WO2015141126A1 - 端末装置、通信システム、サーバ、通信方法及びプログラムを格納する記憶媒体 - Google Patents

端末装置、通信システム、サーバ、通信方法及びプログラムを格納する記憶媒体 Download PDF

Info

Publication number
WO2015141126A1
WO2015141126A1 PCT/JP2015/000737 JP2015000737W WO2015141126A1 WO 2015141126 A1 WO2015141126 A1 WO 2015141126A1 JP 2015000737 W JP2015000737 W JP 2015000737W WO 2015141126 A1 WO2015141126 A1 WO 2015141126A1
Authority
WO
WIPO (PCT)
Prior art keywords
server
request signal
data communication
terminal device
terminal
Prior art date
Application number
PCT/JP2015/000737
Other languages
English (en)
French (fr)
Inventor
英士 高橋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016508482A priority Critical patent/JPWO2015141126A1/ja
Priority to US15/123,354 priority patent/US20170078201A1/en
Publication of WO2015141126A1 publication Critical patent/WO2015141126A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/11Identifying congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a terminal device, a communication system, a server, a communication method, and a storage medium for storing a program.
  • a wide variety of data communications such as browsing websites, sending and receiving streaming video, sending and receiving e-mails, and sending and receiving electronic files are performed using communication terminals. For this reason, data traffic is increasing. Thereby, it is required to communicate data efficiently.
  • non-real-time data that does not require real-time property is required to be transmitted and received between a communication terminal and a server or the like when communication is not congested.
  • Patent Document 1 discloses a technique of a wireless terminal that attempts gap communication for each waiting period and continues or interrupts communication until the next period according to the degree of communication congestion.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a communication system and the like capable of communicating data more efficiently.
  • the communication system of the present invention includes a server and a terminal device that performs data communication with the server, and the server calculates a first congestion degree of the data communication performed with the terminal device.
  • a request signal for generating a request signal which is a signal for requesting the data communication to the terminal device, based on the congestion degree calculation means and the first congestion degree calculated by the server-side congestion degree calculation means
  • a request signal transmitting unit that transmits the request signal generated by the request signal generating unit to the terminal device, wherein the terminal device performs data communication with the server.
  • a request signal receiving means for receiving the request signal transmitted by the request signal transmitting means, and the terminal-side data communication means receives the request signal receiving means. On the basis of the request signal, performing the data communication with the server.
  • the communication method of the present invention is a communication method performed between a server and a terminal device that performs data communication with the server, and the server performs the data communication that is performed between the server and the terminal device. 1 is calculated, a request signal which is a signal for requesting the data communication to the terminal device is generated based on the calculated first congestion level, and the generated request signal is transmitted to the terminal.
  • the terminal device receives the request signal transmitted by the server, and performs data communication with the server based on the received request signal.
  • a storage medium for storing the program of the present invention is a storage medium for storing a program used in a system having a server and a terminal device that performs data communication with the server.
  • a server-side congestion degree calculation process for calculating a first congestion degree of the data communication performed with the terminal device, and the server calculates the first congestion degree calculated by the server-side congestion degree calculation process.
  • the server Based on a request signal generation process for generating a request signal which is a signal for requesting the data communication to the terminal apparatus, and the server transmits the request signal generated by the request signal generation process to the terminal apparatus.
  • the terminal device includes a terminal-side data communication unit that performs data communication with a server, and a request signal for receiving, from the server, a request signal for requesting the data communication to the terminal device by the server.
  • Receiving means, and the terminal-side data communication means performs the data communication with the server based on the request signal for the data communication received by the request signal receiving means.
  • the server of the present invention includes a server-side congestion degree calculating unit that calculates a first congestion degree of data communication performed with a terminal device, and the first congestion calculated by the server-side congestion degree calculating unit.
  • a request signal generating means for generating a request signal which is a signal for requesting the data communication to the terminal apparatus, and the request signal generated by the request signal generating means is transmitted to the terminal apparatus. Request signal transmitting means.
  • data can be communicated more efficiently.
  • FIG. 1 is a block diagram showing a configuration of the communication system 1000.
  • the communication system 1000 includes a server 100 and a plurality of terminal devices 200-1, 200-2, and 200-3.
  • each of the plurality of terminal devices 200-1, 200-2, and 200-3 is collectively referred to as the terminal device 200 unless it is necessary to specifically distinguish each of the terminal devices 200-1, 200-2, and 200-3.
  • the server 100 includes a server-side data communication unit 110, a server-side control unit 120, and a request signal transmission unit 130.
  • the server 100 is connected to the communication network 300 by a wired line.
  • the server 100 may be connected to the communication network 300 wirelessly.
  • the server 100 is connected to the terminal device 200 via the communication network 300.
  • the server 100 performs data communication with the terminal device 200 via the communication network 300.
  • the server-side data communication unit 110 is connected to the server-side control unit 120.
  • the server-side data communication unit 110 performs data communication with the terminal-side data communication unit 230 of the terminal device 200 via the communication network 300.
  • the server-side data communication unit 110 transmits data to the terminal-side data communication unit 230 of the terminal device 200 via the communication network 300.
  • server-side data communication unit 110 receives data transmitted from the terminal-side data communication unit 230 of the terminal device 200 via the communication network 300.
  • the server-side data communication unit 110 receives information related to communication quality in the terminal device 200 from the terminal device 200.
  • Information related to communication quality includes, for example, RSSI (Received Signal Strength Indicator, Received Signal Strength), RSRP (Reference Signal Received Power, Reference Signal Received Power), RSRQ (Reference Signal Received NR Signal Quality, Standard Received Signal Quality) -to-Interference plus Noise-Ratio, signal-to-interference plus noise ratio).
  • the server-side control unit 120 is connected to the server-side data communication unit 110 and the request signal transmission unit 130.
  • the server side control unit 120 controls the entire server 100.
  • the server-side control unit 120 receives various information (for example, data size and communication time) in data transmitted and received by the server-side data communication unit 110. Further, the server side control unit 120 outputs the request signal generated by the request signal generation unit 122 and the selection result of the terminal selection unit 123 to the request signal transmission unit 130.
  • various information for example, data size and communication time
  • the server-side control unit 120 includes a server-side congestion degree calculation unit 121, a request signal generation unit 122, a terminal selection unit 123, and a priority setting unit 124.
  • the server-side congestion degree calculation unit 121 calculates a first congestion degree of data communication performed with the terminal device 200.
  • the server-side congestion degree calculation unit 121 calculates a first congestion degree of data communication every predetermined cycle (for example, 30 seconds).
  • the first congestion degree of data communication is the congestion degree calculated on the server 100 side. More specifically, the first congestion level of data communication refers to the congestion level of data communication used when the request signal generation unit 122 described later determines whether to generate a request signal, This is information such as the utilization rate of the shared wireless resource.
  • the server-side congestion degree calculation unit 121 calculates the first congestion degree of data communication based on the throughput of data communication with the terminal device 200. A specific method by which the server-side congestion degree calculation unit 121 calculates the first congestion degree of data communication will be described later.
  • server-side congestion degree calculation unit 121 may calculate the first congestion degree based on the information related to the communication quality in the terminal device 200 described above.
  • the server-side congestion degree calculation unit 121 may inspect traffic information passing through the communication network 300 by DPI (Deep Packet Inspection), and calculate the first congestion degree based on the traffic information.
  • the traffic information is information such as the total throughput value of the terminal devices 200-1, 200-2, and 200-3, for example.
  • the request signal generation unit 122 generates a request signal that is a signal for requesting data communication to the terminal device 200 based on the first congestion level of data communication calculated by the server-side congestion level calculation unit 121. .
  • the terminal selection unit 123 selects a terminal device that is a transmission destination of the request signal generated by the request signal generation unit 122 among the terminal devices 200 based on the priority set by the priority setting unit 124 described later. .
  • the terminal selection unit 123 is for selecting a terminal device that is a transmission destination of the request signal among the terminal devices 200. Therefore, for example, when there is one terminal device (for example, only the terminal device 200-1), the terminal selection unit 123 is not necessarily required in the present embodiment. A specific method for the terminal selection unit 123 to select a terminal device as a transmission destination will be described later.
  • the priority setting unit 124 sets each priority of the terminal device 200.
  • the priority is information such as a priority order and a priority level used when the terminal selection unit 123 selects a terminal device that is a transmission destination of the request signal.
  • the priority setting unit 124 sets a priority that is information for the terminal selection unit 123 to select a terminal device that is a transmission destination of the request signal among the terminal devices 200. Therefore, similarly, when there is one terminal device, the priority setting unit 124 is not necessarily required in the present embodiment. A specific method in which the priority setting unit 124 sets each priority of the terminal device 200 will be described later.
  • the request signal transmission unit 130 is connected to the server-side control unit 120.
  • the request signal transmission unit 130 transmits the request signal generated by the request signal generation unit 122 to the terminal device selected by the terminal selection unit 123.
  • request signal transmission unit 130 transmits the request signal to the terminal device. 200-1 is transmitted.
  • the terminal device 200 includes a request signal receiving unit 210, a terminal side control unit 220, and a terminal side data communication unit 230.
  • the terminal device 200 is connected to the communication network 300 via a wireless line.
  • the terminal device 200 is connected to the server 100 via the communication network 300.
  • the terminal device 200 performs data communication with the server 100 via the communication network 300.
  • terminal device 200 may be three.
  • two may be sufficient and four or more may be sufficient.
  • the number of terminal devices 200 may be one.
  • the request signal receiving unit 210 is connected to the terminal-side control unit 220.
  • the request signal reception unit 210 receives a request signal transmitted by the request signal transmission unit 130 of the server 100.
  • the terminal-side control unit 220 is connected to the request signal receiving unit 210 and the terminal-side data communication unit 230.
  • the terminal side control unit 220 controls the entire terminal device 200.
  • the terminal-side control unit 220 receives the request signal received by the request signal receiving unit 210 and instructs the terminal-side data communication unit 230 to perform data communication with the server 100.
  • the terminal side data communication unit 230 is connected to the terminal side control unit 220.
  • the terminal-side data communication unit 230 transmits data to the server-side data communication unit 110 of the server 100 via the communication network 300.
  • the terminal-side data communication unit 230 transmits information related to communication quality in the terminal device 200 described above.
  • terminal-side data communication unit 230 receives data transmitted from the server-side data communication unit 110 of the server 100 via the communication network 300.
  • the terminal-side data communication unit 230 receives data from the terminal-side control unit 220 and performs data communication with the server 100 based on the request signal received by the request signal receiving unit 210.
  • the communication network 300 is connected to the server 100 and the terminal device 200, respectively.
  • the communication network 300 is a communication network such as the Internet.
  • FIG. 2 is a diagram illustrating an operation flow of the communication system 1000 including the server 100 and the terminal device 200.
  • the terminal device 200-3 among the terminal devices 200 is executing data communication with the server 100.
  • the terminal device 200-1 executes data communication with the server 100 in response to a request signal from the server 100. Assume a case.
  • the server-side congestion degree calculation unit 121 of the server 100 calculates a first congestion degree of data communication with the terminal device 200 (step (hereinafter referred to as S) 110. ).
  • the server-side congestion degree calculation unit 121 calculates the first congestion degree of data communication with the terminal device 200.
  • the server-side congestion degree calculation unit 121 calculates the throughput of data communication with the terminal device 200-3 that is executing data communication.
  • the server-side congestion degree calculation unit 121 calculates the data communication throughput [bps] from the data communication amount [bits] per unit time [s] with the terminal device 200-3.
  • Thrpt1 [bps] DataSize [bits] / Time [s] (1) DataSize: Data communication amount Time: Unit time
  • the server-side congestion degree calculation unit 121 determines, for example, as follows from the throughput of data communication with the terminal device 200-3 calculated as described above. A first congestion degree of data communication with the terminal device 200 is calculated.
  • the server-side congestion degree calculation unit 121 calculates a congestion degree of 1 when Thrpt1 is equal to or greater than a predetermined threshold value Thresh1 (for example, 20 [kbps]), and Thrpt1 is a value Thresh2 within a predetermined range (for example, 11 to 19 [ kbps]), the degree of congestion is calculated as 2, and when Thrpt1 is equal to or less than a predetermined threshold Thresh3 (for example, 10 [kbps]), the degree of congestion is calculated as 3.
