WO2015141519A1 - 電気自動車のスリップ制御装置 - Google Patents
電気自動車のスリップ制御装置 Download PDFInfo
- Publication number
- WO2015141519A1 WO2015141519A1 PCT/JP2015/056965 JP2015056965W WO2015141519A1 WO 2015141519 A1 WO2015141519 A1 WO 2015141519A1 JP 2015056965 W JP2015056965 W JP 2015056965W WO 2015141519 A1 WO2015141519 A1 WO 2015141519A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotational speed
- slip
- driven wheel
- motor
- angular acceleration
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2072—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/10—Indicating wheel slip ; Correction of wheel slip
- B60L3/102—Indicating wheel slip ; Correction of wheel slip of individual wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/10—Indicating wheel slip ; Correction of wheel slip
- B60L3/106—Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/44—Wheel Hub motors, i.e. integrated in the wheel hub
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/46—Drive Train control parameters related to wheels
- B60L2240/461—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/46—Drive Train control parameters related to wheels
- B60L2240/465—Slip
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a slip control device provided in an electric vehicle that is a vehicle that is driven only by a motor, or a vehicle that is provided with both a motor and an internal combustion engine, and torque control at the time of occurrence of slip during traveling by the motor. It is related with the slip control apparatus which performs and eliminates a slip.
- the traction control device for a vehicle detects the slip amount of the driving wheel in order to prevent the driving wheel from slipping due to excessive driving torque during acceleration of the vehicle and the like to reduce acceleration performance. It is generally known that the engine output and the wheel braking force are limited so that the slip amount of the vehicle becomes the target slip amount corresponding to the friction coefficient of the road surface (for example, Patent Document 1). That is, the slip amount is controlled by decreasing the engine output or increasing the braking force.
- the maximum rotational speed of the drive wheel is calculated from the driven wheel rotational speed N1 and the ideal slip ratio 0.15. Actually, the torque is controlled so that the rotational speed of the rear wheel does not exceed the calculated maximum rotational speed. Furthermore, in order to improve riding comfort, a warning state rotational speed in which the rotational speed of the drive wheel is smaller than the maximum rotational speed is provided. When the rotational speed of the driving wheel exceeds the warning state rotational speed, the torque is gradually reduced to reduce the torque fluctuation when the rotational speed of the driving wheel reaches the maximum rotational speed and reduce the shock of the vehicle body (patent Reference 2).
- the occurrence of slip is determined based on the change rate of the angular acceleration that the motor should rotate. If it is determined that slip has occurred, the drive torque generated by the motor is set to zero. Further, the motor is decelerated by generating regenerative torque. Thereafter, when the rotational speed of the motor decreases to the rotational speed before slipping, it is determined that the grip state is reached, the generation of the regenerative torque is stopped, and the driving torque generated by the motor is gradually recovered (Patent Document 3).
- JP-A-63-259141 JP 2014-236591 A Japanese Patent Laying-Open No. 2015-035943
- the sensor attached to the driven wheel does not react or the detection accuracy of the sensor decreases unless the driven wheel reaches a certain rotation speed or more depending on the processing accuracy.
- a magnetic active vehicle speed sensor that is not easily affected by adhesion of foreign matter or the like is used.
- This active vehicle speed sensor basically reacts at a vehicle speed of 1 km / h or higher.
- the update speed of the vehicle speed may be slow depending on the number of uneven portions (that is, the number of teeth) provided on the outer peripheral portion of the ring member, which is a detected portion of the sensor. For example, in a ring member having 66 teeth on the outer peripheral portion, it takes 34 ms for one tooth to rotate when the vehicle speed is 3 km / h.
- the sampling time of the controller is set to 10 ms
- the update of the vehicle speed is delayed by 3 cycles or more from the controller.
- the rate of change in the rotational speed of the motor is, for example, 11 times that of a wheel. If it does so, a controller will use the rotation speed of the wheel 3 cycles before a repetition period, and cannot calculate the reference rotation speed of the motor at the present.
- the resolution is higher than that of the magnetic sensor, but it is easily affected by adhesion of foreign matter and is not suitable for in-vehicle use, and is higher than the magnetic sensor. Cost.
- the speed of the vehicle cannot be calculated because the rotational speed of the driven wheel is not observed.
- the motor rotation speed before slipping is recorded, and this motor rotation speed is used as the reference rotation speed.
- the drive wheel may have already started idling when it is determined that slip has occurred. is there.
- the vehicle travels downhill, the vehicle accelerates even when the torque command becomes zero due to the gravitational acceleration acting on the vehicle, so the motor speed recorded at the time of slipping is Absent. In other words, this method cannot accurately grasp the motion speed of the vehicle.
- An object of the present invention is to provide a slip control device for an electric vehicle that can perform accurate traction control even when the vehicle starts or in a low speed region.
- An electric vehicle slip control device 20 is provided in an electric vehicle, which is a vehicle including at least one electric motor 3 that rotationally drives the drive wheels 7, and performs slip control of the electric vehicle.
- a slip control device for performing Threshold calculating means 18 for calculating the normal angular acceleration of the motor 3 according to the operation amount of the accelerator 4 and calculating a threshold for slip determination based on the calculated normal angular acceleration;
- Driven wheel rotational speed observation means 21 for observing the current rotational speed of the driven wheel 6;
- Angular acceleration calculation means 22 for calculating the angular acceleration of the motor 3 from the detection value of the rotation angle sensor 3a for detecting the rotation angle of the motor 3,
- Angular acceleration comparing means 26 for determining whether or not the angular acceleration calculated by the angular acceleration calculating means 22 exceeds the threshold calculated by the threshold calculating means 18;
- a slip determination means 23 for determining the occurrence of slip of the drive wheel 7 when it is determined by the angular acceleration comparison means 26 that the angular acceleration has
- the reference rotational speed setting means 19 is When the current rotational speed of the driven wheel 6 observed by the driven wheel rotational speed observation means 21 is equal to or less than a predetermined rotational speed, the slip of the driven wheel 6 before the time point when the slip determination means 23 determines the occurrence of the slip.
- the rotation speed As the reference rotation speed, When the current rotational speed of the driven wheel 6 observed by the driven wheel rotational speed observation means 21 is larger than a predetermined rotational speed, the current rotation of the driven wheel 6 at the time when the slip determination means 23 determines the occurrence of the slip. The number is set as the reference rotation speed.
- the threshold value may be an angular acceleration of the motor 3 calculated according to the operation amount of the accelerator 4. Instead, a threshold value may be obtained by multiplying the calculated angular acceleration by an appropriate coefficient or the like.
- the predetermined condition and the predetermined standard are determined based on, for example, results of experiments and simulations.
- “the number of rotations” is the number of rotations per unit time and is synonymous with the rotation speed.
- the predetermined rotational speed is the rotational speed (for example, 10 km / h) near the boundary between the low speed region and the medium / high speed region at the start of the vehicle, the resolution of the driven wheel rotational speed observation means 21, experimental results, etc. Determined by.
- the threshold value calculation means 18 calculates the normal angular acceleration of the motor 3 according to the operation amount of the accelerator 4, and calculates the threshold value based on this normal angular acceleration.
- This threshold value is temporarily recorded in a recording means or the like and used when calculating slip determination.
- the driven wheel rotational speed observation means 21 observes the current rotational speed of the driven wheel 6 that changes from time to time, and updates the current rotational speed for each repetition period of the slip control device 20.
- the angular acceleration calculating means 22 obtains the angular acceleration by differentiating the rotation angle of the motor 3 measured by the rotation angle sensor 3a, for example, twice.
- the slip determination means 23 determines the occurrence of slip of the drive wheel 7 when the angular acceleration comparison means 26 determines that the angular acceleration has exceeded the threshold value and satisfies the predetermined condition.
- the torque release unit 25 sets the torque command value to the motor 3 to zero. By making the torque of the drive wheels 7 zero, slip can be eliminated.
- the reference rotation speed setting means 19 obtains the reference rotation speed as follows and temporarily records it in the recording means or the like.
