WO2015141545A1 - 工作機械切削条件最適化装置及び方法 - Google Patents

工作機械切削条件最適化装置及び方法 Download PDF

Info

Publication number
WO2015141545A1
WO2015141545A1 PCT/JP2015/057226 JP2015057226W WO2015141545A1 WO 2015141545 A1 WO2015141545 A1 WO 2015141545A1 JP 2015057226 W JP2015057226 W JP 2015057226W WO 2015141545 A1 WO2015141545 A1 WO 2015141545A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
load
machine tool
feed speed
change
Prior art date
Application number
PCT/JP2015/057226
Other languages
English (en)
French (fr)
Inventor
原口 英剛
太田 高裕
石井 建
二井谷 春彦
知 赤間
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2015141545A1 publication Critical patent/WO2015141545A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35168Automatic selection of machining conditions, optimum cutting conditions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36089Machining parameters, modification during operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50144Machine tool, machine tool null till machine tool work handling offline setup by simulation of process, during machining, forming of other piece

Definitions

  • the present invention relates to a machine tool cutting condition optimization apparatus and method.
  • a tool path (tool path) of a machine tool in a conventional cutting process is created by CAM for each product as in, for example, the following cited reference 1.
  • the tool path is determined after checking the interference between the tool (holder) and the product by NC simulation or the like and performing trial machining.
  • cutting conditions are set to be constant regardless of the tool path.
  • the cutting conditions are determined based on actual results and experience, or on-site conditions (sound and vibration during cutting, finish after cutting, etc.).
  • Fig. 8 shows a graph showing the change over time of the spindle torque in a conventional machine tool.
  • the cutting conditions are uniformly determined based on the location where the cutting resistance of the product is large, so that the variation in the spindle torque is large.
  • a large variation in the spindle torque indicates a large variation in the load (the load on the tool and the machine tool body during cutting).
  • the load variation is large, it may cause tool breakage (abrasion increase) or cause the machined dimensions of the product to deviate from the CAM design value. Furthermore, the surface properties of the product are deteriorated, and vibration occurs during processing.
  • a machine tool cutting condition optimizing device for solving the above-mentioned problems is A machine tool cutting condition optimization device for optimizing the cutting conditions of a machine tool, Based on the cutting conditions and tool path designed by the CAM, the feed speed is set to be slower for the portion where the cutting force is predicted to be larger, and the feed speed is set to the portion where the cutting force is predicted to be smaller.
  • the actual tool path, feed speed, and load values at the time of trial machining performed based on the cutting conditions and the tool path including the set value of the feed speed at which the change was made are made to make the setting value faster.
  • the NC program optimization function unit that performs the above-mentioned change again after subdividing the control cycle with respect to the part determined that the NC control cannot follow the change of the machining shape based on A storage unit that stores values of an actual tool path, a feed rate, and a load during the trial machining.
  • a machine tool cutting condition optimizing device for solving the above-mentioned problems is as follows.
  • a machine tool cutting condition optimization device for optimizing the cutting conditions of a machine tool, Based on the cutting conditions and tool path designed by the CAM, the feed speed is set to be slower for the portion where the cutting force is predicted to be larger, and the feed speed is set to the portion where the cutting force is predicted to be smaller.
  • a machine tool cutting condition optimizing device for solving the above-mentioned problems is
  • NC program optimization function section When performing the change again, a limit value of an evaluation parameter including a feed rate, a load, a load, and a machining time is provided, and the change is performed within the range of the limit value.
  • a cutting condition optimizing method for a machine tool according to a fourth invention for solving the above-mentioned problem is as follows.
  • a machine tool cutting condition optimization method for optimizing a machine tool cutting condition Based on the cutting conditions and tool path designed by the CAM, the feed speed is set to be slower for the portion where the cutting force is predicted to be larger, and the feed speed is set to the portion where the cutting force is predicted to be smaller.
  • Change the setting value faster Perform trial machining based on the cutting conditions and the tool path including the set value of the feed speed that has been changed, Based on the actual tool path, feed rate, and load values at the time of the trial machining, the NC control is determined not to follow the machining shape change, and after subdividing the control cycle, It is characterized by making changes.
  • a cutting condition optimization method for a machine tool according to a fifth invention for solving the above-mentioned problem is as follows.
  • a machine tool cutting condition optimization method for optimizing a machine tool cutting condition Based on the cutting conditions and tool path designed by the CAM, the feed speed is set to be slower for the portion where the cutting force is predicted to be larger, and the feed speed is set to the portion where the cutting force is predicted to be smaller. Change the setting value faster, Perform cutting simulation based on the cutting conditions and the tool path including the set value of the feed speed that has been changed, Based on the tool path, feed rate, and load values obtained by the simulation, the NC control is determined to be unable to follow the change in machining shape, and the change is made again after subdividing the control cycle.
  • a cutting condition optimizing method for a machine tool according to a sixth invention for solving the above-mentioned problem is as follows.
  • the change is performed within a limit value range of an evaluation parameter including a feed rate, a load, a load, and a machining time.
  • the load during cutting can be made constant, and further, the processing time can be shortened.
  • Example 1 The machine tool cutting condition optimization apparatus and method according to the first embodiment of the present invention optimizes the cutting conditions of a machine tool.
  • the feed rate is changed according to the machining shape so that the load becomes constant. That is, based on the cutting conditions and tool path designed by CAM, a change in cutting resistance is predicted, and the load is made constant by controlling the feed rate of the tool according to the predicted cutting resistance. Specifically, the load is made constant by changing the setting so that the set value of the feed rate is delayed as the predicted cutting resistance increases and the set value of the feed rate is increased as the predicted cutting resistance decreases.
  • FIG. 1 shows a graph showing the change in spindle torque over time when the feed rate in cutting is changed.
  • the machining time can be shortened compared to the conventional feed rate constant, and the tool is broken (increased wear). Can be prevented and the life can be extended.
  • making the main shaft torque constant means making the load constant.
  • a hunting phenomenon may occur depending on the processed shape of the product only by changing the feed rate as described above.
  • FIG. 2 is a graph showing the change over time of the main shaft torque with the time axis expanded when only the feed rate in the cutting process is changed.
  • the measured value of the feed rate changes in a staircase pattern near the times a, b, and c. Near the times a, b, and c, a sudden change in the peak value of the spindle torque, that is, a hunting phenomenon occurs.
  • the spindle torque measurement value fluctuates from cycle to cycle of about 0.03 [sec] due to the shape of the blade of the tool and is not related to the hunting phenomenon.
  • the reason for the occurrence of the hunting phenomenon is that if there is a portion where the processed shape of the product changes finely in the conventional feed rate control cycle, the control for keeping the load constant cannot follow the change.
  • the feed rate is changed to match the machining shape so that the load becomes constant, and the NC
