WO2015143850A1 - 恒角剪刀 - Google Patents

恒角剪刀 Download PDF

Info

Publication number
WO2015143850A1
WO2015143850A1 PCT/CN2014/086836 CN2014086836W WO2015143850A1 WO 2015143850 A1 WO2015143850 A1 WO 2015143850A1 CN 2014086836 W CN2014086836 W CN 2014086836W WO 2015143850 A1 WO2015143850 A1 WO 2015143850A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
edge
equation
angle
constant
Prior art date
Application number
PCT/CN2014/086836
Other languages
English (en)
French (fr)
Inventor
谢培树
Original Assignee
谢培树
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谢培树 filed Critical 谢培树
Publication of WO2015143850A1 publication Critical patent/WO2015143850A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B13/00Hand shears; Scissors
    • B26B13/06Hand shears; Scissors characterised by the shape of the blades

Definitions

  • the present invention relates to a scissors, and more particularly to a scissors blade.
  • the conventional scissors comprises seven components: a blade body (1a), a blade body (2a), a blade edge (1b), a blade edge (2b), a connecting shaft (3a), a tool holder (1c) and a knife.
  • Handle (2c) The blade (1b) is on the upper portion of the blade body (1a), and the blade edge (2b) is on the upper portion of the blade body (2a).
  • the shank (1c) is at the lower part of the blade body (1a), and the shank (2c) is at the lower portion of the blade body (2a).
  • the edge of the blade (1b) and the blade (2b) are straight segments and are symmetrical along the central axis. For ease of explanation, the following proper nouns are defined according to the main view of the ordinary scissors.
  • Target The object that the scissors cut.
  • Connection point The center point of the connection axis. Its position is as shown in the center point of (3a) in Fig. 1.
  • Blade The sharp part of the knife. Its shape is as shown in (1b) of FIG.
  • Blade point A point on the edge of the blade.
  • Blade intersection the intersection of 2 edge edges. Its position is as shown in (1a) of Fig. 1.
  • the central axis the rays from the junction point that pass through the intersection of the blades. Its position is as shown in (4b) of FIG.
  • Tangent rays rays that are tangent to the edge of a blade from the intersection of the blade and whose angle to the central axis is less than or equal to Its position is as shown in (1c) of FIG.
  • Shear angle The angle formed by the two cut rays of the intersection of the blade, and which is less than or equal to ⁇ . Its position is as shown in (1d) of FIG.
  • Axis angle the positive angle between the central axis of a certain blade point and the tangent rays passing through the point, and it is smaller than Its position is as shown in (1e) of Fig. 1.
  • Intersection radius the distance between the intersection of the blade and the connection point.
  • Intra-intersection point When the shear angle is less than or equal to ⁇ , the intersection of the blade that satisfies the minimum radius of intersection is the in-intersection point.
  • Blade start point The edge point of the blade with the smallest distance from the joint. Its position is as shown in (1f) of FIG.
  • Short-axis in the center axis the distance between the connection point and the start of the blade.
  • Center axis long distance the distance between the connection point and the end of the blade.
  • Shear distance The value of the long axis of the middle axis minus the short distance of the middle axis.
  • Blade utilization The ratio of the shear distance to the long axis of the center axis.
  • ⁇ OBC and ⁇ ODE are part of the cutting edge of the ordinary scissors.
  • the intersection of the two edge OB and OD is O
  • OA is a part of the central axis
  • the two cutting rays at the edge of the blade are OL, OM. .
  • OB and OD are straight segments
  • OL covers OB and OM covers OD.
  • ⁇ AOB is the mid-axis angle.
  • the pentagon OGHIJ is a cross-sectional view of the target in a sheared state, and its sides GH and JI are parallel to OA. Since OB and OD are symmetric along the OA, the line segment JG is perpendicular to the OA. The midpoint of the line segment JG is K.
  • the line segment OK is perpendicular to JG.
  • Point A and point B are known, and the symbol
  • is the thickness of the target.
  • the shear plane of the target is the triangle ⁇ OGJ, and the direction of the blade pressure F is perpendicular to the OB. Since the thickness of the target
  • Figure 3 shows the normal scissors rotation process, where O 1 is the connection point, B 1 is the edge of the blade, C 1 is the end of the blade, and the ray For the central axis, B 1 is the inner intersection and H 1 is the diplomatic point.
  • the edge B 1 C 1 is first rotated to the line segment D 1 F 1 and then rotated to the line segment G 1 H 1 . Therefore
  • is:
  • Equation (2.8) is equivalent to the following formula:
  • the mid-axis angle ⁇ cannot increase the average stress and increase the blade utilization. Therefore, the minimum center axis angle ⁇ of the ordinary scissors has a narrow optimization space, which makes it difficult to optimize the overall performance of the ordinary scissors.
  • the present invention aims to provide a constant angle scissors and a method of manufacturing the same. Constant angle scissors not only increase the average stress of all the cutting edge points, but also avoid reducing the blade utilization.
  • the constant angle scissors includes seven components: a blade body (5a), a blade body (6a), a blade edge (5b), a blade edge (6b), a connecting shaft (7a), a shank (5c), and a shank (6c).
  • the blade (5b) is on the upper part of the blade (5a), the blade (6b) is on the upper part of the blade (6a), the shank (5c) is on the lower part of the blade (5a), and the shank (6c) is on the lower part of the blade (6a); 5b) and the edge of the blade (6b) is curved and symmetrical along the central axis; the edge of the blade (5b) is ⁇ , the connection point of the connecting shaft (7a) is O; (5b) the starting point of the upper blade is P, (5b) The end point of the blade is Q; the point O is used as the origin of the 2-dimensional coordinate system, and the Y-axis of the 2-dimensional coordinate system is established by the straight line PO, and the direction of the Y-axis is equal to the ray.
  • the direction of the point Q is a straight line perpendicular to the Y axis, and its intersection with the Y axis is R; the origin O is one X axis perpendicular to the Y axis, and the direction of the X axis is equal to the ray.
  • Figure 4 shows the rotational trajectory of a constant angle scissors whose edge is a curved segment.