- the speed of the driven wheel before the time when the occurrence of slip is determined is set as the reference speed.
- the correct rotational speed cannot be obtained from the rotation sensor of the driven wheel. Therefore, the rotational speed of the driving wheel before the time when the occurrence of slippage of the driving wheel is determined is set as the reference rotational speed.
- the driving wheel rotational speed before the time point at which the occurrence of slip is determined is, for example, when it is determined that the slip has occurred when the number of times that the angular acceleration continuously exceeds the threshold is N times, Is also the N-1th drive wheel rotation speed one step back.
- the driven wheel rotation speed at the time when the occurrence of slip is determined is set as the reference rotation speed.
- the driven wheel rotation speed at the time when the occurrence of slip is determined is, for example, the driven wheel rotation speed when the number of times that the angular acceleration continuously exceeds a threshold value becomes N times.
- the torque recovery means 29 determines that the motor 3 when the current rotational speed of the driven wheel 6 is smaller than the reference rotational speed.
- the torque that is generated is recovered.
- the occurrence of slip was determined as the reference speed.
- the number of rotations of the driven wheel before the time is set. Then, an appropriate reference rotational speed is set even in a low speed region or the like where the driven wheel rotational speed observation means 21 cannot accurately detect.
- the predetermined condition in the slip determination means 23 may be that the number of times that the determination that the angular acceleration exceeds the threshold value continues reaches a set value. Originally, when the angular acceleration of the motor 3 exceeds the threshold value, the occurrence of slip should be determined. However, in this case, the value of the angular acceleration obtained from the measured rotation angle has a large variation, and thus there is a risk of erroneous determination. For this reason, the slip determination means 25 determines the occurrence of slip when the number of times that the determination that the angular acceleration has exceeded the threshold value has reached the set value.
- the motor 3 may be a motor constituting the in-wheel motor drive device 11.
- the in-wheel motor drive device 11 since each drive wheel 7 is individually motor-driven, the influence of slip is large. Therefore, the effect by the slip control which concerns on this structure is exhibited more excellently.
- the torque recovery means 29 recovers the torque generated by the motor 3 in accordance with the predetermined standard by recovering the torque generated by the motor 3 by increasing the torque by a predetermined magnitude. May be.
- the current rotation speed of the driven wheel 6 before the time point when the slip determination means 23 determines the occurrence of the slip is the current rotation speed at the time point when the continuous number of times is one time before reaching the set value. There may be.
- An electric vehicle 5 includes a plurality of the motors 6.
- the angular acceleration calculating means 22, the angular acceleration comparing means 26, the slip determining means 23, the torque releasing means 25, the reference rotation speed setting means 19 and the torque recovery means 29 may be provided for each motor 6. good.
- the drive wheel includes a pair of left and right drive wheels 7 and 7, and the driven wheel includes a pair of left and right driven wheels 6 and 6.
- the driven wheel rotational speed observation means 21 may use an average value of the rotational speed detection values of the pair of driven wheels 6 and 6 as the observed current rotational speed. Instead, the driven wheel rotational speed observation means 21 drives one of the pair of driving wheels 7 and 7 out of the pair of driven wheels 6 and 6, in which the slip determination means 23 determines the occurrence of slip.
- the rotation speed detection value of the driven wheel 6 located on the same side as the wheel 7 may be the observed current rotation speed.
- FIG. 1 is a block diagram of a conceptual configuration of an electric vehicle drive device including an electric vehicle slip control device according to an embodiment of the present invention. It is a block diagram which shows the specific example of the same electric vehicle drive device. It is a block diagram which shows the conceptual structure of the slip control apparatus. It is a flowchart which shows the control action of the slip control apparatus.
- FIG. 1 is a block diagram of a conceptual configuration of an electric vehicle drive device including a slip control device according to this embodiment.
- the electric vehicle drive device includes a VCU (vehicle control unit) 1 and a plurality of inverter devices 2 and 2.
- the VCU 1 is a computer-type vehicle control unit that performs integrated control and cooperative control of the entire vehicle, and is also referred to as an “ECU” (electric control unit).
- the inverter devices 2 and 2 are devices that apply drive currents to the plurality of traveling drive motors 3 and 3 in accordance with a drive command sent from the VCU 1.
- the VCU 1 and the inverter devices 2 and 2 are connected so as to be able to transmit signals to each other by communication means such as CAN (Control Area Network) communication.
- CAN Controller Area Network
- This figure shows an example in which the left and right wheels are applied to a vehicle driven by motors 3 and 3, respectively.
- Each motor 3 is composed of a synchronous motor or an induction motor driven by three-phase alternating current in this example.
- a drive command indicating the accelerator operation amount output from the accelerator operation sensor 4a is input to the VCU 1 and is distributed from the VCU 1 to the inverter devices 2 and 2 for the motors 3 and 3.
- driven wheel rotational speed detection sensors 15 and 15 for detecting the rotational speed of the driven wheels are provided for the driven wheels 6 and 6 (FIG. 2), respectively.
- the driven wheel rotational speed detection sensors 15 and 15 are connected to the VCU 1. Electrically connected.
- the inverter devices 2 and 2 are respectively provided with driven wheel rotational speed observation means described later. These driven wheel rotational speed observation means calculate the rotational speed of the driven wheel respectively obtained from the corresponding driven wheel rotational speed detection sensor 15 as VCU1. Always monitor or observe through.
- FIG. 2 shows a specific example of the electric vehicle driving apparatus.
- This electric vehicle is a four-wheeled vehicle provided with driven wheels 6 and 6 as front wheels and driving wheels 7 and 7 as rear wheels on the vehicle body of the vehicle 5.
- the left and right drive wheels 7, 7 are driven by motors 3, 3, respectively.
- each motor 3 constitutes an in-wheel motor drive device 11 together with the wheel bearing 9 and the speed reducer 10.
- the speed reducer 10 decelerates the rotational output of the motor 3 and transmits it to a rotating wheel (not shown) of the wheel bearing 9.
- the VCU 1 receives accelerator operation amount, brake operation amount, and handle operation amount signals from the accelerator operation sensor 4a of the accelerator 4, the brake operation sensor 12a of the brake 12, and the steering sensor 13a of the handle 13, respectively.
- the VCU 1 generates a torque command value to be distributed to the left and right motors 3 and 3 in accordance with the accelerator operation amount signal of the accelerator operation sensor 4a in consideration of the brake operation amount and handle operation amount signals.
- 2 and 2 are given.
- Each inverter device 2, 2 converts the DC power of the battery 8 into a motor drive current of AC power, and controls the motor drive current according to the torque command.
- the slip control device 20 is a device that performs slip control in an electric vehicle that is a vehicle provided with the electric motor 3 for driving. These slip control devices 20 and 20 may be provided in the VCU 1.
- FIG. 3 is a functional block diagram showing the configuration of each inverter device 2, particularly the configuration of each slip control device 20.
- the inverter device 2 includes an inverter 17 that converts the DC power of the battery 8 (FIG. 2) into three-phase AC power, and a torque command given from the VCU 1 is converted into a current command to control the current output of the inverter 17.
- Torque control means 16. The torque control means 16 performs control such as vector control for improving efficiency in accordance with the rotation angle of the rotor (not shown) of the motor 3. For this control, a detected value of the rotation angle of the rotation angle sensor 3a provided in the motor 3 is input.
- the torque control means 16 is provided in a weak electric circuit portion composed of a microcomputer and other electronic circuits. A slip control device 20 is provided in this weak electric circuit portion.
- the slip control device 20 is a device that performs the control shown in the flowchart in FIG. As shown in FIG. 3, the slip control device 20 includes a threshold value calculation unit 18, a driven wheel rotation number observation unit 21, an angular acceleration calculation unit 22, a slip determination unit 23, a torque release unit 25, a reference rotation number setting unit 19, and Torque recovery means 29 is provided.
