WO2015141400A1 - ステント - Google Patents

ステント Download PDF

Info

Publication number
WO2015141400A1
WO2015141400A1 PCT/JP2015/055055 JP2015055055W WO2015141400A1 WO 2015141400 A1 WO2015141400 A1 WO 2015141400A1 JP 2015055055 W JP2015055055 W JP 2015055055W WO 2015141400 A1 WO2015141400 A1 WO 2015141400A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
reinforcing member
expanded
balloon
portions
Prior art date
Application number
PCT/JP2015/055055
Other languages
English (en)
French (fr)
Inventor
野澤直人
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2015141400A1 publication Critical patent/WO2015141400A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91508Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a difference in amplitude along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91516Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other the meander having a change in frequency along the band
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0076Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof multilayered, e.g. laminated structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0015Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in density or specific weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0026Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in surface structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0029Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in bending or flexure capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/003Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time
    • A61F2250/0031Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time made from both resorbable and non-resorbable prosthetic parts, e.g. adjacent parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness

Definitions

  • the present invention relates to a stent for maintaining an open state of a living body lumen by being placed in a stenosis portion or an occlusion portion generated in the living body lumen.
  • a method of securing a space in a coronary artery by placing a stent in a lesion (stenosis) of a coronary artery has been performed, and other blood vessels, bile ducts, trachea,
  • a similar method may be used for treatment of stenosis in the esophagus, urethra, and other living body lumens.
  • Stents are classified into balloon-expandable stents and self-expandable stents by function and placement method.
  • the balloon-expandable stent has no expansion function in the stent itself, and is placed outside the balloon of a balloon catheter having an expandable balloon, inserted into a target site, expanded by the balloon, and plastically deformed so that a living body such as a blood vessel can be obtained. It is tightly fixed in the lumen.
  • a stent is a tube having linear gaps in which linear components extending in a circumferential direction while being bent in a wave shape are aligned in the axial direction and adjacent components are connected to each other. It has a shape.
  • the holding force (strength) in the radial direction is compared with the other components. And it is low. For this reason, since the vascular expansion holding force in the radial direction possessed by the stent is large at the central portion and low at both end portions in the axial direction of the stent, the ability to expand and hold the blood vessels at both end portions becomes insufficient. there is a possibility.
  • the strength of both ends of the stent is lower than that of the central portion, so that when the stent is bent excessively, for example, when moving in the blood vessel, only the components at both ends are in diameter.
  • a phenomenon (flaring) that deforms so as to spread outward in the direction is likely to occur. When flaring occurs, the expanded site of the stent is likely to be caught in the blood vessel, and it may be difficult to move the stent within the blood vessel.
  • a stent having a closed cell structure in which all sides and vertices of cells (openings) constituting a mesh (mesh) are shared with adjacent cells has a large metal area, and therefore sufficient at both ends of the stent. Strength is ensured, and it is possible to suppress the decrease in the holding force in the radial direction and the occurrence of flaring.
  • Due to the large amount of metal it is bulky and the conveyance performance is reduced, and the biological lumen after stent placement is deformed. There is a possibility that the followability with respect to will decrease.
  • the present invention has been made in order to solve the above-described problems, and provides a stent that can suppress the occurrence of flaring while exhibiting a good expansion holding force and that can obtain high followability to deformation of a living body lumen.
  • the purpose is to provide.
  • the stent according to the present invention that achieves the above object is formed of a linear component and is formed in a cylindrical shape having a gap as a whole, and is deformable so as to expand radially outward, and a biodegradable material And at least one linear reinforcing member connected to at least one of the linear components located at both axial ends of the stent substrate.
  • the reinforcing member is connected to at least one of the linear components located at both ends in the axial direction, the strength at the axial end of the stent is improved. For this reason, when the stent expands in the radial direction in the living body lumen, it exhibits a good holding force in the radial direction with respect to the living body lumen, and when moving in the living body lumen in a state before expansion. Thus, it is possible to effectively suppress the occurrence of flaring that expands the end.
  • the reinforcing member is formed of a biodegradable material, the above-described stent is placed in the living body lumen, and the reinforcing member is decomposed and disappears after a predetermined period of time, and becomes a flexible stent. High followability to lumen deformation can be obtained.
  • the reinforcing member is formed in a range of less than 360 degrees in the circumferential direction of the stent, the reinforcing member is only partially used in the circumferential direction while effectively using the linear components. Therefore, it is possible to suppress the occurrence of flaring while exhibiting a good expansion holding force with the addition of a minimum configuration.
  • the stent can effectively improve the strength at the end of the stent, and thus exhibits a good expansion holding force. However, the occurrence of flaring can be effectively suppressed.
  • the connection of the reinforcing member to the linear component is possible. It becomes strong and the drop-off of the reinforcing member from the linear component is suppressed, thereby improving safety.
  • the stent is configured such that a portion of the linear component connected to the reinforcing member is covered with a material having higher affinity for the reinforcing member than the material constituting the linear component.
  • the reinforcing member is expanded after the stent base is expanded. Since the bent portion of the member is deformed to be closer to a straight line without becoming thin, the strength of the end portion of the stent after expansion is increased, and a high expansion holding force can be obtained.
  • the stent has a portion formed linearly along the circumferential direction of the stent in a state before the stent is expanded, the end of the stent in the state before expansion is provided.
  • the strength of the portion is increased, and the occurrence of flaring can be effectively suppressed.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. It is sectional drawing which shows the modification of the stent which concerns on 1st Embodiment. It is sectional drawing which shows the other modification of the stent which concerns on 1st Embodiment. It is sectional drawing which shows the other modification of the stent which concerns on 1st Embodiment.
  • the stent 10 according to the first embodiment is used to treat a stenosis or occlusion occurring in a blood vessel, bile duct, trachea, esophagus, urethra, or other living body lumen.
  • the stent 10 is a so-called balloon-expandable stent that is expanded by the expansion force of the balloon, and as shown in FIGS. 1 to 3, a cylindrical stent base 20 that is constituted by linear components and has a gap as a whole, Reinforcing members 30 connected to both ends in the axial direction X with respect to the stent base 20 are provided.
  • the stent 10 according to the present embodiment has an open cell structure in which some of the sides or vertices of cells (openings) constituting a mesh (mesh) are not shared with adjacent cells.
  • the stent base body 20 includes a plurality of spiral bodies 21 formed in a spiral shape around the axial direction X of the stent 10 by zigzag linear components folded back in a wave shape, and both ends of the spiral body 21. And two annular bodies 23 formed endlessly.
  • Each spiral body 21 is formed by drawing a spiral of 360 °, and all the spiral bodies 21 are arranged in series to form one spiral.
  • Each spiral body 21 is formed by being folded back in a plurality of wave shapes.
  • the number of spiral bodies 21 is not particularly limited. Further, the number of the spiral bodies 21 that are folded back in a zigzag manner is not particularly limited. Since the stent base 20 includes the spiral body 21 formed in a spiral shape, the stent 10 is provided with flexibility, and the stent 10 easily deforms following the deformation of a biological lumen such as a blood vessel. , The influence on the living body can be reduced.
  • the spiral bodies 21 adjacent to each other in the axial direction X of the stent base body 20 are integrally connected by the first link member 22.
  • the first link member 22 is twisted so that the spiral of the spiral body 21 connected in series is stretched, and the bent portion of the spiral body 21 is not opened. It plays a role of suppressing deformation while reducing the number of turns of the spiral.
  • the two annular bodies 23 are integrally connected to the adjacent spiral body 21 by the second link member 24.
  • Each annular body 23 is formed with a first folded portion 23A that is bent so as to protrude in the end direction along the axial direction X, and a second folded portion 23B that is bent in the opposite direction, and the first folded portion 23A.
  • turning part 23B is arrange
  • the reinforcing member 30 is made of a biodegradable material, and is connected to the annular bodies 23 (linear constituent elements) at both ends in the axial direction X of the stent base body 20.
  • a plurality of reinforcing members 30 are provided in each of the annular bodies 23, and each reinforcing member 30 is formed in a range of less than 360 degrees in the circumferential direction of the stent 10.
  • Each reinforcing member 30 is a linear member including a curved portion 31 protruding toward the end portion of the stent 10 along the axial direction X of the stent 10 in a state before the stent 10 is expanded.
  • a first end portion 32 and a second end portion 33 are formed in the direction opposite to the curved portion 31.
  • Each reinforcing member 30 is disposed between two circumferentially adjacent first folded portions 23 ⁇ / b> A in the annular body 23, and the first end portion 32 of the reinforcing member 30 has two adjacent first folded portions. It is connected between one of 23A and the 2nd folding
  • the second end portion 33 of the reinforcing member 30 is connected between the other of the two adjacent first folded portions 23A and the second folded portion 23B located between the two first folded portions 23A.
  • the first folded portions 23A and the reinforcing members 30 of the annular body 23 are alternately arranged in the circumferential direction.
  • the reinforcing member 30 is provided in all the spaces between the adjacent first folded portions 23A. However, the reinforcing member 30 may not necessarily be provided in all the spaces. What is necessary is just to provide above.
  • the reinforcing member 30 is formed of a biodegradable material, it is decomposed and disappears after the stent 10 is placed in the living body lumen.
  • the reinforcing member 30 is formed with a substantially constant thickness.
  • substrate 20 of the reinforcement member 30 is not limited to the form shown in FIG.
  • the reinforcing member 30 may be formed so as to be thinner from the first end portion 32 and the second end portion 33.
  • the reinforcing member 30 may be joined to the annular portion 23 so as to cover the outer surface 25, the side surface 26, and the inner surface 27 of the annular portion 23.
  • the reinforcing member 30 may be joined to the annular portion 23 so as to cover one side surface 26 of the annular portion 23, a part of the outer surface 25, and a part of the inner surface 27.
  • the reinforcing member 30 may be joined only to the side surface 26 of the annular portion 23 as shown in FIG.
  • the stent base body 20 varies depending on the site to be placed, but generally has an outer diameter of 1.5 to 20 mm, preferably 2.0 to 10 mm, and a wall thickness of 0.02 to 1 when expanded (when the diameter is not reduced). 0.04 mm, preferably 0.04 to 0.5 mm, and the length is 5 to 250 mm, preferably 8 to 200 mm.
  • the spiral pitch (the interval between adjacent spiral bodies 21) is 0.1 to 3 mm, preferably 0.3 to 1.0 mm.
  • the thickness of the reinforcing member 30 is not particularly limited, but is preferably ⁇ 0.02 mm to +0.02 mm with respect to the thickness of the stent substrate 20.
  • the stent substrate 20 is made of a non-biodegradable metal material such as a stainless steel, a cobalt base alloy such as a cobalt-chromium alloy, an elastic metal such as a platinum-chromium alloy, or a superelastic alloy such as a nickel-titanium alloy. It is preferable that the metal material is integrally formed in a substantially cylindrical shape.
  • the stent base 20 is produced by removing non-component parts such as the stent base 20 using a metal pipe, thereby forming an integrally formed product.
  • the formation of the stent base 20 by the metal pipe can be performed by cutting (for example, mechanical polishing, laser cutting), electric discharge machining, chemical etching, or the like, and may be performed by using them together.
  • biodegradable material used for the reinforcing member 30 a biodegradable metal or a biodegradable polymer is preferably used.
  • the biodegradable material preferably has adhesiveness with the stent substrate 20.
  • the biodegradable metal pure magnesium or magnesium alloy, calcium, zinc, lithium or the like is used. Preferred is pure magnesium or a magnesium alloy.
  • the magnesium alloy contains magnesium as a main component and contains at least one element selected from a biocompatible element group consisting of Zr, Y, Ti, Ta, Nd, Nb, Zn, Ca, Al, Li, and Mn. Those that do are preferred.
  • magnesium for example, magnesium is 50 to 98%, lithium (Li) is 0 to 40%, iron is 0 to 5%, and other metals or rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 0 to Mention may be made of 5%.
  • magnesium is 79 to 97%, aluminum is 2 to 5%, lithium (Li) is 0 to 12%, and rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 1 to 4%. be able to.
  • magnesium is 85 to 91%
  • aluminum is 2%
  • lithium (Li) is 6 to 12%
  • rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 1%.
  • magnesium is 86 to 97%
  • aluminum is 2 to 4%
  • lithium (Li) is 0 to 8%
  • rare earth elements (cerium, lanthanum, neodymium, praseodymium, etc.) are 1 to 2%.
  • aluminum is 8.5 to 9.5%
  • manganese (Mn) is 0.15 to 0.4%
  • zinc is 0.45 to 0.9%
  • the remainder is magnesium. it can.
  • aluminum is 4.5 to 5.3%
  • manganese (Mn) is 0.28 to 0.5%
  • the remainder is magnesium.
  • magnesium is 55 to 65%
  • lithium (Li) is 30 to 40%
  • other metals and / or rare earth elements are 0 to 5%. Can do.
  • the biodegradable polymer is not particularly limited as long as it is enzymatically or non-enzymatically degraded in vivo and the degradation product does not exhibit toxicity.
  • the joint portion of the stent base body 20 to be joined to the reinforcing member 30 may be surface-treated in whole or in part in order to improve the adhesiveness with the forming material of the reinforcing member 30.
  • the surface treatment include a method of forming a rough surface whose surface is rougher than other surrounding portions.
  • a method of covering the surface with a material having a high affinity for the forming material of the reinforcing member 30 as a primer (covering portion 28) is also preferable.
  • the primer material the most preferable one is a silane coupling agent having a hydrolyzable group and an organic functional group.
  • the silanol group generated by the decomposition of the hydrolyzable group (for example, alkoxy group) of the silane coupling agent is bonded to the surface of the joining portion (free end portion) of the metal easily deformable portion by a covalent bond or the like.
  • the organic functional group for example, epoxy group, amino group, mercapto group, vinyl group, methacryloxy group
  • the silane coupling agent include ⁇ -aminopropylethoxysilane and ⁇ -glycidoxypropylmethyldimethoxysilane.
  • primer materials other than silane coupling agents include organic titanium coupling agents, aluminum coupling agents, chromium coupling agents, organic phosphoric acid coupling agents, organic vapor deposition films such as polyparaxylene, and cyanoacrylates. Adhesives, polyurethane-based paste resins, and the like.
  • a physiologically active substance may be included in the forming material of the reinforcing member 30.
  • Physiologically active substances include agents that suppress intimal thickening, anticancer agents, immunosuppressive agents, antibiotics, anti-rheumatic agents, antithrombotic agents, HMG-CoA reductase inhibitors, ACE inhibitors, calcium antagonists, anti-high fats Antihypertensive agent, anti-inflammatory agent, integrin inhibitor, antiallergic agent, antioxidant, GPIIbIIIa antagonist, retinoid, flavonoid and carotenoid, lipid improver, DNA synthesis inhibitor, tyrosine kinase inhibitor, antiplatelet agent, vascular smoothing Muscle growth inhibitors, anti-inflammatory drugs, biological materials, interferons and epithelial cells generated by genetic engineering are used. And you may use 2 or more types of mixtures, such as said chemical
  • medical agent are used.
  • anticancer agent for example, vincristine, vinblastine, vindesine, irinotecan, pirarubicin, paclitaxel, docetaxel, methotrexate and the like are preferable.
  • immunosuppressant for example, sirolimus, tacrolimus, azathioprine, cyclosporine, cyclophosphamide, mycophenolate mofetil, gusperimus, mizoribine and the like are preferable.
  • antibiotic for example, mitomycin, adriamycin, doxorubicin, actinomycin, daunorubicin, idarubicin, pirarubicin, aclarubicin, epirubicin, pepromycin, dinostatin styramer and the like are preferable.
  • anti-rheumatic agent for example, methotrexate, sodium thiomalate, penicillamine, lobenzalit and the like are preferable.
  • antithrombotic drug for example, heparin, aspirin, antithrombin preparation, ticlopidine, hirudin and the like are preferable.
  • HMG-CoA reductase inhibitor for example, cerivastatin, cerivastatin sodium, atorvastatin, nisvastatin, itavastatin, fluvastatin, fluvastatin sodium, simvastatin, lovastatin, pravastatin and the like are preferable.