  • Thresh1 for example, 20 [kbps]
  • Thresh2 a predetermined range
  • Thresh3 for example, 10 [kbps]
  • the congestion degree is higher as the frequency is higher. That is, the greater the degree of congestion, the more congested data communication between the server 100 and the terminal device 200 is.
  • the server-side congestion degree calculation unit 121 may calculate the first congestion degree based on information related to communication quality. For example, the server-side congestion degree calculation unit 121 may calculate the first congestion degree based on information related to communication quality and a predetermined threshold corresponding to the communication quality.
  • the server-side congestion degree calculation unit 121 may calculate the first congestion degree based on the data communication throughput with the terminal device 200-3 and information on communication quality.
  • the request signal generation unit 122 determines that the frequency of the first congestion level of the data communication calculated by the server-side congestion level calculation unit 121 in the processing of S110 is equal to or higher than a predetermined frequency (for example, congestion) It is determined whether or not (degree 2) (S120).
  • the request signal generation unit 122 does not generate a request signal when the frequency of the first congestion degree of data communication is not greater than or equal to the predetermined frequency (S120, NO) (S121).
  • the request signal generator 122 when the frequency of the first congestion degree of the data communication is equal to or higher than the predetermined frequency (S120, YES), the request signal generator 122 generates a request signal (S130).
  • the priority setting unit 124 sets the priority of each of the terminal devices 200-1 and 200-2 that are not executing data communication among the terminal devices 200 (S140).
  • the priority setting unit 124 sets the terminal device 200-1 as the priority 1 and the terminal device 200-2 as the priority 2 from the preset priorities for the respective terminal devices 200. .
  • priority is higher as the frequency is smaller. That is, priority 1 is higher than priority 2.
  • the priority setting unit 124 may set each priority of the terminal device 200 based on the record of data communication with the terminal device 200. For example, when the terminal device 200 receives data (for example, web content) from the server 100, the priority setting unit 124 may set the priority of the terminal device with a long elapsed time from the start of reception.
  • data for example, web content
  • the priority setting unit 124 may set a higher priority for a terminal device having a large untransmitted data size.
  • the server 100 measures the untransmitted data size of each terminal device 200.
  • the terminal selection unit 123 selects the terminal device 200-1 as the transmission destination of the request signal from the terminal devices 200 based on the priority set by the priority setting unit 124. (S150).
  • the terminal selection unit 123 sends the request signal transmission destination to the terminal device 200-2 having the priority level 2 in accordance with the first congestion level of the data communication. You may choose as
  • the request signal transmission unit 130 transmits a request signal to the terminal device 200-1 selected by the terminal selection unit 123 (S160).
  • the request signal receiving unit 210 of the terminal device 200-1 receives the request signal (S170).
  • the terminal-side data communication unit 230 of the terminal device 200-1 performs data communication with the server 100 by transmitting data to the server 100 (S180).
  • the server-side data communication unit 110 of the server 100 receives data transmitted from the terminal device 200-1 (S190).
  • the communication system 1000 includes the server 100 and the terminal device 200 that performs data communication with the server 100.
  • the server 100 includes a server-side congestion degree calculation unit 121, a request signal generation unit 122, and a request signal transmission unit 130.
  • the server-side congestion degree calculation unit 121 calculates a first congestion degree of data communication performed with the terminal device 200.
  • the request signal generation unit 122 generates a request signal that is a signal for requesting data communication to the terminal device 200 based on the first congestion level of data communication calculated by the server-side congestion level calculation unit 121.
  • the request signal transmission unit 130 transmits the request signal generated by the request signal generation unit 122 to the terminal device 200.
  • the terminal device 200 includes a terminal-side data communication unit 230 and a request signal receiving unit 210.
  • the terminal side data communication unit 230 performs data communication with the server 100.
  • the request signal receiving unit 210 receives the request signal transmitted by the request signal transmitting unit 130.
  • the terminal-side data communication unit 230 performs data communication with the server 100 based on the request signal received by the request signal receiving unit 210.
  • the server 100 and the terminal device 200 execute data communication according to the first congestion degree of data communication. Specifically, when the first congestion level of data communication is low, the server 100 and the terminal device 200 execute data communication. When the first congestion level of data communication is high, the server 100 and the terminal device 200 perform data communication. Do not execute.
  • the communication system 1000 including the server 100 and the terminal device 200 can communicate data more efficiently.
  • the communication system 1000 includes a plurality of terminal devices 200.
  • the server 100 includes a terminal selection unit 123 that selects a terminal device that is a transmission destination of the request signal among the plurality of terminal devices 200.
  • the request signal transmission unit 130 transmits a request signal to the terminal device selected by the terminal selection unit 123.
  • the server 100 transmits the request signal only to the selected terminal device among the plurality of terminal devices 200 and executes the data communication. That is, the server 100 does not execute data communication simultaneously with all of the plurality of terminal devices 200.
  • the communication system 1000 can reduce data communication congestion as compared with the case where the terminal device 200 that is the transmission destination of the request signal is not selected.
  • the server 100 includes a priority setting unit 124 that sets the priority of each of the plurality of terminal devices 200. Based on the priority set by the priority setting unit 124, the terminal selection unit 123 selects a terminal device that is a transmission destination of the request signal from among the plurality of terminal devices 200.
  • the server 100 can preferentially perform data communication with a terminal device having a high priority (to which data communication should be performed with priority) among the plurality of terminal devices 200.
  • the communication system 1000 can communicate data more efficiently.
  • the communication method according to the first embodiment of the present invention is performed between the server 100 and the terminal device 200 that performs data communication with the server 100.
  • the communication method includes a server-side congestion degree calculation step, a request signal generation step, a request signal transmission step, a request signal reception step, and a data communication execution step.
  • the server 100 calculates a first congestion degree of data communication performed with the terminal device 200.
  • the server 100 generates a request signal that is a signal for requesting the terminal device 200 for data communication based on the first congestion level of data communication calculated in the server-side congestion level calculation step. Generate.
  • the server 100 transmits the request signal generated in the request signal generation step to the terminal device 200.
  • the terminal device 200 receives the request signal transmitted in the request signal transmission step.
  • the terminal device 200 performs data communication with the server 100 based on the request signal received in the request signal reception step.
  • This communication method has the same effect as the above-described communication system 1000 because the above-described communication system 1000 system invention is a method invention.
  • the program in the first embodiment of the present invention is used in a system having the server 100 and the terminal device 200 that performs data communication with the server 100.
  • the program causes the computer to execute a server-side congestion degree calculation step, a request signal generation step, a request signal transmission step, a request signal reception step, and a data communication execution step.
  • the server 100 calculates a first congestion degree of data communication performed with the terminal device 200.
  • the server 100 generates a request signal that is a signal for requesting the terminal device 200 for data communication based on the first congestion level of data communication calculated in the server-side congestion level calculation step. Generate.
  • the server 100 transmits the request signal generated in the request signal generation step to the terminal device 200.
  • the terminal device 200 receives the request signal transmitted in the request signal transmission step.
  • the terminal device 200 performs data communication with the server 100 based on the request signal received in the request signal reception step.
  • This program has the same effect as that of the communication system 1000 described above because the system invention of the communication system 1000 described above is the invention of the program.
  • the terminal device 200 performs data communication with the server 100.
  • the terminal device 200 includes a terminal-side data communication unit 230 and a request signal receiving unit 210.
  • the terminal side data communication unit 230 performs data communication with the server 100.
  • the request signal receiving unit 210 receives a data communication request signal transmitted from the server 100.
  • the terminal-side data communication unit 230 performs data communication with the server 100 based on the data communication request signal received by the request signal receiving unit 210.
  • the terminal device 200 performs data communication with the server 100 in response to the request signal generated by the server 100 based on the first congestion degree of data communication, the same as the communication system 1000 described above. The effect of.
  • the server 100 performs data communication with the terminal device 200.
  • the server 100 includes a server-side congestion degree calculation unit 121, a request signal generation unit 122, and a request signal transmission unit 130.
  • the server-side congestion degree calculation unit 121 calculates a first congestion degree of data communication performed with the terminal device 200.
  • the request signal generation unit 122 generates a request signal that is a signal for requesting data communication to the terminal device 200 based on the first congestion level of data communication calculated by the server-side congestion level calculation unit 121.
  • the request signal transmission unit 130 transmits the request signal generated by the request signal generation unit 122 to the terminal device 200.
  • the server 100 transmits the request signal generated based on the first congestion degree of data communication to the terminal device 200 and executes data communication with the destination terminal device 200, and thus the communication system 1000 described above. Has the same effect as.
  • FIG. 3 is a block diagram showing a configuration of the communication system 1000A.
  • components equivalent to those shown in FIG. 1 are denoted by the same symbols as those shown in FIG. 1.
  • the communication system 1000A includes a server 100 and a plurality of terminal devices 200A-1, 200A-2, and 200A-3.
  • each of the plurality of terminal devices 200A-1, 200A-2, and 200A-3 is collectively referred to as the terminal device 200A unless it is necessary to particularly distinguish each of the terminal devices 200A-1, 200A-2, and 200A-3.
  • the server 100 includes a server-side data communication unit 110, a server-side congestion degree calculation unit 121, a request signal generation unit 122, a terminal selection unit 123, a priority setting unit 124, a request And a signal transmission unit 130.
  • the terminal device 200A includes a request signal receiving unit 210, a terminal-side congestion degree calculating unit 221, a determining unit 222, and a terminal-side data communication unit 230A.
  • FIG. 1 and FIG. 3 are compared.
  • the terminal-side control unit 220A of the terminal device 200A includes the terminal-side congestion degree calculation unit 221 and the determination unit 222, and the terminal-side control unit 220A of the terminal device 200 illustrated in FIG. Is different.
  • the description of the same configuration as that shown in FIG. 1 is omitted.
  • the terminal-side control unit 220A outputs the determination result of the determination unit 222 described later to the terminal-side data communication unit 230A.
  • the terminal-side data communication unit 230A performs data communication with the server 100 at a predetermined cycle (for example, 30 seconds).
  • the predetermined period can be arbitrarily set by the user as appropriate.
  • the terminal-side data communication unit 230A performs data communication with the server 100 based on the request signal received by the request signal receiving unit 210, similarly to the terminal-side data communication unit 230 of the first embodiment.
  • the terminal-side data communication unit 230A continues data communication or interrupts data communication until the start of the next cycle based on the determination result of the determination unit 222 described later.
  • the terminal-side congestion degree calculation unit 221 calculates a second congestion degree of data communication when performing data communication with the server 100 at a predetermined cycle.
  • the second congestion degree of data communication is a congestion degree calculated on the terminal device 200A side.
  • the second congestion level of data communication is shared by the terminal device 200 when the determination unit 222 described later determines whether to continue the data communication or to interrupt until a predetermined period. This is information such as the utilization rate of radio resources.
  • the determination unit 222 determines whether to continue data communication or to interrupt until a predetermined period based on the second congestion level of data communication calculated by the terminal-side congestion level calculation unit 221.
  • FIG. 4 is a diagram illustrating an operation flow when the terminal device 200A performs data communication with the server 100 at a predetermined cycle.
  • the terminal-side data communication unit 230A determines whether or not it is the start of a predetermined cycle (S210).
  • the terminal-side data communication unit 230A repeats the process of S210 until it is determined that it is the start of the predetermined cycle.
  • the terminal-side data communication unit 230A executes unit time or unit amount data communication to the server 100 (S220).
  • This data communication is for calculating the second congestion degree of data communication with the server 100.
  • the unit time or unit amount in the process of S220 can be changed as appropriate, and is set as appropriate by the user.
  • the burden on the communication network 300 can be reduced, but it is difficult to accurately calculate the second congestion degree. Further, when the amount of data for data communication is relatively large, a data division process or a reconstruction process on the server 100 side is required.
  • the terminal-side congestion degree calculation unit 221 calculates a second congestion degree of data communication with the server 100 (S230).