- the threshold value calculation means 18 calculates the normal angular acceleration of the motor 3 according to the operation amount of the accelerator 4 output from the accelerator operation sensor 4a, that is, the angular acceleration that the motor 3 should originally exhibit according to the operation amount of the accelerator 4,
- the calculated normal angular acceleration is set as a threshold value. Instead, the threshold value may be obtained by multiplying the calculated normal angular acceleration by an appropriate coefficient or the like.
- the acceleration ⁇ given to the vehicle by the operation of the accelerator 4 is calculated by the following formula 1.
- T is the sum of the motor torques of all the motors 3 and 3 (two in the illustrated example) provided in the vehicle 5, m is the weight of the vehicle 5, and r is the tire radius of the drive wheels 7.
- Each driven wheel rotational speed observation means 21 constantly monitors or observes the rotational speed of the corresponding driven wheel 6 obtained from one or a plurality of driven wheel rotational speed detection sensors 15 via the VCU 1.
- the rotational speed observed by the driven wheel rotational speed observation means 21 is used when obtaining a reference rotational speed, which will be described later, and when determining whether torque is recovered by a torque recovery means 29, which will be described later.
- the rotational speed of the driven wheel 6 observed by each driven wheel rotational speed observation means 21 may be, for example, an average value of the rotational speed detection values of the pair of left and right driven wheels 6 and 6, or drive that performs slip control. It may be the rotational speed of the driven wheel 6 located on the same side of the wheel 7 as the left and right.
- the driven wheel rotational speed observation means 21 can directly observe the rotational speed of the driven wheel 6 obtained from the driven wheel rotational speed detection sensor 15 without passing through the VCU 1, as indicated by the dotted line in FIG. .
- the angular acceleration calculation means 22 measures the rotation angle of the motor 3 with the rotation angle sensor 3a, and obtains the angular acceleration by differentiating the measured rotation angle twice.
- the slip determination is performed based on the determination of a plurality of times as follows.
- the slip determination means 23 is a means for determining the occurrence of slip of the drive wheel 7 driven by the motor 3, and includes an angular acceleration comparison means 26, a count section 27, and a slip determination section 28.
- the angular acceleration comparison means 26 compares the angular acceleration calculated by the angular acceleration calculation means 22 with the threshold value calculated by the threshold value calculation means 18 and determines whether or not the calculated angular acceleration exceeds the threshold value.
- the angular acceleration of the motor 3 exceeds the threshold value
- the occurrence of slipping of the drive wheel 7 should be determined.
- the value of the angular acceleration obtained from the measured rotation angle varies greatly. Therefore, the number of consecutive times when the counting unit 27 exceeds the threshold value is counted, and the slip determination unit 28 determines the occurrence of slip when the count value reaches the set number Ns.
- the torque release means 25 sets the torque command value to the motor 3 that drives the drive wheels 7 to zero. By making the torque of the drive wheel 7 zero, the slip can be reliably eliminated. Thus, the torque release means 25 makes the torque zero during a slip.
- the reference rotation speed setting means 19 sets a reference rotation speed for determining whether or not the grip of the drive wheel 7 has been restored when the torque to the motor 3 is made zero by the torque release means 25.
- the reference rotation speed setting means 19 sets different reference rotation speeds depending on whether the current rotation speed of the driven wheel 6 is the rotation speed in the low speed region or the rotation speed in the medium / high speed region. That is, when the driven wheel rotational speed observed by the driven wheel rotational speed observation means 21 is the rotational speed at the start of the vehicle or the rotational speed in the low speed region (for example, 10 km / h or less), the time before the occurrence of slip is determined.
- the rotational speed of the driving wheel is defined as “reference rotational speed”.
- the drive wheel rotational speed before the time point at which the occurrence of slip is determined is, for example, N times when the occurrence of slip is determined when the number of times the angular acceleration continuously exceeds the threshold reaches N times.
- the number of rotations of the drive wheel at the time of the (N-1) th time that is one step further than that. In other words, it is the drive wheel rotation speed at the repetition period one time before the repetition period when it is determined that the slip has occurred when N times.
- the number of times the driven wheel rotational speed, for example, the angular acceleration exceeds the threshold continuously at the time when it is determined that the slip has occurred is N times.
- the number of rotations of the driven wheel when the value reaches is “reference rotation number”.
- the torque recovery means 29 determines that the grip of the drive wheel 7 has recovered when the current rotation speed observed by the driven wheel rotation speed observation means 21 is smaller than the reference rotation speed set by the reference rotation speed setting means 19. Then, the torque generated by the motor 3 is gradually recovered according to a predetermined standard (for example, a standard of increasing by 1 Nm).
- the maximum value is the accelerator torque command.
- FIG. 4 is a flowchart showing the control operation of the slip control device 20. This will be described with reference to FIG. For example, this processing is started when the main power of the vehicle is turned on, and the threshold value calculation means 18 is the normal angular acceleration of the motor 3 corresponding to the operation amount of the accelerator 4 output from the accelerator operation sensor 4a, that is, the accelerator. The angular acceleration that the motor 3 should originally exhibit is calculated according to the operation amount of 4, and the slip determination threshold value is calculated based on this angular acceleration (step S1).
- the driven wheel rotational speed observation means 21 observes the rotational speed of the driven wheel 6 obtained from the driven wheel rotational speed detection sensor 15 (step S2).
- the angular acceleration calculation means 22 calculates the angular acceleration of the motor 3 as described above (step S3).
- the angular acceleration comparison means 26 compares the angular acceleration calculated by the angular acceleration calculation means 22 with the threshold value calculated by the threshold value calculation means 18 and determines whether or not the angular acceleration exceeds the threshold value (Ste S4). If it is determined that the threshold value is not exceeded (No in step S4), the count unit 27 resets the counter 27a to “0” (step S5), and the process returns to step S1.
- Step S6 If the angular acceleration exceeds the threshold value (Yes in step S4), the angular acceleration may have increased due to the slip, so the counting unit 27 adds “1” to the counter 27a for the next slip determination. (Step S6).
- the initial value of the counter 27a is zero.
- the slip determination unit 28 determines whether or not the count value of the counter 27a has reached the set number Ns. If the set number Ns has not been reached (No in Step S7), the process returns to Step S1 and restarts the process. At the time of resumption, since the counter 27a has not been reset, the operation is resumed while maintaining the previous count value N. When the count value reaches the set number Ns (Yes in step S7), the slip determination unit 28 determines the occurrence of slip.
- the reference rotational speed setting means 19 determines whether or not the driven wheel rotational speed is a rotational speed in a low speed region or the like (step S8).
- the torque releasing means 25 reduces the torque command value to the motor 3 to zero, and the reference rotational speed setting means 19 is a subordinate before the time point when the occurrence of slip is determined.
- the moving wheel rotation speed is set as the reference rotation speed (step S9).
- the torque release means 25 reduces the torque command value to the motor 3 to zero, and the reference rotation speed setting means 19 determines when the occurrence of slip is determined.
- the driven wheel rotation speed is set as the reference rotation speed (step S10).
- the torque recovery means 29 determines whether or not the observed current rotational speed of the driven wheel 6 is smaller than the reference rotational speed set by the reference rotational speed setting means 19 (step S11). If the current rotational speed is equal to or higher than the reference rotational speed (No in step S11), the torque recovery means 29 determines that the slip has not yet been resolved and returns to step S1. When the current rotational speed is smaller than the reference rotational speed (Yes in step S11), the torque recovery means 29 determines that the grip has been reached and gradually recovers the torque (step S12).
- the torque recovery means 29 sets the current torque as the command torque (Step S14), and then returns to Step S1.
- the process returns to step S1.
- the torque recovery means 29 determines that the observed rotational speed of the driven wheel 6 is greater than the reference rotational speed. Is smaller, the torque generated in the motor 3 is recovered.
- the reference speed should be set before the time point when slip occurrence is determined.
- an appropriate reference rotational speed is set even in a low speed region or the like where the driven wheel rotational speed observation means 21 cannot accurately detect.
- the motor 3 constitutes an in-wheel motor device 11.
- each drive wheel 7 is individually motor-driven, so that the influence of slip is large. Therefore, the effect by the slip control according to this embodiment is more excellent.