  • the edge B 2 I 2 is first rotated to the curve segment D 2 F 2 and then rotated to the curve segment G 2 H 2 .
  • the central axis angle of any blade point on the constant angle scissors is approximately equal to a constant value.
  • the parameters of Fig. 4 and Fig. 3 have the following relationship:
  • , ⁇ O 2 B 2 C 2 ⁇ O 1 B 1 C 1 .
  • the central axis angle of any blade point on it is approximately equal to a constant value. Therefore, as long as the central axis angle ⁇ > ⁇ is set, all the cutting edge points on the constant angle scissors can generate a large average stress.
  • the blade utilization rate of the constant angle scissors is larger than that of the ordinary scissors.
  • the constant angle scissors can increase the average stress of all the cutting edge points and avoid reducing the blade utilization.
  • the blade edge (5b) and the blade edge (6b) are machined on the blade body.
  • the central axis angle can be increased as much as possible for the friction coefficient of the target. Setting a constant angle scissors with a specific mid-axis angle can save labor and stable cutting of specific targets, and significantly optimize the application performance of the constant-angle scissors.
  • Figure 1 is a front view of a conventional scissors.
  • Figure 2 is a cross-sectional view of a conventional scissors cutting article.
  • Figure 3 is a diagram showing the utilization of the blade of a conventional scissors.
  • Figure 4 is a diagram showing the blade utilization of the constant angle scissors.
  • Figure 5 is a front view of a constant angle scissors.
  • Figure 6 is a Cartesian equation diagram of the edge of the blade (5b).
  • Figure 7 is a polar coordinate equation of the edge of the blade (5b).
  • the constant angle scissors embodiment comprises seven components: a blade body (5a), a blade body (6a), a blade edge (5b), a blade edge (6b), a connecting shaft (7a), a shank (5c) and a shank. (6c); the blade (5b) is on the upper portion of the blade body (5a), the blade edge (6b) is on the upper portion of the blade body (6a); the blade handle (5c) is on the lower portion of the blade body (5a), and the blade handle (6c) is on the lower portion of the blade body (6a);
  • the edges of the blade edge (5b) and the blade edge (6b) are curved segments and are symmetrical along the central axis.
  • the origin O represents the constant angle scissors connection point
  • the curve ⁇ represents the edge of the blade A 2
  • the point A represents the intersection of the blade edge
  • the straight line AB represents the tangent of the curve ⁇ at point A
  • B is the point where the tangent of the point A intersects with the X-axis.
  • the angle formed by the X axis is ⁇
  • ray The angle formed by the X-axis is ⁇
  • the central axis angle ⁇ ⁇ - ⁇ . According to the definition of the central axis angle, Established.
  • the coordinates of point A are (x, y). According to the definition of the central axis angle, Established.
  • edge equation of the blade is established as a polar coordinate equation.
  • r as the polar path
  • as the polar angle
  • polar coordinate transformation
  • m and n as any two positive odd numbers. The following is a discussion of the form of the edge equation of the blade based on the values of ⁇ and ⁇ .
  • Equation (5.8) represents an arbitrary constant.
  • And Equation (5.8) is a constant angle curve.
  • Equation (5.8) is still a constant angle curve.
  • equation (5.8) is the edge equation of the blade (5b).
  • the parameters Represents the central axis angle constant, and the parameter C ⁇ (- ⁇ , + ⁇ ) represents any constant.
  • the parameter ⁇ is used to adjust the mid-axis angle, and the parameter C is used to adjust the shape of the equation curve.
  • the curve in Figure 7 is a graph of equation (5.8).
  • Equation (5.13) can increase the blade utilization by reducing ( ⁇ 1 - ⁇ 2 ).
  • Equation (5.13) shows: if in the interval When ⁇ is increased and decreased by ( ⁇ 1 - ⁇ 2 ), the average stress of the cross section of the target increases, and the blade utilization rate is still large.
  • edge equation of the blade edge (6b) can also be established first, and then the edge equation of the blade edge (5b) can be established.
  • the central axis angle of the constant angle scissors is not as large as possible, for the following reasons:
  • the friction coefficient of the target produces friction, which prevents the target from being pushed by the blade.
  • the present embodiment sets one parameter ⁇ as large as possible and one suitable parameter C for the friction coefficient of the target.
  • a cutting edge starting point (r 1 , ⁇ 1 ) and a cutting edge end point (r 2 , ⁇ 2 ) are determined on the edge of the cutting edge (5b), and the closed interval [ ⁇ 1 , ⁇ 2 bound by the two-point polar angle is determined. ] as the domain of the edge of the blade.
  • the curve outside the blade edge definition domain is deleted.
  • one blade start point and one blade end point which are symmetrical with the blade edge (5b) are determined on the edge of the blade edge (6b).
  • the starting point of the blade is (r 1 , - ⁇ 1 )
  • the end of the blade is (r 2 , - ⁇ 2 ).
  • the closed interval [- ⁇ 2 , - ⁇ 1 ] constrained by the two-point polar angle is taken as the domain of the edge of the blade.
  • the curve outside the blade edge definition domain is deleted.
  • the blade edge (5b) and the blade edge (6b) are machined on the blade body.
  • the constant angle scissors can increase the average stress of all the cutting edge points and avoid reducing the blade utilization. Setting a constant angle scissors with a specific mid-axis angle can save labor and stable cutting of specific targets, and significantly optimize the application performance of the constant-angle scissors. In addition, it is also possible to add serrations at the edge of the blade of the constant angle scissors to increase the coefficient of friction.
  • the blade (5b) can also be used as a separate component to form a pair of scissors with other shaped blades.
  • the cutting edge (2b) in Fig. 1 can replace the cutting edge (6b) in Fig. 5, so that the cutting edge (5b) in Fig. 5 is constructed as a pair of scissors together with the straight cutting edge.
  • the blade (6b) can also be used as a separate component to form a pair of scissors with other shaped blades.
  • the cutting edge (1b) in Fig. 1 can replace the cutting edge (5b) in Fig. 5, so that the cutting edge (6b) in Fig. 5 is constructed as a pair of scissors together with the straight cutting edge.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Scissors And Nippers (AREA)