  • the terminal-side congestion degree calculation unit 221 calculates the second congestion degree of data communication based on the throughput of data communication with the server 100 in the process of S220.
  • the throughput calculation method and the second congestion degree calculation method based on the throughput are the same as S110 in FIG.
  • the determination unit 222 determines whether or not the frequency of the second congestion level of the data communication calculated by the terminal-side congestion level calculation unit 221 in the process of S230 is equal to or less than a predetermined frequency (for example, the congestion level 2). (S240).
  • the determination unit 222 determines that the data communication is continued when the frequency of the second congestion degree is equal to or less than the predetermined frequency (S240, YES) (S250).
  • the terminal-side data communication unit 230A returns to the process of S220 and executes unit time or unit amount data communication.
  • the case where there is a next data communication unit is a case where untransmitted data is accumulated after the unit time or unit amount of data communication performed in the process of S220.
  • the terminal-side data communication unit 230A does not perform data communication with the server 100 until the beginning of the next cycle.
  • the determination unit 222 determines to interrupt the data communication until the start of the next cycle (S270). ).
  • the terminal-side data communication unit 230A can resume data communication from the point where data communication is interrupted in the next cycle.
  • FIG. 5 is a diagram illustrating an operation flow when the terminal device 200A receives a request signal.
  • the same steps as those in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the terminal device 200A is performing the processing from S210 to S270.
  • the request signal transmission unit 130 of the server 100 transmits a request signal during the processing in which the terminal device 200A performs the processing from S210 to S270 (S310)
  • the request signal reception unit 210 of the terminal device 200A Is received (S320).
  • the terminal-side data communication unit 230A executes data communication with the server 100 by transmitting data to the server 100 (S330). Then, the server 100 receives data transmitted from the terminal device 200A (S340).
  • the terminal-side data communication unit 230A transmits the untransmitted data accumulated since the last transmission in the process of S220 to the server 100. Further, the terminal-side data communication unit 230A does not perform data communication with the server 100 when there is no accumulated untransmitted data.
  • the terminal device 200A may perform the processing after S230 after the terminal-side data communication unit 230A performs the processing of S330.
  • the terminal-side data communication unit 230A performs data communication with the server 100 at a predetermined cycle.
  • the terminal device 200A performs data communication in response to the request signal transmitted from the server 100, and performs data communication with the server 100 at a predetermined cycle. Communicate.
  • the user using the terminal device 200A can perform data communication with the server 100 at a predetermined cycle that can be set as appropriate, the user can perform data communication according to the user's purpose of use and usage status.
  • the terminal device 200A includes a terminal-side congestion degree calculation unit 221 and a determination unit 222.
  • the terminal-side congestion degree calculation unit 221 calculates a second congestion degree of data communication performed with the server 100.
  • the determination unit 222 determines whether to continue the data communication or to interrupt the data communication until the start of the next cycle based on the second congestion level of the data communication calculated by the terminal-side congestion level calculation unit 221. .
  • the terminal-side data communication unit 230A performs data communication with the server 100 based on the request signal received by the request signal reception unit 210, and continues or continues data communication based on the determination result of the determination unit 222. Data communication is suspended until the beginning of the cycle.
  • the terminal device 200A continues data communication or performs data communication until the beginning of the next cycle according to the second congestion degree of data communication. Interrupt. Thereby, although the data communication is congested, the terminal device 200A tries data communication with the server 100 at a predetermined cycle, and the data communication is not further congested.
  • the communication system 1000A can communicate data more efficiently without encouraging data communication congestion.
  • the terminal device 200A is based on the first congestion level even when waiting for the start of the next cycle (during interruption of data communication).
  • a request signal from the server 100 is received, data communication with the server 100 is performed.
  • the server 100 and the terminal device 200A mutually perform data communication. It can be performed.
  • FIG. 6 is a block diagram showing a configuration of the communication system 1000B.
  • constituent elements equivalent to those shown in FIGS. 1 to 5 are given the same reference numerals as those shown in FIGS.
  • the communication system 1000B includes a server 100A, a terminal device 200A, and a base station 400.
  • the components of the server 100A and the terminal device 200A are not shown.
  • FIG. 3 and FIG. 6 are compared.
  • the communication system 1000 ⁇ / b> B is different from the communication system 1000 ⁇ / b> A shown in FIG. 3 in that it further includes a base station 400.
  • description of components equivalent to those shown in FIGS. 1 to 5 is omitted.
  • the server 100 ⁇ / b> A is connected to the base station 400 via the communication network 300.
  • the server-side data communication unit 110 of the server 100A inquires the base station 400 about information regarding the utilization rate of the base station 400. Further, the server-side data communication unit 110 receives and acquires information on the utilization rate of the base station 400 from the base station 400.
  • the information regarding the utilization rate of the base station 400 is, for example, information such as the utilization rate of radio resources shared by the terminal device 200A.
  • the utilization rate of the radio resource here is a ratio of resource blocks allocated to the terminal device 200A with respect to all resource blocks held by the base station 400.
  • the server-side congestion degree calculation unit 121 of the server 100A calculates the first congestion degree based on the information regarding the utilization rate of the base station 400 received by the server-side data communication unit 110. For example, the server-side congestion degree calculation unit 121 calculates the first congestion degree based on the utilization rate of radio resources shared by the terminal device 200A and a predetermined value. A more specific calculation method is the same as that described in S110 of FIG.
  • the base station 400 is connected to the communication network 300 via a wired line.
  • the base station 400 is connected to the server 100A via the communication network 300.
  • the base station 400 accommodates the terminal device 200A in the cell 500.
  • the base station 400 is connected to the terminal device 200A via a wireless line.
  • Base station 400 performs data communication with server 100A and terminal device 200A.
  • the server 100A and the terminal device 200A perform data communication with each other via the base station 400.
  • the base station 400 receives and responds to an inquiry from the server-side data communication unit 110. At this time, the base station 400 transmits information regarding the utilization rate of the base station 400 to the server 100A.
  • each base station 400 accommodates each terminal device in the cell 500.
  • FIG. 7 is a diagram illustrating an operation flow of the communication system 1000B.
  • the server-side data communication unit 110 of the server 100A inquires of the base station 400 about information regarding the utilization rate of the base station 400 (S410).
  • the base station 400 receives and responds to an inquiry from the server-side data communication unit 110 (S420).
  • the base station 400 transmits information on the utilization rate of the base station 400 to the server 100A (S430).
  • the server-side data communication unit 110 of the server 100A receives information on the utilization rate of the base station 400 (S440).
  • the server-side congestion degree calculation unit 121 of the server 100A calculates the first congestion degree based on information on the utilization rate of the base station 400 (S450). Thereafter, the server 100A performs the processing after S120 in FIG.
  • the server-side congestion degree calculation unit 121 calculates the first congestion degree based on the information related to the utilization rate of the base station 400. To do. Accordingly, the server 100A can calculate the first congestion level based on the information regarding the utilization rate of the base station 400, which is information unique to the base station 400. Therefore, the server 100A can calculate the first congestion degree with higher accuracy. As a result, the communication system 1000B can more efficiently communicate data with the terminal device 200A.
  • FIG. 8 is a block diagram showing a configuration of the communication system 1000C.
  • the same components as those shown in FIGS. 1 to 7 are denoted by the same reference numerals as those shown in FIGS.
  • the communication system 1000 ⁇ / b> C includes a server 100 and a terminal device 200 that performs data communication with the server 100.
  • the server 100 includes a server-side congestion degree calculation unit 121, a request signal generation unit 122, and a request signal transmission unit 130.
  • the server-side congestion degree calculation unit 121 calculates a first congestion degree of data communication performed with the terminal device 200.
  • the request signal generation unit 122 generates a request signal that is a signal for requesting data communication to the terminal device 200 based on the first congestion level calculated by the server-side congestion level calculation unit 121.
  • the request signal transmission unit 130 transmits the request signal generated by the request signal generation unit 122 to the terminal device 200.
  • the terminal device 200 includes a terminal-side data communication unit 230 and a request signal receiving unit 210.
  • the terminal-side data communication unit 230 performs data communication with the server 1000C.
  • the request signal receiving unit 210 receives the request signal transmitted by the request signal transmitting unit 130.
  • the terminal-side data communication unit 230 performs data communication with the server 1000C based on the request signal received by the request signal receiving unit 210. Thereby, data can be more efficiently communicated.
  • a server, and a terminal device that performs data communication with the server The server A server-side congestion degree calculation unit for calculating a first congestion degree of the data communication performed with the terminal device; A request signal generation unit that generates a request signal that is a signal for requesting the data communication to the terminal device based on the first congestion level calculated by the server-side congestion level calculation unit; A request signal transmitter that transmits the request signal generated by the request signal generator to the terminal device, and The terminal device A terminal-side data communication unit that performs the data communication with the server; A request signal receiving unit that receives the request signal transmitted by the request signal transmitting unit, The terminal-side data communication unit is a communication system that performs the data communication with the server based on the request signal received by the request signal receiving unit.
  • the server includes a terminal selection unit that selects the terminal device that is a transmission destination of the request signal among the plurality of terminal devices, The communication system according to supplementary note 1, wherein the request signal transmission unit transmits the request signal to the terminal device selected by the terminal selection unit.
  • the server includes a priority setting unit that sets the priority of each of the plurality of terminal devices, The communication system according to supplementary note 2, wherein the terminal selection unit selects the terminal device that is a transmission destination of the request signal among the plurality of terminal devices based on the priority set by the priority setting unit. .
  • (Appendix 6) The communication system according to any one of appendices 1 to 5, wherein the server-side congestion degree calculation unit calculates the first congestion degree based on a throughput of the data communication between the server and the terminal device. .
  • (Appendix 7) The communication system according to any one of supplementary notes 1 to 6, wherein the server-side congestion degree calculation unit calculates the first congestion degree based on information related to communication quality in the terminal device.
  • (Appendix 8) A base station that performs data communication between the server and the terminal device; The communication system according to any one of appendices 1 to 7, wherein the server-side congestion degree calculation unit calculates the first congestion degree based on information on a utilization rate of the base station.
  • the server calculates a first congestion degree of the data communication with the terminal device; Based on the calculated first congestion level, a request signal that is a signal for requesting the data communication to the terminal device is generated, Transmitting the generated request signal to the terminal device; The terminal device receives the request signal transmitted by the server; A communication method for performing the data communication with the server based on the received request signal.
  • a server-side congestion degree calculation process in which the server calculates a first congestion degree of data communication with the terminal device;
  • a request signal generation process in which the server generates a request signal that is a signal for requesting the data communication to the terminal device based on the first congestion degree calculated by the server-side congestion degree calculation process.
  • a request signal transmission process in which the server transmits the request signal generated by the request signal generation process to the terminal device;
  • a request signal reception process in which the terminal apparatus receives the request signal transmitted by the request signal transmission process;
  • a storage medium storing a program for causing the terminal device to execute data communication execution processing for performing data communication with the server based on the request signal received by the request signal reception processing.
  • a terminal-side data communication unit that performs data communication with the server; A request signal receiving unit for receiving a request signal for requesting the data communication from the server to the terminal device by the server; The terminal-side data communication unit is a terminal device that performs the data communication with the server based on the data communication request signal received by the request signal receiving unit.
  • a server-side congestion degree calculation unit for calculating a first congestion degree of data communication performed with the terminal device; A request signal generation unit that generates a request signal that is a signal for requesting the data communication to the terminal device based on the first congestion level calculated by the server-side congestion level calculation unit;
  • a server comprising: a request signal transmission unit configured to transmit the request signal generated by the request signal generation unit to the terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)
  • Computer And Data Communications (AREA)