- This slip control device for an electric vehicle is not limited to the in-wheel motor type, but is also applied to a so-called one-motor type electric vehicle that transmits rotation from the motor 3 installed on the vehicle body to the drive wheels 7 via the drive shaft. be able to.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
車両の発進時や低速領域においても、正確なトラクション制御を行うことができる、電気自動車のスリップ制御装置を提供する。このスリップ制御装置(20)は、閾値計算手段(18)と、従動輪回転数観測手段(21)と、角加速度計算手段(22)と、角加速度比較手段(26)と、スリップ判断手段(23)と、トルク解除手段(25)と、基準回転数設定手段(19)と、トルク回復手段(29)とを備える。基準回転数設定手段(19)は、従動輪回転数観測手段(21)で観測される従動輪(6)の現回転数が定められた回転数以下のとき、トルク解除手段(25)が前記スリップ発生を判断した時点よりも前の従動輪(6)の回転数を基準回転数とし、従動輪(6)の現回転数が定められた回転数よりも大きいとき、トルク解除手段(25)で前記スリップ発生を判断した時点の従動輪(6)の回転数を基準回転数とする。
Description
本出願は、2014年3月19日出願の特願2014-056481の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
この発明は、モータのみの駆動で走行する車両や、モータと内燃機関との両方を備える車両である電気自動車に設けられたスリップ制御装置であって、モータによる走行中のスリップ発生時におけるトルク制御を行い、スリップを解消させるスリップ制御装置に関する。
(1)車両のトラクション制御装置は、車両の加速時等に駆動輪が過大駆動トルクによりスリップして加速性が低下することを防止するために、駆動輪のスリップ量を検出し、この駆動輪のスリップ量が路面の摩擦係数に対応する目標スリップ量となるように、エンジン出力や車輪制動力を制限するものとして、一般に知られている(例えば、特許文献1)。すなわち、エンジン出力を低下させるか、またはブレーキ力を増大させてスリップ量を制御する。
車両モータのスリップ時の制御としては、以下の2つの方法がある。
(2)従動輪回転数N1と理想スリップ率0.15から駆動輪の最大回転数を計算する。実際に、後輪の回転数が上記計算した最大回転数を越えないように、トルクを制御する。さらに、乗り心地を良くするために、駆動輪の回転数が最大回転数よりも小さい警戒状態回転数を設ける。駆動輪の回転数が警戒状態回転数を超えると、徐々にトルクを減らすことにより、駆動輪の回転数が最大回転数に到達するときのトルク変動を小さくし、車体のショックを低減させる(特許文献2)。
(2)従動輪回転数N1と理想スリップ率0.15から駆動輪の最大回転数を計算する。実際に、後輪の回転数が上記計算した最大回転数を越えないように、トルクを制御する。さらに、乗り心地を良くするために、駆動輪の回転数が最大回転数よりも小さい警戒状態回転数を設ける。駆動輪の回転数が警戒状態回転数を超えると、徐々にトルクを減らすことにより、駆動輪の回転数が最大回転数に到達するときのトルク変動を小さくし、車体のショックを低減させる(特許文献2)。
(3)モータの回転制御用の回転角度センサのみを用いて、モータが回転すべき角加速度の変化率でスリップ発生を判断する。スリップ発生と判断した場合は、モータに発生させる駆動トルクを零にする。さらに、前記モータに回生トルクを生じさせることにより減速する。その後、モータの回転数がスリップする前の回転数まで低下すると、グリップ状態と判断し、回生トルクの発生を停止し、前記モータに発生させる駆動トルクを徐々に回復させる(特許文献3)。
前記駆動輪のスリップ量が目標スリップ量となるようにエンジン出力等を制限する技術(1)と、前記後輪の回転数が計算した最大回転数を越えないようにトルクを制御する技術(2)では、スリップ量を計算するのに、駆動輪および従動輪の回転数が必要である。
しかし、従動輪に付けられるセンサ(従動輪車速センサ)は、加工精度によっては、従動輪がある回転数以上にならなければ、前記センサが反応しないかまたはセンサによる検出精度が低下する。
しかし、従動輪に付けられるセンサ(従動輪車速センサ)は、加工精度によっては、従動輪がある回転数以上にならなければ、前記センサが反応しないかまたはセンサによる検出精度が低下する。
車載用の従動輪車速センサとして、例えば、異物の付着等の影響を受けにくい磁気式のアクティブ車速センサが用いられる。このアクティブ車速センサは基本的に車速1km/h以上で反応する。しかし、センサの被検出部である、リング部材における外周部等に設けられる凹凸部の数(すなわち歯数)によっては、車速の更新速度が遅い場合がある。例えば、前記外周部に66歯が設けられているリング部材では、車速3km/hの場合は1歯が回るのに34msかかる。
この場合、制御器のサンプリング時間を10msに設定すると、車速の更新が制御器よりも繰り返し周期で3周期以上遅れる。さらに、減速機を有するインホイールモータの場合、モータの回転数の変化率が車輪の例えば11倍である。そうすると、制御器は繰り返し周期の3周期前の車輪の回転数を用いることになり、現時点のモータの基準回転数を計算できない。
なお従動輪車速センサとして光学式センサを用いた場合、前記磁気式センサよりも分解能に優れるものの、異物の付着等の影響を受けやすく車載用として不適当であるうえ、前記磁気式センサよりも高コストである。
前記角加速度の変化率でスリップを判断する技術(3)では、従動輪の回転数を観測しないため、車両の運動速度が計算できない。スリップする前のモータ回転数を記録し、このモータ回転数を基準回転数とするが、モータの回転角度センサの精度によっては、スリップ発生と判断した時点では駆動輪が既に空転し始めている場合がある。また車両が下り坂を走行する場合は、車両に作用する重力加速度により、トルク指令が零になっても車両が加速していくので、スリップした時点に記録したモータ回転数が車両の運動速度ではない。つまり、この方法では、車両の運動速度を正確に把握することができない。
この発明の目的は、車両の発進時や低速領域においても、正確なトラクション制御を行うことができる電気自動車のスリップ制御装置を提供することである。
以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。
この発明の一構成に係る、電気自動車のスリップ制御装置20は、駆動輪7を回転駆動する電動のモータ3を少なくとも1つ備えた車両である電気自動車に設けられ、当該電気自動車のスリップ制御を行うスリップ制御装置であって、
アクセル4の操作量に応じた前記モータ3のノーマル角加速度を計算し、この計算したノーマル角加速度を基にスリップ判断のための閾値を計算する閾値計算手段18と、
従動輪6の現回転数を観測する従動輪回転数観測手段21と、
前記モータ3の回転角度を検出する回転角センサ3aの検出値から前記モータ3の角加速度を計算する角加速度計算手段22と、
この角加速度計算手段22で計算された角加速度が前記閾値計算手段18で計算された閾値を越えたか否かを判定する角加速度比較手段26と、
この角加速度比較手段26で角加速度が閾値を越えたと判定され、且つ、定められた条件を満たすとき、前記駆動輪7のスリップ発生を判断するスリップ判断手段23と、
このスリップ判断手段23でスリップ発生が判断されると、前記モータ3へのトルクの指令値を零にするトルク解除手段25と、
このトルク解除手段25により前記モータ3へのトルクの指令値を零にしたとき、前記駆動輪7のグリップが回復したか否かを判断するための基準回転数を設定する基準回転数設定手段19と、
前記従動輪回転数観測手段21で観測される現回転数が、前記基準回転数設定手段19で設定された基準回転数よりも小さいとき、前記駆動輪7のグリップが回復したと判断して定められた基準に従って前記モータ3に発生させるトルクを回復させていくトルク回復手段29と、
を備え、
前記基準回転数設定手段19は、
前記従動輪回転数観測手段21で観測される従動輪6の現回転数が定められた回転数以下のとき、前記スリップ判断手段23が前記スリップ発生を判断した時点よりも前の従動輪6の回転数を基準回転数とし、