  • the control cycle is subdivided and the feed rate is changed to match the machining shape so that the load is constant, so that the hunting phenomenon does not occur. Keep the load constant.
  • the load cannot be made constant as described above.
  • FIG. 3 shows a comparison between the conventional case (control cycle and feed rate are constant) (pattern a), when only the feed rate is changed (pattern b), and when the control cycle and feed rate are changed (pattern c).
  • pattern a Shown in (b).
  • FIG. 3A is a schematic diagram illustrating an example of cutting.
  • FIG. 3B is a graph showing the change in load along the schematic diagram of FIG.
  • the tool 17 (blade) is rotated in the direction indicated by the curved arrow, and the rotation center O is sent so as to draw the locus of the arrow F to cut the product.
  • the thick broken line has shown the shape of the product before cutting
  • the solid line to which hatching was performed has shown the shape of the product after a process, respectively.
  • Positions A and B Since the cutting depth of the tool 17 is constant, the load is constant.
  • Positions B to D Since the tool 17 is cut deeply from the position B while the feed speed is constant, the load increases rapidly.
  • Positions A and B Since the cutting depth of the tool 17 is constant, the load is constant. Positions B to C: The tool 17 is deeply cut, but the feed rate is not controlled yet and remains constant, so the load increases. Position C: Feed speed is controlled, and the load returns to the same value as positions A to B. Positions C to D: Since the tool 17 is further deeply cut from the position C, the load increases again. That is, when only the feed rate is changed (pattern b), the feed rate control cannot follow the change in the machining shape, and a hunting phenomenon occurs.
  • Positions A to B The load is constant. Positions B to D: The load is (almost) constant. That is, when the control cycle and the feed rate are changed (pattern c), the feed rate is changed by changing the feed rate after the control cycle is subdivided at the portion where the machining shape is finely changed. Control can be followed and control can be performed so that the load is constant without causing a hunting phenomenon.
  • FIG. 4 is a block diagram illustrating a device configuration of the machine tool cutting condition optimization device (machine tool cutting condition optimization device 1) according to the first embodiment of the present invention.
  • machine tool cutting condition optimization device 1 is provided inside machine tool 13 together with NC control unit 15, servo motor 16, and encoder 18. ing.
  • the machine tool cutting condition optimizing apparatus 1 includes an NC program optimizing function unit 14 and a storage unit 19.
  • the NC program optimization function unit 14 inputs cutting conditions and tool paths from the CAD 11 and CAM 12, and based on the cutting conditions and tool paths designed by the CAM 12, the set value of the feed rate in the cutting conditions is set as described above. Change it according to the machining shape. That is, based on the cutting conditions and the tool path designed by the CAM 12, the set value of the feed rate is decreased as the predicted cutting resistance is larger, and the set value of the feed rate is increased as the predicted cutting resistance is smaller. Make a change.
  • the NC program optimizing function unit 14 inputs the actual tool at the time of the trial machining performed based on the cutting conditions and the tool path including the set value of the feed speed changed as described above, which is input from the storage unit 19 described later. Based on the values of the path, feed rate and load, the CAM12 is designed by making the above changes again after subdividing the control cycle for the part that NC control has determined not to follow the change in machining shape.
  • the optimized cutting conditions are optimized, and the optimized cutting conditions are output to the NC control unit 15 described later.
  • the NC program optimization function unit 14 may perform the change again within a range not exceeding the limit value of the evaluation parameter.
  • the evaluation parameters refer to the following feed rate, load (load of the tool 17 and load of the machine tool 13 main body), load and machining time.
  • load load of the tool 17 and load of the machine tool 13 main body
  • load load and machining time.
  • limit value of load, load, and processing time it shall be arbitrary values.
  • Load of machine tool 13 (torque x time [Nmm ⁇ sec], X direction load x movement distance [kN ⁇ mm], Y direction load x movement distance [kN ⁇ mm], Z direction load x movement distance [kN ⁇ mm] ]) Is energy consumption, and is a parameter of wear and load of the tool 17, so the lower the better.
  • the storage unit 19 stores the actual tool path, feed speed, and load of the tool 17 input from the NC control unit 15.
  • the CAM 12 sets the cutting conditions and the tool path of the machine tool 13 based on the shape designed by the CAD 11.
  • the NC control unit 15 instructs the NC processing to the servo motor 16 based on the cutting conditions and the tool path input from the NC program optimization function unit 14.
  • the NC control unit 15 detects the actual position, feed speed and load of the tool 17 by the encoder 18 from the rotation angle of the servo motor 16.
  • Servo motor 16 drives tool 17 based on a command from NC control unit 15.
  • FIG. 5 shows a graph representing the change over time in the spindle torque with the time axis expanded by the machine tool cutting condition optimization apparatus 1 having the above-described apparatus configuration.
  • the hunting phenomenon that occurred as shown in the graph of FIG. 2 when only the feed rate was changed (the control cycle was not changed) is shown in FIG. It is not generated because it is controlled.
  • the hunting phenomenon can be suppressed and the load can be made constant by changing (optimizing) the control cycle and the feed rate according to the above device configuration.
  • the overload to 13 main bodies can be reduced.
  • the machine tool cutting condition optimization device 1 can further control the load by determining the control cycle and the feed speed based on the evaluation parameters, and can realize the extension of the tool life and the improvement of the surface property of the product.
  • step S1 cutting conditions and a tool path are set. That is, in the NC program optimization function unit 14, based on the cutting conditions and the tool path designed by the CAM 12, the set value of the feed speed is decreased as the predicted cutting resistance is larger, and the predicted cutting resistance is smaller. Change to increase the feed rate setting value for each part.
  • step S2 machining simulation or trial machining is performed.
  • the NC control unit 15 instructs the NC processing to the servo motor 16 based on the cutting conditions and tool path input from the NC program optimization function unit 14, and the servo motor 16 uses the NC control unit. Based on the 15 commands, the tool 17 is driven.
  • step S3 the actual feed speed and load during trial machining are detected. That is, the NC control unit 15 detects the actual tool path, feed speed, load, load, and machining time at the time of trial machining of the tool 17 by the encoder 18 from the rotation angle of the servo motor 16.
  • the storage unit 19 stores the detected actual tool path, feed speed, and load.
  • step S4 the NC program optimization function unit 14 sets the limit value of the evaluation parameter.
  • step S5 the control cycle and feed rate are reset.
  • the NC program optimization function unit 14 can not follow the change in the machining shape based on the actual tool path, feed rate and load values at the time of trial machining input from the storage unit 19. For the determined part, the above change is performed again after subdividing the control cycle.
  • step S6 it is determined whether or not the evaluation parameter is equal to or less than the limit value. That is, the NC program optimization function unit 14 predicts (feed speed) load, load, and machining time values based on the control cycle and feed speed setting values changed again in step S5. Then, it is determined whether or not it is below the limit value. If any value is less than or equal to the limit value, the process is terminated. If any one or more values are equal to or greater than the limit value, the process returns to step S5, and the control cycle and the feed rate are reset.
  • the cutting conditions can be optimized by the NC program optimization function unit 14, and the optimized cutting conditions are output to the NC control unit 15. Note that the control after the optimized cutting conditions are output to the NC control unit 15 is the same as the conventional control as described above, and is omitted here.