Abstract

 データをより効率良く通信するために、本発明の通信システム1000は、サーバ100と、サーバ100とデータ通信を行う端末装置200と、を備え、サーバ100は、データ通信の第1の混雑度に基づいて要求信号を生成して端末装置200に送信し、携帯端末200は、受信した要求信号に基づいて、サーバ100とデータ通信を行う。

Description

端末装置、通信システム、サーバ、通信方法及びプログラムを格納する記憶媒体
 本発明は、端末装置、通信システム、サーバ、通信方法及びプログラムを格納する記憶媒体に関する。
 Webサイトの閲覧、ストリーミングビデオの送受信、電子メールの送受信、電子ファイルの送受信等といった多種多様なデータ通信が通信端末等を用いて行われている。このため、データトラヒックが増加している。これにより、データを効率良く通信することが求められている。特に、リアルタイム性を要求されない非リアルタイム性のデータについては、通信が混雑していないときに通信端末とサーバ等の間で送受信することが求められている。
 上記に関連して、特許文献1では、待ち時間の周期ごとにすき間通信を試行し、通信の混雑度に応じて通信を継続又は次の周期まで中断する無線端末の技術が開示されている。
特開2012-165107号公報
 しかしながら、特許文献1に記載の技術では、通信が中断された場合、例えば単位時間当たりのデータ通信量等によって算出される通信の混雑度が、その後低下したとしても待ち時間が経過するまでは次の通信を開始できない。このため、通信の混雑度が待ち時間よりも短い周期で変動する状況においては、データをサーバ等の間で効率良く通信することができないという問題があった。
 なお、特許文献1に記載の技術では、待ち時間が比較的短く設定された場合、通信の混雑度の変動への追従性は高まるが、通信が混雑し続けている状況においても通信試行を頻繁に繰り返すことになり、通信の混雑を助長する。一方、待ち時間が比較的長く設定され、且つ通信が中断された場合、その後通信の混雑度が低下したとしても待ち時間が経過するまでは次の通信を開始できない。このため、待ち時間の設定が困難であるという問題もある。
 本発明は、このような事情を鑑みてなされたものであり、その目的は、データをより効率良く通信することができる通信システム等を提供することにある。
 本発明の通信システムは、サーバと、前記サーバとデータ通信を行う端末装置と、を備え、前記サーバは、前記端末装置との間で行う前記データ通信の第1の混雑度を算出するサーバ側混雑度算出手段と、前記サーバ側混雑度算出手段により算出される前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成する要求信号生成手段と、前記要求信号生成手段により生成される前記要求信号を前記端末装置に送信する要求信号送信手段と、を有し、前記端末装置は、前記サーバと前記データ通信を行う端末側データ通信手段と、前記要求信号送信手段により送信される前記要求信号を受信する要求信号受信手段と、を有し、前記端末側データ通信手段は、前記要求信号受信手段により受信した前記要求信号に基づいて、前記サーバと前記データ通信を行う。
 また、本発明の通信方法は、サーバと、前記サーバとデータ通信を行う端末装置との間で行われる通信方法であって、前記サーバが、前記端末装置との間で行う前記データ通信の第1の混雑度を算出し、算出した前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成し、生成した前記要求信号を前記端末装置に送信し、前記端末装置が、前記サーバにより送信された前記要求信号を受信し、受信した前記要求信号に基づいて、前記サーバと前記データ通信を行う。
 また、本発明のプログラムを格納する記憶媒体は、サーバと、前記サーバとデータ通信を行う端末装置と、を有するシステムに用いられるプログラムを格納する記憶媒体であって、コンピュータに、前記サーバが、前記端末装置との間で行う前記データ通信の第1の混雑度を算出するサーバ側混雑度算出処理と、前記サーバが、前記サーバ側混雑度算出処理により算出される前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成する要求信号生成処理と、前記サーバが、前記要求信号生成処理により生成される前記要求信号を前記端末装置に送信する要求信号送信処理と、前記端末装置が、前記要求信号送信処理により送信される前記要求信号を受信する要求信号受信処理と、前記端末装置が、前記要求信号受信処理により受信した前記要求信号に基づいて、前記サーバと前記データ通信を行うデータ通信実行処理と、を実行させる。
 また、本発明の端末装置は、サーバとデータ通信を行う端末側データ通信手段と、前記サーバにより前記端末装置に対して前記データ通信の要求がされる要求信号を、前記サーバから受信する要求信号受信手段と、を備え、前記端末側データ通信手段は、前記要求信号受信手段により受信した前記データ通信の要求信号に基づいて、前記サーバと前記データ通信を行う。
 また、本発明のサーバは、端末装置との間で行うデータ通信の第1の混雑度を算出するサーバ側混雑度算出手段と、前記サーバ側混雑度算出手段により算出される前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成する要求信号生成手段と、前記要求信号生成手段により生成される前記要求信号を前記端末装置に送信する要求信号送信手段と、を備える。
 本発明によれば、データをより効率良く通信することができる。
本発明の第1の実施の形態における通信システムの構成を示すブロック図である。 本発明の第1の実施の形態における通信システムの動作フローを示す図である。 本発明の第2の実施の形態における通信システムの構成を示すブロック図である。 本発明の第2の実施の形態における通信システムの端末装置が、所定の周期でサーバとデータ通信を行うときの動作フローを示す図である。 本発明の第2の実施の形態における通信システムの端末装置が、要求信号を受信したときの動作フローを示す図である。 本発明の第3の実施の形態における通信システムの構成を示すブロック図である。 本発明の第3の実施の形態における通信システムの動作フローを示す図である。 本発明の第4の実施の形態における通信システムの構成を示すブロック図である。
 <第1の実施の形態>
 図1を用いて、本発明の第1の実施の形態における通信システム1000の詳細な構成について説明する。図1は、通信システム1000の構成を示すブロック図である。
 図1に示されるように、通信システム1000は、サーバ100と、複数の端末装置200-1、200-2及び200-3と、を含んで構成される。なお、以下の説明では、複数の端末装置200-1、200-2及び200-3の各々を特に区別して説明する必要がない限り、これらを総称して端末装置200とする。
 まず、図1を用いて、サーバ100の詳細な構成を説明する。
 図1に示されるように、サーバ100は、サーバ側データ通信部110と、サーバ側制御部120と、要求信号送信部130とを有して構成されている。
 サーバ100は、通信網300に有線回線により接続されている。なお、サーバ100は、通信網300に無線により接続されてもよい。また、サーバ100は、通信網300を介して、端末装置200に接続されている。サーバ100は、通信網300を介して、端末装置200と互いにデータ通信を行う。
 図1に示されるように、サーバ側データ通信部110は、サーバ側制御部120に接続されている。サーバ側データ通信部110は、通信網300を介して、端末装置200の端末側データ通信部230とデータ通信を行う。
 具体的には、サーバ側データ通信部110は、通信網300を介して、端末装置200の端末側データ通信部230にデータを送信する。
 また、サーバ側データ通信部110は、通信網300を介して、端末装置200の端末側データ通信部230から送信されるデータを受信する。
 サーバ側データ通信部110は、端末装置200から、端末装置200における通信品質に関する情報を受信する。通信品質に関する情報とは、例えば、RSSI(Received Signal Strength Indicator、受信信号強度)、RSRP(Reference Signal Received Power、基準信号受信パワー)、RSRQ(Reference Signal Received Quality、基準信号受信品質)及びSINR(Signal-to-Interference plus Noise-Ratio、信号対干渉プラスノイズ比)等の情報が挙げられる。
 図1に示されるように、サーバ側制御部120は、サーバ側データ通信部110及び要求信号送信部130に接続されている。サーバ側制御部120は、サーバ100の全体を制御する。
 また、サーバ側制御部120は、サーバ側データ通信部110が送受信するデータにおける各種情報(例えば、データサイズや通信時間)等を受信する。また、サーバ側制御部120は、要求信号生成部122により生成された要求信号と、端末選択部123の選択結果と、を要求信号送信部130に出力する。
 そして、サーバ側制御部120は、サーバ側混雑度算出部121と、要求信号生成部122と、端末選択部123と、優先度設定部124と、を含んで構成されている。
 サーバ側混雑度算出部121は、端末装置200との間で行うデータ通信の第1の混雑度を算出する。なお、サーバ側混雑度算出部121は、所定の周期(例えば、30秒)毎にデータ通信の第1の混雑度を算出する。
 データ通信の第1の混雑度とは、サーバ100側で算出される混雑度のことである。より具体的には、データ通信の第1の混雑度とは、後述する要求信号生成部122が、要求信号を生成するか否かを判断する際に用いるデータ通信の混雑度合や端末装置200が共有する無線リソースの利用率等の情報である。
 ここでは、サーバ側混雑度算出部121は、端末装置200との間におけるデータ通信のスループットに基づいてデータ通信の第1の混雑度を算出する。サーバ側混雑度算出部121が、データ通信の第1の混雑度を算出する具体的な方法については後述する。
 なお、サーバ側混雑度算出部121は、前述した端末装置200における通信品質に関する情報に基づいて、第1の混雑度を算出してもよい。
 また、サーバ側混雑度算出部121は、DPI(Deep Packet Inspection)により通信網300を通過するトラヒック情報を検査し、そのトラヒック情報に基づいて、第1の混雑度を算出してもよい。トラヒック情報とは、例えば、端末装置200-1、200-2及び200-3のスループット合計値等の情報である。
 要求信号生成部122は、サーバ側混雑度算出部121により算出されるデータ通信の第1の混雑度に基づいて、端末装置200に対してデータ通信の要求を行う信号である要求信号を生成する。
 端末選択部123は、後述する優先度設定部124により設定された優先度に基づいて、端末装置200のうち、要求信号生成部122により生成される要求信号の送信先となる端末装置を選択する。
 この端末選択部123は、端末装置200のうち、要求信号の送信先となる端末装置を選択するためのものである。そのため、例えば、端末装置が1つの場合(例えば、端末装置200-1のみ)、端末選択部123は必ずしも本実施形態に必要ではない。端末選択部123が、送信先となる端末装置を選択する具体的な方法については後述する。
 優先度設定部124は、端末装置200の各々の優先度を設定する。優先度とは、端末選択部123が、要求信号の送信先となる端末装置を選択する際に用いる優先順位や優先度合等の情報である。
 この優先度設定部124は、端末装置200のうち、要求信号の送信先となる端末装置を端末選択部123が選択するための情報である優先度を設定するものである。そのため、同様に、端末装置が1つの場合、優先度設定部124は必ずしも本実施形態に必要ではない。優先度設定部124が、端末装置200の各々の優先度を設定する具体的な方法については後述する。
 図1に示されるように、要求信号送信部130は、サーバ側制御部120に接続されている。要求信号送信部130は、端末選択部123により選択された端末装置に対して、要求信号生成部122により生成される要求信号を送信する。