  • ACE inhibitor for example, quinapril, perindopril erbumine, trandolapril, cilazapril, temocapril, delapril, enalapril maleate, lisinopril, captopril and the like are preferable.
  • nifedipine, nilvadipine, diltiazem, benidipine, nisoldipine and the like are preferable.
  • the antihyperlipidemic agent for example, probucol is preferable.
  • the antiallergic agent for example, tranilast is preferable.
  • retinoids for example, all-trans retinoic acid flavonoids and carotenoids are preferably catechins, particularly epigallocatechin gallate, anthocyanins, proanthocyanidins, lycopene, ⁇ -carotene and the like.
  • tyrosine kinase inhibitor for example, genistein, tyrphostin, arbustatin and the like are preferable.
  • anti-inflammatory agent for example, steroids such as dexamethasone and prednisolone are preferable.
  • the biological material include EGF (epidemal growth factor), VEGF (basic endowment growth factor), HGF (hepatocyte growth factor), PDGF (platelet weight, etc.).
  • a method of placing the stent 10 according to the present embodiment in a living body lumen will be described by taking the case of placing it in a blood vessel as an example.
  • a balloon catheter 200 shown in FIGS. 10 and 11 is used.
  • the balloon catheter 200 includes a long catheter body 220, a balloon 230 provided at the distal end of the catheter body 220, a hub 240 fixed to the proximal end of the catheter body 220, and an outer peripheral surface of the balloon 230. It has the stent 10 mounted in the diameter state.
  • the catheter main body 220 includes an outer tube 250 that is a tubular body having an open front end and a base end, and an inner tube 260 disposed inside the outer tube 250.
  • the outer tube 250 has an expansion lumen 251 through which an expansion fluid for expanding the balloon 230 flows, and the inner tube 260 has a guide wire lumen 261 through which the guide wire W is inserted.
  • the expansion fluid may be gas or liquid, and examples thereof include gas such as helium gas, CO 2 gas, and O 2 gas, and liquid such as physiological saline and contrast medium.
  • the inner tube 260 has a distal end portion that penetrates the inside of the balloon 230 and opens at the distal end side of the balloon 230, and a proximal end portion that penetrates the side wall of the outer tube 250 and is attached to the outer tube 250 with an adhesive or It is fixed liquid-tightly by heat sealing.
  • the hub 240 includes a proximal end opening 241 that functions as a port for communicating with the expansion lumen 251 of the outer tube 250 and allows the expansion fluid to flow in and out, and the proximal end of the outer tube 250 has an adhesive, heat fusion, and the like. It is fixed liquid-tightly by wearing or a fastener (not shown).
  • the outer tube 250 and the inner tube 260 are preferably formed of a material having a certain degree of flexibility.
  • a material having a certain degree of flexibility examples include polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, and ethylene-acetic acid.
  • Polyolefins such as vinyl copolymers, ionomers, or a mixture of two or more of these, thermoplastic resins such as soft polyvinyl chloride resins, polyamides, polyamide elastomers, polyesters, polyester elastomers, polyurethanes, fluororesins, silicone rubbers, latex rubbers Etc. can be used.
  • thermoplastic resins such as polycarbonate, polyamide, polysulfone, polyarylate, and methacrylate-butylene-styrene copolymer can be suitably used.
  • the balloon 230 has a cylindrical portion 231 that is formed in a substantially cylindrical shape in the central portion in the axial direction X so that the predetermined range can be efficiently expanded by being expanded.
  • a first diameter-reduced portion 232 having a diameter reduced in a tapered shape toward the distal end side is provided, and on the proximal end side, toward the proximal end side.
  • a second reduced diameter portion 233 is provided which is formed with a diameter decreasing toward the taper.
  • the stent 10 is placed on the outer peripheral surface of the cylindrical portion 231.
  • the distal end side of the first reduced diameter portion 232 is liquid-tightly fixed to the outer wall surface of the inner tube 260 by an adhesive or heat fusion
  • the proximal end side of the second reduced diameter portion 233 is the outer tube. It is liquid-tightly fixed to the outer wall surface of the front end portion of 250 by an adhesive or heat fusion. Therefore, the inside of the balloon 230 communicates with the expansion lumen 251 formed in the outer tube 250, and the expansion fluid can flow from the proximal end side through the expansion lumen 251.
  • the balloon 230 is expanded by the inflow of the expansion fluid, and is folded by discharging the inflowing expansion fluid.
  • the balloon 230 When the balloon 230 is not expanded, the balloon 230 is shaped so as to be folded around the outer peripheral surface of the inner tube 260 in the circumferential direction.
  • a balloon 230 can be formed by blow molding in which a tube serving as a material is heated in a mold and pressed from the inside so as to swell with a fluid and pressed against the mold.
  • the balloon 230 is preferably formed of a material having a certain degree of flexibility.
  • a material having a certain degree of flexibility examples include polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, Polyolefins such as ionomers or mixtures of two or more thereof, soft polyvinyl chloride resins, polyamides, polyamide elastomers, polyesters, polyester elastomers, polyurethanes, fluororesins and other thermoplastic resins, silicone rubbers, latex rubbers and the like can be used.
  • the stent 10 When the stent 10 is placed in a blood vessel by the balloon catheter 200, first, for example, before treating the stenosis of the blood vessel, air in the balloon 230 and the expansion lumen 251 is extracted as much as possible, and the balloon 230 and the expansion lumen are extracted. The inside of 251 is replaced with an expansion fluid. At this time, the balloon 230 is in a folded state. Further, the inside of the inner tube 260 is replaced with physiological saline.
  • the sheath is placed in the patient's blood vessel by, for example, the Seldinger method, and the guide wire W and the guiding catheter are inserted into the blood vessel from the inside of the sheath while the guiding wire W is inserted through the guiding catheter.
  • the guiding catheter is advanced while the guide wire W is advanced, so that the guiding catheter reaches the vicinity of the stenosis.
  • the balloon catheter 200 is inserted into the guiding catheter along the guide wire W, and the balloon catheter 200 is advanced.
  • the balloon 230 is made to reach the stenosis.
  • a predetermined amount of an expansion fluid is injected from the proximal end opening 241 of the hub 240 using an indeflator, a syringe, a pump, or the like, and the balloon 230 is passed through the expansion lumen 251.
  • An expansion fluid is fed into the inside of 230, and the folded balloon 230 is expanded.
  • the cylindrical portion 231 of the balloon 230 expands the stenosis and expands the stent 10 while plastically deforming it, and maintains the stenosis in a state of being expanded by the stent 10.
  • the stent 10 is deformed and expanded so that the bent portion of the linear component of the stent base 20 is opened, and the first end portion 32 and the second end portion of each reinforcing member 30 are expanded.
  • the distance between 33 spreads and the curved part 31 is deformed into a shape closer to a straight line without becoming thin.
  • the expansion fluid is sucked and discharged from the base end opening 241, and the balloon 230 is contracted and folded.
  • the stent 10 is indwelled in the stenosis portion while being in the expanded state.
  • the guide wire W, the balloon catheter 200 and the guiding catheter are removed from the blood vessel through the sheath, and the sheath is further removed to complete the procedure.
  • the tissue in the blood vessel is stabilized over time and the whole is covered with endothelial cells, and the reinforcing member 30 is disassembled and disappears after a predetermined period of time. It will be left.
  • the stent 10 since the stent 10 is covered with endothelial cells, a part of the reinforcing member 30 does not fall into the bloodstream while the reinforcing member 30 is being decomposed.
  • the reinforcing member 30 is formed so as to be thinner away from the first end portion 32 and the second end portion 33, the portion of the reinforcing member 30 connected to the stent base body 20. Is finally disassembled, the separation of the reinforcing member 30 from the stent base 20 can be suppressed, and a part of the reinforcing member 30 can be more reliably suppressed from falling into the bloodstream.
  • the reinforcement member 30 is provided in at least one side (both sides in this embodiment) of the both ends of the axial direction X in the stent 10 according to the present embodiment, the strength at the end in the axial direction X is increased, When expanded in the radial direction within the blood vessel (biological lumen), a good holding force in the radial direction with respect to the blood vessel can be exhibited, and the state in which the blood vessel is expanded can be maintained well.
  • the stent 10 since the strength at the end portion in the axial direction X of the stent 20 is increased by the reinforcing member 30, when the stent 20 is excessively bent when moving in the blood vessel in a state before expansion, the stent 20 Flaring that deforms so that the end portion expands radially outward can be suppressed satisfactorily, and the stent 20 becomes less likely to be caught in the blood vessel, thereby improving delivery performance and safety.
  • the stent 10 according to the present embodiment is flexible without being bulky, and thus can exhibit high transport performance and also exhibits good followability to the deformation of blood vessels after placement of the stent.
  • the reinforcing member 30 since the reinforcing member 30 includes a biodegradable material, the reinforcing member 30 is disassembled and disappears after a predetermined period of time after being placed in the blood vessel and becomes flexible as a stent. In addition to being able to obtain high followability to the deformation of blood vessels, it is possible to suppress a decrease in durability against pulsation. Further, since the reinforcing member 30 is formed in a linear shape, deformation is allowed by bending or extending according to the expansion of the stent 10.
  • the stent 10 which concerns on this embodiment arrange
  • the distal end of the stent 10 is difficult to expand, the stent 10 is difficult to be caught in a narrowed portion such as a stenosis, and exhibits high pushing performance (conveyance performance) and safety. high.
  • the stent 10 is configured such that the reinforcing member 30 is disposed at least on the proximal end side (the proximal side where the operation is performed) of the balloon 230 among the both ends of the stent 10, so that the stent 10 is placed in the blood vessel.
  • the proximal end side of the stent 10 is difficult to expand, and when the stent 10 that has passed through a portion having a narrow inner diameter such as a stenosis portion is pulled back, the stent 10 becomes difficult to be caught by the living body, which is high. Delivers high transport performance and high safety.
  • the annular body 23 to which the reinforcing member 30 is connected is formed in an endless shape (ring shape), the blood vessel expansion holding force at the end portion of the stent 10 is higher. It can be.
  • the reinforcing member 30 is formed in a range of less than 360 degrees in the circumferential direction of the stent 10, and the first end portion 32 and the second end portion 33 are linear configurations of the stent base body 20. Since it is connected with the element, the reinforcing member 30 can be disposed only partially in the circumferential direction while effectively using the linear component. For this reason, the stent 10 can suppress generation
  • the stent 10 according to the present embodiment is configured such that a rough surface having a higher roughness than other parts is formed in a part connected to the reinforcing member 30 of the linear component of the stent base 20. And the connection with respect to the linear component of the reinforcement member 30 becomes strong, and the drop-off
  • the stent 10 according to the present embodiment has higher affinity for the reinforcing member 30 than the material constituting the linear component at the portion connected to the reinforcing member 30 of the linear component of the stent base 20.
  • the connection of the reinforcing member 30 to the linear component is strengthened, and the falling of the reinforcing member 30 from the linear component is suppressed, thereby improving safety.
  • the reinforcing member 30 is bent so as to protrude in the axial direction X of the stent 10 before the stent 10 is expanded, the reinforcing member 30 is bent after the stent 10 is expanded.
  • the curved portion 31 is deformed into a state closer to a straight line without becoming thin. For this reason, the strength of the end portion of the stent 10 after the expansion is increased, and a high expansion holding force for the blood vessel can be obtained.
  • the stent 40 according to the second embodiment is different from the stent 10 according to the first embodiment only in the configuration of the reinforcing member 41.
  • symbol is attached
  • the reinforcing member 41 of the stent 40 according to the second embodiment is made of a biodegradable material, and is connected to the annular bodies 23 at both ends in the axial direction X of the stent base 20.
  • One reinforcing member 41 is provided in each of the annular bodies 23, and each reinforcing member 41 is formed in the circumferential direction of the stent 40 over 360 degrees.
  • Each reinforcing member 41 is a linear member including a plurality of curved portions 42 protruding toward the end portion of the stent 40 along the axial direction X of the stent 40 in a state before the stent 40 is expanded.
  • a connecting portion 43 connected to the first folded portion 23A of the annular body 23 is formed in the direction opposite to the bending portion 42 along the direction X. Therefore, the first folded portions 23A of the annular body 23 and the curved portions 42 of the reinforcing member 41 are alternately arranged in the circumferential direction. In addition, the number of the curved parts 42 and the connection parts 43 provided in each reinforcing member 41 may be smaller than the number of the first folded parts 23A of the annular body 23. In this case, the first connection part 43 is not connected.
  • the folded portion 23A exists. Since the reinforcing member 41 is formed of a biodegradable material, it is decomposed and disappears after the stent 40 is placed in the living body lumen.
  • the stent 40 When the stent 40 is expanded at the stenosis portion by the balloon 230 (see FIG. 10), the stent 40 is expanded while being expanded and plastically deformed, and the shape is maintained in a state where the stenosis portion is expanded. At this time, as shown in FIG. 15, the stent 40 is deformed and expanded so that the bent portion of the linear component of the stent base 20 is opened, and the adjacent connection portions 43 of the reinforcing members 41 are connected to each other. The distance therebetween increases, and the curved portion 42 is deformed into a shape closer to a straight line without becoming thin.
  • the reinforcing member 41 is formed over 360 degrees in the circumferential direction of the stent 40, the reinforcing member is less than 360 degrees before the stent 40 expands. Compared with the case where it forms with, the intensity
  • the stent 40 according to the second embodiment is formed so that the reinforcing member 41 is bent so as to protrude in the axial direction X of the stent 40 before the stent 40 expands. After the expansion, the bent portion 42 of the reinforcing member 41 is deformed into a state closer to a straight line without becoming thin. For this reason, the strength of the end portion of the stent 40 after the expansion is increased, and a high expansion holding force for the blood vessel can be obtained.
  • the stent 50 according to the third embodiment is different from the stent 10 according to the first embodiment only in the configuration of the reinforcing member 51, as shown in FIG.
  • symbol is attached
  • the reinforcing member 51 of the stent 50 according to the third embodiment is made of a biodegradable material and is connected to the annular bodies 23 at both ends in the axial direction X of the stent base body 20.
  • One reinforcing member 51 is provided in each of the annular bodies 23, and each reinforcing member 51 is formed in a linear shape over 360 degrees in the circumferential direction of the stent 50.
  • Each reinforcing member 51 has a connection portion 52 connected to the first folded portion 23A of the annular body 23 in a state before the stent 50 is expanded.
  • the number of the connection parts 52 provided in each reinforcing member 51 may be smaller than the number of the first folding parts 23A of the annular body 23.
  • the first folding parts 23A to which the connection parts 52 are not connected are provided. Will exist. Since the reinforcing member 51 is formed of a biodegradable material, it is decomposed and disappears after the stent 50 is placed in the living body lumen.
  • the stent 50 When the stent 50 is expanded at the stenosis portion by the balloon 230 (see FIG. 10), the stent 50 is expanded while being expanded and plastically deformed, and the shape is maintained in a state where the stenosis portion is expanded. At this time, as shown in FIG. 17, the stent 50 is deformed and expanded so that the bent portion of the linear component of the stent base 20 is opened, and the adjacent connection portions 52 of each reinforcing member 51 are connected to each other. The distance between them increases, and the reinforcing member 51 formed in a straight line is deformed so as to be thinned by being stretched in the circumferential direction.
  • the reinforcing member 51 is formed over 360 degrees in the circumferential direction of the stent 50, the reinforcing member is less than 360 degrees before the stent 50 expands. Compared with the case where it forms with, the intensity
  • the reinforcing member 51 is stretched thinly, so that the strength of reinforcement by the reinforcing member 51 is somewhat reduced, but a sufficient expansion holding force for the blood vessel can be obtained.
  • the stent 50 according to the third embodiment is in a state before expansion because the reinforcing member 51 is linearly formed along the circumferential direction of the stent 50 before the stent 50 expands.
  • the strength of the end portion of the stent 50 can be effectively improved. For this reason, generation
  • the reinforcing member 51 is stretched thinly, so that the strength of reinforcement by the reinforcing member 51 is somewhat reduced, but a sufficient expansion holding force for the blood vessel can be obtained.
  • the position where the reinforcing member is connected to the annular body 23 may not be the first folded portion 23A.
  • the reinforcing member 53 formed linearly along the circumferential direction of the stent 50 is connected to the annular portion 23 between the first folded portion 23A and the second folded portion 23B.
