WO2015139446A1 - 一种自适应色散补偿调整方法 - Google Patents

一种自适应色散补偿调整方法 Download PDF

Info

Publication number
WO2015139446A1
WO2015139446A1 PCT/CN2014/088356 CN2014088356W WO2015139446A1 WO 2015139446 A1 WO2015139446 A1 WO 2015139446A1 CN 2014088356 W CN2014088356 W CN 2014088356W WO 2015139446 A1 WO2015139446 A1 WO 2015139446A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
adjustment
dispersion compensation
adaptive
error rate
Prior art date
Application number
PCT/CN2014/088356
Other languages
English (en)
French (fr)
Inventor
肖奇
高玲玲
邓林
曹云
陈松涛
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Priority to RU2016100226A priority Critical patent/RU2642482C1/ru
Publication of WO2015139446A1 publication Critical patent/WO2015139446A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2525Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres

Definitions

  • the invention relates to the field of optical communication, in particular to an adaptive dispersion compensation adjustment method.
  • wavelength-division multiplexed optical transmission systems need to solve the problem of fiber dispersion due to various reasons such as environment, optical fiber, and equipment.
  • the optical fiber transmission network is undergoing a transition from 10Gb/s system to 40Gb/s system and even to 100Gb/s system, and the transmission distance is greatly increased.
  • the influence of fiber dispersion on the transmission performance of the DWDM system is becoming more and more serious.
  • the effect is to limit the transmission distance of the system.
  • the mechanism of the influence of fiber dispersion on the transmission distance is mainly that the dispersion spreads the transmission pulse, thereby generating inter-pulse inter-symbol interference.
  • the limitation of the transmission distance of the fiber dispersion is inversely proportional to the square of the rate of the single channel. From 10Gbit/s to 40Gbit/s, the bit rate is increased by 4 times and the transmission distance is limited to 1/16. In order to reduce the dispersion of the fiber.
  • the influence of the transmission distance of the DWDM system requires dispersion compensation for the dispersion of the transmission fiber.
  • the transmission fiber type G652 or the G655 fiber with large effective area has a certain dispersion coefficient, and the dispersion compensation module is difficult to achieve the dispersion slope due to the limitation of its manufacturing process.
  • the transmission fibers are perfectly matched, so there is still a portion of the residual dispersion in each channel within the transmission bandwidth, and the residual dispersion between the channels can vary by several hundred ps/nm.
  • the system dispersion tolerance is greatly reduced with the increase of the channel rate, which is about tens of ps/nm.
  • the method of fixed dispersion compensation cannot meet the compensation accuracy requirement. It also cannot adapt to the complex changes of the system.
  • the existing adaptive dispersion compensation algorithms mostly use the stepping method and the dichotomy method to perform dispersion dynamic compensation. These algorithms all have the problem of excessive dispersion adjustment time, and the dispersion adjustment efficiency is not high; and the dichotomy method has certain hardware equipment. The requirements are not supported by all manufacturers' equipment.
  • the object of the present invention is to provide an adaptive dispersion compensation adjustment method, which reduces the requirement on the device, effectively reduces the time of dispersion compensation adjustment, and improves the dispersion adjustment efficiency.
  • an adaptive dispersion compensation adjustment method based on an adaptive dispersion compensation system, the system includes a tunable dispersion compensation module and an OTU receiving unit, and the OTU receiving unit further includes a delay.