 なお、前述したように、端末装置が1つの場合(例えば、端末装置200-1のみ)、すなわち、サーバ100に端末選択部123が存在しない場合、要求信号送信部130は、要求信号を端末装置200-1に送信する。
 次に、図1を用いて、端末装置200の詳細な構成を説明する。
 図1に示されるように、端末装置200は、要求信号受信部210と、端末側制御部220と、端末側データ通信部230と、を備えて構成されている。
 端末装置200は、通信網300に無線回線により接続されている。また、端末装置200は、通信網300を介して、サーバ100に接続されている。端末装置200は、通信網300を介して、サーバ100と互いにデータ通信を行う。
 なお、ここでは、端末装置200が3つの場合を示しているが、2つでもよく、4つ以上であってもよい。また、端末装置200は1つであってもよい。
 図1に示されるように、要求信号受信部210は、端末側制御部220に接続されている。要求信号受信部210は、サーバ100の要求信号送信部130により送信される要求信号を受信する。
 図1に示されるように、端末側制御部220は、要求信号受信部210及び端末側データ通信部230に接続されている。端末側制御部220は、端末装置200の全体を制御する。端末側制御部220は、要求信号受信部210が受信した要求信号を受け、端末側データ通信部230にサーバ100とデータ通信を行うように指示する。
 図1に示されるように、端末側データ通信部230は、端末側制御部220に接続されている。
 端末側データ通信部230は、通信網300を介して、サーバ100のサーバ側データ通信部110にデータを送信する。端末側データ通信部230は、前述した端末装置200における通信品質に関する情報を送信する。
 また、端末側データ通信部230は、通信網300を介して、サーバ100のサーバ側データ通信部110から送信されるデータを受信する。
 また、端末側データ通信部230は、端末側制御部220からの指示を受け、要求信号受信部210により受信した要求信号に基づいて、サーバ100とデータ通信を行う。
 図1に示されるように、通信網300は、サーバ100と端末装置200とにそれぞれ接続されている。通信網300は、インターネット等の通信用のネットワークである。
 次に、図2を用いて、サーバ100及び端末装置200を含む無線通信システム1000の動作を説明する。図2は、サーバ100及び端末装置200を含む通信システム1000の動作フローを示す図である。
 なお、ここでは、端末装置200のうち、端末装置200-3は、サーバ100とデータ通信を実行中である場合を想定する。そして、ここでは、サーバ100とデータ通信を実行中でない端末装置200-1及び200-2のうち、端末装置200-1が、サーバ100の要求信号に応じて、サーバ100とデータ通信を実行する場合を想定する。
 ここでは、特に、端末装置200-1がサーバ100にデータを送信する場合について説明する。
 まず、図2に示されるように、サーバ100のサーバ側混雑度算出部121が、端末装置200との間におけるデータ通信の第1の混雑度を算出する(ステップ(以下、Sとする)110)。
 ここで、サーバ側混雑度算出部121が、端末装置200との間におけるデータ通信の第1の混雑度を算出する具体的な方法を説明する。
 まず、サーバ側混雑度算出部121は、データ通信を実行中である端末装置200-3との間におけるデータ通信のスループットを算出する。
 具体的には、サーバ側混雑度算出部121は、端末装置200-3との間における単位時間[s]当たりのデータ通信量[bits]から、データ通信のスループット[bps]を算出する。
 すなわち、端末装置200-3との間におけるデータ通信のスループットThrpt1[bps]は、下記の(1)式で表される。
 Thrpt1[bps]=DataSize[bits]/Time[s] ・・・(1)
 DataSize:データ通信量
 Time:単位時間
 次に、サーバ側混雑度算出部121は、上述のようにして算出される端末装置200-3との間におけるデータ通信のスループットから、例えば以下のようにして端末装置200との間におけるデータ通信の第1の混雑度を算出する。
 サーバ側混雑度算出部121は、Thrpt1が所定の閾値Thresh1(例えば、20[kbps])以上の場合に混雑度1と算出し、Thrpt1が所定の範囲内の値Thresh2(例えば、11~19[kbps])である場合に混雑度2と算出し、Thrpt1が所定の閾値Thresh3(例えば、10[kbps])以下の場合に混雑度3と算出する。
 混雑度は、度数が大きいほど混雑度が高いものとする。すなわち、混雑度の度数が大きいほど、サーバ100と端末装置200との間におけるデータ通信が混雑していることを表す。
 なお、前述したように、サーバ側混雑度算出部121は、通信品質に関する情報に基づいて、第1の混雑度を算出してもよい。例えば、サーバ側混雑度算出部121は、通信品質に関する情報と、通信品質に対応する所定の閾値とに基づいて第1の混雑度を算出してもよい。
 また、サーバ側混雑度算出部121は、端末装置200-3との間におけるデータ通信のスループットと、通信品質に関する情報とに基づいて、第1の混雑度を算出してもよい。
 図2に戻って、次に、要求信号生成部122が、S110の処理においてサーバ側混雑度算出部121により算出されるデータ通信の第1の混雑度の度数が所定の度数以上(例えば、混雑度2)であるか否かを判定する(S120)。
 要求信号生成部122は、データ通信の第1の混雑度の度数が所定の度数以上でない、すなわち、未満の場合(S120、NO)、要求信号を生成しない(S121)。
 一方、要求信号生成部122は、データ通信の第1の混雑度の度数が所定の度数以上の場合(S120、YES)、要求信号を生成する(S130)。
 次に、優先度設定部124は、端末装置200のうち、データ通信を実行中でない端末装置200-1及び200-2の各々の優先度を設定する(S140)。
 ここでは、優先度設定部124は、予め設定された各端末装置200毎の優先順位から、端末装置200-1を優先度1とし、端末装置200-2を優先度2として設定するものとする。
 なお、ここでは、事前にサーバ100の利用者が各端末装置200毎の優先順位を任意に設定するものとする。
 また、優先度は、度数が小さいほど優先度が高いものとする。すなわち、優先度1は、優先度2よりも優先度が高い。
 なお、優先度設定部124は、端末装置200との間におけるデータ通信の実績に基づいて、端末装置200の各々の優先度を設定してもよい。例えば、優先度設定部124は、端末装置200がサーバ100からデータ(例えば、webコンテンツ)を受信する場合、受信開始からの経過時間が長い端末装置の優先度を高く設定してもよい。
 また、例えば、優先度設定部124は、端末装置200がサーバ100に所定のデータサイズのデータを送信する場合、未送信データサイズが大きい端末装置の優先度を高く設定してもよい。ここでは、サーバ100は各端末装置200の未送信データサイズを測定しているものとする。
 図2に戻って、次に、端末選択部123は、優先度設定部124により設定された優先度に基づいて、端末装置200のうち、要求信号の送信先となる端末装置200-1を選択する(S150)。
 なお、端末選択部123は、データ通信の第1の混雑度に応じて、優先度1である端末装置200-1に加えて、優先度2である端末装置200-2も要求信号の送信先として選択してもよい。
 次に、要求信号送信部130は、端末選択部123により選択された端末装置200-1に対して、要求信号を送信する(S160)。
 そして、端末装置200-1の要求信号受信部210は、要求信号を受信する(S170)。
 次に、端末装置200-1の端末側データ通信部230は、サーバ100にデータを送信することにより、サーバ100とデータ通信を実行する(S180)。
 最後に、サーバ100のサーバ側データ通信部110は、端末装置200-1から送信されるデータを受信する(S190)。
 以上に説明したように、本発明の第1の実施の形態における通信システム1000は、サーバ100と、このサーバ100とデータ通信を行う端末装置200と、を有する。
 サーバ100は、サーバ側混雑度算出部121と、要求信号生成部122と、要求信号送信部130と、を備える。
 サーバ側混雑度算出部121は、端末装置200との間で行うデータ通信の第1の混雑度を算出する。要求信号生成部122は、サーバ側混雑度算出部121により算出されるデータ通信の第1の混雑度に基づいて、端末装置200に対してデータ通信の要求を行う信号である要求信号を生成する。要求信号送信部130は、要求信号生成部122により生成される要求信号を端末装置200に送信する。
 端末装置200は、端末側データ通信部230と、要求信号受信部210と、を備える。端末側データ通信部230は、サーバ100とデータ通信を行う。要求信号受信部210は、要求信号送信部130により送信される要求信号を受信する。そして、端末側データ通信部230は、要求信号受信部210により受信した要求信号に基づいて、サーバ100とデータ通信を行う。
 このように、本発明の第1の実施の形態における通信システム1000では、データ通信の第1の混雑度に応じて、サーバ100と端末装置200はデータ通信を実行する。具体的には、データ通信の第1の混雑度が低い時にはサーバ100と端末装置200はデータ通信を実行し、データ通信の第1の混雑度が高い時にはサーバ100と端末装置200はデータ通信を実行しない。
 これにより、データ通信が混雑しているにも関わらず、端末装置200がサーバ100とのデータ通信を試み、データ通信がさらに混雑するといったことがない。その結果、サーバ100と端末装置200とを含む通信システム1000は、データをより効率良く通信することができる。
 また、本発明の第1の実施の形態における通信システム1000において、複数の端末装置200を含む。サーバ100は、複数の端末装置200のうち、要求信号の送信先となる端末装置を選択する端末選択部123を備える。要求信号送信部130は、端末選択部123により選択された端末装置に対して、要求信号を送信する。
 これにより、サーバ100は、データ通信が混雑していないとき、複数の端末装置200のうち、選択した端末装置にのみ要求信号を送信してデータ通信を実行する。すなわち、サーバ100が、複数の端末装置200の全てと同時にデータ通信を実行することがない。この結果、通信システム1000は、要求信号の送信先となる端末装置200を選択しない場合と比較して、データ通信が混雑することを低減できる。
 また、本発明の第1の実施の形態における通信システム1000において、サーバ100は、複数の端末装置200の各々の優先度を設定する優先度設定部124を備える。端末選択部123は、優先度設定部124により設定された優先度に基づいて、複数の端末装置200のうち、要求信号の送信先となる端末装置を選択する。
 これにより、サーバ100は、複数の端末装置200のうち、優先度が高い(優先してデータ通信すべき)端末装置と優先的にデータ通信を行うことができる。この結果、通信システム1000は、データをより効率よく通信することができる。
 また、本発明の第1の実施の形態における通信方法は、サーバ100と、このサーバ100とデータ通信を行う端末装置200と、の間で行われる。通信方法は、サーバ側混雑度算出ステップと、要求信号生成ステップと、要求信号送信ステップと、要求信号受信ステップと、データ通信実行ステップと、を含む。
 サーバ側混雑度算出ステップにおいて、サーバ100は、端末装置200との間で行うデータ通信の第1の混雑度を算出する。要求信号生成ステップにおいて、サーバ100は、サーバ側混雑度算出ステップにより算出されるデータ通信の第1の混雑度に基づいて、端末装置200に対してデータ通信の要求を行う信号である要求信号を生成する。
 要求信号送信ステップにおいて、サーバ100は、要求信号生成ステップにより生成される要求信号を端末装置200に送信する。要求信号受信ステップにおいて、端末装置200は、要求信号送信ステップにより送信される要求信号を受信する。データ通信実行ステップにおいて、端末装置200は、要求信号受信ステップにより受信した要求信号に基づいて、サーバ100とデータ通信を行う。
