,而在N,N-二甲基乙酰胺中溶解性差;同时聚酰亚胺在N,N-二甲基乙酰胺中溶解性好,在四氢呋喃中溶解性较差的特点,控制旋涂的薄膜的溶剂挥发温度,比如在室温(20℃),对聚酰亚胺和聚硅氧烷进行相分离。即,低沸点的溶剂四氢呋喃优先挥发,在挥发过程中,在四氢呋喃中溶解性好的聚硅氧烷伴随着挥发的四氢呋喃向表面迁移在薄膜表面富集,而由于聚酰亚胺的刚性结构以及在四氢呋喃中的溶解性能差,聚酰亚胺层富集在薄膜的下方,从而形成折射率由低到高的过渡层。
3)将上述步骤形成的过渡层进行120℃退火处理10min,去除残余溶剂,制备成折射率从低到高的过渡层干膜。
4)采用机械剥离把制备的过渡层剥离,并使用丙烯酸类或者环氧树脂类粘合剂,反向背胶贴附到玻璃基板上,使具有低折射率的膜层与玻璃贴合,具有高折射率的膜层与透明ITO电极贴合。
5)采用真空溅射的方法在过渡层上形成透明ITO电极层。
实施例2
1)选择具有刚性结构的氟化聚酰亚胺(折射率大于1.8)作为高折射率材料,选择柔性的聚环氧丙烷(折射率小于1.4)作为低折射率材料,将氟化聚酰亚胺和聚环氧丙烷60∶40的重量比溶解于二甲基亚砜中,将上述有机溶液通过狭缝涂覆的方式在玻璃底板表面形成厚度均匀的薄膜层。
2)采用低温退火去除二甲基亚砜(温度低于100℃),形成有机干膜。 由于氟化聚酰亚胺的玻璃化转变温度高于250℃,而聚环氧丙烷的玻璃化转变温度低于180℃。利用两种聚合物玻璃化转变温度不同,选择高温退火温度为200℃(高于聚环氧丙烷的玻璃化转变温度,低于氟化聚酰亚胺的玻璃化转变温度),时间为60min,使具有低折射率的柔性链段多的聚环氧丙烷优先运动,以使其向薄膜层表面运动并聚集,最终形成折射率由低到高的过渡层。
3)使用丙烯酸类或者环氧树脂类粘合剂,将上述步骤形成的过渡层反向背胶贴附到玻璃基板上,使低折射率侧与玻璃基板贴合。
4)采用真空溅射的方法在过渡层上形成透明ITO电极层。
实施例3
1)选择具有刚性结构的硫基化合物(聚(叔丁基6-(甲硫基)-5-(2-(丙基磺酰基)乙硫基)二环[2,2,1]庚烷-2-羧酸叔丁酯))(折射率等于1.8)作为高折射率材料,选择柔性的聚乙烯基甲基酮(折射率等于1.5)作为低折射率材料。将上述硫基化合物和聚乙烯基甲基酮70∶30的重量比溶解于三氯甲烷中,将上述有机溶液通过喷墨打印方式在玻璃底板表面形成厚度均匀的薄膜层。
2)采用低温退火去除三氯甲烷(温度低于50℃),形成有机干膜。由于上述硫基化合物的玻璃化转变温度约为200℃,而聚乙烯基甲基酮的玻璃化转变温度低于150℃。利用两种聚合物玻璃化转变温度不同,选择高温退火温度为180℃(高于聚乙烯基甲基酮的玻璃化转变温度,低于硫基化合物的玻璃化转变温度),时间为120min,使具有低折射率的柔性链段多的聚乙烯基甲基酮优先运动,以使其向薄膜层表面运动并聚集,最终形成折射率由低到高的过渡层。
3)使用丙烯酸类或者环氧树脂类粘合剂,将上述步骤形成的过渡层反向背胶贴附到玻璃基板上,使低折射率侧与玻璃基板贴合。
4)采用真空溅射的方法在过渡层上形成透明ITO电极层。
实施例4:
在实施例1-3的基础上,通过蒸镀或者溶液制程方法,制备空穴注入 层、空穴传输层、发光层、电子注入层、电子传输层、阴极,制备有机电致发光显示器件。
以ITO/玻璃基板为基础,采用上述相同的方法制备有机电致发光显示器件。经测试,以本发明为基础的有机电致发光显示器件的出光效率比以ITO/玻璃基板为基础的提高5-9%。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围。