  • Interferometer the steps are as follows: S1. Adjust the delay interferometer to maximize the output optical power of the interference phase long port; S2. Dispersion coarse adjustment, determine whether the frame unit detects the frame header, and if so, enter S3; if not, return to S1; S3. Dispersion fine adjustment, judge whether to find the optimal dispersion point that minimizes the error rate before error correction, and if so, the adjustment ends; if not, go to S2.
  • the adjustment of the delay interferometer is realized by using the current ratio information, and the delay phase of the interferometric phase transmission curve of the interferometer is delayed.
  • the output optical power of the interference phase is the largest.
  • the framing unit detects the frame header, that is, finds a dispersion interval in which the framing unit detects the frame header.
  • S201 Initialize the dispersion coarse adjustment related information, configure the tunable dispersion compensation module to the minimum dispersion value;
  • S202 Determine whether the framing unit can detect the frame header If yes, the coarse adjustment succeeds and exits; if not, proceeds to S203;
  • S203 determines whether the current dispersion has reached the maximum dispersion value of the tunable dispersion compensation module, and if so, the coarse adjustment fails and exits; if not, proceeds to S204; S204.
  • Dispersion After stepping, and the step is smaller than the dispersion tolerance of the receiving unit of the tunable dispersion compensation module, the process proceeds to S202.
  • the specific steps of the S3 are as follows: S401. Set a range of dispersion fine adjustment, the range covers the entire dispersion interval capable of detecting the frame header; S402.
  • the dispersion information at the time of recording initialization is a fine adjustment point.
  • the current bit error rate is the minimum bit error rate before the error correction, and the error threshold is calculated according to the minimum bit error rate; S403.
  • the dispersion is stepped in the positive and negative directions respectively in the fine adjustment center; S404. Whether the error rate before the current error correction is less than the minimum error rate, if yes, go to S405; if not, go to S406; S405.
  • the dispersion is configured in steps of 10 ps/nm.
  • the current dispersion is a range for setting the dispersion fine adjustment for the fine adjustment center, and the range needs to be determined according to the dispersion tolerance of the receiving unit of the specific dispersion compensation module.
  • the invention has the advantages that the stepwise adjustment is adopted when the coarse color is scattered, and the utility model is more versatile, and is basically applicable to all the TDCs and the receiving unit of the OUT (Optical Transform Unit).
  • the dispersion is fine-tuned, by dynamically calculating the error rate threshold, the dispersion fine-tuning range is quickly reduced, thereby quickly positioning the optimal dispersion point, which greatly shortens the dispersion fine-tuning time, and is more flexible than other algorithms using fixed error thresholds.
  • the invention improves the intelligence of the adaptive dispersion compensation and ensures the reliable transmission of the wavelength division system
  • FIG. 1 is a schematic diagram of an adaptive dispersion compensation system based on the present invention
  • FIG. 2 is a flow chart of an adaptive dispersion compensation adjustment method according to the present invention.
  • 3 is a flow chart of a coarse dispersion algorithm
  • Figure 4 is a flow chart of the dispersion trimming algorithm.
  • the adaptive dispersion compensation adjustment method of the present invention is based on an adaptive dispersion compensation system, including a sequentially connected optical amplification module, a TDC, an OUT receiving unit, and a framing unit, and further includes a control optical amplification module, TDC, and OUT.
  • the control unit of the receiving unit, and the debounce module After the optical amplifying module amplifies the input light, the TDC completes the dispersion compensation for the input light, and the optical signal enters the OTU receiving unit to complete the photoelectric conversion into electricity.