Abstract

一种恒角剪刀,其包括7个组件:刀身(5a)、刀身(6a)、刀刃(5b)、刀刃(6b)、连接轴(7a)、刀柄(5c)和刀柄(6c)。刀刃(5b)在刀身(5a)上部,刀刃(6b)在刀身(6a)上部,刀柄(5c)在刀身(5a)下部,刀柄(6c)在刀身(6a)下部。恒角剪刀的特征在于:刀刃(5b)和刀刃(6b)的边缘为曲线段且沿中轴线对称,刀刃(5b)和刀刃(6b)上任意刀刃点的中轴角都约等于恒定值。恒角剪刀既能增大所有刀刃点的平均应力,又能避免减小刀刃利用率。它可以针对目标物的摩擦系数,尽可能增大中轴角。设置特定中轴角的恒角剪刀,能够省力、稳定地剪切特定目标物,显著优化恒角剪刀的应用性能。

Description

恒角剪刀 技术领域
本发明涉及一种剪刀,尤其涉及一种剪刀刀刃。
背景技术
根据图1所示普通剪刀主视图,普通剪刀包括7个组件:刀身(1a)、刀身(2a)、刀刃(1b)、刀刃(2b)、连接轴(3a)、刀柄(1c)和刀柄(2c)。刀刃(1b)在刀身(1a)上部,刀刃(2b)在刀身(2a)上部。刀柄(1c)在刀身(1a)下部,刀柄(2c)在刀身(2a)下部。刀刃(1b)和刀刃(2b)的刀刃边缘为直线段且沿中轴线对称。为便于阐述,本文根据普通剪刀主视图来定义以下专有名词。
目标物:剪刀剪切的对象。
距离:欧氏距离。
连接点:连接轴的中心点。其位置如图1中(3a)的中心点。
刀刃:刀身上的锋利部分。其形如图1中的(1b)。
刀刃点:刀刃边缘上的一点。
刀刃交点:2个刀刃边缘的交点。其位置如图1中的(4a)。
中轴线:从连接点出发,过刀刃交点的射线。其位置如图1中的(4b)。
切射线:从刀刃交点出发、相切于某个刀刃边缘的射线,且其与中轴线的夹角小于或等于
Figure PCTCN2014086836-appb-000001
其位置如图1中的(4c)。
剪切角:刀刃交点的2条切射线形成的角度,且其小于或等于π。其位置如图1中的(4d)。
中轴角:过某个刀刃点的中轴线与过该点的切射线的正夹角,且其小于
Figure PCTCN2014086836-appb-000002
其位置如图1中的(4e)。
交点半径:刀刃交点与连接点的距离。
内交点:当剪切角小于或等于π时,满足交点半径最小的刀刃交点就是内交点。
外交点:当剪切角小于或等于π时,满足交点半径最大的刀刃交点就是外交点。
刀刃起点:与连接点距离最小的刀刃边缘点。其位置如图1中的(4f)。
刀刃终点:与连接点距离最大的刀刃边缘点。其位置如图1中的(4g)。
中轴短距:连接点与刀刃起点之间的距离。
中轴长距:连接点与刀刃终点之间的距离。
剪切距离:中轴长距减去中轴短距后的数值。
刀刃利用率:剪切距离与中轴长距的比值。
普通剪刀的刀刃边缘为直线段,它的中轴角在转动时显著变化。因此,普通剪刀属于变角剪刀。普通剪刀的旋转剪切过程等价于刀刃交点外移。
如图2所示,ΔOBC和ΔODE为普通剪刀的部分刀刃,2个刀刃边缘OB和OD的交点为O,OA为中轴线的一部分,而刀刃边缘在O处的2条切射线为OL、OM。因为OB和OD为直线段,所以OL覆盖OB,而OM覆盖OD。∠AOB为中轴角。五边形OGHIJ是目标物在剪切状态下的截面图,其边GH与JI皆平行于OA。因为OB和OD沿OA对称,所以线段JG垂直于OA。线段JG的中点为K。显然线段OK垂直于JG。已知点A和点B,本文用符号|AB|代表A和B的距离。|JG|就是目标物的厚度。 目标物的剪切面就是三角形ΔOGJ,而刀刃压力F的方向则垂直于OB。因为目标物的厚度|JG|很小,∠AOB在剪切三角形ΔOGJ时都约等于恒定值。根据力学理论,刀刃压力F会产生1个方向垂直于线段OK的分力F′,二者关系如下所示:
F′=F.cos∠AOB        (2.1)
根据平面几何理论,容易计算直角三角形ΔOGJ的面积S:
Figure PCTCN2014086836-appb-000003
根据材料力学理论,剪切面ΔOGJ产生的平均切应力
Figure PCTCN2014086836-appb-000004
为:
Figure PCTCN2014086836-appb-000005
将(2.1)、(2.2)代入(2.3),可得:
Figure PCTCN2014086836-appb-000006
假设目标物的许用切应力为τ,则剪刀剪切成功的充分条件为:
Figure PCTCN2014086836-appb-000007
将(2.4)代入(2.5),可得:
Figure PCTCN2014086836-appb-000008
当用普通剪刀连续剪切目标物时,∠AOB由大变小,最小刀刃压力F也由小变大。因此,普通剪刀所需的最小刀刃压力总是逐渐增大,并逐渐增加用户用力。
假设剪刀刀刃在刀刃终点处的中轴角为α。若α很小,则剪刀就难以剪切高强度材料,应用范围显著减小。
若α较大,则中轴角变化区间为
Figure PCTCN2014086836-appb-000009
下面根据图3讨论此情况。
图3展示了普通剪刀旋转过程,其中O1为连接点,B1为刀刃起点,C1为刀刃终点,射线
Figure PCTCN2014086836-appb-000010
为中轴线,B1为内交点,H1为外交点。刀刃边缘B1C1先旋转至线段D1F1,再旋转至线段G1H1。因此|O1B1|=|O1G1|,|B1C1|=|G1H1|。根据平面几何理论,下式成立:
Figure PCTCN2014086836-appb-000011
由于|O1B1|=|O1G1|,公式(2.6)等价于下式:
Figure PCTCN2014086836-appb-000012
剪切距离|H1B1|与中轴长距|H1O1|的比值为:
Figure PCTCN2014086836-appb-000013
因为
Figure PCTCN2014086836-appb-000014
公式(2.8)等价于下式:
Figure PCTCN2014086836-appb-000015
根据上文假设,已知∠O1H1G1=α。若α增大,则公式(2.9)中的
Figure PCTCN2014086836-appb-000016
就减小,从而减小了刀刃利用率,降低了剪刀的应用性能。
综上所述,中轴角α无法既增大平均应力,又增大刀刃利用率。因此,普通剪刀的最小中轴角α优化空间狭窄,其难以优化普通剪刀的综合性能。
发明内容
本发明旨在提供一种恒角剪刀及其制造方法。恒角剪刀既能增大所有刀刃点的平均应力,又能避免减小刀刃利用率。
此处结合图5解释恒角剪刀的特征。如图5所示,恒角剪刀包括7个组件:刀身(5a)、刀身(6a)、刀刃(5b)、刀刃(6b)、连接轴(7a)、刀柄(5c)和刀柄(6c);刀刃(5b)在刀身(5a)上部,刀刃(6b)在刀身(6a)上部,刀柄(5c)在刀身(5a)下部,刀柄(6c)在刀身(6a)下部;刀刃(5b)和刀刃(6b)的边缘为曲线且沿中轴线对称;刀刃(5b)的边缘为Φ,连接轴(7a)的连接点为O;(5b)上刀刃起点为P,(5b)上刀刃终点为Q;用点O当作2维坐标系的原点,用直线PO建立2维坐标系的Y轴,Y轴的方向等于射线
Figure PCTCN2014086836-appb-000017
的方向;过点Q作1条垂直于Y轴的直线,其与Y轴的交点为R;过原点O作1条垂直于Y轴的X轴,X轴的方向等于射线
Figure PCTCN2014086836-appb-000018
的方向;将射线
Figure PCTCN2014086836-appb-000019
逆时针旋转弧度2π,每隔
Figure PCTCN2014086836-appb-000020
弧度,就用其与Φ的交点当作Φ的样本,最终依次得到样本集合{ai}={a1,a2,a3,…,an};样本ai的下标i代表
Figure PCTCN2014086836-appb-000021
旋转的弧度为
Figure PCTCN2014086836-appb-000022
依次计算样本ai的中轴角αi,得到中轴角集合{αi}={α123,…,αn};计算集合{αi}的算术平均值
Figure PCTCN2014086836-appb-000023
Figure PCTCN2014086836-appb-000024
Figure PCTCN2014086836-appb-000025
恒成立。
图4展示了恒角剪刀的旋转轨迹,该恒角剪刀的刀刃边缘为曲线段。当刀刃边缘B2I2先旋转至曲线段D2F2,再旋转至曲线段G2H2时,恒角剪刀上任意刀刃点的中轴角都约等于恒定值。图4与图3的参数存在以下关系:|B2O2|=|B1O1|、|B2C2|=|B1C1|、|D2E2|=|G1H1|、∠O2B2C2=∠O1B1C1
对于恒角剪刀,其上任意刀刃点的中轴角都约等于恒定值。因此,只要设置中轴角β>α,恒角剪刀上的所有刀刃点都能产生较大的平均应力。
根据平面几何理论,容易推断:|E2O2|=|H1O1|。因此可推导得:
|E2O2|=|H1O1|
Figure PCTCN2014086836-appb-000026
Figure PCTCN2014086836-appb-000027
因为|B2O2|=|B1O1|,所以上式可推导得:
|H2B2|>|H1B1|
Figure PCTCN2014086836-appb-000028
Figure PCTCN2014086836-appb-000029
Figure PCTCN2014086836-appb-000030
Figure PCTCN2014086836-appb-000031
Figure PCTCN2014086836-appb-000032
因此,恒角剪刀的刀刃利用率大于普通剪刀的刀刃利用率。
综上所述,恒角剪刀既能增大所有刀刃点的平均应力,又能避免减小刀刃利用率。
本发明中的恒角剪刀采用以下技术方案:
1.建立刀刃(5b)的边缘方程,或者建立刀刃(6b)的边缘方程;
2.利用对称方法,建立另一个刀刃的边缘方程;
3.针对目标物的强度和摩擦系数,设置合适的方程参数;
4.在刀刃(5b)或刀刃(6b)的边缘方程上确定1个刀刃起点和1个刀刃终点,并将两点极角所约束的闭区间当作该刀刃边缘的定义域。在该刀刃边缘方程上,删除刀刃边缘定义域以外的曲线;
5.利用对称方法,在另一个刀刃的边缘方程上确定1个刀刃起点和1个刀刃终点,并将两点极角约束的闭区间当作该刀刃边缘的定义域。在该刀刃边缘方程上,删除刀刃边缘定义域以外的曲线;
6.根据刀刃(5b)和刀刃(6b)的边缘方程,在刀身上加工出刀刃(5b)和刀刃(6b)。
本发明具备以下优势:
1.既能增大所有刀刃点的平均应力,又能避免减小刀刃利用率。
2.可以针对目标物的摩擦系数,尽可能增大中轴角。设置特定中轴角的恒角剪刀,能够省力、稳定地剪切特定目标物,显著优化恒角剪刀的应用性能。
附图说明
图1为普通剪刀的主视图。
图2为普通剪刀剪切物品的截面图。
图3为普通剪刀的刀刃利用率图。
图4为恒角剪刀的刀刃利用率图。
图5为恒角剪刀的主视图。
图6为刀刃(5b)边缘的直角坐标方程图。
图7为刀刃(5b)边缘的极坐标方程图。
具体实施方法
下面提供本发明的一个最佳实施例,并详细描述本发明。