  • the stent 60 according to the fourth embodiment is different from the stent 10 according to the first embodiment only in the configuration of the reinforcing member 61, as shown in FIG.
  • symbol is attached
  • the reinforcing member 61 of the stent 60 is made of a biodegradable material, and is connected to the annular bodies 23 at both ends in the axial direction X of the stent base body 20.
  • One reinforcing member 61 is provided in each of the annular bodies 23, and each reinforcing member 61 is formed to be bent 360 degrees in the circumferential direction of the stent 60.
  • Each reinforcing member 61 includes a plurality of first curved portions 62 projecting toward the end portion of the stent 60 along the axial direction X of the stent 60 and the first curved portion 62 before the stent 60 is expanded.
  • the reinforcing member 61 is a linear member provided with a plurality of second curved portions 63 protruding in the opposite direction, and the first portion of the annular body 23 is connected by a connection portion 64 extending from one of the second curved portions 63 toward the stent base body 20. 1 is connected to the folded portion 23A.
  • the number of the first bending portion 62 and the second bending portion 63 provided in each reinforcing member 61 is the same as the number of the first turning portions 23A of the annular body 23. More or less than the number of 23A. Since the reinforcing member 61 is formed of a biodegradable material, it is decomposed and disappears after the stent 60 is placed in the living body lumen.
  • the shape is maintained in a state where the stenosis portion is expanded while being expanded and plastically deformed.
  • the stent 60 is deformed and expanded so that the bent portion of the linear component of the stent base 20 is opened, and the first curved portion 62 adjacent to each other in the reinforcing member 61.
  • the distance between each other and between the second bending portions 63 is increased, and the first bending portion 62 and the second bending portion 63 are deformed into a shape closer to a straight line without becoming thin.
  • the reinforcing member 61 protrudes long in the direction away from the stent substrate 20, as shown in FIG. )
  • the stent 60 can be placed so as to be in wide contact with C and the surrounding healthy part H, and the stenosis C can be surely expanded.
  • the range in which the stent base 20 is in contact with the healthy portion H is reduced as much as possible, and stent thrombosis and stent fracture (stent fracture) Occurrence of damage) can be suppressed.
  • the stent 70 according to the fifth embodiment is different from the stent 10 according to the first embodiment only in the configuration of the reinforcing member 71, as shown in FIG.
  • symbol is attached
  • the reinforcing member 71 of the stent 70 according to the fifth embodiment is made of a biodegradable material and is connected to the annular bodies 23 at both ends in the axial direction X of the stent base 20.
  • One reinforcing member 71 is provided for each annular body 23, and each reinforcing member 71 is formed to be bent 360 degrees in the circumferential direction of the stent 70.
  • Each reinforcing member 71 includes a plurality of first curved portions 72 projecting toward the end portion of the stent 70 along the axial direction X of the stent 70 and a first curved portion 72 before the stent 70 is expanded.
  • the first member of the annular body 23 is a linear member including a plurality of second curved portions 73 protruding in opposite directions, and is connected to the first base portion 20 by the connecting portions 74 extending from the second curved portions 73 toward the stent base body 20. It is connected to the folded portion 23A.
  • the number of the first bending portions 72 and the second bending portions 73 provided in each of the reinforcing members 71 matches the number of the first turning portions 23A of the annular body 23, and all the first turning portions are provided.
  • the connection part 74 is connected with respect to the part 23A, the number of the connection parts 74 may be smaller than the number of the 1st folding
  • the reinforcing member 71 is formed of a biodegradable material, it is decomposed and disappears after the stent 70 is placed in the living body lumen.
  • the stent 70 When the stent 70 is expanded at the stenosis portion by the balloon 230 (see FIG. 10), the stent 70 is expanded while being expanded and plastically deformed, and the shape is maintained in a state where the stenosis portion is expanded. At this time, as shown in FIG. 23, the stent 70 is deformed and expanded so that the bent portion of the linear component of the stent base 20 is opened, and the first curved portions 72 adjacent to each reinforcing member 71 are expanded. The distance between each other and between the second bending portions 73 increases, and the first bending portion 72 and the second bending portion 73 are deformed into a shape closer to a straight line without becoming thin.
  • the reinforcing member 71 is formed over 360 degrees in the circumferential direction of the stent 70, the reinforcing member is less than 360 degrees before the stent 70 expands. Compared with the case where it forms with, the intensity
  • the stent 70 since the first bending portion 72 and the second bending portion 73 are formed so that the reinforcing member 71 protrudes in the axial direction X of the stent 70, the stent 70 is expanded. After that, the first bending portion 72 and the second bending portion 73 are deformed into a state closer to a straight line without becoming thin. And since the connection part 74 of the reinforcement member 71 is connected to the several 1st folding
  • the stent 70 is similar to the stent 60 according to the fourth embodiment.
  • the stenosis C can be surely expanded.
  • the range in which the stent base 20 is in contact with the healthy part H is reduced as much as possible, and stent thrombosis and stent fracture (stent fracture) Occurrence of damage) can be suppressed.
  • the stent 80 according to the sixth embodiment is the fourth embodiment only in that an additional reinforcing member 82 is added to the stent 60 according to the fourth embodiment (see FIG. 19). It differs from the stent 60 which concerns on this.
  • symbol is attached
  • the reinforcing member 81 of the stent 80 is made of a biodegradable material, and is connected to the annular bodies 23 at both ends in the axial direction X of the stent base body 20.
  • Each reinforcing member 81 includes a plurality of first bending portions 62, a plurality of second bending portions 63, and one connection portion 64 connected to the first folded portion 23A of the annular body 23.
  • An additional reinforcing member 82 that is integrally connected to the first curved portion 62 is provided.
  • the additional reinforcing member 82 is formed integrally with the first bending portion 62, the second bending portion 63, and the connection portion 64, and is linearly formed over 360 degrees in the circumferential direction of the stent 80. Since the reinforcing member 81 is formed of a biodegradable material, it is decomposed and disappears after the stent 80 is placed in the living body lumen.
  • the shape is maintained in a state where the stenosis portion is expanded while being expanded and plastically deformed.
  • the stent 80 is deformed and expanded so that the bent portions of the linear components of the stent base 20 are opened, and the first curved portions 62 adjacent to each other in the reinforcing members 81 are expanded. While the distance between each other and between the second bending portions 63 increases, the first bending portion 62 and the second bending portion 63 are deformed into a shape closer to a straight line without becoming thin, and the additional reinforcing member 82 is provided. It is stretched in the circumferential direction and deformed to become thinner.
  • the stent 80 according to the sixth embodiment is similar to the stent 60 according to the fourth embodiment because the reinforcing member 81 protrudes long in the direction away from the stent base body 20 as in the fourth embodiment.
  • the stent 80 in the acute phase, can be placed so as to be in wide contact with the stenosis (lesion) C of the blood vessel and the healthy part H in the vicinity thereof, and the stenosis C can be reliably expanded.
  • the reinforcing member 81 is disassembled and disappears in the stable period and only the stent base 20 remains, the range in which the stent base 20 is in contact with the healthy portion H is reduced as much as possible, and stent thrombosis and stent fracture (stent fracture) Occurrence of damage) can be suppressed.
  • the reinforcing member 81 is linearly formed along the circumferential direction of the stent 80 in a state before the stent 80 is expanded.
  • the strength of the end portion of the stent 50 can be effectively improved. For this reason, generation
  • the stent 90 according to the seventh embodiment is the fourth embodiment only in that an additional reinforcing member 92 is added to the stent 60 according to the fourth embodiment (see FIG. 19). It differs from the stent 60 which concerns on this.
  • symbol is attached
  • the reinforcing member 91 of the stent 90 is made of a biodegradable material, and is connected to the annular bodies 23 at both ends in the axial direction X of the stent base body 20.
  • Each reinforcing member 91 includes a plurality of first bending portions 62, a plurality of second bending portions 63, and one connection portion 64 connected to the first folded portion 23A of the annular body 23.
  • An additional reinforcing member 92 that is integrally connected to the first curved portion 62 is provided.
  • the additional reinforcing member 92 is formed integrally with the first bending portion 62, the second bending portion 63, and the connection portion 64, and is formed over 360 degrees in the circumferential direction of the stent 90.
  • the additional reinforcing member 92 is formed with a third curved portion 93 that protrudes in a direction away from the stent base 20 between the portions connected to the first folded portion 23A. Since the reinforcing member 91 is formed of a biodegradable material, it is decomposed and disappears after the stent 90 is placed in the living body lumen.
  • the stent 90 When the stent 90 is expanded at the stenosis portion by the balloon 230 (see FIG. 10), the shape is maintained in a state where the stenosis portion is expanded while being expanded and plastically deformed. At this time, as shown in FIG. 27, the stent 90 is deformed and expanded so that the bent portion of the linear component of the stent base 20 is opened, and the first curved portion 62 adjacent in each reinforcing member 91 is expanded. The distance between each other and between the second bending portions 63 is increased, and the first bending portion 62 and the second bending portion 63 are deformed into a shape closer to a straight line without becoming thin. Furthermore, the stent 90 is deformed into a shape closer to a straight line without the third curved portion 93 of the additional reinforcing member 92 becoming thin.
  • the stent 90 according to the seventh embodiment is similar to the stent 60 according to the fourth embodiment because the reinforcing member 91 protrudes long in the direction away from the stent base body 20 as in the fourth embodiment.
  • the stent 90 in the acute phase, can be placed so as to be in wide contact with the stenosis part (lesion part) C of the blood vessel and the healthy part H around it, and the stenosis part C can be surely expanded.
  • the reinforcing member 91 is disassembled and disappears in the stable period and only the stent base 20 remains, the range in which the stent base 20 is in contact with the healthy part H is reduced as much as possible, and stent thrombosis and stent fracture (stent fracture) Occurrence of damage) can be suppressed.
  • the stent 90 expands, the stent 90 is deformed into a state closer to a straight line without the first curved portion 62, the second curved portion 63, and the third curved portion 93 of the reinforcing member 91 becoming thin. For this reason, the strength of the end portion of the stent 90 after expansion is increased, and a high expansion holding force for the blood vessel can be obtained.
  • the stent 100 according to the eighth embodiment is provided only in that a connection portion 102 having a structure different from that of the connection portion 64 is provided in the stent 80 according to the sixth embodiment (see FIG. 24). Different from the stent 80 according to the sixth embodiment.
  • symbol is attached
  • the reinforcing member 101 of the stent 100 is made of a biodegradable material, and is connected to the annular bodies 23 at both ends in the axial direction X of the stent base 20.
  • Each of the reinforcing members 101 includes a plurality of first bending portions 62, a plurality of second bending portions 63, an additional reinforcing member 82, and connection portions 102 connected to all the first folded portions 23A of the annular body 23. It has.
  • the connecting portion 102 is formed integrally with the first bending portion 62, the second bending portion 63, and the additional reinforcing member 82, and is linearly formed over 360 degrees in the circumferential direction of the stent 100. Since the reinforcing member 101 is formed of a biodegradable material, it is decomposed and disappears after the stent 100 is placed in the living body lumen.
  • the stent 100 When the stent 100 is expanded at the stenosis portion by the balloon 230 (see FIG. 10), the stent 100 is expanded while being expanded and plastically deformed, and the shape is maintained in a state where the stenosis portion is expanded. At this time, as shown in FIG. 29, the stent 100 is deformed and expanded so that the bent portions of the linear components of the stent base 20 are opened, and the first curved portions 62 adjacent to each other in the reinforcing members 101 are expanded. The distance between each other and between the second bending portions 63 is increased, and the first bending portion 62 and the second bending portion 63 are deformed into a shape closer to a straight line without becoming thin.
  • the distance between the adjacent first curved portions 62 and the distance between the second curved portions 63 is increased, so that the additional reinforcing member 82 and the connecting portion 102 that are formed in a straight line are surrounded. It is stretched in the direction and deformed to become thin.
  • the stent 100 according to the eighth embodiment is the same as the stent 80 according to the sixth embodiment because the reinforcing member 101 protrudes long in the direction away from the stent base 20 as in the sixth embodiment. Furthermore, in the acute phase, the stent 100 can be placed so as to be in wide contact with the stenosis part (lesion part) C of the blood vessel and the healthy part H in the vicinity thereof, and the stenosis part C can be reliably expanded.
  • the range in which the stent base 20 is in contact with the healthy part H is reduced as much as possible, and stent thrombosis and stent fracture (stent fracture) Occurrence of damage) can be suppressed.
  • the reinforcing member 101 is formed over 360 degrees in the circumferential direction of the stent 100, and the additional reinforcing member 82 and the connecting portion 102 are formed linearly in the circumferential direction.
  • the strength of the end portion of the stent 100 can be improved very effectively. For this reason, the stent 100 can very effectively suppress the occurrence of flaring.
  • the stent 110 according to the ninth embodiment is only provided in the stent 90 according to the seventh embodiment (see FIG. 26) in that a connection portion 112 having a structure different from that of the connection portion 64 is provided. Different from the stent 90 according to the seventh embodiment.
  • symbol is attached
  • the reinforcing member 111 of the stent 110 is made of a biodegradable material, and is connected to the annular bodies 23 at both ends in the axial direction X of the stent base body 20.
  • Each reinforcing member 111 includes a plurality of first bending portions 62, a plurality of second bending portions 63, an additional reinforcing member 92 in which a third bending portion 93 is formed, and all first folded portions of the annular body 23. And a connection part 112 connected to 23A.
  • the connecting portion 112 is formed integrally with the first bending portion 62, the second bending portion 63, and the additional reinforcing member 92, and is formed in a straight line over 360 degrees in the circumferential direction of the stent 110. Since the reinforcing member 111 is formed of a biodegradable material, it is decomposed and disappears after the stent 110 is placed in the living body lumen.
  • the shape is maintained in a state where the stenosis portion is expanded while being expanded and plastically deformed.
  • the stent 110 is deformed and expanded so that the bent portion of the linear component of the stent base 20 is opened, and the first curved portion 62 adjacent to each reinforcing member 111 is expanded.
  • the distance between each other and between the second bending portions 63 is increased, and the first bending portion 62 and the second bending portion 63 are deformed into a shape closer to a straight line without becoming thin.
  • the distance between the adjacent first curved portions 62 and the distance between the second curved portions 63 is increased, so that the additional reinforcing member 82 and the connecting portion 112 that are formed in a straight line are surrounded. It is stretched in the direction and deformed to become thin.
  • the stent 110 according to the ninth embodiment is the same as the stent 90 according to the seventh embodiment because the reinforcing member 111 protrudes long in the direction away from the stent base body 20 as in the seventh embodiment.
  • the stent 110 in the acute phase, can be placed so as to be in wide contact with the stenosis part (lesion part) C of the blood vessel and the healthy part H in the vicinity thereof, and the stenosis part C can be surely expanded.
  • the reinforcing member 111 is disassembled and disappears in the stable period and only the stent base 20 remains, the range in which the stent base 20 is in contact with the healthy portion H is reduced as much as possible, and stent thrombosis and stent fracture (stent fracture) Occurrence of damage) can be suppressed.
  • the first curved portion 62, the second curved portion 63, and the third curved portion 93 of the reinforcing member 111 are closer to a straight line without becoming thin. Transforms into For this reason, the strength of the end portion of the stent 110 after expansion is increased, and a very high expansion holding force for the blood vessel can be obtained.
  • the stent substrate is not limited to the configuration described above. Therefore, the stent substrate may not be formed of one spiral wire, but may be formed by arranging two or more wires in parallel.
  • the stent base may be configured such that endless (ring-shaped) annular bodies are arranged in the axial direction X of the stent and adjacent annular bodies are connected, instead of being spiral.
  • the stent may be a closed cell structure, or may be a self-expanding stent that expands by its own elastic force.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