 この通信方法は、上述した通信システム1000のシステムの発明を方法の発明としたものであるから、上述した通信システム1000と同様の効果を奏する。
 また、本発明の第1の実施の形態におけるプログラムは、サーバ100と、このサーバ100とデータ通信を行う端末装置200と、を有するシステムに用いられる。プログラムは、コンピュータに、サーバ側混雑度算出ステップと、要求信号生成ステップと、要求信号送信ステップと、要求信号受信ステップと、データ通信実行ステップと、を実行させる。
 サーバ側混雑度算出ステップにおいて、サーバ100は、端末装置200との間で行うデータ通信の第1の混雑度を算出する。要求信号生成ステップにおいて、サーバ100は、サーバ側混雑度算出ステップにより算出されるデータ通信の第1の混雑度に基づいて、端末装置200に対してデータ通信の要求を行う信号である要求信号を生成する。
 要求信号送信ステップにおいて、サーバ100は、要求信号生成ステップにより生成される要求信号を端末装置200に送信する。要求信号受信ステップにおいて、端末装置200は、要求信号送信ステップにより送信される要求信号を受信する。データ通信実行ステップにおいて、端末装置200は、要求信号受信ステップにより受信した要求信号に基づいて、サーバ100とデータ通信を行う。
 このプログラムは、上述した通信システム1000のシステムの発明をプログラムの発明としたものであるから、上述した通信システム1000と同様の効果を奏する。
 また、本発明の第1の実施の形態における端末装置200は、サーバ100とデータ通信を行う。端末装置200は、端末側データ通信部230と、要求信号受信部210と、を備える。
 端末側データ通信部230は、サーバ100とデータ通信を行う。要求信号受信部210は、サーバ100から送信されるデータ通信の要求信号を受信する。そして、端末側データ通信部230は、要求信号受信部210により受信したデータ通信の要求信号に基づいて、サーバ100とデータ通信を行う。
 このように、端末装置200は、データ通信の第1の混雑度に基づいてサーバ100にて生成される要求信号に応じて、サーバ100とデータ通信を実行するので、上述した通信システム1000と同様の効果を奏する。
 また、本発明の第1の実施の形態におけるサーバ100は、端末装置200とデータ通信を行う。サーバ100は、サーバ側混雑度算出部121と、要求信号生成部122と、要求信号送信部130と、を備える。
 サーバ側混雑度算出部121は、端末装置200との間で行うデータ通信の第1の混雑度を算出する。要求信号生成部122は、サーバ側混雑度算出部121により算出されるデータ通信の第1の混雑度に基づいて、端末装置200に対してデータ通信の要求を行う信号である要求信号を生成する。要求信号送信部130は、要求信号生成部122により生成される要求信号を端末装置200に送信する。
 このように、サーバ100は、データ通信の第1の混雑度に基づいて生成した要求信号を端末装置200に送信し、送信先の端末装置200とデータ通信を実行するので、上述した通信システム1000と同様の効果を奏する。
 <第2の実施の形態>
 図3を用いて、本発明の第2の実施の形態における通信システム1000Aの詳細な構成を説明する。図3は、通信システム1000Aの構成を示すブロック図である。なお、図3では、図1で示した各構成要素と同等の構成要素には、図1で示した符号と同等の符号を付している。
 図3に示されるように、通信システム1000Aは、サーバ100と、複数の端末装置200A-1、200A-2及び200A-3と、を含んで構成されている。なお、以下の説明では、複数の端末装置200A-1、200A-2及び200A-3の各々を特に区別して説明する必要がない限り、これらを総称して端末装置200Aとする。
 図3に示されるように、サーバ100は、サーバ側データ通信部110と、サーバ側混雑度算出部121と、要求信号生成部122と、端末選択部123と、優先度設定部124と、要求信号送信部130と、を備えて構成されている。
 端末装置200Aは、要求信号受信部210と、端末側混雑度算出部221と、判断部222と、端末側データ通信部230Aと、を備えて構成されている。
 ここで、図1と図3とを対比する。図3では、端末装置200Aの端末側制御部220Aは、端末側混雑度算出部221と、判断部222とを備えた点で、図1に示される端末装置200の端末側制御部220と互いに相違する。以下の説明では、図1で示した構成と同等の構成については説明を省略する。
 端末側制御部220Aは、後述する判断部222の判断結果を端末側データ通信部230Aに出力する。
 端末側データ通信部230Aは、所定の周期(例えば、30秒)でサーバ100とデータ通信を行う。なお、所定の周期は、ユーザが適宜任意に設定可能である。
 また、端末側データ通信部230Aは、第1の実施の形態の端末側データ通信部230と同様に、要求信号受信部210により受信した要求信号に基づいて、サーバ100とデータ通信を行う。端末側データ通信部230Aは、後述する判断部222の判断結果に基づいて、データ通信を継続又は次の周期の始期までデータ通信を中断する。
 端末側混雑度算出部221は、所定の周期でサーバ100とデータ通信を行うとき、データ通信の第2の混雑度を算出する。データ通信の第2の混雑度とは、端末装置200A側で算出される混雑度のことである。
 データ通信の第2の混雑度とは、後述する判断部222が、データ通信を継続するか又は所定の周期まで中断するかを判断する際に用いるデータ通信の混雑度合や端末装置200が共有する無線リソースの利用率等の情報である。
 判断部222は、端末側混雑度算出部221により算出されるデータ通信の第2の混雑度に基づいて、データ通信を継続するか又は所定の周期まで中断するかを判断する。
 次に、図4及び図5を用いて、端末装置200Aの動作について詳細に説明する。
 まず、図4を用いて、端末装置200Aが、所定の周期でサーバ100とデータ通信を行う通常の動作について詳細に説明する。図4は、端末装置200Aが、所定の周期でサーバ100とデータ通信を行うときの動作フローを示す図である。
 まず、端末側データ通信部230Aは、所定の周期の始期であるか否かを判断する(S210)。
 所定の周期の始期でないと判断した場合(S210、NO)、端末側データ通信部230Aは、所定の周期の始期であると判断するまでS210の処理を繰り返す。
 一方、所定の周期の始期であると判断した場合(S210、YES)、端末側データ通信部230Aは、単位時間又は単位量のデータ通信をサーバ100に実行する(S220)。このデータ通信は、サーバ100との間におけるデータ通信の第2の混雑度を算出するためのものである。このS220の処理における単位時間又は単位量は適宜変更可能であり、ユーザにより適宜設定される。
 なお、単位時間又は単位量が比較的大きければ第2の混雑度を正確に算出可能になるが、通信網300側の負担が大きくなる。
 これに対して、単位時間又は単位量が比較的小さければ通信網300側の負担を軽くできるものの、第2の混雑度の正確な算出が困難となる。また、データ通信のデータ量が比較的大きい場合には、データの分割処理やサーバ100側での再構築処理が必要となる。
 次に、端末側混雑度算出部221は、サーバ100との間におけるデータ通信の第2の混雑度を算出する(S230)。
 具体的には、端末側混雑度算出部221は、S220の処理におけるサーバ100との間のデータ通信のスループットに基づいて、データ通信の第2の混雑度を算出する。スループットの算出方法及びスループットに基づく第2の混雑度の算出方法については、図2のS110と同様のため説明を省略する。
 そして、判断部222は、S230の処理において端末側混雑度算出部221により算出されるデータ通信の第2の混雑度の度数が所定の度数(例えば、混雑度2)以下か否かを判定する(S240)。
 判断部222は、第2の混雑度の度数が所定の度数以下の場合(S240、YES)、データ通信を継続する判断を行う(S250)。
 そして、端末側データ通信部230Aは、次のデータ通信単位がある場合(S260、YES)、S220の処理に戻り、単位時間又は単位量のデータ通信を実行する。ここで、次のデータ通信単位がある場合とは、S220の処理において行った単位時間又は単位量のデータ通信後に未送信データが蓄積している場合である。
 逆に、端末側データ通信部230Aは、次のデータ通信単位がない場合(S260、NO)、サーバ100とのデータ通信は次の周期の始期まで行わない。
 S240の処理に戻って、判断部222は、第2の混雑度の度数が所定の度数の以下ではない場合(S240、NO)、データ通信を次の周期の始期まで中断する判断を行う(S270)。なお、サーバ100がレジューム機能を備える場合、端末側データ通信部230Aは、次の周期ではデータ通信が中断された個所からデータ通信を再開することができる。
 次に、図5を用いて、端末装置200Aが、所定の周期でサーバ100とデータ通信を行う場合において、サーバ100から送信される要求信号を受信したときの動作について説明する。図5は、端末装置200Aが、要求信号を受信したときの動作フローを示す図である。なお、図5において、図4と重複するステップについては、同一の符号を付し、詳しい説明を省略する。
 ここで、端末装置200Aは、S210~S270までの処理を行っていることを前提とする。
 端末装置200AがS210~S270までの処理を行っている処理中に、サーバ100の要求信号送信部130が要求信号を送信したとき(S310)、端末装置200Aの要求信号受信部210は、要求信号を受信する(S320)。
 最後に、端末側データ通信部230Aは、サーバ100にデータを送信することにより、サーバ100とデータ通信を実行する(S330)。そして、サーバ100は、端末装置200Aから送信されるデータを受信する(S340)。
 なお、このとき、端末側データ通信部230Aは、S220の処理において最後に送信したときから蓄積されている未送信データをサーバ100に送信する。また、端末側データ通信部230Aは、蓄積されている未送信データがない場合には、サーバ100とデータ通信を実行しない。
 また、端末装置200Aは、端末側データ通信部230AがS330の処理を行ったあと、S230以降の処理を行ってもよい。
 以上に説明したように、本発明の第2の実施の形態における通信システム1000Aにおいて、端末側データ通信部230Aは、所定の周期でサーバ100とデータ通信を行う。
 このように、本発明の第2の実施の形態における通信システム1000Aでは、端末装置200Aは、サーバ100から送信される要求信号に応じてデータ通信を実行すると共に、所定の周期でサーバ100とデータ通信を行う。
 これにより、端末装置200Aを使用するユーザは、適宜設定可能な所定の周期でサーバ100とデータ通信可能であるため、ユーザの使用目的や使用状況に応じたデータ通信を行うことができる。
 また、本発明の第2の実施の形態における通信システム1000Aにおいて、端末装置200Aは、端末側混雑度算出部221と、判断部222とを備える。
 端末側混雑度算出部221は、サーバ100との間で行うデータ通信の第2の混雑度を算出する。判断部222は、端末側混雑度算出部221により算出されるデータ通信の第2の混雑度に基づいて、データ通信を継続するか又は次の周期の始期までデータ通信を中断するかを判断する。
 そして、端末側データ通信部230Aは、要求信号受信部210により受信した要求信号に基づいて、サーバ100とデータ通信を行うと共に、判断部222の判断結果に基づいて、データ通信を継続又は次の周期の始期までデータ通信を中断する。
 このように、本発明の第2の実施の形態における通信システム1000Aでは、端末装置200Aは、データ通信の第2の混雑度に応じて、データ通信を継続又は次の周期の始期までデータ通信を中断する。これにより、データ通信が混雑しているにも関わらず、端末装置200Aが所定の周期でサーバ100とのデータ通信を試み、データ通信がさらに混雑するといったことがない。
 その結果、通信システム1000Aは、データ通信の混雑を助長することなく、データをより効率良く通信することができる。
 また、本発明の第2の実施の形態における通信システム1000Aでは、端末装置200Aは、次の周期の始期までの待機中(データ通信の中断中)であっても、第1の混雑度に基づくサーバ100からの要求信号を受信したとき、サーバ100とデータ通信を行う。