如图5所示,恒角剪刀实施例包括7个组件:刀身(5a)、刀身(6a)、刀刃(5b)、刀刃(6b)、连接轴(7a)、刀柄(5c)和刀柄(6c);刀刃(5b)在刀身(5a)上部,刀刃(6b)在刀身(6a)上部;刀柄(5c)在刀身(5a)下部,刀柄(6c)在刀身(6a)下部;刀刃(5b)和刀刃(6b)的边缘为曲线段且沿中轴线对称。
恒角剪刀实施例的技术指标为
Figure PCTCN2014086836-appb-000033
超过恒角剪刀要求的技术指标
Figure PCTCN2014086836-appb-000034
首先,我们建立如图6所示的直角坐标系,原点为O,水平坐标轴为X轴,垂直坐标轴为Y轴。其次建立刀刃(5b)或者刀刃(6b)的边缘方程。本实施例先建立刀刃(5b)的边缘方程,再建立刀刃(6b)的边缘方程。以下根据图6,定义一些变量。
原点O代表恒角剪刀连接点,曲线Ψ代表刀刃A2的边缘,A点代表刀刃交点,射线
Figure PCTCN2014086836-appb-000035
代表中轴线,直线AB代表曲线Ψ在A点处的切线,B为A点切线与X轴交点,射线
Figure PCTCN2014086836-appb-000036
与X轴构成的角度为α,射线
Figure PCTCN2014086836-appb-000037
与X轴构成的角度为β,中轴角θ=β-α。根据中轴角定义,
Figure PCTCN2014086836-appb-000038
成立。
因为恒角剪刀实施例旨在满足
Figure PCTCN2014086836-appb-000039
其刀刃边缘方程满足以下充分条件:
当恒角剪刀刀刃任意转动时,其上任意点的中轴角都等于恒定值。
如图6所示,A点坐标为(x,y)。根据中轴角定义,
Figure PCTCN2014086836-appb-000040
成立。
此处将刀刃边缘方程建立成极坐标方程。定义r为极径,定义α为极角,设置以下极坐标变换:
Figure PCTCN2014086836-appb-000041
则刀刃边缘方程为r(α)=0。定义字符m、n为任意2个正奇数。以下根据α和β的取值,分类讨论刀刃边缘方程的形式。
(1)
Figure PCTCN2014086836-appb-000042
Figure PCTCN2014086836-appb-000043
根据导数定义可得:
Figure PCTCN2014086836-appb-000044
根据(5.2)、(5.1)可得:
Figure PCTCN2014086836-appb-000045
Figure PCTCN2014086836-appb-000046
Figure PCTCN2014086836-appb-000047
Figure PCTCN2014086836-appb-000048
根据(5.3),可得:
Figure PCTCN2014086836-appb-000049
Figure PCTCN2014086836-appb-000050
Figure PCTCN2014086836-appb-000051
根据(5.3),可得:
Figure PCTCN2014086836-appb-000052
Figure PCTCN2014086836-appb-000053
Figure PCTCN2014086836-appb-000054
Figure PCTCN2014086836-appb-000055
Figure PCTCN2014086836-appb-000056
根据平面几何理论和三角恒等式,可得:
tanθ=tan(β-α)
Figure PCTCN2014086836-appb-000057
根据(5.4)、(5.6)、(5.7),可得:
Figure PCTCN2014086836-appb-000058
Figure PCTCN2014086836-appb-000059
Figure PCTCN2014086836-appb-000060
Figure PCTCN2014086836-appb-000061
Figure PCTCN2014086836-appb-000062
Figure PCTCN2014086836-appb-000063
Figure PCTCN2014086836-appb-000064
Figure PCTCN2014086836-appb-000065
方程(5.8)中的参数C∈(-∞,+∞)代表任意常量。当
Figure PCTCN2014086836-appb-000066
Figure PCTCN2014086836-appb-000067
时,方程(5.8)是一条恒角曲线。
Figure PCTCN2014086836-appb-000068
Figure PCTCN2014086836-appb-000069
根据(5.1),可得:
Figure PCTCN2014086836-appb-000070
Figure PCTCN2014086836-appb-000071
Figure PCTCN2014086836-appb-000072
Figure PCTCN2014086836-appb-000073
Figure PCTCN2014086836-appb-000074
将(5.8)代入(5.9),可得:
Figure PCTCN2014086836-appb-000075
Figure PCTCN2014086836-appb-000076