Claims (12)

  1. 一种有机电致发光器件,包括依次设置的基板、透明ITO电极、有机发光层和第二电极,其特征在于:
    在所述基板和所述透明ITO电极之间设置有过渡层,
    其中,所述过渡层的折射率由从所述基板侧到所述透明ITO电极侧逐渐增高;
    所述过渡层邻接所述透明ITO电极处的折射率大于或等于所述透明ITO电极的折射率,所述过渡层邻接所述基板处的折射率小于或等于所述基板的折射率。
  2. 根据权利要求1所述的有机电致发光器件,其特征在于,所述过渡层包含高折射率材料和低折射率材料,且所述高折射率材料的折射率大于或等于所述透明ITO电极的折射率,所述低折射率材料的折射率小于或等于所述基板的折射率。
  3. 根据权利要求2所述的有机电致发光器件,其特征在于,所述高折射率材料的折射率大于或等于1.8。
  4. 根据权利要求3所述的有机电致发光器件,其特征在于,所述高折射率材料选自(聚(叔丁基6-(甲硫基)-5-(2-(丙基磺酰基)乙硫基)二环[2,2,1]庚烷-2-羧酸叔丁酯))、聚酰亚胺、含氟聚酰亚胺聚酰亚胺/二氧化钛复合物、聚酰亚胺/硫化铅复合物、聚硫代氨基甲酸酯/硫化铅复合物、或含硫聚醚醚酮中的一种。
  5. 根据权利要求2所述的有机电致发光器件,其特征在于,所述低折射率材料的折射率小于或等于1.5。
  6. 根据权利要求5所述的有机电致发光器件,其特征在于,所述低折射率材料选自聚硅氧烷、聚丙烯酸甲酯、聚丙烯酸、聚氯乙烯、聚环氧乙烷、聚乙烯基醚、聚环氧丙烷、聚乙烯基醇、或聚乙烯基甲基酮中的一种。
  7. 一种显示装置,其特征在于,包括如权利要求1-6中任一项所述的有机电致发光器件。
  8. 一种如权利要求1所述的有机电致发光器件的制备方法,其特征 在于,包括以下形成基板/过渡层/透明ITO电极结构的步骤:
    提供所述基板;
    在所述基板上形成所述过渡层;
    在所述过渡层上形成所述透明ITO电极。
  9. 根据权利要求8所述的制备方法,其特征在于,所述在所述基板上形成所述过渡层包括:
    将一种高折射率材料和一种低折射率材料在有机溶剂中混合,以得到混合溶液,其中所述高折射率材料的折射率大于或等于所述透明ITO电极的折射率,所述低折射率材料的折射率小于或等于所述基板的折射率;
    将所述混合溶液在底板上形成薄膜层;
    对所述薄膜层进行相分离,以形成其中所述高折射率材料由上至下浓度渐高且所述低折射率材料由下至上浓度渐高的过渡层;
    将所述过渡层从所述底板剥离,并将所述过渡层的低折射率侧贴附在所述基板上。
  10. 根据权利要求9所述的制备方法,其特征在于,所述有机溶剂是由两种以上溶剂混合而成的,且所述对所述薄膜层进行相分离包括:
    利用所述高折射率材料和所述低折射率材料在所述两种以上溶剂中溶解度的不同进行相分离。
  11. 根据权利要求9所述的制备方法,其特征在于,所述对所述薄膜层进行相分离包括:
    利用所述高折射率材料和所述低折射率材料的玻璃化转变温度的不同进行相分离。
  12. 根据权利要求9所述的制备方法,其特征在于,通过旋涂、刮涂或喷墨打印在底板上形成所述薄膜层。
PCT/CN2014/090561 2014-03-24 2014-11-07 有机电致发光器件及其制备方法、显示装置 WO2015143876A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410112757.X 2014-03-24
CN201410112757.XA CN103928634B (zh) 2014-03-24 2014-03-24 有机电致发光器件及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2015143876A1 true WO2015143876A1 (zh) 2015-10-01