前記従動輪回転数観測手段21で観測される従動輪6の現回転数が定められた回転数よりも大きいとき、前記スリップ判断手段23が前記スリップ発生を判断した時点の従動輪6の現回転数を基準回転数とする。
アクセル4の操作量に応じた前記モータ3のノーマル角加速度を計算し、この計算したノーマル角加速度を基にスリップ判断のための閾値を計算する閾値計算手段18と、
従動輪6の現回転数を観測する従動輪回転数観測手段21と、
前記モータ3の回転角度を検出する回転角センサ3aの検出値から前記モータ3の角加速度を計算する角加速度計算手段22と、
この角加速度計算手段22で計算された角加速度が前記閾値計算手段18で計算された閾値を越えたか否かを判定する角加速度比較手段26と、
この角加速度比較手段26で角加速度が閾値を越えたと判定され、且つ、定められた条件を満たすとき、前記駆動輪7のスリップ発生を判断するスリップ判断手段23と、
このスリップ判断手段23でスリップ発生が判断されると、前記モータ3へのトルクの指令値を零にするトルク解除手段25と、
このトルク解除手段25により前記モータ3へのトルクの指令値を零にしたとき、前記駆動輪7のグリップが回復したか否かを判断するための基準回転数を設定する基準回転数設定手段19と、
前記従動輪回転数観測手段21で観測される現回転数が、前記基準回転数設定手段19で設定された基準回転数よりも小さいとき、前記駆動輪7のグリップが回復したと判断して定められた基準に従って前記モータ3に発生させるトルクを回復させていくトルク回復手段29と、
を備え、
前記基準回転数設定手段19は、
前記従動輪回転数観測手段21で観測される従動輪6の現回転数が定められた回転数以下のとき、前記スリップ判断手段23が前記スリップ発生を判断した時点よりも前の従動輪6の回転数を基準回転数とし、
前記従動輪回転数観測手段21で観測される従動輪6の現回転数が定められた回転数よりも大きいとき、前記スリップ判断手段23が前記スリップ発生を判断した時点の従動輪6の現回転数を基準回転数とする。
前記閾値は、アクセル4の操作量に応じて計算されるモータ3の角加速度であっても良い。代わりに、この計算した角加速度に適宜に定めた係数等を掛けて閾値としても良い。
前記定められた条件および前記定められた基準は、例えば、実験やシミュレーション等の結果により定められる。
この明細書において、「回転数」とは、単位時間あたりの回転数であり、回転速度と同義である。
前記定められた回転数は、車両の発進時や低速領域と、中高速領域との境界付近の回転数(例えば、10km/h)であり、従動輪回転数観測手段21の分解能および実験結果等により定められる。
前記定められた条件および前記定められた基準は、例えば、実験やシミュレーション等の結果により定められる。
この明細書において、「回転数」とは、単位時間あたりの回転数であり、回転速度と同義である。
前記定められた回転数は、車両の発進時や低速領域と、中高速領域との境界付近の回転数(例えば、10km/h)であり、従動輪回転数観測手段21の分解能および実験結果等により定められる。
この構成によると、閾値計算手段18は、アクセル4の操作量に応じたモータ3のノーマル角加速度を計算し、このノーマル角加速度を基に閾値を計算する。この閾値は記録手段等に一時的に記録されてスリップ判断の計算時に用いられる。従動輪回転数観測手段21は、時々刻々と変化する従動輪6の現回転数を観測し、このスリップ制御装置20の繰り返し周期毎に現回転数を更新していく。角加速度計算手段22は、回転角センサ3aで計測したモータ3の回転角度を、例えば2回微分して角加速度を求める。
スリップ判断手段23は、角加速度比較手段26で角加速度が閾値を越えたと判定され、且つ、前記定められた条件を満たすとき、駆動輪7のスリップ発生を判断する。トルク解除手段25は、スリップ判断手段23でスリップ発生が判断されると、モータ3へのトルクの指令値を零にする。駆動輪7のトルクを零にすることで、スリップの解消が行える。このモータ3へのトルクの指令値を零にしたとき、基準回転数設定手段19は、以下のように基準回転数を求めて記録手段等に一時的に記録しておく。
つまり従動輪回転数が車両の発進時や低速領域のとき、スリップ発生が判断された時点よりも前の従動輪回転数を基準回転数とする。車両の発進時や低速領域の時、従動輪の回転センサから正しい回転速度を得られないため、駆動輪のスリップ発生が判断された時点よりも前の駆動輪回転数を基準回転数とする。前記スリップ発生が判断された時点よりも前の駆動輪回転数とは、例えば、角加速度が閾値を連続して越える回数がN回になったときにスリップしたと判断された場合、N回よりも1つ遡ったN-1回目の駆動輪回転数である。
従動輪回転数が中高速領域のとき、スリップ発生が判断された時点の従動輪回転数を基準回転数とする。前記スリップ発生が判断された時点の従動輪回転数とは、例えば、角加速度が閾値を連続して越える回数がN回になったときの従動輪回転数である。
前述のように従動輪回転数の速度領域に応じて基準回転数を求めた後、トルク回復手段29は、観測される従動輪6の現回転数が前記基準回転数よりも小さいとき、モータ3に発生させるトルクを回復させていく。特に、車速の更新速度が繰り返し周期よりも遅れること等に起因して従動輪回転数が正しく測定できない発進時や低速領域(低速領域等と称す)では、基準速度を、スリップ発生が判断された時点よりも前の従動輪回転数とする。そうすると、従動輪回転数観測手段21が正確な検出をできない低速領域等であっても適切な基準回転数が設定される。このように低速領域等および中高速領域では互いに異なる基準回転数が用いられるため、これら速度領域のいずれにおいても、駆動輪7のグリップが回復したか否かを判断することができる。したがって、車両の発進時や低速領域においても、正確なトラクション制御を行うことができる。
前記スリップ判断手段23における前記定められた条件は、前記角加速度が前記閾値を越えたとの判定が連続する回数が、設定値に達することであっても良い。本来、モータ3の角加速度が閾値を超えると、スリップ発生を判断するべきである。しかし、この場合、測定した回転角度から求めた角加速度の値はばらつきが大きいため、誤判断する恐れがある。このため、スリップ判断手段25は、角加速度が閾値を越えたとの判定が連続する回数が、設定値に達したとき、スリップ発生を判断する。
前記モータ3は、インホイールモータ駆動装置11を構成するモータであっても良い。インホイールモータ駆動装置11では、各駆動輪7が個別にモータ駆動されるので、スリップの影響が大きい。そのため、この構成に係るスリップ制御による効果が、より優れて発揮される。
前記トルク回復手段29が、前記定められた基準に従って前記モータ3に発生させるトルクを回復させることは、所定の大きさずつトルクを増加させることにより、モータ3に発生させるトルクを回復させることであっても良い。
前記スリップ判断手段23が前記スリップ発生を判断した時点よりも前の従動輪6の現回転数は、前記連続する回数が設定値に達するよりも1つ前の回数となる時点の現回転数であっても良い。
この発明の一構成に係る電気自動車5は、前記モータ6を複数備え、
前記角加速度計算手段22、前記角加速度比較手段26、前記スリップ判断手段23、前記トルク解除手段25、前記基準回転数設定手段19および前記トルク回復手段29が、前記モータ6ごとに設けられても良い。
前記角加速度計算手段22、前記角加速度比較手段26、前記スリップ判断手段23、前記トルク解除手段25、前記基準回転数設定手段19および前記トルク回復手段29が、前記モータ6ごとに設けられても良い。
好ましい実施形態においては、前記駆動輪は、左右の1対の駆動輪7,7を含み、前記従動輪は、左右の1対の従動輪6,6を含む。前記従動輪回転数観測手段21は、前記1対の従動輪6,6の回転数検出値の平均値を、前記観測される現回転数としてもよい。代わりに、前記従動輪回転数観測手段21は、前記1対の従動輪6,6のうち、前記スリップ判断手段23がスリップ発生を判定する、前記1対の駆動輪7,7の一方の駆動輪7と同一側に位置する従動輪6の回転数検出値を、前記観測される現回転数としても良い。
請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態に係る、電気自動車のスリップ制御装置を備えた電気自動車駆動装置の概念構成のブロック図である。
同電気自動車駆動装置の具体例を示すブロック図である。
同スリップ制御装置の概念構成を示すブロック図である。
同スリップ制御装置の制御動作を示す流れ図である。
この発明の一実施形態を図1ないし図4と共に説明する。図1は、この実施形態に係るスリップ制御装置を備えた電気自動車駆動装置の概念構成のブロック図である。この電気自動車駆動装置は、VCU(車両制御ユニット)1と、複数のインバータ装置2,2とを備える。VCU1は、車両の全体の統合制御,協調制御を行うコンピュータ式の車両制御ユニットであり、「ECU」(電気制御ユニット)とも呼ばれる。