Figure PCTCN2014086836-appb-000077
代入(5.10),可得:
Figure PCTCN2014086836-appb-000078
Figure PCTCN2014086836-appb-000079
因此在点
Figure PCTCN2014086836-appb-000080
处,曲线r=eα·cotθ+C的切线存在且为垂直切线。此时,
Figure PCTCN2014086836-appb-000081
成立。同时,
Figure PCTCN2014086836-appb-000082
也成立。因此,α=β-θ成立,即β-α=θ成立。所以当
Figure PCTCN2014086836-appb-000083
Figure PCTCN2014086836-appb-000084
时,方程(5.8)仍然是一条恒角曲线。
(3)
Figure PCTCN2014086836-appb-000085
Figure PCTCN2014086836-appb-000086
将(5.8)代入(5.3),可得:
Figure PCTCN2014086836-appb-000087
Figure PCTCN2014086836-appb-000088
Figure PCTCN2014086836-appb-000089
代入(5.11),可得:
tanβ=-cotθ
Figure PCTCN2014086836-appb-000090
Figure PCTCN2014086836-appb-000091
Figure PCTCN2014086836-appb-000092
Figure PCTCN2014086836-appb-000093
Figure PCTCN2014086836-appb-000094
代入(5.12),可得:
β-α=θ
所以
Figure PCTCN2014086836-appb-000095
Figure PCTCN2014086836-appb-000096
时,方程(5.8)仍然是一条恒角曲线。
综上所述,方程(5.8)就是刀刃(5b)边缘方程。其中,参数
Figure PCTCN2014086836-appb-000097
代表中轴角常量,参数C∈(-∞,+∞)代表任意常量。参数θ用于调节中轴角,参数C用于调节方程曲线的形状。图7中的曲线就是方程(5.8)的图形。
假设方程(5.8)的刀刃起点和刀刃终点分别为(r11)、(r22)。根据定义可知,α1<α2成立。因为方程(5.8)是严格增函数,所以r1<r2也成立。此时,剪切距离为(r2-r1)。于是可得如下刀刃利用率:
Figure PCTCN2014086836-appb-000098
Figure PCTCN2014086836-appb-000099
当θ固定时,等式(5.13)可以通过减小(α12)来增大刀刃利用率。
Figure PCTCN2014086836-appb-000100
为例。此时,设置
Figure PCTCN2014086836-appb-000101
Figure PCTCN2014086836-appb-000102
此时的刀刃利用率仍然很大。
等式(5.13)表明:若在区间
Figure PCTCN2014086836-appb-000103
内增大θ并且减小(α12),则目标物截面的平均应力增大,而刀刃利用率仍然很大。
以X轴为对称轴,作刀刃(5b)边缘方程的对称,就获得刀刃(6b)的边缘方程:
r=e(-α)·cotθ+C               (5.14)
利用对称方法,也可先建立刀刃(6b)的边缘方程,再建立刀刃(5b)的边缘方程。
恒角剪刀的中轴角并非越大越好,原因如下:
1.增大恒角剪刀的中轴角,可以增大所有刀刃点的平均应力,但也会增大所有刀刃点的刀刃推力。刀刃推力会移动目标物,从而破坏稳定的剪切。
2.目标物的摩擦系数会产生摩擦力,它可阻止目标物被刀刃推动。
因此,本实施例针对目标物的摩擦系数,设置1个尽可能大的参数θ和1个合适的参数C。
在刀刃(5b)的边缘上确定1个刀刃起点(r11)和1个刀刃终点(r22),并将两点极角所约束的闭区间[α12]当作该刀刃边缘的定义域。在刀刃(5b)的边缘方程上,删除刀刃边缘定义域以外的曲线。
利用对称方法,在刀刃(6b)的边缘上确定与刀刃(5b)对称的1个刀刃起点和1个刀刃终点。于是,在刀刃(6b)的边缘上刀刃起点为(r1,-α1),在刀刃(6b)的边缘上刀刃终点为(r2,-α2)。将两点极角所约束的闭区间[-α2,-α1]当作该刀刃边缘的定义域。在刀刃(6b)的边缘方程上,删除刀刃边缘定义域以外的曲线。
最后,根据刀刃(5b)和刀刃(6b)的边缘方程,在刀身上加工出刀刃(5b)和刀刃(6b)。
综上所述,恒角剪刀既可以增大的所有刀刃点的平均应力,又避免减小刀刃利用率。设置特定中轴角的恒角剪刀,能够省力、稳定地剪切特定目标物,显著优化恒角剪刀的应用性能。此外,也可在恒角剪刀的刀刃边缘增加锯齿以增大其摩擦系数。刀刃(5b)也可作为单独的组件,与其它形状的刀刃构造成一把剪刀。例如,图1中的刀刃(2b)可以替换图5中的刀刃(6b),这样图5中的刀刃(5b)就与直线刀刃共同构造成一把剪刀。刀刃(6b)也可作为单独的组件,与其它形状的刀刃构造成一把剪刀。例如,图1中的刀刃(1b)可以替换图5中的刀刃(5b),这样图5中的刀刃(6b)就与直线刀刃共同构造成一把剪刀。
以上叙述及图像已揭示本发明的较佳实施例。该实施例应被视为用以说明本发明,而非用以限制本发明。本发明的保护范围,并不局限于该实施例。