 良好な拡張保持力を発揮しつつフレアリングの発生を抑制でき、かつ生体管腔の変形に対する高い追従性を得られるステントを提供する。 線状構成要素により構成されて全体として隙間を有する筒形状で形成され、方向外側へ拡張するように変形可能なステント基体(20)と、生分解性材料により形成され、ステント基体(20)の軸方向両端に位置する線状構成要素の少なくとも一方に少なくとも1箇所で接続される少なくとも1つの線状の補強部材(30)と、を有するステント(10)である。

Description

ステント
 本発明は、生体管腔内に生じた狭窄部や閉塞部等に留置して生体管腔の開存状態を維持するためのステントに関する。
 近年、例えば心筋梗塞や狭心症の治療では、冠動脈の病変部(狭窄部)にステントを留置して、冠動脈内の空間を確保する方法が行われており、他の血管、胆管、気管、食道、尿道、その他の生体管腔内に生じた狭窄部の治療についても同様の方法が行われることがある。ステントは、機能および留置方法によって、バルーン拡張型ステントと、自己拡張型ステントとに区別される。
 バルーン拡張型ステントは、ステント自体に拡張機能はなく、拡張可能なバルーンを備えるバルーンカテーテルのバルーンの外側に設置して目的部位に挿入後、バルーンにより拡張し、塑性変形させることにより血管等の生体管腔内に密着固定するものである。
 ステントは、例えば特許文献1に記載のように、波状に折れ曲がりながら周方向へ延びる線状の構成要素が軸方向に並び、隣接する構成要素同士が連結されることで、全体として隙間を有する筒形状となっている。
特開2009-82245号公報
 上述したステントの軸方向の両端に位置する線状の構成要素は、隣接する他の構成要素が一方側にしか存在しないため、径方向への保持力(強度)が、他の構成要素と比較して低いものとなっている。このため、ステントが保有する径方向への血管拡張保持力は、ステントの軸方向において中央部で大きく両端部で低くなるため、両端部において、血管を拡張させて保持する能力が不十分となる可能性がある。
 また、上述のように、ステントの両端部の強度が中央部と比較して低くなることで、血管内を移動させる際などにステントが過度に曲がった場合に、両端部の構成要素のみが径方向外側へ拡がるように変形する現象(フレアリング)が生じやすい。フレアリングが生じると、ステントの拡がった部位が血管に引っ掛かりやすくなり、ステントを血管内で移動させることが困難となる虞がある。
 なお、メッシュ(網目)を構成するセル(開口部)のすべての辺および頂点が隣接するセルと共有されているクローズドセル構造のステントでは、金属面積が大きいため、ステントの両端部においても十分な強度が確保されて、径方向への保持力の低下やフレアリングの発生を抑制できるが、金属量が多いために、嵩張ることで搬送性能が低下したり、ステント留置後の生体管腔の変形に対する追従性が低下する可能性がある。
 本発明は、上述した課題を解決するためになされたものであり、良好な拡張保持力を発揮しつつフレアリングの発生を抑制でき、かつ生体管腔の変形に対する高い追従性を得られるステントを提供することを目的とする。
 上記目的を達成する本発明に係るステントは、線状構成要素により構成されて全体として隙間を有する筒形状で形成され、径方向外側へ拡張するように変形可能なステント基体と、生分解性材料により形成され、前記ステント基体の軸方向両端に位置する前記線状構成要素の少なくとも一方に少なくとも1箇所で接続される少なくとも1つの線状の補強部材と、を有するステントである。
 上記のように構成したステントは、軸方向両端に位置する線状構成要素の少なくとも一方に補強部材が接続されているため、ステントの軸方向端部における強度が向上する。このため、ステントが生体管腔内にて径方向へ拡張した際に、生体管腔に対する径方向への良好な保持力を発揮するとともに、拡張前の状態で生体管腔内を移動させる際に、端部が拡がるフレアリングの発生を効果的に抑制できる。さらに、上述のステントは、補強部材が生分解性材料で形成されているため、生体管腔内へ留置されて所定期間経過後に補強部材が分解されて消滅し、ステントとして柔軟なものとなり、生体管腔の変形に対する高い追従性が得られる。
 前記ステントは、前記補強部材が、前記ステントの周方向に360度未満の範囲で形成されるようにすれば、線状構成要素を効果的に利用しつつ、周方向において部分的にのみ補強部材を配置できるため、最小限の構成の追加で、良好な拡張保持力を発揮しつつフレアリングの発生を抑制できる。
 前記ステントは、前記補強部材が、前記ステントの周方向に360度にわたって形成されるようにすれば、ステントの端部における強度を効果的に向上させることができるため、良好な拡張保持力を発揮しつつフレアリングの発生を効果的に抑制できる。
 前記ステントは、前記線状構成要素の前記補強部材と接続される部位に、他の部位よりも表面が粗い粗面が形成されているようにすれば、補強部材の線状構成要素に対する接続が強固となり、補強部材の線状構成要素からの脱落が抑制されて安全性が向上する。
 前記ステントは、前記線状構成要素の前記補強部材と接続される部位に、前記線状構成要素を構成する材料よりも前記補強部材に対して親和性の高い材料が被覆されているようにすれば、補強部材の線状構成要素に対する接続が強固となり、補強部材の線状構成要素からの脱落が抑制されて安全性が向上する。
 前記ステントは、前記補強部材が、前記ステントが拡張する前の状態において、当該ステントの軸方向へ突出するように曲がって形成される部位を有するようにすれば、ステント基体が拡張した後に前記補強部材の曲がっている部位が細くなることなくより直線に近い状態に変形するため、拡張した後のステントの端部の強度が高まり、高い拡張保持力を得ることができる。
 前記ステントは、前記補強部材は、前記ステントが拡張する前の状態において、当該ステントの周方向に沿って直線状に形成される部位を有するようにすれば、拡張する前の状態におけるステントの端部の強度が高まり、フレアリングの発生を効果的に抑制できる。
第1実施形態に係るステントが拡張する前の状態を示す平面図である。 第1実施形態に係るステントが拡張する前の状態を示す展開図である。 第1実施形態に係るステントが拡張する前の一部を示す拡大展開図である。 図3のA-A線に沿う断面図である。 第1実施形態に係るステントの変形例を示す断面図である。 第1実施形態に係るステントの他の変形例を示す断面図である。 第1実施形態に係るステントのさらに他の変形例を示す断面図である。 第1実施形態に係るステントのさらに他の変形例を示す断面図である。 第1実施形態に係るステントのさらに他の変形例を示す断面図である。 ステントを生体管腔内へ留置するためのバルーンカテーテルを示す平面図である。 バルーンカテーテルの先端部を示す断面図である。 バルーンを拡張した際のバルーンカテーテルの先端部を示す断面図である。 第1実施形態に係るステントが拡張した後の状態を示す展開図である。 第2実施形態に係るステントが拡張する前の状態を示す展開図である。 第2実施形態に係るステントが拡張した後の状態を示す展開図である。 第3実施形態に係るステントが拡張する前の状態を示す展開図である。 第3実施形態に係るステントが拡張した後の状態を示す展開図である。 第3実施形態に係るステントの変形例が拡張する前の状態を示す展開図である。 第4実施形態に係るステントが拡張する前の状態を示す展開図である。 第4実施形態に係るステントが拡張した後の状態を示す展開図である。 第4実施形態に係るステントにより狭窄部を拡張させた状態を示す概略図である。 第5実施形態に係るステントが拡張する前の状態を示す展開図である。 第5実施形態に係るステントが拡張した後の状態を示す展開図である。 第6実施形態に係るステントが拡張する前の状態を示す展開図である。 第6実施形態に係るステントが拡張した後の状態を示す展開図である。 第7実施形態に係るステントが拡張する前の状態を示す展開図である。 第7実施形態に係るステントが拡張した後の状態を示す展開図である。 第8実施形態に係るステントが拡張する前の状態を示す展開図である。 第8実施形態に係るステントが拡張した後の状態を示す展開図である。 第9実施形態に係るステントが拡張する前の状態を示す展開図である。 第9実施形態に係るステントが拡張した後の状態を示す展開図である。
 以下、図面を参照して、本発明の実施の形態を説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。
 <第1実施形態>
 第1実施形態に係るステント10は、血管、胆管、気管、食道、尿道、またはその他の生体管腔内に生じた狭窄部または閉塞部を治療するために用いるものである。
 ステント10は、バルーンの拡張力によって拡張する、いわゆるバルーン拡張型ステントであり、図1~3に示すように、線状構成要素により構成されて全体として隙間を有する筒形状のステント基体20と、ステント基体20に対して軸方向Xの両端に接続される補強部材30とを備えている。本実施形態に係るステント10は、メッシュ(網目)を構成するセル(開口部)の一部の辺または頂点が、隣接するセルと共有されていないオープンセル構造を有するものである。
 ステント基体20は、波状に折り返されたジグザグ形状の線状構成要素により、ステント10の軸方向Xを中心に螺旋状に形成された複数の螺旋状体21と、螺旋状体21の両端にて無端に形成された2つの環状体23とを備えている。
 各々の螺旋状体21は、360°の螺旋を描いて形成されており、全ての螺旋状体21が直列に並んで1つの螺旋を構成している。各々の螺旋状体21は、波状に複数回折り返されて形成されている。なお、螺旋状体21の数は、特に限定されない。また、各々の螺旋状体21がジグザグに折り返される数も、特に限定されない。ステント基体20が、螺旋状に形成される螺旋状体21を備えることで、ステント10に柔軟性が付与され、血管等の生体管腔の変形に対してステント10が追従して変形しやすくなり、生体への影響を低減できる。
 ステント基体20の軸方向Xに並んで隣接する螺旋状体21同士は、第1リンク部材22によって一体的に連結されている。第1リンク部材22は、ステント10を拡張させる際に、直列に並んで接続されている螺旋状体21の螺旋が引き伸ばされるように捩れて、螺旋状体21の折れ曲がった部位が開かずに、螺旋の巻き数が減少しつつ変形することを抑制する役割を果たす。
 2つの環状体23は、隣接する螺旋状体21に対して第2リンク部材24によって一体的に連結されている。ステント基体20の両端部に、無端に形成された環状体23を備えることにより、ステント10の両端部における血管拡張保持力が高いものとなる。
 各々の環状体23は、軸方向Xに沿って端部方向へ突出するように折れ曲がる第1折り返し部23Aと、逆方向へ折れ曲がる第2折り返し部23Bとが形成されており、第1折り返し部23Aおよび第2折り返し部23Bが、周方向へ交互に配置されている。
 補強部材30は、生分解性材料からなり、ステント基体20の軸方向Xの両端の環状体23(線状構成要素)に接続される。補強部材30は、環状体23の各々に複数設けられており、各々の補強部材30は、ステント10の周方向に360度未満の範囲で形成されている。各々の補強部材30は、ステント10が拡張する前の状態において、ステント10の軸方向Xに沿ってステント10の端部方向へ突出する湾曲部31を備える線状の部材であり、軸方向Xに沿って湾曲部31と逆方向に、第1端部32および第2端部33が形成されている。各々の補強部材30は、環状体23において周方向に隣接する2つの第1折り返し部23Aの間に配置されており、補強部材30の第1端部32は、隣接する2つの第1折り返し部23Aの一方と、2つの第1折り返し部23Aの間に位置する第2折り返し部23Bとの間に接続されている。そして、補強部材30の第2端部33は、前述の隣接する2つの第1折り返し部23Aの他方と、2つの第1折り返し部23Aの間に位置する第2折り返し部23Bとの間に接続されている。したがって、環状体23の第1折り返し部23Aおよび補強部材30は、周方向に交互に配置されている。なお、本実施形態では、隣接する第1折り返し部23Aの間の空間の全てに、補強部材30が設けられているが、必ずしも全ての空間に補強部材30が設けられなくてもよく、1つ以上設けられればよい。
 補強部材30は、生分解性材料により形成されるため、ステント10が生体管腔内に留置された後に分解されて消滅する。
 そして、補強部材30の第1端部32および第2端部33は、図4に示すように、環状部23の外面25および側面26の一部を覆うように接合されている。補強部材30は、略一定の厚さで形成される。
 なお、補強部材30のステント基体20に対する接合形態は、図4に示す形態に限定されない。例えば、補強部材30は、図5に示すように、第1端部32および第2端部33から離れるほど薄く形成されてもよい。また、補強部材30は、図6に示すように、環状部23の外面25、側面26および内面27を覆うように環状部23に接合されてもよい。また、補強部材30は、図7に示すように、環状部23の一方の側面26、外面25の一部および内面27の一部を覆うように環状部23に接合されてもよい。また、補強部材30は、図8に示すように、環状部23の側面26にのみ接合されてもよい。
 ステント基体20は、留置対象部位により異なるが、一般的に、拡張時(非縮径時)の外径が1.5~20mm、好ましくは2.0~10mm、肉厚が0.02~1.0mm、好ましくは0.04~0.5mmのものであり、長さは、5~250mm、好ましくは8~200mmである。螺旋のピッチ(隣接する螺旋状体21の間隔)は、0.1~3mm、好ましくは、0.3~1.0mmである。
 補強部材30の肉厚は、特に限定されないが、ステント基体20の肉厚に対して、-0.02mm~+0.02mmであることが好ましい。
 そして、ステント基体20は、非生分解性の金属材料、例えば、ステンレス鋼、コバルト-クロム合金等のコバルト基合金、プラチナ-クロム合金等の弾性金属、ニッケル-チタン合金等の超弾性合金等の金属材料により略円筒形状に一体的に形成されることが好ましい。
 ステント基体20は、金属パイプを用いて、ステント基体20等の非構成部分を除去することにより作製され、これにより、一体形成物となっている。金属パイプによるステント基体20の形成は、切削加工(例えば、機械研磨、レーザー切削加工)、放電加工、化学エッチングなどにより行うことができ、さらにそれらの併用により行ってもよい。
 補強部材30に用いられる生分解性材料としては、生分解性金属もしくは生分解性ポリマーが好適に使用される。また、生分解性材料としては、ステント基体20と接着性を有するものであることが好ましい。