  • machine tool cutting condition optimization apparatus (machine tool cutting condition optimization apparatus 1) which concerns on Example 1 of this invention was demonstrated, in other words, this apparatus optimizes the cutting condition of a machine tool.
  • a machine tool cutting condition optimizing device which is based on the cutting conditions and tool path designed by the CAM, and lowers the set value of the feed speed for a portion where the predicted cutting resistance is larger, and the predicted cutting resistance is more
  • An actual tool path at the time of trial machining performed based on the cutting conditions and the tool path including the setting value of the feed speed at which the change is made is performed so that the smaller the position, the faster the feed speed setting value is set.
  • the NC control is determined not to be able to follow the change in the machining shape.
  • NC program optimization unit for optimizing the serial cutting conditions, the actual tool path during the trial cutting, and a storage unit for storing the values of the feed speed and load.
  • the evaluation parameter is limited by the feed rate, the load, the load, and the machining time.
  • a value may be provided, and the change may be performed within the range of the limit value.
  • the cutting condition optimization method for a machine tool is a cutting condition optimization method for a machine tool that optimizes the cutting condition of the machine tool, and is the cutting tool designed by the CAM. Based on the conditions and tool path, the feed speed setting value is slowed down as the predicted cutting resistance is larger, and the feed speed setting value is faster as the predicted cutting resistance is smaller. A trial machining is performed based on the cutting conditions and the tool path including the set value of the feed speed, and NC control is performed based on the actual tool path, feed speed and load value at the trial machining. For the part determined not to be able to follow the change in shape, the cutting condition is optimized by subdividing the control cycle and then making the change again.
  • the load during cutting can be made constant, and the tool life can be extended and the surface property of the product can be improved. Furthermore, the processing time can be shortened.
  • Example 2 The machine tool cutting condition optimization apparatus and method according to the second embodiment of the present invention optimize the set values of the control cycle and the feed rate by using a machining simulator instead of the trial machining performed in the first embodiment.
  • a machining simulator instead of the trial machining performed in the first embodiment.
  • FIG. 7 is a block diagram illustrating a machine tool cutting condition optimization device (machine tool cutting condition optimization device 2) according to the second embodiment of the present invention.
  • CAD 21, CAM 22, machine tool 25 and tool 28 are shown, and NC control unit 26, servo motor 27 and encoder 29 are provided inside machine tool 25.
  • the CAD 21, the CAM 22, the NC control unit 26, the servo motor 27, the tool 28, and the encoder 29 are the same as the CAD 11, the NC control unit 15, the servo motor 16, the tool 17, and the encoder 18 in the first embodiment, and thus the description thereof is omitted.
  • the machine tool cutting condition optimization device 2 is provided outside the machine tool 25, and includes an NC program optimization function unit 23 and a machining simulator 24.
  • the NC program optimization function unit 23 first inputs cutting conditions and a tool path from the CAD 11 and the CAM 12, and based on the cutting conditions and the tool path designed by the CAM 22, the feeding in the cutting conditions is performed.
  • the set value of the speed is changed according to the machining shape as described above. That is, based on the cutting conditions and the tool path designed by the CAM 22, the set value of the feed rate is decreased as the predicted cutting resistance is larger, and the set value of the feed rate is increased as the predicted cutting resistance is smaller. Make a change.
  • the NC program optimizing function unit 23 inputs a tool path by a simulation of cutting performed based on the cutting condition and the tool path including the set value of the feed speed changed as described above, which is input from the machining simulator 24 described later. Based on the values of feed rate and load, the part determined that NC control cannot follow the change in machining shape was designed by CAM22 by subdividing the control cycle and making the above changes again. The cutting conditions are optimized, and the optimized cutting conditions are output to the NC control unit 26.
  • NC program optimizing function unit 23 may perform the change again within a range not exceeding the limit value of the evaluation parameter (see Example 1).
  • the machining simulator 24 performs a simulation based on the cutting conditions and the tool path including the set value of the feed speed that has been changed first, which is input from the NC program optimization function unit 23, and obtains the feed speed and the load value.
  • the set value of the feed speed is decreased as the predicted cutting resistance is larger, and the predicted cutting resistance is smaller. Change to increase the feed rate setting value for each part.
  • the machining simulator 24 performs a simulation based on the cutting conditions and the tool path including the set value of the feed speed that has been changed first, which is input from the NC program optimization function unit 23, and the feed speed and the load Find the value.
  • the NC program optimization function unit 23 inputs a tool path based on a cutting simulation performed based on the cutting conditions and the tool path including the set value of the feed speed changed as described above, which is input from the machining simulator 24 described later. Based on the feed rate and load values, the part determined by NC control to not follow the change in machining shape is designed by CAM22 by subdividing the control cycle and making the above changes again. The optimized cutting conditions are optimized, and the optimized cutting conditions are output to the NC control unit 26.
  • the machine tool cutting condition optimization device (machine tool cutting condition optimization device 2) according to the second embodiment of the present invention has been described above.
  • this device optimizes the cutting conditions of the machine tool.
  • This is a machine cutting condition optimizing device, and based on the cutting conditions and tool path designed by CAM, the set value of the feed rate is slowed down as the predicted cutting resistance is larger, and the predicted cutting resistance is smaller.
  • a change is made to increase the set value of the feed rate as the number of points, and a tool path and a feed rate by a simulation of cutting performed based on the cutting condition and the tool path including the set value of the feed rate at which the change has been made.
  • the above change is made again after subdividing the control cycle.
  • the cutting condition including the NC program optimization function unit for optimizing the cutting condition and the cutting condition including the set value of the feed speed that is first changed by the NC program optimization function unit and the tool path.
  • a machining simulator that performs the simulation and obtains the feed rate and the load value is provided.
  • the cutting condition optimization method for a machine tool for optimizing the cutting condition for the machine tool, the cutting tool designed by the CAM.
  • the feed speed setting value is slowed down as the predicted cutting resistance is larger, and the feed speed setting value is faster as the predicted cutting resistance is smaller.
  • the cutting process is simulated based on the cutting condition and the tool path including the set value of the feed speed that has been performed, and the NC control changes the machining shape based on the tool path, the feed speed, and the load value by the simulation.
  • the cutting conditions are optimized by subdividing the control cycle and then making the change again. It is.
  • the load during cutting can be made constant, and the tool life can be extended and the surface quality of the product can be improved. Furthermore, the processing time can be shortened.
  • the present invention is suitable as a machine tool cutting condition optimization apparatus and method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