Claims (9)

  1. 一种恒角剪刀,其包括7个组件:刀身(5a)、刀身(6a)、刀刃(5b)、刀刃(6b)、连接轴(7a)、刀柄(5c)和刀柄(6c);刀刃(5b)在刀身(5a)上部,刀刃(6b)在刀身(6a)上部,刀柄(5c)在刀身(5a)下部,刀柄(6c)在刀身(6a)下部;其特征在于:刀刃(5b)和刀刃(6b)的边缘为曲线段且沿中轴线对称,刀刃(5b)的边缘为Φ,连接轴(7a)的连接点为O,(5b)上刀刃起点为P,(5b)上刀刃终点为Q,用点O当作2维坐标系的原点,用直线PO建立2维坐标系的Y轴,Y轴的方向等于射线
    Figure PCTCN2014086836-appb-100001
    的方向,过点Q作1条垂直于Y轴的直线,其与Y轴的交点为R,过原点O作1条垂直于Y轴的X轴,X轴的方向等于射线
    Figure PCTCN2014086836-appb-100002
    的方向,将射线
    Figure PCTCN2014086836-appb-100003
    逆时针旋转弧度2π,每隔
    Figure PCTCN2014086836-appb-100004
    弧度,就用其与Φ的交点当作Φ的样本,最终依次得到样本集合{ai}={a1,a2,a3,…,an},样本ai的下标i代表
    Figure PCTCN2014086836-appb-100005
    旋转的弧度为
    Figure PCTCN2014086836-appb-100006
    依次计算样本ai的中轴角αi,得到中轴角集合{αi}={α123,…,αn},计算集合{αi}的算术平均值
    Figure PCTCN2014086836-appb-100007
    Figure PCTCN2014086836-appb-100008
    Figure PCTCN2014086836-appb-100009
    恒成立。
  2. 如权利要求1所述的恒角剪刀,其特征在于:
    Figure PCTCN2014086836-appb-100010
    恒成立。
  3. 如权利要求1所述的恒角剪刀,其特征在于:
    Figure PCTCN2014086836-appb-100011
    恒成立。
  4. 如权利要求1所述的恒角剪刀,其特征在于:刀刃(5b)的刀刃边缘满足极坐标方程r=eα·cotθ+C,刀刃(6b)的刀刃边缘满足极坐标方程r=e(-α)·cotθ+C;这2个方程的共同变量为:α、r;这2个方程的共同参数为:θ、C;参数
    Figure PCTCN2014086836-appb-100012
    代表中轴角常量,参数C∈(-∞,+∞)代表任意常量;参数θ用于调节中轴角,参数C用于调节方程曲线的形状。
  5. 如权利要求1、2、3或4所述的恒角剪刀,其特征在于:2个刀刃边缘长度都大于5厘米。
  6. 如权利要求1、2、3或4所述的恒角剪刀,其特征在于:在任意刀刃边缘增加锯齿以增大其摩擦系数。
  7. 一种剪刀刀刃,其特征在于:以连接轴的连接点为极坐标系的原点,满足极坐标方程r=eα·cotθ+C的连续刀刃边缘长度大于5厘米;该方程的参数为:θ、C;参数
    Figure PCTCN2014086836-appb-100013
    代表中轴角常量,参数C∈(-∞,+∞)代表任意常量;参数θ用于调节中轴角,参数C用于调节方程曲线的形状。
  8. 一种剪刀刀刃,其特征在于:以连接轴的连接点为极坐标系的原点,满足极坐标方程r=e(-α)·cotθ+C的连续刀刃边缘长度大于5厘米;该方程的参数为:θ、C;参数
    Figure PCTCN2014086836-appb-100014
    代表中轴角常量,参数C∈(-∞,+∞)代表任意常量;参数θ用于调节中轴角,参数C用于调节方程曲线的形状。
  9. 一种制造权利要求1所述的恒角剪刀的方法,包括如下步骤:
    (1)用极坐标方程r=eα·cotθ+C充当刀刃(5b)的边缘方程,用极坐标方程r=e(-α)·cotθ+C充当刀刃(6b)的边缘方程;这2个方程的共同变量为:α、r;这2个方程的共同参数为:θ、C;参数
    Figure PCTCN2014086836-appb-100015
    代表中轴角常量,参数C∈(-∞,+∞)代表任意常量;参数θ用于调节中轴角,参数C用于调节方程曲线的形状;
    (2)针对目标物的强度和摩擦系数,设置合适的方程参数θ和C;
    (3)在刀刃(5b)或刀刃(6b)的边缘方程上确定1个刀刃起点和1个刀刃终点,并将两点极角所约束的闭区间当作该刀刃边缘的定义域;在该刀刃边缘方程上,删除刀刃边缘定义域以外的曲线;
    (4)利用对称方法,在另一个刀刃的边缘方程上确定1个刀刃起点和1个刀刃终点,并将两点极角约束的闭区间当作该刀刃边缘的定义域;在该刀刃边缘方程上,删除刀刃边缘定义域以外的曲线;
    (5)根据刀刃(5b)和刀刃(6b)的边缘方程,在刀身上加工出刀刃(5b)和刀刃(6b)。
PCT/CN2014/086836 2014-03-24 2014-09-18 恒角剪刀 WO2015143850A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201410108506.4 2014-03-24
CN201410108506 2014-03-24
CN201410132236 2014-04-03
CN201410132236.0 2014-04-03
PCT/CN2014/000399 WO2015143584A1 (zh) 2014-03-24 2014-04-14 恒角剪刀
CNPCT/CN2014/000399 2014-04-14
CN201410441943.8 2014-09-01
CN201410441943.8A CN104942836A (zh) 2014-03-24 2014-09-01 恒角剪刀