Family

ID=51146782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090561 WO2015143876A1 (zh) 2014-03-24 2014-11-07 有机电致发光器件及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN103928634B (zh)
WO (1) WO2015143876A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610661A (zh) * 2020-06-30 2020-09-01 上海天马微电子有限公司 一种显示装置及其制备方法
CN115240539A (zh) * 2021-04-22 2022-10-25 华为技术有限公司 一种屏幕盖板、其制备方法、显示模组和终端

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928634B (zh) * 2014-03-24 2016-05-25 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置
CN106158905A (zh) * 2015-04-21 2016-11-23 上海和辉光电有限公司 发光器件结构及有机发光面板
CN105932155B (zh) * 2016-06-07 2018-01-05 西安交通大学 一种柔性透明的薄膜型电阻开关及制备方法
KR102641027B1 (ko) 2017-05-31 2024-02-28 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
WO2018221978A1 (en) * 2017-05-31 2018-12-06 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
CN109559840A (zh) * 2017-09-27 2019-04-02 张家港康得新光电材料有限公司 透明导电膜、其制备方法及电容式触摸屏
CN107516713A (zh) * 2017-09-30 2017-12-26 京东方科技集团股份有限公司 一种oled发光器件及制备方法、显示基板、显示装置
CN109713138B (zh) * 2017-10-25 2020-11-17 Tcl科技集团股份有限公司 一种qled器件
CN108365094A (zh) * 2018-02-07 2018-08-03 深圳市华星光电技术有限公司 柔性基板及其制备方法
CN108400255A (zh) * 2018-04-19 2018-08-14 武汉华星光电半导体显示技术有限公司 有机发光二极管封装结构及其制备方法、显示装置
US10446780B1 (en) 2018-04-19 2019-10-15 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Organic light emitting diode package structure and its method of manufacturing, display device
CN109696759A (zh) * 2018-12-29 2019-04-30 武汉华星光电技术有限公司 高穿透性液晶显示面板制造方法及其显示面板
CN110610656A (zh) * 2019-10-30 2019-12-24 Oppo广东移动通信有限公司 显示屏盖板及其制备方法和电子设备
CN113126376A (zh) * 2021-04-19 2021-07-16 合肥京东方显示技术有限公司 阵列基板及其制备方法、显示面板及显示装置
CN113658521B (zh) * 2021-08-26 2023-06-02 业成科技(成都)有限公司 薄膜显示器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020061418A1 (en) * 2000-09-29 2002-05-23 Yasuo Imanishi Organic Electroluminescence device and photoelectron device using said electroluminescence device
CN1961613A (zh) * 2004-03-26 2007-05-09 松下电工株式会社 有机发光器件
CN101790899A (zh) * 2007-08-27 2010-07-28 松下电工株式会社 有机el发光元件
CN101814560A (zh) * 2009-02-23 2010-08-25 涂爱国 一种光电器件用光学介质、发光器件和太阳能电池
CN103928634A (zh) * 2014-03-24 2014-07-16 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484349A (zh) * 2002-09-16 2004-03-24 铼德科技股份有限公司 发光元件的微共振腔的多层反射膜及其制程
CN100485992C (zh) * 2003-06-26 2009-05-06 哈尔滨东科光电科技股份有限公司 高对比度电致发光器件
JP4410123B2 (ja) * 2005-02-10 2010-02-03 株式会社東芝 有機elディスプレイ
KR20120042143A (ko) * 2010-10-22 2012-05-03 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR101782557B1 (ko) * 2010-10-25 2017-09-28 삼성디스플레이 주식회사 유기 발광 디스플레이 장치 및 그 제조 방법
CN102569658B (zh) * 2010-12-27 2015-10-28 康佳集团股份有限公司 一种oled器件及其制作方法
CN102751447B (zh) * 2012-07-04 2015-08-12 信利半导体有限公司 光学过渡层材料、光学基板/封装层、oled及各自制法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020061418A1 (en) * 2000-09-29 2002-05-23 Yasuo Imanishi Organic Electroluminescence device and photoelectron device using said electroluminescence device
CN1961613A (zh) * 2004-03-26 2007-05-09 松下电工株式会社 有机发光器件
CN101790899A (zh) * 2007-08-27 2010-07-28 松下电工株式会社 有机el发光元件
CN101814560A (zh) * 2009-02-23 2010-08-25 涂爱国 一种光电器件用光学介质、发光器件和太阳能电池
CN103928634A (zh) * 2014-03-24 2014-07-16 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610661A (zh) * 2020-06-30 2020-09-01 上海天马微电子有限公司 一种显示装置及其制备方法
CN111610661B (zh) * 2020-06-30 2022-07-08 上海天马微电子有限公司 一种显示装置及其制备方法
CN115240539A (zh) * 2021-04-22 2022-10-25 华为技术有限公司 一种屏幕盖板、其制备方法、显示模组和终端