インバータ装置2,2は、VCU1から送られた駆動指令に応じ、複数の走行駆動用のモータ3,3それぞれに駆動電流を与える装置である。VCU1とインバータ装置2,2とは、CAN(コントロールエリアネットワーク)通信のような通信手段によって相互に信号伝達可能に接続されている。同図は、左右2輪をそれぞれモータ3,3で駆動する車両に適用した例である。各モータ3は、この例では3相交流で駆動される同期モータまたは誘導モータからなる。アクセル操作センサ4aから出力されたアクセル操作量を示す駆動指令は、VCU1に入力され、このVCU1から各モータ3,3に対するインバータ装置2,2に分配して与えられる。
また従動輪6,6(図2)に対して、これら従動輪の回転数を検出する従動輪回転数検出センサ15,15がそれぞれ設けられ、これら従動輪回転数検出センサ15,15はVCU1に電気的に接続される。インバータ装置2,2には後述する従動輪回転数観測手段がそれぞれ設けられ、これら従動輪回転数観測手段は、対応する従動輪回転数検出センサ15からそれぞれ得られる従動輪の回転数を、VCU1を介して常に監視すなわち観測する。
図2は、前記電気自動車駆動装置の具体例を示す。この電気自動車は、車両5の車体に、前輪となる従動輪6,6、および後輪となる駆動輪7,7を備えた4輪の車両である。左右の駆動輪7,7がそれぞれモータ3,3で駆動される。この例では、各モータ3は、車輪用軸受9および減速機10と共に、インホイールモータ駆動装置11を構成する。減速機10は、モータ3の回転出力を減速して車輪用軸受9の回転輪(図示せず)に伝達する。
VCU1には、アクセル4のアクセル操作センサ4a、ブレーキ12のブレーキ操作センサ12a、およびハンドル13の操舵センサ13aから、それぞれ、アクセル操作量、ブレーキ操作量、およびハンドル操作量の信号が入力される。VCU1は、アクセル操作センサ4aのアクセル操作量の信号に従い、前記ブレーキ操作量およびハンドル操作量の信号を加味して左右の各モータ3,3に分配すべきトルク指令値を生成し、各インバータ装置2,2に与える。各インバータ装置2,2は、バッテリ8の直流電力を交流電力のモータ駆動電流に変換すると共に、前記トルク指令に従って前記モータ駆動電流を制御する。
これらインバータ装置2,2に、この実施形態に係る、電気自動車のスリップ制御装置20,20がそれぞれ設けられている。スリップ制御装置20は、走行駆動用の電動のモータ3を備えた車両である電気自動車において、スリップ制御を行う装置である。これらスリップ制御装置20,20は、VCU1に設けられていても良い。
図3は、前記各インバータ装置2の構成、特に各スリップ制御装置20の構成を示した機能ブロック図である。インバータ装置2には、バッテリ8(図2)の直流電力を3相の交流電力に変換するインバータ17と、VCU1から与えられたトルク指令を電流指令に変換してインバータ17の電流出力を制御するトルク制御手段16とを有する。トルク制御手段16は、モータ3のロータ(図示せず)の回転角度に応じて効率化を図るベクトル制御のような制御を行う。この制御のために、モータ3に設けられた回転角センサ3aの回転角度の検出値が入力される。トルク制御手段16は、マイクロコンピュータやその他の電子回路で構成される弱電回路部分に設けられている。この弱電回路部分に、スリップ制御装置20が設けられている。
スリップ制御装置20は、図4に流れ図で示す制御を行う装置である。図3に示すように、スリップ制御装置20は、閾値計算手段18、従動輪回転数観測手段21、角加速度計算手段22、スリップ判断手段23、トルク解除手段25、基準回転数設定手段19、およびトルク回復手段29を有する。閾値計算手段18は、アクセル操作センサ4aから出力されるアクセル4の操作量に応じたモータ3のノーマル角加速度、すなわちアクセル4の操作量に応じてモータ3が本来呈すべき角加速度を計算し、この計算したノーマル角加速度を閾値とする。代わりに、この計算したノーマル角加速度に、適宜に定めた係数等を掛けて閾値としても良い。
閾値についての具体例を示すと、アクセル4の操作により車両に与える加速度αは次の式1で計算される。
閾値についての具体例を示すと、アクセル4の操作により車両に与える加速度αは次の式1で計算される。
各従動輪回転数観測手段21は、1つまたは複数の従動輪回転数検出センサ15から得られる対応する従動輪6の回転数を、VCU1を介して常に監視すなわち観測する。従動輪回転数観測手段21で観測される回転数は、後述の基準回転数を求めるとき、および、後述のトルク回復手段29でトルクを回復させるか否かを判断するときに用いられる。
各従動輪回転数観測手段21で観測する従動輪6の回転数は、例えば、左右一対の従動輪6,6の回転数検出値の平均値であっても良く、また、スリップ制御を行う駆動輪7と左右の同じ側に位置する従動輪6の回転数であっても良い。従動輪回転数観測手段21は、図3の点線に示すように、従動輪回転数検出センサ15から得られる従動輪6の回転数を、VCU1を介すことなく直接観測することも可能である。
角加速度計算手段22は、モータ3の回転角度を回転角センサ3aで測定し、この測定した回転角度を2回微分して角加速度を求める。しかし、前記のように2回微分した値は、ばらつきが大きくてそのままでは使えないため、次のように連続複数回の判断に基づいてスリップ判断を行う。
スリップ判断手段23は、モータ3で駆動される駆動輪7のスリップ発生を判断する手段であり、角加速度比較手段26と、カウント部27と、スリップ判断部28とを有する。角加速度比較手段26は、角加速度計算手段22で計算された角加速度と閾値計算手段18で計算された閾値とを比較して、計算された角加速度が閾値を越えたか否かを判定する。本来、モータ3の角加速度が閾値を越えると、駆動輪7のスリップ発生を判断するべきだが、前述のように、測定した回転角度から求めた角加速度の値はばらつきが大きい。そのため、カウント部27が閾値を越えた場合の連続回数をカウントし、スリップ判断部28は、そのカウント値が設定回数Nsに達すると、スリップ発生を判断する。
トルク解除手段25は、スリップ判断部28がスリップ発生を判断すると、駆動輪7を駆動するモータ3へのトルクの指令値を零にする。駆動輪7のトルクを零にすることで、確実にスリップを解消できる。トルク解除手段25は、このように、スリップ時にトルクを零にするものである。
基準回転数設定手段19は、トルク解除手段25によりモータ3へのトルクを零にしたとき、駆動輪7のグリップが回復したか否かを判断するための基準回転数を設定する。基準回転数設定手段19は、従動輪6の現回転数が低速領域における回転数か中高速領域における回転数か応じて、異なる基準回転数を設定する。つまり従動輪回転数観測手段21で観測される従動輪回転数が車両の発進時の回転数や低速領域の回転数(例えば10km/h以下)のとき、スリップ発生が判断された時点よりも前の駆動輪回転数を「基準回転数」とする。
前記スリップ発生が判断された時点よりも前の駆動輪回転数とは、例えば、角加速度が閾値を連続して越える回数が、N回に達したときにスリップ発生が判断された場合、N回よりも1つ遡ったN-1回目の時点の駆動輪回転数である。換言すれば、前記N回になったときにスリップしたと判断したときの繰り返し周期時よりも1つ前の繰り返し周期時における駆動輪回転数である。
従動輪回転数が中高速領域内の(例えば10km/hよりも大)ときは、スリップしたと判断された時点の従動輪回転数、例えば、角加速度が閾値を連続して越える回数がN回になったときの従動輪回転数を、「基準回転数」とする。
トルク回復手段29は、従動輪回転数観測手段21で観測される現回転数が、基準回転数設定手段19で設定された基準回転数よりも小さいとき、駆動輪7のグリップが回復したと判断して、定められた基準(例えば、1Nmずつ増加させるという基準)に従ってモータ3に発生させるトルクを徐々に回復させていく。最大値はアクセルのトルク指令である。
スリップが発生したモータ3のトルクを零にした後、急激にトルクを回復させると、車両の急激な加速により、車両の乗員に違和感を与えるが、前記のようにトルクを徐々に回復させることで、乗員に違和感を与えず乗員にとって快適な走行性を維持し得る。
図4は、このスリップ制御装置20の制御動作を示す流れ図である。図3も参照しつつ説明する。例えば、車両の主電源を投入することを契機として本処理を開始し、閾値計算手段18は、アクセル操作センサ4aから出力されるアクセル4の操作量に応じたモータ3のノーマル角加速度、すなわちアクセル4の操作量に応じてモータ3が本来呈すべき角加速度を計算し、この角加速度を基にスリップ判断の閾値を計算する(ステップS1)。従動輪回転数観測手段21は、従動輪回転数検出センサ15から得られる従動輪6の回転数を観測する(ステップS2)。