  • the signal, the framing unit parses the electrical signal.
  • the control unit monitors the input signal of the optical amplification module, and if no input signal is found, the control unit will stop until the input signal is restored.
  • the control unit monitors the framing condition of the framing unit feedback and the error rate before error correction, and controls the TDC and the OTU receiving unit to complete the entire adaptive dispersion compensation adjustment method according to the collected data.
  • the function of the debounce module is to prevent a situation in which the error rate before the abnormal error correction may be fed back when the frame header cannot be detected instantaneously in the ready-made frame unit, thereby causing a misjudgment.
  • the framing unit fails to detect the frame header instantaneously, the entire control unit will enter a short stop, and the normal flow will resume after the feedback information is stabilized.
  • the steps of the adaptive dispersion compensation adjustment method of the present invention are:
  • the DLI Delay Line Interferometer
  • the adjustment of the delay interferometer is realized by using the current ratio information, and the delay interferometer is controlled to interfere with a peak center frequency of the transmission curve of the phase length port and The center frequency of the laser is aligned such that the output phase power of the interference phase is maximized.
  • Dispersion coarse adjustment in the process of coarse adjustment, find the dispersion interval that causes the framing unit to detect the frame header, that is, determine whether the framing unit detects the frame header, and if so, enter S3 to perform the next step of fine dispersion adjustment; Return to S1 and restart the OTU receiving unit DLI adjustment.
  • Dispersion fine-tuning in the process of fine-tuning, judge whether to find the optimal dispersion point that minimizes the error rate before error correction. If it is proved that the fine-tuning is successful, the whole adjustment ends; if not, enter S2 and restart the dispersion. Tune.
  • S202 Determine whether the framing unit can detect the frame header. If yes, it indicates that the current device is working normally, the coarse adjustment succeeds and exits; if not, indicating that the current chromatic dispersion cannot satisfy the fine adjustment condition, and the process proceeds to S203.
  • S203 Determine whether the current dispersion reaches the maximum dispersion value of the TDC. If yes, it indicates that the dispersion point satisfying the dispersion fine adjustment cannot be found in the entire dispersion interval, the coarse adjustment fails and exits; if not, the process proceeds to S204.
  • the process proceeds to S202.
  • the color walking is set to 100 ps/nm, which can satisfy the dispersion tolerance requirement of most OUT receiving units, and the stepping step is an integer multiple of 100, which is also convenient for the calculation of the method.
  • S401 Set the dispersion fine adjustment range with the current dispersion as the fine adjustment center.
  • the range needs to be determined according to the dispersion tolerance of the specific OTU receiving unit.
  • the set range should cover the entire dispersion interval where the frame header can be detected.
  • the dispersion is configured in steps of 10 ps/nm in both the positive and negative directions, respectively.
  • S404 Determine whether the error rate before the current error correction is less than the minimum error rate. If yes, go to S405; if no, go to S406.
  • S409 Determine whether the frame unit can detect the signal frame header. If yes, it indicates that the fine adjustment is successful, and the adjustment process ends; if not, it indicates that the fine adjustment fails, and the dispersion coarse adjustment is performed again.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种自适应色散补偿调整方法,涉及光通信领域,基于自适应色散补偿系统,所述系统包括可调色散补偿模块和OTU接收单元,OTU接收单元还包括延迟干涉仪,步骤如下:S1.调节延迟干涉仪,使干涉相长口输出光功率最大;S2.色散粗调,判断成帧单元是否检测到帧头,若是,进入S3;若否,返回S1;S3.色散微调,判断是否找到使纠错前误码率达到最小的最优色散点,若是,调整结束;若否,进入S2。本发明降低对设备的要求,有效的降低了色散补偿调节的时间,提高了色散调节效率。