 これにより、次の周期の始期までの待機中(又はデータ通信の中断中)であっても、データ通信の第1の混雑度が低下した場合には、サーバ100と端末装置200Aは互いにデータ通信を行うことができる。
 従って、この結果、データ通信の混雑度が比較的短い周期で変動する場合であっても、端末装置200Aとサーバ100との間におけるデータ通信の利用効率を向上させることができる。
 <第3の実施の形態>
 図6を用いて、本発明の第3の実施の形態における通信システム1000Bの詳細な構成を説明する。図6は、通信システム1000Bの構成を示すブロック図である。なお、図6では、図1~5で示した各構成要素と同等の構成要素には、図1~5で付した符号と同等の符号を付している。
 図6に示されるように、通信システム1000Bは、サーバ100Aと、端末装置200Aと、基地局400と、を含んで構成されている。なお、図6では、サーバ100Aと端末装置200Aの各構成要素の図示を省略している。
 ここで、図3と図6とを対比する。図6では、通信システム1000Bは、基地局400を更に備えた点で、図3に示される通信システム1000Aと互いに相違する。以下の説明では、図1~5で示した構成と同等の構成については説明を省略する。
 図6に示されるように、サーバ100Aは、通信網300を介して基地局400に接続されている。
 サーバ100Aのサーバ側データ通信部110は、基地局400の利用率に関する情報を基地局400に問い合わせる。また、サーバ側データ通信部110は、基地局400の利用率に関する情報を基地局400から受信し取得する。基地局400の利用率に関する情報とは、例えば、端末装置200Aが共有する無線リソースの利用率等の情報である。ここでいう無線リソースの利用率とは、基地局400が保有する全リソースブロックに対する端末装置200Aへの割り当てリソースブロックの割合のことである。
 サーバ100Aのサーバ側混雑度算出部121は、サーバ側データ通信部110により受信された基地局400の利用率に関する情報に基づいて、第1の混雑度を算出する。例えば、サーバ側混雑度算出部121は、端末装置200Aが共有する無線リソースの利用率と所定の値とに基づいて第1の混雑度を算出する。より具体的な算出方法については、図2のS110において説明した場合と同様のため説明を省略する。
 図6に示されるように、基地局400は、通信網300と有線回線により接続されている。また、基地局400は、通信網300を介して、サーバ100Aに接続されている。
 そして、基地局400は、セル500内に端末装置200Aを収容している。基地局400は、端末装置200Aと無線回線により接続されている。基地局400は、サーバ100A及び端末装置200Aと互いにデータ通信を行う。
 これにより、サーバ100Aと端末装置200Aは、基地局400を介して、互いにデータ通信を行う。
 基地局400は、サーバ側データ通信部110からの問い合わせを受け応答する。このとき、基地局400は、基地局400の利用率に関する情報をサーバ100Aに送信する。
 なお、ここでは、基地局400が1つの例を示しているが、基地局400は複数であってもよい。基地局400が複数の場合、各基地局400は、そのセル500内に各端末装置を収容する。
 次に、図7を用いて、通信システム1000Bの動作について詳細に説明する。図7は、通信システム1000Bの動作フローを示す図である。
 まず、サーバ100Aのサーバ側データ通信部110は、基地局400の利用率に関する情報を基地局400に問い合わせる(S410)。
 次に、基地局400は、サーバ側データ通信部110からの問い合わせを受け応答する(S420)。
 基地局400は、基地局400の利用率に関する情報をサーバ100Aに送信する(S430)。
 サーバ100Aのサーバ側データ通信部110は、基地局400の利用率に関する情報を受信する(S440)。
 最後に、サーバ100Aのサーバ側混雑度算出部121は、基地局400の利用率に関する情報に基づいて、第1の混雑度を算出する(S450)。以降、サーバ100Aは、図2のS120以降の処理を行う。
 以上に説明したように、本発明の第3の実施の形態における通信システム1000Bにおいて、サーバ側混雑度算出部121は、基地局400の利用率に関する情報に基づいて、第1の混雑度を算出する。これにより、サーバ100Aは、基地局400固有の情報である基地局400の利用率に関する情報を基に、第1の混雑度を算出することができる。よって、サーバ100Aは、より精度良く第1の混雑度を算出することができる。この結果、通信システム1000Bは、より効率良く端末装置200Aとデータを通信することができる。
 <第4の実施の形態>
 図8を用いて、本発明の第4の実施の形態における通信システム1000Cの詳細な構成を説明する。図8は、通信システム1000Cの構成を示すブロック図である。なお、図8では、図1~図7で示した各構成要素と同等の構成要素には、図1~図7で付した符号と同等の符号を付している。
 図8に示されるように、通信システム1000Cは、サーバ100と、このサーバ100とデータ通信を行う端末装置200と、を含んで構成されている。サーバ100は、サーバ側混雑度算出部121と、要求信号生成部122と、要求信号送信部130と、を含んで構成されている。
 サーバ側混雑度算出部121は、端末装置200との間で行うデータ通信の第1の混雑度を算出する。要求信号生成部122は、サーバ側混雑度算出部121により算出される第1の混雑度に基づいて、端末装置200に対してデータ通信の要求を行う信号である要求信号を生成する。要求信号送信部130は、要求信号生成部122により生成される要求信号を端末装置200に送信する。
 端末装置200は、端末側データ通信部230と、要求信号受信部210と、を含んで構成されている。端末側データ通信部230は、サーバ1000Cとデータ通信を行う。要求信号受信部210は、要求信号送信部130により送信される要求信号を受信する。そして、端末側データ通信部230は、要求信号受信部210により受信した要求信号に基づいて、サーバ1000Cとデータ通信を行う。これにより、データをより効率良く通信することができる。
 前記実施の形態の一部又は全部は、以下の付記のように記載され得るが、以下に限られない。
(付記1)
 サーバと、前記サーバとデータ通信を行う端末装置と、を備え、
 前記サーバは、
 前記端末装置との間で行う前記データ通信の第1の混雑度を算出するサーバ側混雑度算出部と、
 前記サーバ側混雑度算出部により算出される前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成する要求信号生成部と、
 前記要求信号生成部により生成される前記要求信号を前記端末装置に送信する要求信号送信部と、を有し、
 前記端末装置は、
 前記サーバと前記データ通信を行う端末側データ通信部と、
 前記要求信号送信部により送信される前記要求信号を受信する要求信号受信部と、を有し、
 前記端末側データ通信部は、前記要求信号受信部により受信した前記要求信号に基づいて、前記サーバと前記データ通信を行う通信システム。
(付記2)
 複数の前記端末装置を含み、
 前記サーバは、前記複数の端末装置のうち、前記要求信号の送信先となる前記端末装置を選択する端末選択部と、を備え、
 前記要求信号送信部は、前記端末選択部により選択された前記端末装置に対して、前記要求信号を送信する付記1に記載の通信システム。
(付記3)
 前記サーバは、前記複数の端末装置の各々の優先度を設定する優先度設定部を備え、
 前記端末選択部は、前記優先度設定部により設定された優先度に基づいて、前記複数の端末装置のうち、前記要求信号の送信先となる前記端末装置を選択する付記2に記載の通信システム。
(付記4)
 前記端末側データ通信部は、所定の周期で前記サーバと前記データ通信を行う付記1から3のいずれか1項に記載の通信システム。
(付記5)
 前記端末装置は、
 前記サーバとの間で行う前記データ通信の第2の混雑度を算出する端末側混雑度算出部と、前記端末側混雑度算出部により算出される前記第2の混雑度に基づいて、前記データ通信を継続するか又は前記所定の周期まで中断するかを判断する判断部を備え、
 前記端末側データ通信部は、前記要求信号受信部により受信した前記要求信号に基づいて、前記サーバと前記データ通信を行うと共に、前記判断部の判断結果に基づいて、前記データ通信を継続又は前記所定の周期まで中断する付記4に記載の通信システム。
(付記6)
 前記サーバ側混雑度算出部は、前記サーバと前記端末装置との間における前記データ通信のスループットに基づいて前記第1の混雑度を算出する付記1から5のいずれか1項に記載の通信システム。
(付記7)
 前記サーバ側混雑度算出部は、前記端末装置における通信品質に関する情報に基づいて、前記第1の混雑度を算出する付記1から6のいずれか1項に記載の通信システム。
(付記8)
 前記サーバと、前記端末装置との間でデータ通信を行う基地局をさらに有し、
 前記サーバ側混雑度算出部は、前記基地局の利用率に関する情報に基づいて、前記第1の混雑度を算出する付記1から7のいずれか1項に記載の通信システム。
(付記9)
 サーバと、端末装置と、がデータ通信を行う際に、
 前記サーバが、前記端末装置との間で行う前記データ通信の第1の混雑度を算出し、
 算出した前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成し、
 生成した前記要求信号を前記端末装置に送信し、
 前記端末装置が、前記サーバにより送信された前記要求信号を受信し、
 受信した前記要求信号に基づいて、前記サーバと前記データ通信を行う、通信方法。
(付記10)
 コンピュータに、
 サーバが、端末装置との間で行うデータ通信の第1の混雑度を算出するサーバ側混雑度算出処理と、
 前記サーバが、前記サーバ側混雑度算出処理により算出される前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成する要求信号生成処理と、
 前記サーバが、前記要求信号生成処理により生成される前記要求信号を前記端末装置に送信する要求信号送信処理と、
 前記端末装置が、前記要求信号送信処理により送信される前記要求信号を受信する要求信号受信処理と、
 前記端末装置が、前記要求信号受信処理により受信した前記要求信号に基づいて、前記サーバと前記データ通信を行うデータ通信実行処理と、を実行させるためのプログラムを格納する記憶媒体。
(付記11)
 サーバとデータ通信を行う端末側データ通信部と、
 前記サーバにより前記端末装置に対して前記データ通信の要求がされる要求信号を、前記サーバから受信する要求信号受信部と、を備え、
 前記端末側データ通信部は、前記要求信号受信部により受信した前記データ通信の要求信号に基づいて、前記サーバと前記データ通信を行う端末装置。
(付記12)
 端末装置との間で行うデータ通信の第1の混雑度を算出するサーバ側混雑度算出部と、
 前記サーバ側混雑度算出部により算出される前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成する要求信号生成部と、
 前記要求信号生成部により生成される前記要求信号を前記端末装置に送信する要求信号送信部と、を備えるサーバ。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2014年3月20日に出願された日本出願特願2014-058494を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100、100A サーバ
 110 サーバ側データ通信部
 120 サーバ側制御部
 121 サーバ側混雑度算出部
 122 要求信号生成部
 123 端末選択部
 124 優先度設定部
 130 要求信号送信部
 200、200A 端末装置
 210 要求信号受信部
 220、220A 端末側制御部
 221 端末側混雑度算出部
 222 判断部
 230、230A 端末側データ通信部
 300 通信網
 400 基地局
 500 セル
 1000、1000A、1000B 通信システム