角加速度計算手段22は、前述のようにモータ3の角加速度を計算する(ステップS3)。次に、角加速度比較手段26は、角加速度計算手段22で計算された角加速度と閾値計算手段18で計算された閾値とを比較して、角加速度が閾値を越えたか否かを判定する(ステップS4)。閾値を越えていないとの判定で(ステップS4のNo)、カウント部27はカウンタ27aを「0」にリセットし(ステップS5)、ステップS1に戻る。
角加速度が閾値を越えた場合(ステップS4のYes)、スリップにより角加速度が大きくなった可能性があるため、次のスリップ判断のために、カウント部27はカウンタ27aに「1」を加算する(ステップS6)。カウンタ27aの初期値は零である。
スリップ判断部28は、カウンタ27aのカウント値が設定回数Nsに達したか否かを判断し、設定回数Nsに達していない場合は(ステップS7のNo)、ステップS1に戻り処理を再開する。この再開時は、カウンタ27aがリセットされていないので、前回のカウント値Nを維持したままで再開する。スリップ判断部28は、カウント値が設定回数Nsに達した場合(ステップS7のYes)、スリップ発生を判断する。
スリップ判断部28は、カウンタ27aのカウント値が設定回数Nsに達したか否かを判断し、設定回数Nsに達していない場合は(ステップS7のNo)、ステップS1に戻り処理を再開する。この再開時は、カウンタ27aがリセットされていないので、前回のカウント値Nを維持したままで再開する。スリップ判断部28は、カウント値が設定回数Nsに達した場合(ステップS7のYes)、スリップ発生を判断する。
次に、基準回転数設定手段19は、従動輪回転数が低速領域等の回転数か否かを判断する(ステップS8)。前記低速領域等のとき(ステップS8のYes)、トルク解除手段25はモータ3へのトルクの指令値を零まで減らし、基準回転数設定手段19はスリップ発生が判断された時点よりも前の従動輪回転数を基準回転数とする(ステップS9)。前記低速領域等ではないとの判断で(ステップS8のNo)、トルク解除手段25はモータ3へのトルクの指令値を零まで減らし、基準回転数設定手段19はスリップ発生が判断された時点の従動輪回転数を基準回転数とする(ステップS10)。
その後、トルク回復手段29は、観測される従動輪6の現回転数が、基準回転数設定手段19で設定された基準回転数よりも小さいか否かを判断する(ステップS11)。現回転数が基準回転数以上の場合(ステップS11のNo)、トルク回復手段29はスリップがまだ解消していないと判断してステップS1に戻る。現回転数が基準回転数より小さい場合(ステップS11のYes)、トルク回復手段29は、グリップしたと判断して、トルクを徐々に回復させる(ステップS12)。
トルク回復手段29は、前述のように回復させていく現トルクが指令トルクまで回復すると(ステップS13のYes)、現トルクを指令トルクとし(ステップS14)、その後、ステップS1に戻る。徐々に回復させる現トルクが指令トルクまで回復していないとき(ステップS13のNo)、ステップS1に戻る。
以上説明したスリップ制御装置20によると、従動輪回転数の速度領域に応じて基準回転数を求めた後、トルク回復手段29は、観測される従動輪6の現回転数が前記基準回転数よりも小さいとき、モータ3に発生させるトルクを回復させていく。特に、車速の更新速度が制御の繰り返し周期よりも遅れること等に起因して従動輪回転数が正しく測定できない発進時や低速領域では、基準速度を、スリップ発生が判断された時点よりも前の従動輪回転数とする。そうすると、従動輪回転数観測手段21が正確な検出をできない低速領域等であっても適切な基準回転数が設定される。このように低速領域等および中高速領域では互いに異なる基準回転数が用いられるため、これら速度領域のいずれにおいても、駆動輪7のグリップが回復したか否かを判断することができる。したがって、車両の発進時や低速領域においても、正確なトラクション制御を行うことができる。
また、この実施形態において、前記モータ3はインホイールモータ装置11を構成するが、インホイールモータ装置11では、各駆動輪7が個別にモータ駆動されるので、スリップの影響が大きい。そのため、この実施形態に係るスリップ制御による効果が、より優れて発揮される。
なお、この電気自動車のスリップ制御装置は、インホイールモータ形式に限らず、車体に設置されたモータ3から駆動軸を介して駆動輪7に回転伝達するいわゆる1モータ形式の電気自動車にも適用することができる。
なお、この電気自動車のスリップ制御装置は、インホイールモータ形式に限らず、車体に設置されたモータ3から駆動軸を介して駆動輪7に回転伝達するいわゆる1モータ形式の電気自動車にも適用することができる。
3…モータ
3a…回転角センサ
4…アクセル
6…従動輪
7…駆動輪
18…閾値計算手段
19…基準回転数設定手段
20…スリップ制御装置
21…従動輪回転数観測手段
22…角加速度計算手段
23…スリップ判断手段
25…トルク解除手段
26…角加速度比較手段
29…トルク回復手段
3a…回転角センサ
4…アクセル
6…従動輪
7…駆動輪
18…閾値計算手段
19…基準回転数設定手段
20…スリップ制御装置
21…従動輪回転数観測手段
22…角加速度計算手段
23…スリップ判断手段
25…トルク解除手段
26…角加速度比較手段
29…トルク回復手段
Claims (8)
- 駆動輪を回転駆動する電動のモータを少なくとも1つ備えた車両である電気自動車に設けられ、当該電気自動車のスリップ制御を行うスリップ制御装置であって、
アクセルの操作量に応じた前記モータのノーマル角加速度を計算し、この計算したノーマル角加速度を基にスリップ判断のための閾値を計算する閾値計算手段と、
従動輪の現回転数を観測する従動輪回転数観測手段と、
前記モータの回転角度を検出する回転角センサの検出値から前記モータの角加速度を計算する角加速度計算手段と、
この角加速度計算手段で計算された角加速度が前記閾値計算手段で計算された閾値を越えたか否かを判定する角加速度比較手段と、
この角加速度比較手段で角加速度が閾値を越えたと判定され、且つ、定められた条件を満たすとき、前記駆動輪のスリップ発生を判断するスリップ判断手段と、
このスリップ判断手段でスリップ発生が判断されると、前記モータへのトルクの指令値を零にするトルク解除手段と、
このトルク解除手段により前記モータへのトルクの指令値を零にしたとき、前記駆動輪のグリップが回復したか否かを判断するための基準回転数を設定する基準回転数設定手段と、
前記従動輪回転数観測手段で観測される現回転数が、前記基準回転数設定手段で設定された基準回転数よりも小さいとき、前記駆動輪のグリップが回復したと判断して定められた基準に従って前記モータに発生させるトルクを回復させていくトルク回復手段と、
を備え、
前記基準回転数設定手段は、
前記従動輪回転数観測手段で観測される従動輪の現回転数が定められた回転数以下のとき、前記スリップ判断手段が前記スリップ発生を判断した時点よりも前の従動輪の現回転数を基準回転数とし、
前記従動輪回転数観測手段で観測される従動輪の現回転数が定められた回転数よりも大きいとき、前記スリップ判断手段が前記スリップ発生を判断した時点の従動輪の現回転数を基準回転数とする、スリップ制御装置。 - 請求項1に記載のスリップ制御装置において、前記スリップ判断手段における前記定められた条件は、前記角加速度が前記閾値を越えたとの判定が連続する回数が、設定値に達することである、スリップ制御装置。
- 請求項1または請求項2に記載のスリップ制御装置において、前記モータは、インホイールモータ駆動装置を構成するモータである、スリップ制御装置。
- 請求項1ないし3のいずれか一項に記載のスリップ制御装置において、前記トルク回復手段が、前記定められた基準に従って前記モータに発生させるトルクを回復させることは、所定の大きさずつトルクを増加させることにより、モータに発生させるトルクを回復させることである、スリップ制御装置。
- 請求項2または請求項2に従属する請求項3もしくは請求項4に記載のスリップ制御装置において、前記スリップ判断手段が前記スリップ発生を判断した時点よりも前の従動輪の現回転数は、前記連続する回数が設定値に達するよりも1つ前の回数となる時点の現回転数である、スリップ制御装置。
- 請求項1ないし請求項5に記載のスリップ制御装置を備えた前記電気自動車であって、
前記モータを複数備え、
前記角加速度計算手段、前記角加速度比較手段、前記スリップ判断手段、前記トルク解除手段、前記基準回転数設定手段および前記トルク回復手段、が、前記モータごとに設けられている、電気自動車。 - 請求項6に記載の電気自動車において、