 生分解性金属は、純マグネシウムまたはマグネシウム合金、カルシウム、亜鉛、リチウムなどが使用される。好ましくは、純マグネシウムまたはマグネシウム合金である。マグネシウム合金としては、マグネシウムを主成分とし、Zr、Y、Ti、Ta、Nd、Nb、Zn、Ca、Al、Li、およびMnからなる生体適合性元素群から選択される少なくとも1つの元素を含有するものが好ましい。
 マグネシウム合金としては、例えば、マグネシウムが50~98%、リチウム(Li)が0~40%、鉄が0~5%、その他の金属または希土類元素(セリウム、ランタン、ネオジム、プラセオジム等)が0~5%であるものを挙げることができる。また、例えば、マグネシウムが79~97%、アルミニウムが2~5%、リチウム(Li)が0~12%、希土類元素(セリウム、ランタン、ネオジム、プラセオジム等)が1~4%であるものを挙げることができる。また、例えば、マグネシウムが85~91%、アルミニウムが2%、リチウム(Li)が6~12%、希土類元素(セリウム、ランタン、ネオジム、プラセオジム等)が1%であるものを挙げることができる。また、例えば、マグネシウムが86~97%、アルミニウムが2~4%、リチウム(Li)が0~8%、希土類元素(セリウム、ランタン、ネオジム、プラセオジム等)が1~2%であるものを挙げることができる。また、例えば、アルミニウムが8.5~9.5%、マンガン(Mn)が0.15~0.4%、亜鉛が0.45~0.9%、残りがマグネシウムであるものを挙げることができる。また、例えば、アルミニウムが4.5~5.3%、マンガン(Mn)が0.28~0.5%、残りがマグネシウムであるものを挙げることができる。また、例えば、マグネシウムが55~65%、リチウム(Li)が30~40%、その他の金属および/または希土類元素(セリウム、ランタン、ネオジム、プラセオジム等)が0~5%であるものを挙げることができる。
 また、生分解性ポリマーとしては、生体内で酵素的、非酵素的に分解され、分解物が毒性を示さないものであれば特に限定されないが、例えば、ポリ乳酸、ポリグリコール酸、ポリ乳酸-ポリグリコール酸共重合体、ポリカプロラクトン、ポリ乳酸-ポリカプロラクトン共重合体、ポリオルソエステル、ポリホスファゼン、ポリリン酸エステル、ポリヒドロキシ酪酸、ポリリンゴ酸、ポリα-アミノ酸、コラーゲン、ゼラチン、ラミニン、ヘパラン硫酸、フィブロネクチン、ビトロネクチン、コンドロイチン硫酸、ヒアルロン酸、ポリペプチド、キチン、キトサンなどが使用できる。
 また、補強部材30と接合されるステント基体20の接合部分は、補強部材30の形成材料との接着性を高めるために、全体もしくは一部を表面処理してもよい。表面処理としては、表面が、周囲の他の部位よりも粗い粗面を形成する方法が挙げられる。また、表面処理として、図9に示すように、補強部材30の形成材料に対して親和性の高い材料をプライマー(被覆部28)として表面に被覆する方法も好ましい。プライマー材料としては、種々のものが使用可能であるが、最も好ましいものは加水分解性基と有機官能基とを有するシランカップリング剤である。シランカップリング剤の加水分解性基(たとえばアルコキシ基)の分解により生成したシラノール基は金属製の易変形部の接合部分(自由端部分)の表面と共有結合等により結合され、シランカップリング剤の有機官能基(例えばエポキシ基、アミノ基、メルカプト基、ビニル基、メタクリロキシ基)は、樹脂製接着層中のポリマーと化学結合により結合することができる。具体的なシランカップリング剤としては、例えばγ-アミノプロピルエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン等が挙げられる。シランカップリング剤以外のプライマー材料としては、例えば有機チタン系カップリング剤、アルミニウム系カップリング剤、クロム系カップリング剤、有機リン酸系カップリング剤、ポリパラキシレン等の有機蒸着膜、シアノアクリレート系接着剤、ポリウレタン系のペーストレジン等が挙げられる。
 また、補強部材30の形成材料中に生理活性物質を含有させてもよい。生理活性物質としては、内膜肥厚を抑制する薬剤、抗癌剤、免疫抑制剤、抗生物質、抗リウマチ剤、抗血栓薬、HMG-CoA還元酵素阻害剤、ACE阻害剤、カルシウム拮抗剤、抗高脂血症剤、抗炎症剤、インテグリン阻害薬、抗アレルギー剤、抗酸化剤、GPIIbIIIa拮抗薬、レチノイド、フラボノイドおよびカロチノイド、脂質改善薬、DNA合成阻害剤、チロシンキナーゼ阻害剤、抗血小板薬、血管平滑筋増殖抑制薬、抗炎症薬、生体由来材料、インターフェロンおよび遺伝子工学により生成される上皮細胞などが使用される。そして、上記の薬剤等の2種以上の混合物を使用してもよい。
 抗癌剤としては、例えば、ビンクリスチン、ビンブラスチン、ビンデシン、イリノテカン、ピラルビシン、パクリタキセル、ドセタキセル、メトトレキサート等が好ましい。免疫抑制剤としては、例えば、シロリムス、タクロリムス、アザチオプリン、シクロスポリン、シクロホスファミド、ミコフェノール酸モフェチル、グスペリムス、ミゾリビン等が好ましい。抗生物質としては、例えば、マイトマイシン、アドリアマイシン、ドキソルビシン、アクチノマイシン、ダウノルビシン、イダルビシン、ピラルビシン、アクラルビシン、エピルビシン、ペプロマイシン、ジノスタチンスチマラマー等が好ましい。抗リウマチ剤としては、例えば、メトトレキサート、チオリンゴ酸ナトリウム、ペニシラミン、ロベンザリット等が好ましい。抗血栓薬としては、例えば、ヘパリン、アスピリン、抗トロンビン製剤、チクロピジン、ヒルジン等が好ましい。HMG-CoA還元酵素阻害剤としては、例えば、セリバスタチン、セリバスタチンナトリウム、アトルバスタチン、ニスバスタチン、イタバスタチン、フルバスタチン、フルバスタチンナトリウム、シンバスタチン、ロバスタチン、プラバスタチン等が好ましい。ACE阻害剤としては、例えば、キナプリル、ペリンドプリルエルブミン、トランドラプリル、シラザプリル、テモカプリル、デラプリル、マレイン酸エナラプリル、リシノプリル、カプトプリル等が好ましい。カルシウム拮抗剤としては、例えば、ニフェジピン、ニルバジピン、ジルチアゼム、ベニジピン、ニソルジピン等が好ましい。抗高脂血症剤としては、例えば、プロブコールが好ましい。抗アレルギー剤としては、例えば、トラニラストが好ましい。レチノイドとしては、例えば、オールトランスレチノイン酸フラボノイドおよびカロチノイドとしては、例えば、カテキン類、特にエピガロカテキンガレート、アントシアニン、プロアントシアニジン、リコピン、β-カロチン等が好ましい。チロシンキナーゼ阻害剤としては、例えば、ゲニステイン、チルフォスチン、アーブスタチン等が好ましい。抗炎症剤としては、例えば、デキサメタゾン、プレドニゾロン等のステロイドが好ましい。生体由来材料としては、例えば、EGF(epidermal growth factor)、VEGF(vascular endothelial growth factor)、HGF(hepatocyte growth factor)、PDGF(platelet derived growth factor)、bFGF(basic fibroblast growth factor)等が好ましい。
 次に、本実施形態に係るステント10を生体管腔内に留置する方法を、血管内へ留置する場合を例として説明する。ステント10を留置する際には、図10,11に示すバルーンカテーテル200を用いる。
 バルーンカテーテル200は、長尺なカテーテル本体部220と、カテーテル本体部220の先端部に設けられるバルーン230と、カテーテル本体部220の基端に固着されたハブ240と、バルーン230の外周面に縮径した状態で載置されるステント10とを有している。
 カテーテル本体部220は、先端および基端が開口した管状体である外管250と、外管250の内部に配置される内管260とを備えている。外管250は、バルーン230を拡張するための拡張用流体が流通する拡張用ルーメン251が内部に形成されており、内管260には、ガイドワイヤーWが挿通されるガイドワイヤールーメン261が形成されている。拡張用流体は、気体でも液体でもよく、例えば、ヘリウムガス、COガス、Oガス等の気体や、生理食塩水、造影剤等の液体が挙げられる。
 内管260は、先端部が、バルーン230の内部を貫通してバルーン230よりも先端側で開口しており、基端側が、外管250の側壁を貫通して、外管250に接着剤または熱融着により液密に固着されている。
 ハブ240は、外管250の拡張用ルーメン251と連通して拡張用流体を流入出させるポートとして機能する基端開口部241を備えており、外管250の基端部が接着剤、熱融着または止具(図示せず)等により液密に固着されている。
 外管250、内管260は、ある程度の可撓性を有する材料により形成されるのが好ましく、そのような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、軟質ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、フッ素樹脂等の熱可塑性樹脂、シリコーンゴム、ラテックスゴム等が使用できる。
 ハブ240の構成材料としては、ポリカーボネート、ポリアミド、ポリサルホン、ポリアリレート、メタクリレート-ブチレン-スチレン共重合体等の熱可塑性樹脂が好適に使用できる。
 バルーン230は、拡張することで所定の範囲を効率よく押し広げられるよう、軸方向X中央部に略円筒状に形成されてほぼ同一径の筒状部231を有している。バルーン230の筒状部231の先端側には、先端側へ向かって径がテーパ状に縮小して形成される第1の縮径部232が設けられ、基端側には、基端側へ向かって径がテーパ状に縮小して形成される第2の縮径部233が設けられている。ステント10は、筒状部231の外周面に載置される。
 第1の縮径部232の先端側は、内管260の外壁面に接着剤または熱融着等により液密に固着されており、第2の縮径部233の基端側は、外管250の先端部の外壁面に接着剤または熱融着等により液密に固着されている。したがって、バルーン230の内部は、外管250に形成される拡張用ルーメン251と連通し、この拡張用ルーメン251を介して、基端側から拡張用流体を流入可能となっている。バルーン230は、拡張用流体の流入により拡張し、流入した拡張用流体を排出することにより折り畳まれた状態となる。
 バルーン230は、拡張させない状態では、内管260の外周面に周方向へ巻きつくように折り畳まれた状態となるよう、形状付けられている。このようなバルーン230は、金型内で、素材となるチューブを加熱し、内側から流体によって膨らますように加圧して金型に押し付けるブロー成形によって成形できる。
 バルーン230は、ある程度の可撓性を有する材料により形成されることが好ましく、そのような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、軟質ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、フッ素樹脂等の熱可塑性樹脂、シリコーンゴム、ラテックスゴム等が使用できる。
 ステント10をバルーンカテーテル200によって血管内に留置する際には、まず、例えば血管の狭窄部を治療する前に、バルーン230および拡張用ルーメン251内の空気をできる限り抜き取り、バルーン230および拡張用ルーメン251内を拡張用流体に置換しておく。このとき、バルーン230は、折り畳まれた状態となっている。また、内管260内を生理食塩水に置換しておく。
 次に、患者の血管に、例えばセルジンガー法によりシースを留置し、ガイディングカテーテルにガイドワイヤーWを挿通させた状態で、ガイドワイヤーWおよびガイディングカテーテルをシースの内部より血管内へ挿入する。続いて、ガイドワイヤーWを先行させつつガイディングカテーテルを進行させ、ガイディングカテーテルを狭窄部の近傍へ到達させる。この後、ガイドワイヤーWの基端をバルーンカテーテル200のガイドワイヤールーメン261内に挿通させた状態で、ガイドワイヤーWに沿ってバルーンカテーテル200をガイディングカテーテルに挿入し、バルーンカテーテル200を進行させて、バルーン230を狭窄部へ到達させる。
 次に、バルーン230が狭窄部に位置した状態で、ハブ240の基端開口部241より、インデフレーター、シリンジ、またはポンプ等を用いて拡張用流体を所定量注入し、拡張用ルーメン251を通じてバルーン230の内部に拡張用流体を送り込み、折り畳まれたバルーン230を拡張させる。これにより、図12に示すように、バルーン230の筒状部231が、狭窄部を押し広げるとともにステント10を塑性変形させながら拡張させて、狭窄部をステント10によって押し広げた状態で維持する。ステント10は、図13に示すように、ステント基体20の線状構成要素の折れ曲がった部位が開くように変形して拡張するとともに、各々の補強部材30の第1端部32および第2端部33の間の距離が広がって、湾曲部31が細くなることなくより直線に近い形状に変形する。
 この後、拡張用流体を基端開口部241より吸引して排出し、バルーン230を収縮させて折り畳まれた状態とする。ステント10は、押し広げられた状態のまま狭窄部に留置される。この後、シースを介して血管よりガイドワイヤーW、バルーンカテーテル200およびガイディングカテーテルを抜去し、さらにシースを抜去して手技が終了する。血管内に留置されたステント10は、時間が経過して血管内組織が安定化するとともに全体が内皮細胞により覆われ、所定期間経過後に補強部材30が分解されて消滅し、ステント基体20のみが残された状態となる。なお、ステント10は、内皮細胞により覆われるため、補強部材30が分解される途中で、補強部材30の一部が血流へ脱落することはない。特に、図5に示すように、補強部材30が、第1端部32および第2端部33から離れるほど薄く形成されるようにすれば、補強部材30のステント基体20に接続されている部位が最後に分解されるため、補強部材30がステント基体20から分離することを抑制でき、補強部材30の一部が血流へ脱落することをより確実に抑制できる。