工作機械の切削条件を最適化する、工作機械切削条件最適化装置であって、CAM(12)で設計された切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した切削抵抗がより小さい箇所ほど送り速度の設定値を速くする変更を行い、変更を行った送り速度の設定値を含む切削条件及びツールパスに基づいて行われる試加工の際の実際のツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度変更を行うことで、切削条件を最適化するNCプログラム最適化機能部と、試加工時の実際のツールパス、送り速度及び負荷の値を記憶する記憶部とを備えることで、負荷の一定化及び加工時間の短縮を可能とする。

Description

工作機械切削条件最適化装置及び方法
 本発明は、工作機械切削条件最適化装置及び方法に関する。
 従来の切削加工における工作機械のツールパス(工具軌跡)は、例えば下記引用文献1のように、製品ごとにCAMで作成している。ツールパスは、NCシミュレーションなどで工具(ホルダ)と製品との干渉をチェックし、試加工を実施した上で、決定している。
 また、従来の工作機械では、切削条件(工具の送り速度と回転数、工具の1刃当たりの切込量と切込角度等)が、ツールパスとは関係なく一定に設定されている。この切削条件は、実績と経験、あるいは、現場の状況(切削加工時の音や振動、切削加工後の仕上がり等)から決定している。
特開2011-206894号公報
 従来の工作機械における主軸トルクの時間変化を表すグラフを、図8に示す。当該グラフのように、従来の切削加工では、製品の切削抵抗が大きい箇所を基準として、切削条件を一律で決めているため、主軸トルクのばらつきが大きい。そして、主軸トルクのばらつきが大きいということは、負荷(切削加工時の工具及び工作機械本体の負荷)のばらつきが大きいことを表している。
 負荷のばらつきが大きいと、工具の欠損(摩耗増進)が発生したり、製品の加工寸法がCAMの設計値からずれたりする原因となる。さらに、製品の表面性状が悪化し、加工時の振動が発生する。
 よって、本発明では、切削時の負荷を一定化することができ、さらには、加工時間を短縮することができる工作機械切削条件最適化装置及び方法を提供することを目的とする。
 上記課題を解決する第1の発明に係る工作機械切削条件最適化装置は、
 工作機械の切削条件を最適化する、工作機械切削条件最適化装置であって、
 CAMで設計された前記切削条件及びツールパスに基づき、切削抵抗がより大きいと予測される箇所ほど送り速度の設定値を遅くし、前記切削抵抗がより小さいと予測される箇所ほど前記送り速度の設定値を速くする変更を行い、当該変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて行われる試加工の際の実際のツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行うNCプログラム最適化機能部と、
 前記試加工時の実際のツールパス、送り速度及び負荷の値を記憶する記憶部とを備える
 ことを特徴とする。
 上記課題を解決する第2の発明に係る工作機械切削条件最適化装置は、
 工作機械の切削条件を最適化する、工作機械切削条件最適化装置であって、
 CAMで設計された前記切削条件及びツールパスに基づき、切削抵抗がより大きいと予測される箇所ほど送り速度の設定値を遅くし、前記切削抵抗がより小さいと予測される箇所ほど前記送り速度の設定値を速くする変更を行い、当該変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて行われる切削加工のシミュレーションによるツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行うNCプログラム最適化機能部と、
 前記NCプログラム最適化機能部による最初の変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づき、前記シミュレーションを行い、送り速度及び負荷の値を求める加工シミュレータとを備える
 ことを特徴とする。
 上記課題を解決する第3の発明に係る工作機械切削条件最適化装置は、
 上記第1又は2の発明に係る工作機械切削条件最適化装置において、
 NCプログラム最適化機能部は、
 再度前記変更を行う際に、送り速度、負荷、荷重及び加工時間からなる評価パラメータの制限値を設け、当該制限値の範囲内で前記変更を行う
 ことを特徴とする。
 上記課題を解決する第4の発明に係る工作機械の切削条件最適化方法は、
 工作機械の切削条件を最適化する、工作機械の切削条件最適化方法であって、
 CAMで設計された前記切削条件及びツールパスに基づき、切削抵抗がより大きいと予測される箇所ほど送り速度の設定値を遅くし、前記切削抵抗がより小さいと予測される箇所ほど前記送り速度の設定値を速くする変更を行い、
 前記変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて試加工を行い、
 前記試加工の際の実際のツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行う
 ことを特徴とする。
 上記課題を解決する第5の発明に係る工作機械の切削条件最適化方法は、
 工作機械の切削条件を最適化する、工作機械の切削条件最適化方法であって、
 CAMで設計された前記切削条件及びツールパスに基づき、切削抵抗がより大きいと予測される箇所ほど送り速度の設定値を遅くし、前記切削抵抗がより小さいと予測される箇所ほど前記送り速度の設定値を速くする変更を行い、
 前記変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて切削加工のシミュレーションを行い、
 前記シミュレーションによるツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行う
 ことを特徴とする。
 上記課題を解決する第6の発明に係る工作機械の切削条件最適化方法は、
 上記第4又は5の発明に係る工作機械の切削条件最適化方法において、
 再度前記設定を行う際に、送り速度、負荷、荷重及び加工時間からなる評価パラメータの制限値の範囲内で前記変更を行う
 ことを特徴とする。
 本発明に係る工作機械切削条件最適化装置及び方法によれば、切削時の負荷を一定化することができ、さらには、加工時間を短縮することができる。
切削加工における送り速度を変更した場合の、主軸トルクの時間変化を表すグラフである。 切削加工における送り速度のみを変更した場合の、時間軸を拡大した主軸トルクの時間変化を表すグラフである。 従来(制御周期及び送り速度が一定)の場合(パターンA)、送り速度のみ変更する場合(パターンB)、制御周期及び送り速度を変更した場合(パターンC)をそれぞれ比較した図である。(a)は、切削加工の一例を表す概略図である。(b)は、(a)の概略図に沿った負荷の変化を、パターンA~Cごとに表すグラフである。 本発明の実施例1に係る工作機械切削条件最適化装置を説明するブロック図である。 本発明の実施例1に係る工作機械切削条件最適化装置による、時間軸を拡大した主軸トルクの時間変化を表すグラフである。 本発明の実施例1に係る工作機械切削条件最適化装置の処理を説明するフローチャートである。 本発明の実施例2に係る工作機械切削条件最適化装置を説明するブロック図である。 従来の工作機械における主軸トルクの時間変化を表すグラフである。
 以下、本発明に係る工作機械切削条件最適化装置及び方法を実施例にて図面を用いて説明する。
[実施例1]
 本発明の実施例1に係る工作機械切削条件最適化装置及び方法は、工作機械の切削条件を最適化するものである。
 本発明の実施例1に係る工作機械切削条件最適化装置では、まず、送り速度を加工形状に合わせて負荷が一定となるように変更する。すなわち、CAMで設計された切削条件及びツールパスに基づき、切削抵抗の変化を予測し、予測した切削抵抗に応じて、工具の送り速度を制御することで、負荷を一定にする。具体的には、予測した切削抵抗が大きい箇所ほど送り速度の設定値を遅くし、予測した切削抵抗が小さい箇所ほど送り速度の設定値を速くする変更を行うことで、負荷を一定にする。
 上述のように、切削加工における送り速度を変更した場合の、主軸トルクの時間変化を表すグラフを、図1に示す。当該グラフに示すように、主軸トルクを一定にするように送り速度を変更すると、従来の送り速度一定のものに比べて、加工時間を短縮することができ、また、工具の欠損(摩耗増進)を防ぎ、長寿命化を図ることができる。なお、主軸トルクと一定にするとは、負荷を一定にするということである。
 しかしながら、上述のように送り速度を変更しただけでは、製品の加工形状によってはハンチング現象が発生することがあり得る。
 ハンチング現象について図2を用いて説明する。図2は、切削加工における送り速度のみを変更した場合の、時間軸を拡大した主軸トルクの時間変化を表すグラフである。当該グラフにおいて、時刻a,b,c付近で、送り速度の計測値が階段状に変化している。時刻a,b,c付近では、主軸トルクのピーク値の急激な変化、すなわち、ハンチング現象が起きている。なお、当該グラフにおいて、主軸トルクの計測値が終始0.03[sec]程度の周期で変動しているのは、工具の刃の形状によるものであり、ハンチング現象とは無関係である。