Claims (10)

  1.  サーバと、前記サーバとデータ通信を行う端末装置と、を備え、
     前記サーバは、
     前記端末装置との間で行う前記データ通信の第1の混雑度を算出するサーバ側混雑度算出手段と、
     前記サーバ側混雑度算出手段により算出される前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成する要求信号生成手段と、
     前記要求信号生成手段により生成される前記要求信号を前記端末装置に送信する要求信号送信手段と、を有し、
     前記端末装置は、
     前記サーバと前記データ通信を行う端末側データ通信手段と、
     前記要求信号送信手段により送信される前記要求信号を受信する要求信号受信手段と、を有し、
     前記端末側データ通信手段は、前記要求信号受信手段により受信した前記要求信号に基づいて、前記サーバと前記データ通信を行う通信システム。
  2.  複数の前記端末装置を含み、
     前記サーバは、前記複数の端末装置のうち、前記要求信号の送信先となる前記端末装置を選択する端末選択手段と、を備え、
     前記要求信号送信手段は、前記端末選択手段により選択された前記端末装置に対して、前記要求信号を送信する請求項1に記載の通信システム。
  3.  前記サーバは、前記複数の端末装置の各々の優先度を設定する優先度設定手段を備え、
     前記端末選択手段は、前記優先度設定手段により設定された優先度に基づいて、前記複数の端末装置のうち、前記要求信号の送信先となる前記端末装置を選択する請求項2に記載の通信システム。
  4.  前記端末側データ通信手段は、所定の周期で前記サーバと前記データ通信を行う請求項1から3のいずれか1項に記載の通信システム。
  5.  前記端末装置は、
     前記サーバとの間で行う前記データ通信の第2の混雑度を算出する端末側混雑度算出手段と、前記端末側混雑度算出手段により算出される前記第2の混雑度に基づいて、前記データ通信を継続するか又は前記所定の周期まで中断するかを判断する判断手段を備え、
     前記端末側データ通信手段は、前記要求信号受信手段により受信した前記要求信号に基づいて、前記サーバと前記データ通信を行うと共に、前記判断手段の判断結果に基づいて、前記データ通信を継続又は前記所定の周期まで中断する請求項4に記載の通信システム。
  6.  前記サーバ側混雑度算出手段は、前記サーバと前記端末装置との間における前記データ通信のスループットに基づいて前記第1の混雑度を算出する請求項1から5のいずれか1項に記載の通信システム。
  7.  サーバと、端末装置と、がデータ通信を行う際に、
     前記サーバが、前記端末装置との間で行う前記データ通信の第1の混雑度を算出し、
     算出した前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成し、
     生成した前記要求信号を前記端末装置に送信し、
     前記端末装置が、前記サーバにより送信された前記要求信号を受信し、
     前記端末装置が、受信した前記要求信号に基づいて、前記サーバと前記データ通信を行う、通信方法。
  8.  コンピュータに、
     サーバが、端末装置との間で行うデータ通信の第1の混雑度を算出するサーバ側混雑度算出処理と、
     前記サーバが、前記サーバ側混雑度算出処理により算出される前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成する要求信号生成処理と、
     前記サーバが、前記要求信号生成処理により生成される前記要求信号を前記端末装置に送信する要求信号送信処理と、
     前記端末装置が、前記要求信号送信処理により送信される前記要求信号を受信する要求信号受信処理と、
     前記端末装置が、前記要求信号受信処理により受信した前記要求信号に基づいて、前記サーバと前記データ通信を行うデータ通信実行処理と、を実行させるためのプログラムを格納する記憶媒体。
  9.  サーバとデータ通信を行う端末側データ通信手段と、
     前記サーバにより前記端末装置に対して前記データ通信の要求がされる要求信号を、前記サーバから受信する要求信号受信手段と、を備え、
     前記端末側データ通信手段は、前記要求信号受信手段により受信した前記データ通信の要求信号に基づいて、前記サーバと前記データ通信を行う端末装置。
  10.  端末装置との間で行うデータ通信の第1の混雑度を算出するサーバ側混雑度算出手段と、
     前記サーバ側混雑度算出手段により算出される前記第1の混雑度に基づいて、前記端末装置に対して前記データ通信の要求を行う信号である要求信号を生成する要求信号生成手段と、
     前記要求信号生成手段により生成される前記要求信号を前記端末装置に送信する要求信号送信手段と、を備えるサーバ。
PCT/JP2015/000737 2014-03-20 2015-02-18 端末装置、通信システム、サーバ、通信方法及びプログラムを格納する記憶媒体 WO2015141126A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016508482A JPWO2015141126A1 (ja) 2014-03-20 2015-02-18 端末装置、通信システム、サーバ、通信方法及びプログラムを格納する記憶媒体
US15/123,354 US20170078201A1 (en) 2014-03-20 2015-02-18 Terminal apparatus, communication system, server, communication method, and storage medium storing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-058494 2014-03-20
JP2014058494 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141126A1 true WO2015141126A1 (ja) 2015-09-24

Family

ID=54144118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000737 WO2015141126A1 (ja) 2014-03-20 2015-02-18 端末装置、通信システム、サーバ、通信方法及びプログラムを格納する記憶媒体

Country Status (3)

Country Link
US (1) US20170078201A1 (ja)
JP (1) JPWO2015141126A1 (ja)
WO (1) WO2015141126A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054223A (ja) * 2006-08-28 2008-03-06 Community Engine Kk 情報配信方法、および情報配信システム
JP2010226342A (ja) * 2009-03-23 2010-10-07 Kddi Corp 無線通信端末
WO2013069708A1 (ja) * 2011-11-07 2013-05-16 京セラ株式会社 通信制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786340B2 (ja) * 2005-12-28 2011-10-05 株式会社エヌ・ティ・ティ・ドコモ 基地局装置およびパケットスケジューリング方法
US7848460B2 (en) * 2007-07-12 2010-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Interference suppression method and apparatus
US9277444B2 (en) * 2013-12-17 2016-03-01 Verizon Patent And Licensing Inc. Restriction of background application data during congestion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054223A (ja) * 2006-08-28 2008-03-06 Community Engine Kk 情報配信方法、および情報配信システム
JP2010226342A (ja) * 2009-03-23 2010-10-07 Kddi Corp 無線通信端末
WO2013069708A1 (ja) * 2011-11-07 2013-05-16 京セラ株式会社 通信制御方法

Also Published As

Publication number Publication date
JPWO2015141126A1 (ja) 2017-04-06
US20170078201A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
AU2017210584B2 (en) A framework for traffic engineering in software defined networking
EP3090513B1 (en) Adaptive traffic engineering configuration
US11792809B2 (en) Transmission reliability and expanding coverage based on sidelink congestion information in a D2D environment
JP2014503165A (ja) セルラーネットワークにおけるピアツーピアトラフィックをスケジューリングするための方法および装置
WO2015118847A1 (ja) 無線通信ネットワークシステムおよび代表センサ機器の決定方法
KR101234816B1 (ko) 혼잡 탐지 장치, 혼잡 제어 장치 그리고 혼잡 제어 방법
JP6690546B2 (ja) 通信システム、通信機器、通信方法、及び記録媒体
WO2015141126A1 (ja) 端末装置、通信システム、サーバ、通信方法及びプログラムを格納する記憶媒体
TW201534162A (zh) 用於在密集wifi環境中增進效能之增強頻道存取機制
US10292172B2 (en) Method and apparatus for transmitting packet in system performing D2D direct communication
JP6135393B2 (ja) 通信装置、プログラムおよび通信方法
JP6258519B2 (ja) 無線アクセストランスポートネットワークに関連付けられたipエンドポイント間のパスの特性の収集
JP2009017275A (ja) 通信方式選択方法、基地局及び端末局
JP6583269B2 (ja) 無線通信装置、無線通信方法、およびコンピュータ・プログラム
US10749781B2 (en) Setting device, setting method, recording medium to which setting program is recorded, communication system, client device, and server device
WO2014107871A1 (zh) 通信链路的选择方法和装置
JP2013157958A (ja) 通信装置、通信方法、および通信プログラム
JP2017169123A (ja) 通信装置、制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764504

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15123354

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016508482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764504

Country of ref document: EP

Kind code of ref document: A1