Also Published As

Publication number Publication date
CN103928634A (zh) 2014-07-16
CN103928634B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2015143876A1 (zh) 有机电致发光器件及其制备方法、显示装置
US10305050B2 (en) Flexible panels and the manufacturing methods thereof
JP6165329B2 (ja) タッチパネルの製造方法
JP5675966B2 (ja) 有機el素子用の光取出し透明基板及びそれを用いた有機el素子
TWI473318B (zh) 光學膜以及發光裝置
US10038159B2 (en) Organic electroluminescent device structure and manufacturing for the same
TWI480572B (zh) A transparent conductive element, an input device, and a display device
WO2012098694A1 (ja) 透明導電性素子、入力装置、および表示装置
CN106057857A (zh) 一种柔性有机发光二极管显示器及其制作方法
US10950482B2 (en) Device for supporting substrate, apparatus for manufacturing display panel, and method for supporting substrate
WO2017045355A1 (zh) 不平坦粒子层制备方法、有机电致发光器件和显示装置
JP6661113B2 (ja) 発光電気化学素子及び該発光電気化学素子を有する発光装置
EA036248B1 (ru) Прибор на органических светодиодах и устройство отображения
JP2004020746A (ja) 発光装置用基板およびこれを用いた発光装置
WO2016176941A1 (zh) 有机电致发光器件及其制备方法
KR101905147B1 (ko) 접착 박막을 이용한 기판의 접착방법
US9698381B1 (en) Manufacturing method for organic electroluminescent device and organic electroluminescent device
TW201248955A (en) Organic emitting device
JP2005525443A5 (zh)
CN106328682B (zh) Oled显示器件的制备方法及oled显示器件
CN108933196A (zh) 柔性基板及其制备方法、柔性oled器件和显示装置
KR20110080632A (ko) 고굴절 투명 기판 및 이를 포함하는 유기발광소자
WO2020211134A1 (zh) 有机发光二极管显示器及其制造方法
KR101239263B1 (ko) 플렉서블 소자의 제조방법
KR102255676B1 (ko) 기능성 박막 형상화 제조 방법 및 이를 통해 제조된 전자 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.01.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14887354

Country of ref document: EP

Kind code of ref document: A1