 上記ハンチング現象が起こる理由としては、従来の送り速度の制御周期のままでは、製品の加工形状が細かく変化する箇所があると、負荷を一定とする制御が当該変化に追従できないためである。
 そこで、本発明の実施例1に係る工作機械切削条件最適化装置では、まず、通常の制御周期で、上述したように送り速度を加工形状に合わせて負荷が一定となるように変更し、NC制御が加工形状に追従できないと判断した箇所については、制御周期を細分化した上で、再度、送り速度を加工形状に合わせて負荷が一定となるように変更することで、ハンチング現象を起こさず負荷を一定にする。なお、従来の切削加工では、制御周期及び送り速度が一定であるため、上述のように負荷を一定にすることができない。
 従来(制御周期及び送り速度が一定)の場合(パターンa)、送り速度のみ変更する場合(パターンb)、制御周期及び送り速度を変更した場合(パターンc)をそれぞれ比較した図を、図3(a)(b)に示す。図3(a)は、切削加工の一例を表す概略図である。図3(b)は、図3(a)の概略図に沿った負荷の変化を、パターンa~cごとに表すグラフである。
 図3(a)では、工具17(刃)が、曲線矢印で示す方向に回転しながら、回転中心Oが矢印Fの軌跡を描くように送られ、製品を切削するものとする。なお、当該図中において、太破線は切削前の製品の形状を、ハッチングが施された実線は加工後の製品の形状を、それぞれ示している。図3(a)のように切削を行う場合、図3(b)に示すように、パターンa~cではそれぞれ下記のごとく負荷の変化が異なる。
 従来の場合(パターンa)
 位置A~B:工具17の切込量が一定であるため、負荷が一定である。
 位置B~D:位置Bから、送り速度が一定のまま、工具17が深く切り込んでいるため、負荷が急激に上昇する。
 送り速度のみ変更する場合(パターンb)
 位置A~B:工具17の切込量が一定であるため、負荷が一定である。
 位置B~C:工具17が深く切り込んでいるが、まだ送り速度は制御されておらず一定のままであるため、負荷が上昇する。
 位置C:送り速度の制御が行われ、負荷が位置A~Bと同じ値に戻る。
 位置C~D:位置Cから、工具17がさらに深く切り込んでいるため、再度負荷が上昇する。
 すなわち、送り速度のみ変更する場合(パターンb)は、加工形状の変化に送り速度の制御が追従できず、ハンチング現象が発生してしまう。
 工具17の制御周期及び送り速度を変更した場合(パターンc)
 位置A~B:負荷が一定である。
 位置B~D:負荷が(ほぼ)一定である。
 すなわち、制御周期及び送り速度を変更した場合(パターンc)では、加工形状の細かく変化する箇所においては制御周期を細分化した上で送り速度を変更することで、加工形状の変化に送り速度の制御が追従でき、ハンチング現象を起こすことなく、負荷が一定となるように制御することができる。
 次に、本発明の実施例1に係る工作機械切削条件最適化装置の装置構成について、図4を用いて説明する。図4は、本発明の実施例1に係る工作機械切削条件最適化装置(工作機械切削条件最適化装置1)の装置構成を説明するブロック図である。当該図には、CAD11、CAM12、工作機械13及び工具17が表されており、工作機械切削条件最適化装置1は、NC制御部15、サーボモータ16及びエンコーダ18と共に工作機械13内部に設けられている。
 そして、工作機械切削条件最適化装置1は、NCプログラム最適化機能部14及び記憶部19を備える。
 NCプログラム最適化機能部14は、まず、CAD11及びCAM12から切削条件及びツールパスを入力し、CAM12で設計された切削条件及びツールパスに基づき、切削条件の中の送り速度の設定値を、上述したように加工形状に合わせて変更する。すなわち、CAM12で設計された切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した切削抵抗がより小さい箇所ほど送り速度の設定値を速くする変更を行う。
 さらに、NCプログラム最適化機能部14は、後述する記憶部19より入力した、上記変更を行った送り速度の設定値を含む切削条件及びツールパスに基づいて行われる試加工の際の実際のツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度上記変更を行うことで、CAM12で設計された切削条件を最適化し、最適化された切削条件を、後述するNC制御部15に出力する。
 また、NCプログラム最適化機能部14は、再度上記変更を行う際、評価パラメータの制限値を超えない範囲内で行うものとしてもよい。ここで、評価パラメータとは、以下の、送り速度、負荷(工具17の負荷及び工作機械13本体の負荷)、荷重及び加工時間を指す。なお、負荷、荷重及び加工時間の制限値については、任意の値とする。
 送り速度(空送り(max)[mm/min]、切削時(max)[mm/min]、加速度(Total)[mm/s2]、加速度(切削時)[mm/s2])については、加速度が大きいとサーボモータ16の負荷が大きくなるため、加速度はサーボモータの許容負荷より低くすることが望ましい。
 工作機械13本体の負荷(トルク×時間[Nmm・sec]、X方向荷重×移動距離[kN・mm]、Y方向荷重×移動距離[kN・mm]、Z方向荷重×移動距離[kN・mm])については、消費エネルギーであり、工具17の摩耗や負荷のパラメータであるため、低いほどよい。
 工具17の負荷(最大送り量(計算)[mm/刃]、最大送り量(実績)[mm/刃]、最大切削体積[cc/min]、接線方向荷重×切削体積[kN・cc]、半径方向荷重[kN・cc]、軸方向荷重×切削体積[kN・cc])については、工具17の摩耗を示すものであり、いずれも低いほどよい。
 加工時間(総時間[sec]、切削時間[sec])については、短いほどよい。
 荷重(最大トルク[Nm]、最大接線方向荷重[N]、最大半径方向荷重[N]、最大軸方向荷重[N]、最大X方向荷重[N]、最大Y方向荷重[N]、及び、最大Z方向荷重[N])については、ピーク値を見ており、工具17の欠損や工作機械13の過負荷の原因となるため、低いほどよい。
 また、記憶部19は、NC制御部15から入力した工具17の実際のツールパス、送り速度及び負荷を記憶する。
 なお、CAM12は、CAD11で設計された形状に基づき、工作機械13の切削条件及びツールパスを設定する。
 さらに、NC制御部15は、NCプログラム最適化機能部14から入力した切削条件及びツールパスに基づき、サーボモータ16に対しNC加工を指令する。
 また、NC制御部15は、サーボモータ16の回転角から、エンコーダ18により工具17の実際の位置、送り速度及び負荷を検出する。
 サーボモータ16は、NC制御部15の指令に基づき、工具17を駆動する。
 上記装置構成とした、工作機械切削条件最適化装置1による、時間軸を拡大した主軸トルクの時間変化を表すグラフを、図5に示す。送り速度のみを変更した(制御周期を変更していない)場合に図2のグラフのように起きていたハンチング現象が、図5のグラフでは、該当箇所において制御周期が細分化され送り速度が細かく制御されているために、発生していない。
 すなわち、工作機械切削条件最適化装置1では、上記装置構成によって制御周期及び送り速度を変更(最適化)することにより、ハンチング現象を抑え、負荷を一定にすることができ、工具17や工作機械13本体への過負荷を低減することができる。
 また、工作機械切削条件最適化装置1は、評価パラメータに基づき制御周期及び送り速度を決定することで、より負荷を抑制することができ、工具寿命延長及び製品の表面性状向上が実現できる。
 以下、工作機械切削条件最適化装置1の処理について、図6のフローチャートを用いて説明する。なお、以下では、上記評価パラメータの制限値を用いた場合の処理について説明する。
 ステップS1では、切削条件及びツールパスの設定を行う。すなわち、NCプログラム最適化機能部14にて、CAM12で設計された切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した切削抵抗がより小さい箇所ほど送り速度の設定値を速くする変更を行う。
 ステップS2では、加工シミュレーションもしくは試加工を行う。試加工の場合、NC制御部15にて、NCプログラム最適化機能部14から入力した切削条件及びツールパスに基づき、サーボモータ16に対しNC加工を指令し、サーボモータ16にて、NC制御部15の指令に基づき、工具17を駆動する。
 ステップS3では、試加工時の実際の送り速度及び負荷を検出する。すなわち、NC制御部15にて、サーボモータ16の回転角から、エンコーダ18により工具17の試加工時の実際のツールパス、送り速度、負荷、荷重及び加工時間を検出する。なお、記憶部19にて、検出された実際のツールパス、送り速度及び負荷を記憶しておく。
 ステップS4では、NCプログラム最適化機能部14にて評価パラメータの制限値を設定する。