前記駆動輪は、左右の1対の駆動輪を含み、
前記従動輪は、左右の1対の従動輪を含み、
前記従動輪回転数観測手段は、前記1対の従動輪の回転数検出値の平均値を、前記観測される現回転数とする、電気自動車。 - 請求項5に記載の電気自動車において、
前記駆動輪は、左右の1対の駆動輪を含み、
前記従動輪は、左右の1対の従動輪を含み、
前記従動輪回転数観測手段は、前記1対の従動輪のうち、前記スリップ判断手段23がスリップ発生を判定する、前記1対の駆動輪の一方の駆動輪と同一側に位置する従動輪の回転数検出値を、前記観測される現回転数とする、電気自動車。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-056481 | 2014-03-19 | ||
JP2014056481A JP6250444B2 (ja) | 2014-03-19 | 2014-03-19 | 電気自動車のスリップ制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141519A1 true WO2015141519A1 (ja) | 2015-09-24 |
Family
ID=54144490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/056965 WO2015141519A1 (ja) | 2014-03-19 | 2015-03-10 | 電気自動車のスリップ制御装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6250444B2 (ja) |
WO (1) | WO2015141519A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108189706A (zh) * | 2017-12-20 | 2018-06-22 | 中国第汽车股份有限公司 | 纯电动公交客车蠕行起步的控制方法 |
CN111469842A (zh) * | 2019-01-22 | 2020-07-31 | 罗伯特·博世有限公司 | 用于车辆的扭矩恢复方法、扭矩恢复装置和车辆 |
CN116749788A (zh) * | 2023-06-27 | 2023-09-15 | 广州汽车集团股份有限公司 | 弹射控制的方法、装置、电子设备及存储介质 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7409893B2 (ja) * | 2020-01-31 | 2024-01-09 | 本田技研工業株式会社 | 制御装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004096822A (ja) * | 2002-08-29 | 2004-03-25 | Toyota Motor Corp | 原動機の制御装置および原動機の制御方法 |
JP2004112973A (ja) * | 2002-09-20 | 2004-04-08 | Toyota Motor Corp | 車両のスリップ制御装置及びその制御方法 |
JP2012121447A (ja) * | 2010-12-08 | 2012-06-28 | Toyota Motor Corp | 車両用駆動システム |
JP2013116029A (ja) * | 2011-12-01 | 2013-06-10 | Ntn Corp | 電動車両制御装置・制御方法・および電動車両 |
-
2014
- 2014-03-19 JP JP2014056481A patent/JP6250444B2/ja not_active Expired - Fee Related
-
2015
- 2015-03-10 WO PCT/JP2015/056965 patent/WO2015141519A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004096822A (ja) * | 2002-08-29 | 2004-03-25 | Toyota Motor Corp | 原動機の制御装置および原動機の制御方法 |
JP2004112973A (ja) * | 2002-09-20 | 2004-04-08 | Toyota Motor Corp | 車両のスリップ制御装置及びその制御方法 |
JP2012121447A (ja) * | 2010-12-08 | 2012-06-28 | Toyota Motor Corp | 車両用駆動システム |
JP2013116029A (ja) * | 2011-12-01 | 2013-06-10 | Ntn Corp | 電動車両制御装置・制御方法・および電動車両 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108189706A (zh) * | 2017-12-20 | 2018-06-22 | 中国第汽车股份有限公司 | 纯电动公交客车蠕行起步的控制方法 |
CN111469842A (zh) * | 2019-01-22 | 2020-07-31 | 罗伯特·博世有限公司 | 用于车辆的扭矩恢复方法、扭矩恢复装置和车辆 |
CN111469842B (zh) * | 2019-01-22 | 2024-01-19 | 罗伯特·博世有限公司 | 用于车辆的扭矩恢复方法、扭矩恢复装置和车辆 |
CN116749788A (zh) * | 2023-06-27 | 2023-09-15 | 广州汽车集团股份有限公司 | 弹射控制的方法、装置、电子设备及存储介质 |
CN116749788B (zh) * | 2023-06-27 | 2024-04-05 | 广州汽车集团股份有限公司 | 弹射控制的方法、装置、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JP6250444B2 (ja) | 2017-12-20 |
JP2015180142A (ja) | 2015-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6223717B2 (ja) | 電気自動車のスリップ制御装置 | |
JP6342188B2 (ja) | 電気自動車のスリップ制御装置 | |
JP6250445B2 (ja) | 電気自動車のスリップ制御装置 | |
JP6266280B2 (ja) | 電気自動車のスリップ制御装置 | |
EP3153344B1 (en) | Drive control device with traction control function for right-left independent drive vehicle | |
WO2015141519A1 (ja) | 電気自動車のスリップ制御装置 | |
EP3103702A1 (en) | Vehicle control device of four-wheel independent drive vehicle for when one wheel is lost | |
KR20160040667A (ko) | 전기 또는 하이브리드 차량의 회생 제동 제어 | |
US9555721B2 (en) | Slip control device for electric vehicle | |
KR20210014821A (ko) | 차량의 휠 슬립 제어 방법 | |
JP6050089B2 (ja) | 電気自動車の制御装置およびその電気自動車 | |
WO2021080011A1 (ja) | 制御装置 | |
JP6202278B2 (ja) | 電動車両のスリップ率制御装置 | |
KR20210018652A (ko) | 차량의 휠 슬립 제어 방법 | |
JP7105608B2 (ja) | 電動機制御方法及び電動機制御装置 | |
JP2016094139A (ja) | 四輪駆動車両の車両速度推定装置および制御装置 | |
JP2006129584A (ja) | トラクション制御装置 | |
TWI399307B (zh) | 具滑差修正之電動動力輪之驅動方法及其裝置 | |
JP4171557B2 (ja) | 電気車制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15764622 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15764622 Country of ref document: EP Kind code of ref document: A1 |