 そして、本実施形態に係るステント10は、軸方向Xの両端の少なくとも一方側(本実施形態では両側)に補強部材30が設けられているため、軸方向Xの端部における強度が高くなり、血管(生体管腔)内にて径方向へ拡張した際に、血管に対する径方向への良好な保持力を発揮し、血管を押し広げた状態を良好に維持することができる。また、ステント20の軸方向Xの端部における強度が補強部材30によって高くなっているため、拡張前の状態で血管内を移動させる際に、ステント20が過度に曲がった場合などにステント20の端部が径方向外側へ拡がるように変形するフレアリングを良好に抑制でき、ステント20が血管に引っ掛かり難くなり、搬送性能および安全性が向上する。また、本実施形態に係るステント10は、クローズドセル構造のステントと異なり、嵩張らず柔軟であるため、高い搬送性能を発揮できるとともに、ステント留置後の血管の変形に対する良好な追従性を発揮する。また、本実施形態に係るステント10は、補強部材30が生分解性材料を含むため、血管内へ留置されて所定期間経過後に、補強部材30が分解されて消滅してステントとして柔軟なものとなり、血管の変形に対する高い追従性を得られるとともに、拍動に対する耐久性の低下も抑制できる。また、補強部材30が、線状に形成されているため、ステント10の拡張に応じて曲がったり伸びたりすることで、変形が許容される。
 そして、本実施形態に係るステント10は、補強部材30が、ステント10の両端部のうち少なくともバルーン230の先端側(生体への挿入方向側)に配置されることで、ステント10を血管内で移動させる際に、ステント10の先端側の端部が拡がり難くなって、ステント10が狭窄部等の狭くなった部位に引っ掛かり難くなり、高い押込み性能(搬送性能)を発揮するとともに、安全性が高い。また、本実施形態に係るステント10は、補強部材30が、ステント10の両端部のうち少なくともバルーン230の基端側(操作を行う手元側)に配置されることで、ステント10を血管内で移動させる際に、ステント10の基端側の端部が拡がり難くなって、狭窄部等の内径が狭くなった部位を通過させたステント10を引き戻す際にステント10が生体に引っ掛かり難くなり、高い搬送性能を発揮するとともに、安全性が高い。
 また、本実施形態に係るステント10は、補強部材30が接続される環状体23が、無端状(リング状)に形成されているため、ステント10の端部における血管拡張保持力をより高いものとすることができる。
 また、本実施形態に係るステント10は、補強部材30が、ステント10の周方向に360度未満の範囲で形成されて第1端部32および第2端部33がステント基体20の線状構成要素と接続されているため、線状構成要素を効果的に利用しつつ、周方向において部分的にのみ補強部材30を配置できる。このため、ステント10は、最小限の補強部材30の追加のみで、良好な拡張保持力を発揮しつつフレアリングの発生を抑制できる。
 また、本実施形態に係るステント10は、ステント基体20の線状構成要素の補強部材30と接続される部位に、他の部位よりも粗度が高い粗面が形成されるようにすることで、補強部材30の線状構成要素に対する接続が強固となり、補強部材30の線状構成要素からの脱落が抑制されて安全性が向上する。
 また、本実施形態に係るステント10は、ステント基体20の線状構成要素の補強部材30と接続される部位に、線状構成要素を構成する材料よりも補強部材30に対して親和性の高い材料が被覆されていることで、補強部材30の線状構成要素に対する接続が強固となり、補強部材30の線状構成要素からの脱落が抑制されて安全性が向上する。
 また、補強部材30が、ステント10が拡張する前の状態において、当該ステント10の軸方向Xへ突出するように曲がって形成されているため、ステント10が拡張した後に、補強部材30の曲がっている湾曲部31が細くなることなくより直線に近い状態に変形する。このため、拡張した後のステント10の端部の強度が高まり、血管に対する高い拡張保持力を得ることができる。
 <第2実施形態>
 第2実施形態に係るステント40は、図14に示すように、補強部材41の構成のみが、第1実施形態に係るステント10と異なる。なお、第1実施形態と同様の機能を有する部位には、同一の符号を付し、重複を避けるために説明を省略する。
 第2実施形態に係るステント40の補強部材41は、生分解性材料からなり、ステント基体20の軸方向Xの両端の環状体23に接続される。補強部材41は、環状体23の各々に1つ設けられており、各々の補強部材41は、ステント40の周方向に360度にわたって形成されている。各々の補強部材41は、ステント40が拡張する前の状態において、ステント40の軸方向Xに沿ってステント40の端部方向へ突出する複数の湾曲部42を備える線状の部材であり、軸方向Xに沿って湾曲部42と逆方向に、環状体23の第1折り返し部23Aに接続される接続部43が形成されている。したがって、環状体23の第1折り返し部23Aおよび補強部材41の湾曲部42は、周方向に交互に配置されている。なお、各々の補強部材41に設けられる湾曲部42および接続部43の数は、環状体23の第1折り返し部23Aの数よりも少なくてもよく、この場合、接続部43が接続されない第1折り返し部23Aが存在することになる。補強部材41は、生分解性材料により形成されるため、ステント40が生体管腔内に留置された後に分解されて消滅する。
 次に、第2実施形態に係るステント40の作用について説明する。
 ステント40は、バルーン230(図10を参照)によって狭窄部で押し広げられると、狭窄部を押し広げるとともに塑性変形しながら拡張し、狭窄部を押し広げた状態で形状が維持される。このとき、ステント40は、図15に示すように、ステント基体20の線状構成要素の折れ曲がった部位が開くように変形して拡張するとともに、各々の補強部材41の隣接する接続部43同士の間の距離が広がって、湾曲部42が細くなることなくより直線に近い形状に変形する。
 以上のように、第2実施形態に係るステント40は、補強部材41が、ステント40の周方向に360度にわたって形成されるため、ステント40が拡張する前の状態において、補強部材が360度未満で形成される場合と比較して、ステント40の端部の強度を効果的に向上させることができる。このため、ステント40は、高い拡張保持力を発揮しつつ、フレアリングの発生を効果的に抑制できる。
 また、第2実施形態に係るステント40は、補強部材41が、ステント40が拡張する前の状態において、当該ステント40の軸方向Xへ突出するように曲がって形成されているため、ステント40が拡張した後に、補強部材41の曲がっている湾曲部42が細くなることなくより直線に近い状態に変形する。このため、拡張した後のステント40の端部の強度が高まり、血管に対する高い拡張保持力を得ることができる。
 <第3実施形態>
 第3実施形態に係るステント50は、図16に示すように、補強部材51の構成のみが、第1実施形態に係るステント10と異なる。なお、第1実施形態と同様の機能を有する部位には、同一の符号を付し、重複を避けるために説明を省略する。
 第3実施形態に係るステント50の補強部材51は、生分解性材料からなり、ステント基体20の軸方向Xの両端の環状体23に接続される。補強部材51は、環状体23の各々に1つ設けられており、各々の補強部材51は、ステント50の周方向に360度にわたって直線状に形成されている。各々の補強部材51は、ステント50が拡張する前の状態において、環状体23の第1折り返し部23Aに接続される接続部52が形成されている。なお、各々の補強部材51に設けられる接続部52の数は、環状体23の第1折り返し部23Aの数よりも少なくてもよく、この場合、接続部52が接続されない第1折り返し部23Aが存在することになる。補強部材51は、生分解性材料により形成されるため、ステント50が生体管腔内に留置された後に分解されて消滅する。
 次に、第3実施形態に係るステント50の作用について説明する。
 ステント50は、バルーン230(図10を参照)によって狭窄部で押し広げられると、狭窄部を押し広げるとともに塑性変形しながら拡張し、狭窄部を押し広げた状態で形状が維持される。このとき、ステント50は、図17に示すように、ステント基体20の線状構成要素の折れ曲がった部位が開くように変形して拡張するとともに、各々の補強部材51の隣接する接続部52同士の間の距離が広がって、直線状に形成されている補強部材51が周方向へ引き伸ばされて細くなるように変形する。
 以上のように、第3実施形態に係るステント50は、補強部材51が、ステント50の周方向に360度にわたって形成されるため、ステント50が拡張する前の状態において、補強部材が360度未満で形成される場合と比較して、ステント50の端部の強度を効果的に向上させることができる。このため、ステント50は、ステント50が拡張する前におけるフレアリングの発生を効果的に抑制できる。なお、ステント50が拡張すると、補強部材51が細く引き伸ばされるため、補強部材51による補強の強さは多少低下するが、血管に対する十分な拡張保持力を得ることができる。
 また、第3実施形態に係るステント50は、補強部材51が、ステント50が拡張する前の状態において、当該ステント50の周方向に沿って直線状に形成されているため、拡張する前の状態におけるステント50の端部の強度を効果的に向上させることができる。このため、特に、ステント50が拡張する前におけるフレアリングの発生を効果的に抑制できる。なお、ステント50が拡張すると、補強部材51が細く引き伸ばされるため、補強部材51による補強の強さは多少低下するが、血管に対する十分な拡張保持力を得ることができる。
 なお、補強部材が環状体23に対して接続される位置は、第1折り返し部23Aでなくてもよい。例えば、図18に示すように、ステント50の周方向に沿って直線状に形成される補強部材53が、第1折り返し部23Aおよび第2折り返し部23Bの間で環状部23に接続されてもよい。
 <第4実施形態>
 第4実施形態に係るステント60は、図19に示すように、補強部材61の構成のみが、第1実施形態に係るステント10と異なる。なお、第1実施形態と同様の機能を有する部位には、同一の符号を付し、重複を避けるために説明を省略する。
 第4実施形態に係るステント60の補強部材61は、生分解性材料からなり、ステント基体20の軸方向Xの両端の環状体23に接続される。補強部材61は、環状体23の各々に1つ設けられており、各々の補強部材61は、ステント60の周方向に360度にわたって折れ曲がりつつ形成されている。各々の補強部材61は、ステント60が拡張する前の状態において、ステント60の軸方向Xに沿ってステント60の端部方向へ突出する複数の第1湾曲部62と、第1湾曲部62に対して逆方向へ突出する複数の第2湾曲部63とを備える線状の部材であり、第2湾曲部63の1つからステント基体20へ向かって延びる接続部64によって、環状体23の第1折り返し部23Aに接続されている。なお、本実施形態において、各々の補強部材61に設けられる第1湾曲部62および第2湾曲部63の数は、環状体23の第1折り返し部23Aの数と一致するが、第1折り返し部23Aの数より多くても少なくてもよい。補強部材61は、生分解性材料により形成されるため、ステント60が生体管腔内に留置された後に分解されて消滅する。
 次に、第4実施形態に係るステント60の作用について説明する。
 ステント60は、バルーン230(図10を参照)によって狭窄部で押し広げられると、狭窄部を押し広げるとともに塑性変形しながら拡張し、狭窄部を押し広げた状態で形状が維持される。このとき、ステント60は、図20に示すように、ステント基体20の線状構成要素の折れ曲がった部位が開くように変形して拡張するとともに、各々の補強部材61において隣接する第1湾曲部62同士の間、および第2湾曲部63同士の間の距離が広がって、第1湾曲部62および第2湾曲部63が細くなることなくより直線に近い形状に変形する。
 以上のように、第4実施形態に係るステント60は、補強部材61がステント基体20から離れる方向へ長く突出しているため、図21に示すように、急性期においては血管の狭窄部(病変部)Cおよびその周辺の健常部Hに対して広く接するようにステント60を留置して、確実に狭窄部Cを押し広げることができる。そして、安定期において補強部材61が分解されて消滅し、ステント基体20のみが残った後には、ステント基体20が健常部Hと接する範囲を極力減少させて、ステント血栓症やステントフラクチャー(ステントの破損)の発生を抑制することができる。
 <第5実施形態>
 第5実施形態に係るステント70は、図22に示すように、補強部材71の構成のみが、第1実施形態に係るステント10と異なる。なお、第1実施形態と同様の機能を有する部位には、同一の符号を付し、重複を避けるために説明を省略する。
 第5実施形態に係るステント70の補強部材71は、生分解性材料からなり、ステント基体20の軸方向Xの両端の環状体23に接続される。補強部材71は、環状体23の各々に1つ設けられており、各々の補強部材71は、ステント70の周方向に360度にわたって折れ曲がりつつ形成されている。各々の補強部材71は、ステント70が拡張する前の状態において、ステント70の軸方向Xに沿ってステント70の端部方向へ突出する複数の第1湾曲部72と、第1湾曲部72に対して逆方向へ突出する複数の第2湾曲部73とを備える線状の部材であり、各々の第2湾曲部73からステント基体20へ向かって延びる接続部74によって、環状体23の第1折り返し部23Aに接続されている。なお、本実施形態において、各々の補強部材71に設けられる第1湾曲部72および第2湾曲部73の数は、環状体23の第1折り返し部23Aの数と一致し、全ての第1折り返し部23Aに対して接続部74が接続されているが、接続部74の数が、第1折り返し部23Aの数より少なくてもよい。この場合、接続部74が接続されない第1折り返し部23Aが存在することになる。補強部材71は、生分解性材料により形成されるため、ステント70が生体管腔内に留置された後に分解されて消滅する。
 次に、第5実施形態に係るステント70の作用について説明する。
 ステント70は、バルーン230(図10を参照)によって狭窄部で押し広げられると、狭窄部を押し広げるとともに塑性変形しながら拡張し、狭窄部を押し広げた状態で形状が維持される。このとき、ステント70は、図23に示すように、ステント基体20の線状構成要素の折れ曲がった部位が開くように変形して拡張するとともに、各々の補強部材71の隣接する第1湾曲部72同士の間、および第2湾曲部73同士の間の距離が広がって、第1湾曲部72および第2湾曲部73が細くなることなくより直線に近い形状に変形する。
 以上のように、第5実施形態に係るステント70は、補強部材71が、ステント70の周方向に360度にわたって形成されるため、ステント70が拡張する前の状態において、補強部材が360度未満で形成される場合と比較して、ステント70の端部の強度を効果的に向上させることができる。さらに、ステント70は、複数の(本実施形態では全ての)第1折り返し部23Aに、補強部材71の接続部74が接続されているため、ステント70の端部の強度をさらに向上させることができる。このため、ステント70は、フレアリングの発生を効果的に抑制できる。