Description

一种自适应色散补偿调整方法 技术领域
本发明涉及光通信领域,具体来讲是一种自适应色散补偿调整方法。
背景技术
波分复用光传输系统在长距离应用时,因环境、光纤、设备等多种原因,需要解决光纤色散的问题。当前,光纤传输网正经历着从10Gb/s系统到40Gb/s系统、甚至到100Gb/s系统的转变,传输距离也大大增加,光纤色散对DWDM系统的传输性能影响越来越严重,其主要影响是限制了系统的传输距离。光纤色散对传输距离的影响机理主要是色散使传输脉冲展宽,从而产生脉冲码间干扰。光纤色散对传输距离的限制与单通道的速率平方成反比,从10Gbit/s向40Gbit/s演化,比特率增加到4倍,传输距离受限减小为1/16,为了减小光纤色散对DWDM系统传输距离的影响,需要对传输光纤的色散进行色散补偿。
在长距离传输的DWDM系统中,传输光纤类型为G652或大有效面积的G655光纤,其色散系数都具有一定的斜率,而色散补偿模块由于其制作工艺的限制,其色散斜率很难做到与传输光纤完全匹配,因此传输带宽内的各个信道仍存在一部分残余色散量,信道之间的残余色散量差异可达几百ps/nm。在单通道速率为40Gbit/s的DWDM系统中,其系统色散容限随着通道速率的增加而大大降低,大约为几十ps/nm左右,采用固定色散补偿的方法不能满足补偿精度的要求, 也无法适应系统的复杂变化。
因此在通道速率为40Gbit/s的长距离传输DWDM系统中,除了利用色散补偿模块对光纤的色散进行补偿以外,还需要使用TDC(Tunable Dispersion Compensator,可调色散补偿模块)对单通道进行色散补偿,使传输带宽内的每个通道的残余色散都在系统的色散容限范围内。为了满足复杂应用的要求,需要通过ADC(Self-adaptive Dispersion Compensation,自适应色散补偿)算法,实现色散动态补偿,满足40Gbit/s DWDM系统长距离传输的要求。
但是,现有的自适应色散补偿算法,大多采用步进法和二分法进行色散动态补偿,这些算法均存在色散调节时间过长的问题,色散调节效率不高;并且二分法对硬件设备有一定的要求,并不是所有厂家设备均支持这种调节。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种自适应色散补偿调整方法,降低对设备的要求,有效的降低了色散补偿调节的时间,提高了色散调节效率。
为达到以上目的,本发明采取的技术方案是:一种自适应色散补偿调整方法,基于自适应色散补偿系统,所述系统包括可调色散补偿模块和OTU接收单元,OTU接收单元还包括延迟干涉仪,步骤如下:S1.调节延迟干涉仪,使干涉相长口输出光功率最大;S2.色散粗调,判断成帧单元是否检测到帧头,若是,进入S3;若否,返回S1;S3.色散微调,判断是否找到使纠错前误码率达到最小的最优色散点,若是,调整结束;若否,进入S2。
在上述技术方案的基础上,所述S1中,利用电流比信息实现延迟干涉仪的调节,延迟干涉仪的干涉相长口传输曲线的某一个峰值中 心频率与激光器的中心频率对齐,则干涉相长口输出光功率最大。
在上述技术方案的基础上,所述成帧单元检测到帧头,即找到使成帧单元检测到帧头的色散区间。
在上述技术方案的基础上,所述S2的具体步骤如下:S201.初始化色散粗调相关信息,将可调色散补偿模块配置到最小色散值;S202.判断成帧单元是否能检测到帧头,若是,粗调成功并退出;若否,进入S203;S203.判断当前色散是否达到可调色散补偿模块的最大色散值,若是,粗调失败并退出;若否,进入S204;S204.色散步进,且步进小于可调色散补偿模块接收单元的色散容限后,进入S202。
在上述技术方案的基础上,所述色散步进100s/nm后,进入S202。
在上述技术方案的基础上,所述S3的具体步骤如下:S401.设定色散微调的范围,该范围覆盖整个能检测到帧头的色散区间;S402.记录初始化时的色散信息为微调点,当前纠错前误码率为最小误码率,根据最小误码率计算误码门限;S403.在色散微调的范围内,以微调中心分别向正负两个方向步进配置色散;S404.判断当前纠错前误码率是否小于最小误码率,若是,进入S405;若否,进入S406;S405.将当前色散作为新的微调点,当前纠错前误码率作为最小误码率,根据最小误码率计算误码门限;S406.在微调中心正负两个方向,判断两个方向的调整是否结束,如果是,进入S408;如果否,进入S407;S407.在正负两个方向,判断当前纠错前误码率是否超过误码门限,如果是,进入S408;如果否,返回S403,判断下一个色散;S408.配置色散到微调点;S409.判定帧单元是否能够检测到信号帧头,若果是,调整流程结束;如果否,重新进行色散粗调。
在上述技术方案的基础上,所述S403中,以10ps/nm为步长步进配置色散。
在上述技术方案的基础上,所述S401中,当前色散为微调中心设定色散微调的范围,范围需要根据具体色散补偿模块接收单元的色散容限确定。
在上述技术方案的基础上,所述S406中,每个方向的调整是否结束的判断依据为:色散是否超过色散微调范围,如果超过范围,表明该方向的调整结束。
本发明的有益效果在于:粗调色散时采用步进式调节,更具备通用性,基本适用于所有的TDC和完成OUT(Optical Transform Unit,光转化单元)的接收单元。色散微调时,通过动态计算误码率门限,快速缩小色散微调范围,从而迅速定位到最优色散点,大大缩短了色散微调时间,相对于其他采用固定误码门限的算法更具灵活性。本发明提高了自适应色散补偿的智能性,保证了波分系统的可靠传输
附图说明
图1为本发明基于的自适应色散补偿系统示意图;
图2为本发明自适应色散补偿调整方法流程图;
图3为色散粗调算法的流程图;
图4为色散微调算法的流程图。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
如图1所示,本发明自适应色散补偿调整方法,基于自适应色散补偿系统,包括依次连接的光放大模块、TDC、OUT接收单元和成帧单元,还包括控制光放大模块、TDC、OUT接收单元的控制模块,以及去抖动模块。所述光放大模块对输入光进行放大后,TDC对输入光完成色散补偿,光信号进入OTU接收单元完成光电转换变为电 信号,成帧单元对所述电信号进行解析。所述控制单元监测光放大模块的输入信号,如果发现没有输入信号,控制单元将会停止,直到输入信号恢复。所述控制单元监还同时监测成帧单元反馈的定帧情况及纠错前误码率,并根据收集到的数据,控制TDC和OTU接收单元完成整个自适应色散补偿调整方法。所述去抖动模块的作用是:防止出在现成帧单元瞬间无法检测到帧头时,可能反馈异常纠错前误码率的情况,从而导致出现误判的情况。出现成帧单元瞬间无法检测到帧头时,整个控制单元会进入短暂的停止,等反馈信息稳定后再恢复正常流程。
如图2所示,本发明自适应色散补偿调整方法步骤为:
S1.首先完成OTU接收单元的DLI(Delay Line Interferometer延迟干涉仪)调节,利用电流比信息实现延迟干涉仪的调节,控制延迟干涉仪,使其干涉相长口传输曲线的某一个峰值中心频率与激光器的中心频率对齐,从而使得干涉相长口输出光功率最大。
S2.色散粗调,在粗调的过程中,找到使成帧单元检测到帧头的色散区间,即判断成帧单元是否检测到帧头,若是,进入S3,进行下一步色散微调;若否,返回S1,重新开始OTU接收单元DLI调节。
S3.色散微调,在微调的过程中,判断是否找到使纠错前误码率达到最小的最优色散点,若是,证明微调成功,则整个调整结束;若否,进入S2,重新开始色散粗调。
上述流程中,如图3所示,所述S2色散粗调的详细步骤如下:
S201.初始化色散粗调相关信息,将TDC配置到最小色散值。
S202.判断成帧单元是否能检测到帧头,若是,表明当前设备已能正常工作,粗调成功并退出;若否,表明当前色散不能满足微调条件,进入S203。
S203.判断当前色散是否达到TDC的最大色散值,若是,表明整个色散区间均无法找到满足色散微调的色散点,粗调失败并退出;若否,进入S204。
S204.如果当前色散并没有达到TDC的最大值,表明色散粗调需要继续,色散步进,步进小于可调色散补偿模块接收单元的色散容限后,进入S202。本实施例中,色散步进设定为100ps/nm,既可以满足绝大部分OUT接收单元的色散容限要求,步进为100的整数倍也便于方法计算的实现。
如图4所示,所述S4色散微调的详细步骤如下:
S401.以当前色散为微调中心,设定色散微调范围。范围需要根据具体OTU接收单元的色散容限确定,设定的范围应该覆盖整个能检测到帧头的色散区间。
S402.对色散微调信息进行初始化,记录当前色散信息为微调点,记录当前纠错前误码率为最小误码率,并根据最小误码率计算误码门限。
S403.在色散微调的范围内,以微调中心分别向正负两个方向、以10ps/nm为步长步进配置色散。
S404.判断当前纠错前误码率是否小于最小误码率,若是,进入S405;若否,进入S406。
S405.将当前色散替换初始化的色散,作为新的微调点,当前纠错前误码率作为最小误码率,根据最小误码率计算误码门限。
S406.在微调中心正负两个方向,判断两个方向的调整是否结束,判断依据为色散是否超过色散微调范围,如果是,表明该方向的调整结束,待两个方向调整均结束后,进入S408;否则,进入S407。
S407.微调中心正负两个方向,判断当前纠错前误码率是否超过 误码门限,如果超过,表明该方向调整结束;如果没有超出门限,则会退到S403,继续配置下一个色散进行判定。如果两个方向调整均结束,则进入S408。
S408.配置色散到微调点;微调点即为最优色散点。
S409.判定帧单元是否能够检测到信号帧头,若果是,表明微调成功,调整流程结束;如果否,表明微调失败,重新进行色散粗调。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (9)

  1. 一种自适应色散补偿调整方法,基于自适应色散补偿系统,所述系统包括可调色散补偿模块和OTU接收单元,OTU接收单元还包括延迟干涉仪,其特征在于,步骤如下:
    S1.调节延迟干涉仪,使干涉相长口输出光功率最大;
    S2.色散粗调,判断成帧单元是否检测到帧头,若是,进入S3;若否,返回S1;
    S3.色散微调,判断是否找到使纠错前误码率达到最小的最优色散点,若是,调整结束;若否,进入S2。
  2. 如权利要求1所述的自适应色散补偿调整方法,其特征在于:所述S1中,利用电流比信息实现延迟干涉仪的调节,延迟干涉仪的干涉相长口传输曲线的某一个峰值中心频率与激光器的中心频率对齐,则干涉相长口输出光功率最大。
  3. 如权利要求1所述的自适应色散补偿调整方法,其特征在于:所述成帧单元检测到帧头,即找到使成帧单元检测到帧头的色散区间。
  4. 如权利要求1所述的自适应色散补偿调整方法,其特征在于:所述S2的具体步骤如下:
    S201.初始化色散粗调相关信息,将可调色散补偿模块配置到最小色散值;
    S202.判断成帧单元是否能检测到帧头,若是,粗调成功并退出;若否,进入S203;
    S203.判断当前色散是否达到可调色散补偿模块的最大色散值,若是,粗调失败并退出;若否,进入S204;
    S204.色散步进,且步进小于可调色散补偿模块接收单元的色散容限后,进入S202。
  5. 如权利要求4所述的自适应色散补偿调整方法,其特征在于:所述色散步进100s/nm后,进入S202。
  6. 如权利要求1所述的自适应色散补偿调整方法,其特征在于:所述S3的具体步骤如下:
    S401.设定色散微调的范围,该范围覆盖整个能检测到帧头的色散区间;
    S402.记录初始化时的色散信息为微调点,当前纠错前误码率为最小误码率,根据最小误码率计算误码门限;
    S403.在色散微调的范围内,以微调中心分别向正负两个方向步进配置色散;
    S404.判断当前纠错前误码率是否小于最小误码率,若是,进入S405;若否,进入S406;
    S405.将当前色散作为新的微调点,当前纠错前误码率作为最小误码率,根据最小误码率计算误码门限;
    S406.在微调中心正负两个方向,判断两个方向的调整是否结束,如果是,进入S408;如果否,进入S407;
    S407.在正负两个方向,判断当前纠错前误码率是否超过误码门限,如果是,进入S408;如果否,返回S403,判断下一个色散;
    S408.配置色散到微调点;
    S409.判定帧单元是否能够检测到信号帧头,若果是,调整流程结束;如果否,重新进行色散粗调。
  7. 如权利要求6所述的自适应色散补偿调整方法,其特征在于:所述S403中,以10ps/nm为步长步进配置色散。
  8. 如权利要求6所述的自适应色散补偿调整方法,其特征在于:所述S401中,当前色散为微调中心设定色散微调的范围,范围需要 根据具体色散补偿模块接收单元的色散容限确定。
  9. 如权利要求6所述的自适应色散补偿调整方法,其特征在于:所述S406中,每个方向的调整是否结束的判断依据为:色散是否超过色散微调范围,如果超过范围,表明该方向的调整结束。
PCT/CN2014/088356 2014-03-17 2014-10-11 一种自适应色散补偿调整方法 WO2015139446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016100226A RU2642482C1 (ru) 2014-03-17 2014-10-11 Способ настройки автоматической адаптивной компенсации дисперсии

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410096598.9 2014-03-17
CN201410096598.9A CN103973368B (zh) 2014-03-17 2014-03-17 一种自适应色散补偿调整方法

Publications (1)

Publication Number Publication Date
WO2015139446A1 true WO2015139446A1 (zh) 2015-09-24

Family

ID=51242455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088356 WO2015139446A1 (zh) 2014-03-17 2014-10-11 一种自适应色散补偿调整方法

Country Status (4)

Country Link
CN (1) CN103973368B (zh)
MY (1) MY175129A (zh)
RU (1) RU2642482C1 (zh)
WO (1) WO2015139446A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973368B (zh) * 2014-03-17 2016-06-08 烽火通信科技股份有限公司 一种自适应色散补偿调整方法
US10554299B2 (en) * 2017-05-09 2020-02-04 Huawei Technologies Co., Ltd. Method and apparatus for characterizing a dispersion of an optical medium
CN110266391B (zh) * 2018-03-12 2021-01-12 上海诺基亚贝尔股份有限公司 光通信方法、光通信设备和计算机可读存储介质
CN109067498B (zh) * 2018-07-16 2020-12-04 深圳大学 波分系统波长实时调整的方法及系统
TWI696355B (zh) * 2018-08-30 2020-06-11 美商光聯通訊技術有公司美國分部 光纖色散監控裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1527527A (zh) * 2003-03-03 2004-09-08 ��ʿͨ��ʽ���� 波分复用光中继传输方法和中继装置
WO2009008042A1 (ja) * 2007-07-06 2009-01-15 Fujitsu Limited 通信ネットワークおよび設計方法
CN103188017A (zh) * 2013-04-17 2013-07-03 烽火通信科技股份有限公司 一种40Gbps DWDM系统中快速自适应色散补偿方法
CN103973368A (zh) * 2014-03-17 2014-08-06 烽火通信科技股份有限公司 一种自适应色散补偿调整方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19515158C1 (de) * 1995-04-25 1996-03-07 Siemens Ag Schaltungsanordnung zur Dispersionskompensation in optischen Übertragungssystemen mittels eines optischen Filters
DE19830990A1 (de) * 1998-07-10 2000-01-20 Siemens Ag Polarisationstransformator
GB0200175D0 (en) * 2002-01-04 2002-02-20 Marconi Comm Ltd Dispersion compensation in optical communications systems
RU2239801C2 (ru) * 2002-12-26 2004-11-10 Институт кристаллографии им. А.В. Шубникова РАН Способ модуляции оптической разности хода в интерферометре майкельсона для фурье-спектроскопии и фурье-спектрометр для инфракрасного, видимого и уф спектральных диапазонов
JP4762793B2 (ja) * 2006-06-06 2011-08-31 日本電信電話株式会社 波長分散制御方法および波長分散制御システム
US9312964B2 (en) * 2006-09-22 2016-04-12 Alcatel Lucent Reconstruction and restoration of an optical signal field
CN101588209B (zh) * 2008-05-23 2011-11-30 中兴通讯股份有限公司 一种自适应色散补偿方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1527527A (zh) * 2003-03-03 2004-09-08 ��ʿͨ��ʽ���� 波分复用光中继传输方法和中继装置
WO2009008042A1 (ja) * 2007-07-06 2009-01-15 Fujitsu Limited 通信ネットワークおよび設計方法
CN103188017A (zh) * 2013-04-17 2013-07-03 烽火通信科技股份有限公司 一种40Gbps DWDM系统中快速自适应色散补偿方法
CN103973368A (zh) * 2014-03-17 2014-08-06 烽火通信科技股份有限公司 一种自适应色散补偿调整方法

Also Published As

Publication number Publication date
CN103973368A (zh) 2014-08-06
MY175129A (en) 2020-06-09
RU2642482C1 (ru) 2018-01-25
CN103973368B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2015139446A1 (zh) 一种自适应色散补偿调整方法
US9843397B2 (en) Wavelength stabilizer for TWDM-PON burst mode DBR laser
EP2007042A9 (en) Wavelength division multiplexing system and residual dispersion compensating device and method thereof
CN105379158B (zh) 时分和波分复用无源光网络的方法和光线路终端
CN104901744B (zh) 在olt中对上行信号进行功率均衡的功率均衡器以及这种olt
CN107666354B (zh) 功率控制方法和系统以及光线路终端和光网络单元
US9479264B2 (en) Avalanche photodiode bias control in passive optical networks
KR101584134B1 (ko) 저속의 수광소자를 이용하여 구현된 고속 광수신기 및 고속 광수신기 구현방법
US10958994B2 (en) Method and device for controlling downlink optical signal, and computer-readable storage medium
CN104471878A (zh) 一种监控光信号方法、信号监测装置和光网络系统
CN117714914A (zh) 用于相干突发接收的系统和方法
US8326160B2 (en) Dispersion compensation device, optical reception device, method for dispersion compensation, and method for optical reception
US20160006510A1 (en) Method for prolonging transmission distance of passive optical network system and optical line terminal
CN104243048B (zh) 相干光通信系统中基于单纯形的传输性能优化方法及系统
CN103188017B (zh) 一种40Gbps DWDM系统中快速自适应色散补偿方法
WO2021098231A1 (zh) 一种信号接收方法及系统
US20100142956A1 (en) Method and Apparatus for Reshaping a Channel Signal
CN110445544B (zh) 光传输的增益控制方法、系统、光放大器与光模块
US20070003281A1 (en) Active control loop for power control of optical channel groups
JP2010141683A (ja) 光伝送装置及び分散補償器
CN104410452B (zh) 一种长距离相干光通信系统传输性能优化方法
WO2008011767A1 (fr) Système et procédé de réalisation de la commande centralisée du réglage de longueur d'onde
CN110677213A (zh) 一种wdm pon波长校准、跟踪方法及系统
CN106556897B (zh) 光模块
WO2012009854A1 (zh) 一种光线路终端模块和上行传输模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016100226

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14886431

Country of ref document: EP

Kind code of ref document: A1