Publications (1)

Publication Number Publication Date
WO2015143850A1 true WO2015143850A1 (zh) 2015-10-01

Family

ID=54158168

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/000399 WO2015143584A1 (zh) 2014-03-24 2014-04-14 恒角剪刀
PCT/CN2014/086836 WO2015143850A1 (zh) 2014-03-24 2014-09-18 恒角剪刀

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000399 WO2015143584A1 (zh) 2014-03-24 2014-04-14 恒角剪刀

Country Status (2)

Country Link
CN (1) CN104942836A (zh)
WO (2) WO2015143584A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110757513A (zh) * 2019-10-23 2020-02-07 格力电器(郑州)有限公司 测距剪刀

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326335A (en) * 1980-10-02 1982-04-27 Morton Ray E Metal shears
CN2171460Y (zh) * 1993-08-25 1994-07-13 刘国印 一种剪刀
JP3151253U (ja) * 2009-03-13 2009-06-18 袈裟雄 小林 万能鋏
JP2013119003A (ja) * 2011-12-08 2013-06-17 Suzuki Hamono Kogyo Kk
CN203156783U (zh) * 2012-05-18 2013-08-28 普乐士株式会社 剪刀

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1001351A (fr) * 1946-04-24 1952-02-22 Perfectionnement aux lames de ciseaux, cisailles et autres outils du même genre
US4422240A (en) * 1982-03-18 1983-12-27 Wallace Mgf. Corp. Cutting implements
JPH08126777A (ja) * 1994-10-28 1996-05-21 Takayoshi Kuribayashi ハサミ
DE19517654C1 (de) * 1995-05-13 1996-10-17 Jaguar Stahlwarenfabrik Gmbh Friseurschere
CN2391718Y (zh) * 1999-09-24 2000-08-16 陈恒春 等力量剪刀
CN103522309A (zh) * 2013-10-17 2014-01-22 张家港市信佳塑料五金制品有限公司 一种剪刀
CN203527492U (zh) * 2013-11-08 2014-04-09 徐静波 改良型剪刀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326335A (en) * 1980-10-02 1982-04-27 Morton Ray E Metal shears
CN2171460Y (zh) * 1993-08-25 1994-07-13 刘国印 一种剪刀
JP3151253U (ja) * 2009-03-13 2009-06-18 袈裟雄 小林 万能鋏
JP2013119003A (ja) * 2011-12-08 2013-06-17 Suzuki Hamono Kogyo Kk
CN203156783U (zh) * 2012-05-18 2013-08-28 普乐士株式会社 剪刀

Also Published As

Publication number Publication date
WO2015143584A1 (zh) 2015-10-01
CN104942836A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
CN103419217B (zh) 剪刀
JP2017510329A (ja) 組織採取針
WO2017070980A1 (zh) 一种螺旋桨及飞行器
US20170361473A1 (en) Serrated knife
JP3199787U (ja) 七刃ドリル
WO2015143850A1 (zh) 恒角剪刀
US6513245B1 (en) Tube cutting pliers
JP2018533695A5 (zh)
CN205852917U (zh) 一种新型药材切割铡刀
JP3213100U (ja) 単一のブレードに2枚刃を備えた高剪断力ワイヤーロープカッター
US978705A (en) Safety-razor.
US10195719B2 (en) Conditioning device for conditioning a blade
CN203527492U (zh) 改良型剪刀
JP2019063390A (ja) 刃物及びその刃部
US11110618B2 (en) Hand-held shearing device
US20180319030A1 (en) Cutter
TWD191346S (zh) Tool
JP2015173634A (ja) 耕耘爪
US1176319A (en) Shears.
US718847A (en) Tobacco-knife.
US9113639B1 (en) Scissor-style crab leg clipping tool
RU112085U1 (ru) Нож
CN210476748U (zh) 一种高强螺栓扳手
US1207476A (en) Combined clipper and hair-cutting scissors.
JP3048797U (ja) 切断用手動工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, (EPO FORM 1205A DATED 19.07.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14887504

Country of ref document: EP

Kind code of ref document: A1