 また、第5実施形態に係るステント70は、補強部材71が、ステント70の軸方向Xへ突出するように第1湾曲部72および第2湾曲部73が形成されているため、ステント70が拡張した後に、第1湾曲部72および第2湾曲部73が細くなることなくより直線に近い状態に変形する。そして、ステント70は、複数の(本実施形態では全ての)第1折り返し部23Aに、補強部材71の接続部74が接続されているため、ステント70が拡張した後の状態において、ステント70の端部の強度がさらに向上する。このため、拡張した後のステント70の端部の強度が高まり、血管に対する高い拡張保持力を得ることができる。
 また、ステント70は、補強部材71がステント基体20から離れる方向へ長く突出しているため、第4実施形態に係るステント60と同様に、急性期においては血管の狭窄部(病変部)Cおよびその周辺の健常部Hに対して広く接するようにステント70を留置して、確実に狭窄部Cを押し広げることができる。そして、安定期において補強部材71が分解されて消滅し、ステント基体20のみが残った後には、ステント基体20が健常部Hと接する範囲を極力減少させて、ステント血栓症やステントフラクチャー(ステントの破損)の発生を抑制することができる。
 <第6実施形態>
 第6実施形態に係るステント80は、図24に示すように、第4実施形態に係るステント60(図19を参照)に、追加補強部材82が追加されている点でのみ、第4実施形態に係るステント60と異なる。なお、第1,第4実施形態と同様の機能を有する部位には、同一の符号を付し、重複を避けるために説明を省略する。
 第6実施形態に係るステント80の補強部材81は、生分解性材料からなり、ステント基体20の軸方向Xの両端の環状体23に接続される。各々の補強部材81は、複数の第1湾曲部62と、複数の第2湾曲部63と、環状体23の第1折り返し部23Aに接続される1つの接続部64とを備え、さらに、全ての第1湾曲部62と一体的に接続される追加補強部材82を備えている。追加補強部材82は、第1湾曲部62、第2湾曲部63、および接続部64と一体的に形成されており、ステント80の周方向に360度にわたって直線状に形成されている。補強部材81は、生分解性材料により形成されるため、ステント80が生体管腔内に留置された後に分解されて消滅する。
 次に、第6実施形態に係るステント80の作用について説明する。
 ステント80は、バルーン230(図10を参照)によって狭窄部で押し広げられると、狭窄部を押し広げるとともに塑性変形しながら拡張し、狭窄部を押し広げた状態で形状が維持される。このとき、ステント80は、図25に示すように、ステント基体20の線状構成要素の折れ曲がった部位が開くように変形して拡張するとともに、各々の補強部材81において隣接する第1湾曲部62同士の間、および第2湾曲部63同士の間の距離が広がって、第1湾曲部62および第2湾曲部63が細くなることなくより直線に近い形状に変形するとともに、追加補強部材82が周方向へ引き伸ばされて細くなるように変形する。
 以上のように、第6実施形態に係るステント80は、第4実施形態と同様に、補強部材81がステント基体20から離れる方向へ長く突出しているため、第4実施形態に係るステント60と同様に、急性期においては血管の狭窄部(病変部)Cおよびその周辺の健常部Hに対して広く接するようにステント80を留置して、確実に狭窄部Cを押し広げることができる。そして、安定期において補強部材81が分解されて消滅し、ステント基体20のみが残った後には、ステント基体20が健常部Hと接する範囲を極力減少させて、ステント血栓症やステントフラクチャー(ステントの破損)の発生を抑制することができる。
 さらに、第6実施形態に係るステント80は、補強部材81が、ステント80が拡張する前の状態において、当該ステント80の周方向に沿って直線状に形成されているため、拡張する前の状態におけるステント50の端部の強度をも効果的に向上させることができる。このため、ステント50が拡張する前におけるフレアリングの発生を効果的に抑制できる。
 <第7実施形態>
 第7実施形態に係るステント90は、図26に示すように、第4実施形態に係るステント60(図19を参照)に、追加補強部材92が追加されている点でのみ、第4実施形態に係るステント60と異なる。なお、第1,第4実施形態と同様の機能を有する部位には、同一の符号を付し、重複を避けるために説明を省略する。
 第7実施形態に係るステント90の補強部材91は、生分解性材料からなり、ステント基体20の軸方向Xの両端の環状体23に接続される。各々の補強部材91は、複数の第1湾曲部62と、複数の第2湾曲部63と、環状体23の第1折り返し部23Aに接続される1つの接続部64とを備え、さらに、全ての第1湾曲部62と一体的に接続される追加補強部材92を備えている。追加補強部材92は、第1湾曲部62、第2湾曲部63、および接続部64と一体的に形成されており、ステント90の周方向に360度にわたって形成されている。追加補強部材92は、第1折り返し部23Aと接続する部位の間に、ステント基体20から離れる方向へ突出する第3湾曲部93が形成されている。補強部材91は、生分解性材料により形成されるため、ステント90が生体管腔内に留置された後に分解されて消滅する。
 次に、第7実施形態に係るステント90の作用について説明する。
 ステント90は、バルーン230(図10を参照)によって狭窄部で押し広げられると、狭窄部を押し広げるとともに塑性変形しながら拡張し、狭窄部を押し広げた状態で形状が維持される。このとき、ステント90は、図27に示すように、ステント基体20の線状構成要素の折れ曲がった部位が開くように変形して拡張するとともに、各々の補強部材91において隣接する第1湾曲部62同士の間、および第2湾曲部63同士の間の距離が広がって、第1湾曲部62および第2湾曲部63が細くなることなくより直線に近い形状に変形する。さらに、ステント90は、追加補強部材92の第3湾曲部93が細くなることなくより直線に近い形状に変形する。
 以上のように、第7実施形態に係るステント90は、第4実施形態と同様に、補強部材91がステント基体20から離れる方向へ長く突出しているため、第4実施形態に係るステント60と同様に、急性期においては血管の狭窄部(病変部)Cおよびその周辺の健常部Hに対して広く接するようにステント90を留置して、確実に狭窄部Cを押し広げることができる。そして、安定期において補強部材91が分解されて消滅し、ステント基体20のみが残った後には、ステント基体20が健常部Hと接する範囲を極力減少させて、ステント血栓症やステントフラクチャー(ステントの破損)の発生を抑制することができる。
 さらに、ステント90は、ステント90が拡張した後に、補強部材91の第1湾曲部62、第2湾曲部63および第3湾曲部93が細くなることなくより直線に近い状態に変形する。このため、拡張した後のステント90の端部の強度が高まり、血管に対する高い拡張保持力を得ることができる。
 <第8実施形態>
 第8実施形態に係るステント100は、図28に示すように、第6実施形態に係るステント80(図24を参照)に、接続部64と構造が異なる接続部102が設けられる点でのみ、第6実施形態に係るステント80と異なる。なお、第1,第4および第6実施形態と同様の機能を有する部位には、同一の符号を付し、重複を避けるために説明を省略する。
 第8実施形態に係るステント100の補強部材101は、生分解性材料からなり、ステント基体20の軸方向Xの両端の環状体23に接続される。各々の補強部材101は、複数の第1湾曲部62と、複数の第2湾曲部63と、追加補強部材82と、環状体23の全ての第1折り返し部23Aに接続される接続部102とを備えている。接続部102は、第1湾曲部62、第2湾曲部63、および追加補強部材82と一体的に形成されており、ステント100の周方向に360度にわたって直線状に形成されている。補強部材101は、生分解性材料により形成されるため、ステント100が生体管腔内に留置された後に分解されて消滅する。
 次に、第8実施形態に係るステント100の作用について説明する。
 ステント100は、バルーン230(図10を参照)によって狭窄部で押し広げられると、狭窄部を押し広げるとともに塑性変形しながら拡張し、狭窄部を押し広げた状態で形状が維持される。このとき、ステント100は、図29に示すように、ステント基体20の線状構成要素の折れ曲がった部位が開くように変形して拡張するとともに、各々の補強部材101において隣接する第1湾曲部62同士の間、および第2湾曲部63同士の間の距離が広がって、第1湾曲部62および第2湾曲部63が細くなることなくより直線に近い形状に変形する。さらに、ステント100は、隣接する第1湾曲部62同士の間、および第2湾曲部63同士の間の距離が広がることで、直線状に形成されている追加補強部材82および接続部102が周方向へ引き伸ばされて細くなるように変形する。
 以上のように、第8実施形態に係るステント100は、第6実施形態と同様に、補強部材101がステント基体20から離れる方向へ長く突出しているため、第6実施形態に係るステント80と同様に、急性期においては血管の狭窄部(病変部)Cおよびその周辺の健常部Hに対して広く接するようにステント100を留置して、確実に狭窄部Cを押し広げることができる。そして、安定期において補強部材101が分解されて消滅し、ステント基体20のみが残った後には、ステント基体20が健常部Hと接する範囲を極力減少させて、ステント血栓症やステントフラクチャー(ステントの破損)の発生を抑制することができる。
 さらに、第8実施形態に係るステント100は、補強部材101がステント100の周方向に360度にわたって形成され、かつ追加補強部材82および接続部102が周方向に直線状に形成されているため、ステント60が拡張する前の状態において、ステント100の端部の強度を非常に効果的に向上させることができる。このため、ステント100は、フレアリングの発生を非常に効果的に抑制できる。
 <第9実施形態>
 第9実施形態に係るステント110は、図30に示すように、第7実施形態に係るステント90(図26を参照)に、接続部64と構造が異なる接続部112が設けられる点でのみ、第7実施形態に係るステント90と異なる。なお、第1,第4および第7実施形態と同様の機能を有する部位には、同一の符号を付し、重複を避けるために説明を省略する。
 第9実施形態に係るステント110の補強部材111は、生分解性材料からなり、ステント基体20の軸方向Xの両端の環状体23に接続される。各々の補強部材111は、複数の第1湾曲部62と、複数の第2湾曲部63と、第3湾曲部93が形成される追加補強部材92と、環状体23の全ての第1折り返し部23Aに接続される接続部112とを備えている。接続部112は、第1湾曲部62、第2湾曲部63および追加補強部材92と一体的に形成されており、ステント110の周方向に360度にわたって直線状に形成されている。補強部材111は、生分解性材料により形成されるため、ステント110が生体管腔内に留置された後に分解されて消滅する。
 次に、第9実施形態に係るステント110の作用について説明する。
 ステント110は、バルーン230(図10を参照)によって狭窄部で押し広げられると、狭窄部を押し広げるとともに塑性変形しながら拡張し、狭窄部を押し広げた状態で形状が維持される。このとき、ステント110は、図31に示すように、ステント基体20の線状構成要素の折れ曲がった部位が開くように変形して拡張するとともに、各々の補強部材111において隣接する第1湾曲部62同士の間、および第2湾曲部63同士の間の距離が広がって、第1湾曲部62および第2湾曲部63が細くなることなくより直線に近い形状に変形する。さらに、ステント110は、隣接する第1湾曲部62同士の間、および第2湾曲部63同士の間の距離が広がることで、直線状に形成されている追加補強部材82および接続部112が周方向へ引き伸ばされて細くなるように変形する。
 以上のように、第9実施形態に係るステント110は、第7実施形態と同様に、補強部材111がステント基体20から離れる方向へ長く突出しているため、第7実施形態に係るステント90と同様に、急性期においては血管の狭窄部(病変部)Cおよびその周辺の健常部Hに対して広く接するようにステント110を留置して、確実に狭窄部Cを押し広げることができる。そして、安定期において補強部材111が分解されて消滅し、ステント基体20のみが残った後には、ステント基体20が健常部Hと接する範囲を極力減少させて、ステント血栓症やステントフラクチャー(ステントの破損)の発生を抑制することができる。
 さらに、第9実施形態に係るステント110は、ステント110が拡張した後に、補強部材111の第1湾曲部62、第2湾曲部63および第3湾曲部93が細くなることなくより直線に近い状態に変形する。このため、拡張した後のステント110の端部の強度が高まり、血管に対する非常に高い拡張保持力を得ることができる。
 なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。例えば、ステント基体は、上述した構成に限定されない。したがって、ステント基体は、1つの螺旋状の線材で構成されるのではなしに、2本以上の線材が並列的に並んで形成されてもよい。また、ステント基体は、螺旋状ではなしに、無端状(リング状)の環状体がステントの軸方向Xに並んで、隣接する環状体が連結された構成であってもよい。
 また、ステントは、クローズドセル構造であってもよく、または、自己の弾性力により拡張する自己拡張型ステントであってもよい。
 さらに、本出願は、2014年3月17日に出願された日本特許出願番号2014-52929号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。
  10  ステント、
  20  ステント基体、
  10,40,50,60,70,80,90,100,110  ステント、
  28  被覆部、
  43,52,64,74,102,112  接続部、
  30,41,51,53,61,71,81,91,101,111  補強部材、
  32  第1端部、
  33  第2端部、
  42  湾曲部、
  62,72  第1湾曲部、
  63,73  第2湾曲部、
  82,92  追加補強部材、
  93  第3湾曲部、
  X  軸方向。