 ステップS5では、制御周期及び送り速度の再設定を行う。すなわち、NCプログラム最適化機能部14にて、記憶部19から入力した試加工の際の実際のツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度上記変更を行う。
 ステップS6では、評価パラメータが制限値以下か否かを判断する。すなわち、NCプログラム最適化機能部14にて、ステップS5で再度変更した制御周期及び送り速度の設定値に基づき、(送り速度、)負荷、荷重及び加工時間の値を予測し、予測した値が、制限値以下か否かを判断する。いずれの値も制限値以下であれば、処理を終了し、いずれか1つ以上の値が制限値以上であれば、ステップS5に戻り、制御周期及び送り速度を再設定し直す。これにより、NCプログラム最適化機能部14にて切削条件を最適化することができ、最適化された切削条件をNC制御部15に出力する。なお、最適化された切削条件がNC制御部15に出力された後の制御については、上述したように従来の制御と同様のため、ここでは省略する。
 以上、本発明の実施例1に係る工作機械切削条件最適化装置(工作機械切削条件最適化装置1)について説明したが、換言すれば、本装置は、工作機械の切削条件を最適化する、工作機械切削条件最適化装置であって、CAMで設計された前記切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した前記切削抵抗がより小さい箇所ほど前記送り速度の設定値を速くする変更を行い、当該変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて行われる試加工の際の実際のツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行うことで、前記切削条件を最適化するNCプログラム最適化機能部と、前記試加工時の実際のツールパス、送り速度及び負荷の値を記憶する記憶部とを備えるものである。
 また、本発明の実施例1に係る工作機械切削条件最適化装置では、NCプログラム最適化機能部が、再度前記変更を行う際に、送り速度、負荷、荷重及び加工時間からなる評価パラメータの制限値を設け、当該制限値の範囲内で前記変更を行うものとしてもよい。
 また、本発明の実施例1に係る工作機械の切削条件最適化方法としては、工作機械の切削条件を最適化する、工作機械の切削条件最適化方法であって、CAMで設計された前記切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した前記切削抵抗がより小さい箇所ほど前記送り速度の設定値を速くする変更を行い、前記変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて試加工を行い、前記試加工の際の実際のツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行うことで、前記切削条件を最適化するものである。
 したがって、本発明の実施例1に係る工作機械切削条件最適化装置及び方法では、切削時の負荷を一定化することができ、工具寿命延長及び製品の表面性状向上が実現できる。さらには、加工時間を短縮することができる。
[実施例2]
 本発明の実施例2に係る工作機械切削条件最適化装置及び方法は、実施例1で行った試加工に代えて、加工シミュレータを用いることで、制御周期及び送り速度の設定値を最適化するものである。以下、実施例1と同様の部分は一部省略し、実施例1と異なる部分を中心に説明する。
 まず、本発明の実施例2に係る工作機械切削条件最適化装置の装置構成について、図7を用いて説明する。図7は、本発明の実施例2に係る工作機械切削条件最適化装置(工作機械切削条件最適化装置2)を説明するブロック図である。当該図には、CAD21、CAM22、工作機械25及び工具28が表されており、NC制御部26、サーボモータ27及びエンコーダ29は、工作機械25内部に設けられている。
 CAD21、CAM22、NC制御部26、サーボモータ27、工具28及びエンコーダ29は、実施例1におけるCAD11、NC制御部15、サーボモータ16、工具17及びエンコーダ18と同様のため、説明は省略する。
 そして、工作機械切削条件最適化装置2は、工作機械25の外部に設けられており、NCプログラム最適化機能部23及び加工シミュレータ24を備える。
 NCプログラム最適化機能部23は、実施例1と同様に、まず、CAD11及びCAM12から切削条件及びツールパスを入力し、CAM22で設計された切削条件及びツールパスに基づき、切削条件の中の送り速度の設定値を、上述したように加工形状に合わせて変更する。すなわち、CAM22で設計された切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した切削抵抗がより小さい箇所ほど送り速度の設定値を速くする変更を行う。
 さらに、NCプログラム最適化機能部23は、後述する加工シミュレータ24から入力した、上記変更を行った送り速度の設定値を含む切削条件及びツールパスに基づいて行われる切削加工のシミュレーションによるツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度上記変更を行うことで、CAM22で設計された切削条件を最適化し、最適化された切削条件を、NC制御部26に出力する。
 また、NCプログラム最適化機能部23は、再度上記変更を行う際、評価パラメータ(実施例1参照)の制限値を超えない範囲内で行うものとしてもよい。
 加工シミュレータ24は、NCプログラム最適化機能部23から入力した、最初の変更を行った送り速度の設定値を含む切削条件及びツールパスに基づき、シミュレーションを行い、送り速度及び負荷の値を求める。
 以下、上記装置構成とした工作機械切削条件最適化装置2の処理を説明する。
 まず、NCプログラム最適化機能部23にて、CAM22で設計された切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した切削抵抗がより小さい箇所ほど送り速度の設定値を速くする変更を行う。
 次に、加工シミュレータ24にて、NCプログラム最適化機能部23から入力した、最初の変更を行った送り速度の設定値を含む切削条件及びツールパスに基づき、シミュレーションを行い、送り速度及び負荷の値を求める。
 さらに、NCプログラム最適化機能部23にて、後述する加工シミュレータ24から入力した、上記変更を行った送り速度の設定値を含む切削条件及びツールパスに基づいて行われる切削加工のシミュレーションによるツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度上記変更を行うことで、CAM22で設計された切削条件を最適化し、最適化された切削条件を、NC制御部26に出力する。
 以上、本発明の実施例2に係る工作機械切削条件最適化装置(工作機械切削条件最適化装置2)について説明したが、換言すれば、本装置は工作機械の切削条件を最適化する、工作機械切削条件最適化装置であって、CAMで設計された前記切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した前記切削抵抗がより小さい箇所ほど前記送り速度の設定値を速くする変更を行い、当該変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて行われる切削加工のシミュレーションによるツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行うことで、前記切削条件を最適化するNCプログラム最適化機能部と、前記NCプログラム最適化機能部による最初の変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づき、前記シミュレーションを行い、送り速度及び負荷の値を求める加工シミュレータとを備えるものである。
 また、本発明の実施例2に係る工作機械の切削条件最適化方法としては、工作機械の切削条件を最適化する、工作機械の切削条件最適化方法であって、CAMで設計された前記切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した前記切削抵抗がより小さい箇所ほど前記送り速度の設定値を速くする変更を行い、前記変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて切削加工のシミュレーションを行い、前記シミュレーションによるツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行うことで、前記切削条件を最適化するものである。
 したがって、本発明の実施例2に係る工作機械切削条件最適化装置及び方法では、切削時の負荷を一定化することができ、工具寿命延長及び製品の表面性状向上が実現できる。さらには、加工時間を短縮することができる。
 本発明は、工作機械切削条件最適化装置及び方法として好適である。
1,2 工作機械切削条件最適化装置
11,21 CAD
12,22 CAM
13,25 工作機械
14,23 NCプログラム最適化機能部
15,26 NC制御部
16,27 サーボモータ
17,28  工具
18,29 エンコーダ
19 記憶部
24 加工シミュレータ

Claims (8)

  1.  工作機械の切削条件を最適化する、工作機械切削条件最適化装置であって、
     CAMで設計された前記切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した前記切削抵抗がより小さい箇所ほど前記送り速度の設定値を速くする変更を行い、当該変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて行われる試加工の際の実際のツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行うことで、前記切削条件を最適化するNCプログラム最適化機能部と、
     前記試加工時の実際のツールパス、送り速度及び負荷の値を記憶する記憶部とを備える
     ことを特徴とする工作機械切削条件最適化装置。
  2.  工作機械の切削条件を最適化する、工作機械切削条件最適化装置であって、
     CAMで設計された前記切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した前記切削抵抗がより小さい箇所ほど前記送り速度の設定値を速くする変更を行い、当該変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて行われる切削加工のシミュレーションによるツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行うことで、前記切削条件を最適化するNCプログラム最適化機能部と、
     前記NCプログラム最適化機能部による最初の変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づき、前記シミュレーションを行い、送り速度及び負荷の値を求める加工シミュレータとを備える
     ことを特徴とする工作機械切削条件最適化装置。
  3.  NCプログラム最適化機能部は、
     再度前記変更を行う際に、送り速度、負荷、荷重及び加工時間からなる評価パラメータの制限値を設け、当該制限値の範囲内で前記変更を行う
     ことを特徴とする請求項1に記載の工作機械切削条件最適化装置。
  4.  NCプログラム最適化機能部は、
     再度前記変更を行う際に、送り速度、負荷、荷重及び加工時間からなる評価パラメータの制限値を設け、当該制限値の範囲内で前記変更を行う
     ことを特徴とする請求項2に記載の工作機械切削条件最適化装置。
  5.  工作機械の切削条件を最適化する、工作機械の切削条件最適化方法であって、
     CAMで設計された前記切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した前記切削抵抗がより小さい箇所ほど前記送り速度の設定値を速くする変更を行い、
     前記変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて試加工を行い、
     前記試加工の際の実際のツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行うことで、前記切削条件を最適化する
     ことを特徴とする工作機械の切削条件最適化方法。
  6.  工作機械の切削条件を最適化する、工作機械の切削条件最適化方法であって、
     CAMで設計された前記切削条件及びツールパスに基づき、予測した切削抵抗がより大きい箇所ほど送り速度の設定値を遅くし、予測した前記切削抵抗がより小さい箇所ほど前記送り速度の設定値を速くする変更を行い、
     前記変更を行った前記送り速度の設定値を含む前記切削条件及び前記ツールパスに基づいて切削加工のシミュレーションを行い、
     前記シミュレーションによるツールパス、送り速度及び負荷の値に基づき、NC制御が加工形状の変化に追従できていないと判断した箇所については、制御周期を細分化した上で、再度前記変更を行うことで、前記切削条件を最適化する
     ことを特徴とする工作機械の切削条件最適化方法。
  7.  再度前記変更を行う際に、送り速度、負荷、荷重及び加工時間からなる評価パラメータの制限値を設け、当該制限値の範囲内で前記変更を行う
     ことを特徴とする請求項5に記載の工作機械切削条件最適化方法。
  8.  再度前記変更を行う際に、送り速度、負荷、荷重及び加工時間からなる評価パラメータの制限値を設け、当該制限値の範囲内で前記変更を行う
     ことを特徴とする請求項6に記載の工作機械切削条件最適化方法。
PCT/JP2015/057226 2014-03-20 2015-03-12 工作機械切削条件最適化装置及び方法 WO2015141545A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014057541A JP2015184687A (ja) 2014-03-20 2014-03-20 工作機械切削条件最適化装置及び方法
JP2014-057541 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141545A1 true WO2015141545A1 (ja) 2015-09-24

Family

ID=54144515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057226 WO2015141545A1 (ja) 2014-03-20 2015-03-12 工作機械切削条件最適化装置及び方法

Country Status (2)

Country Link
JP (1) JP2015184687A (ja)
WO (1) WO2015141545A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107877582A (zh) * 2017-10-30 2018-04-06 长沙市健科电子有限公司 一种电路板切割路径规划方法
CN110109415A (zh) * 2019-04-26 2019-08-09 华中科技大学 一种基于密度聚类的多网格刀轴优化方法
CN113741352A (zh) * 2021-09-22 2021-12-03 陕西法士特齿轮有限责任公司 一种数控自适应控制加工方法、系统、设备及其存储介质
CN117697531A (zh) * 2024-02-05 2024-03-15 中国海洋大学 一种数控机床刀头运动路径优化方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100747B2 (ja) * 2014-11-26 2017-03-22 ファナック株式会社 切削条件変更機能を有する工作機械を制御する制御装置
JP6865055B2 (ja) * 2016-06-01 2021-04-28 株式会社小松製作所 加工負荷解析装置、加工負荷解析プログラム、及び加工負荷解析システム
JPWO2022149569A1 (ja) * 2021-01-08 2022-07-14
CN116940905A (zh) * 2021-03-02 2023-10-24 发那科株式会社 数值控制装置以及计算机可读取的存储介质
CN113219821B (zh) * 2021-04-26 2023-08-04 江苏博尚工业装备有限公司 一种比例积分滑模面的数控机床用模糊滑模位置控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292913A (ja) * 1996-04-26 1997-11-11 Toyoda Mach Works Ltd Ncデータ作成装置
JP2002233930A (ja) * 2000-12-05 2002-08-20 Yoshiaki Kakino Ncプログラムの作成方法、ncプログラムの作成装置及び記録媒体
JP2003076408A (ja) * 2001-09-04 2003-03-14 Toyoda Mach Works Ltd 数値制御装置、補間処理方法および工作機械
JP2008134813A (ja) * 2006-11-28 2008-06-12 Toyota Central R&D Labs Inc 切削条件適正化装置、切削条件適正化方法、プログラム
JP2010170435A (ja) * 2009-01-24 2010-08-05 Tamagawa Seiki Co Ltd モーション制御用指令システム、モーション制御用指令方法およびモーション制御システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292913A (ja) * 1996-04-26 1997-11-11 Toyoda Mach Works Ltd Ncデータ作成装置
JP2002233930A (ja) * 2000-12-05 2002-08-20 Yoshiaki Kakino Ncプログラムの作成方法、ncプログラムの作成装置及び記録媒体
JP2003076408A (ja) * 2001-09-04 2003-03-14 Toyoda Mach Works Ltd 数値制御装置、補間処理方法および工作機械
JP2008134813A (ja) * 2006-11-28 2008-06-12 Toyota Central R&D Labs Inc 切削条件適正化装置、切削条件適正化方法、プログラム
JP2010170435A (ja) * 2009-01-24 2010-08-05 Tamagawa Seiki Co Ltd モーション制御用指令システム、モーション制御用指令方法およびモーション制御システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107877582A (zh) * 2017-10-30 2018-04-06 长沙市健科电子有限公司 一种电路板切割路径规划方法
CN110109415A (zh) * 2019-04-26 2019-08-09 华中科技大学 一种基于密度聚类的多网格刀轴优化方法
CN113741352A (zh) * 2021-09-22 2021-12-03 陕西法士特齿轮有限责任公司 一种数控自适应控制加工方法、系统、设备及其存储介质
CN113741352B (zh) * 2021-09-22 2023-01-06 陕西法士特齿轮有限责任公司 一种数控自适应控制加工方法、系统、设备及其存储介质
CN117697531A (zh) * 2024-02-05 2024-03-15 中国海洋大学 一种数控机床刀头运动路径优化方法
CN117697531B (zh) * 2024-02-05 2024-05-14 中国海洋大学 一种数控机床刀头运动路径优化方法

Also Published As

Publication number Publication date
JP2015184687A (ja) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2015141545A1 (ja) 工作機械切削条件最適化装置及び方法
US9690281B2 (en) Machine tool and machining control device thereof
JP6148264B2 (ja) 切削条件を自動で変更する機能を有した工作機械
JP6100747B2 (ja) 切削条件変更機能を有する工作機械を制御する制御装置
JP5908386B2 (ja) 工作機械
KR101896819B1 (ko) 절삭 가공에 있어서의 절삭 조건의 설계 방법
JP6423811B2 (ja) 加工情報に応じて加工条件を変更可能な数値制御装置
JP5984183B2 (ja) 工作機械
Kombarov et al. Numerical control of machining parts from aluminum alloys with sticking minimization
JP2011158982A (ja) 工作機械の制御装置
EP3677972A1 (en) Method and apparatus for machining parts with variable stiffness
US20150375347A1 (en) Manufacturing apparatus and manufacturing method for manufacturing less unbalanced blower blade
JP6407810B2 (ja) 加工ツール回転数とワーク送り速度とを調整する加工システム
JP6237736B2 (ja) 加工方法および加工装置
US10248100B2 (en) Numerical controller
CN107249817B (zh) 用于机加工的方法和系统以及机器人系统
JP7225715B2 (ja) 歯車加工方法及び歯車加工装置
CN114730170A (zh) 加工期间的在线多力适配
KR101575149B1 (ko) 진동 억제 장치
JP2017021472A (ja) 加工装置及び加工方法
CN112449617B (zh) 加工装置和切削加工方法
Weremczuk et al. Bifurcation and stability analysis of a nonlinear milling process
JP7423030B2 (ja) 工具交換時自動補正機能を備えた工作機械
JP2003170333A (ja) 工具送り経路の作成方法
JP7073721B2 (ja) 歯車加工装置及び歯車加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764440

Country of ref document: EP

Kind code of ref document: A1