Claims (7)

  1.  線状構成要素により構成されて全体として隙間を有する筒形状で形成され、径方向外側へ拡張するように変形可能なステント基体と、
     生分解性材料により形成され、前記ステント基体の軸方向両端に位置する前記線状構成要素の少なくとも一方に少なくとも1箇所で接続される少なくとも1つの線状の補強部材と、を有するステント。
  2.  前記補強部材は、前記ステントの周方向に360度未満の範囲で形成された請求項1に記載のステント。
  3.  前記補強部材は、前記ステントの周方向に360度にわたって形成された請求項1に記載のステント。
  4.  前記線状構成要素の前記補強部材と接続される部位に、他の部位よりも表面が粗い粗面が形成されている請求項1~3のいずれか1項に記載のステント。
  5.  前記線状構成要素の前記補強部材と接続される部位に、前記線状構成要素を構成する材料よりも前記補強部材に対して親和性の高い材料が被覆されている請求項1~4のいずれか1項に記載のステント。
  6.  前記補強部材は、前記ステントが拡張する前の状態において、当該ステントの軸方向へ突出するように曲がって形成される部位を有する請求項1~5のいずれか1項に記載のステント。
  7.  前記補強部材は、前記ステントが拡張する前の状態において、当該ステントの周方向に沿って直線状に形成される部位を有する請求項1~6のいずれか1項に記載のステント。
PCT/JP2015/055055 2014-03-17 2015-02-23 ステント WO2015141400A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014052929A JP2017086094A (ja) 2014-03-17 2014-03-17 ステント
JP2014-052929 2014-03-17

Publications (1)

Publication Number Publication Date
WO2015141400A1 true WO2015141400A1 (ja) 2015-09-24

Family

ID=54144378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055055 WO2015141400A1 (ja) 2014-03-17 2015-02-23 ステント

Country Status (2)

Country Link
JP (1) JP2017086094A (ja)
WO (1) WO2015141400A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497723B1 (en) * 1997-09-09 2002-12-24 Micro Science Medical Ag Stent for transluminal implantation
JP2005192933A (ja) * 2004-01-09 2005-07-21 Goodman Co Ltd 補綴搬送システム、補綴搬送システム組立方法、および補綴搬送システム用キット
JP2008501456A (ja) * 2004-06-09 2008-01-24 イェー・アー・ツェー・ツェー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング インプラント可能な装置
JP2013176576A (ja) * 2006-10-06 2013-09-09 Abbott Cardiovascular Systems Inc 脈管内ステント

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497723B1 (en) * 1997-09-09 2002-12-24 Micro Science Medical Ag Stent for transluminal implantation
JP2005192933A (ja) * 2004-01-09 2005-07-21 Goodman Co Ltd 補綴搬送システム、補綴搬送システム組立方法、および補綴搬送システム用キット
JP2008501456A (ja) * 2004-06-09 2008-01-24 イェー・アー・ツェー・ツェー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング インプラント可能な装置
JP2013176576A (ja) * 2006-10-06 2013-09-09 Abbott Cardiovascular Systems Inc 脈管内ステント

Also Published As

Publication number Publication date
JP2017086094A (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
EP2186492B1 (en) Stent and living organ dilator
JP5432909B2 (ja) 生体内留置用ステントおよびステントデリバリーシステム
JP5242979B2 (ja) 生体内留置用ステントおよび生体器官拡張器具
JP6082472B2 (ja) ステント
JP2009082353A (ja) 生体内留置用ステントおよび生体器官拡張器具
JP5739337B2 (ja) 生体内留置用ステントおよびステントデリバリーシステム
JP2013153822A (ja) 生体内留置用ステントおよび生体器官拡張器具
JP5053668B2 (ja) ステント
WO2012039291A1 (ja) 生体接着シートおよびシート接着用デバイス
JP2009082244A (ja) 生体内留置用ステントおよび生体器官拡張器具
JP5873238B2 (ja) 生体接着シートおよびシート接着用デバイス
JP2010233744A (ja) 生体内留置用ステントおよび生体器官拡張器具
JP5243080B2 (ja) 生体内留置用ステントおよび生体器官拡張器具
WO2015141400A1 (ja) ステント
JP2009082243A (ja) 生体内留置用ステントおよび生体器官拡張器具
JP2018079142A (ja) ステントデリバリーシステム
WO2017158985A1 (ja) ステント
JP2005074154A (ja) 生体留置用補綴物組立体およびその製造方法
JP2011072393A (ja) 生体器官拡張器具
JP2018088975A (ja) ステントデリバリーシステム
JP2010082012A (ja) 生体内留置用ステントおよび生体器官拡張器具
WO2014118913A1 (ja) 生体内留置用ステントおよびステントデリバリーシステム
JP2018139789A (ja) ステントデリバリーシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP