WO2015139276A1 - 推片染色机及其推片控制方法、装置 - Google Patents

推片染色机及其推片控制方法、装置 Download PDF

Info

Publication number
WO2015139276A1
WO2015139276A1 PCT/CN2014/073797 CN2014073797W WO2015139276A1 WO 2015139276 A1 WO2015139276 A1 WO 2015139276A1 CN 2014073797 W CN2014073797 W CN 2014073797W WO 2015139276 A1 WO2015139276 A1 WO 2015139276A1
Authority
WO
WIPO (PCT)
Prior art keywords
viscosity
sample
tested
pipeline
temperature
Prior art date
Application number
PCT/CN2014/073797
Other languages
English (en)
French (fr)
Inventor
姜斌
申涛
薛树斌
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2014/073797 priority Critical patent/WO2015139276A1/zh
Priority to CN201911312739.5A priority patent/CN111060383B/zh
Priority to CN201480074056.XA priority patent/CN105934663B/zh
Publication of WO2015139276A1 publication Critical patent/WO2015139276A1/zh
Priority to US15/271,089 priority patent/US9995660B2/en
Priority to US15/963,819 priority patent/US10648892B2/en
Priority to US16/808,177 priority patent/US11333586B2/en
Priority to US17/701,490 priority patent/US11808676B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00138Slides

Definitions

  • the invention relates to a medical device, in particular to a pusher dyeing machine and a pusher control method thereof. Background technique
  • the main function of the pusher dyeing machine is to make an abnormality after routine examination, and to perform a microscopic examination to prepare a blood smear and dye it.
  • a microscopic examination to prepare a blood smear and dye it.
  • the commonly used push technology mainly adjusts the push parameters based on the HCT value of the sample.
  • the HCT value refers to the percentage of red blood cells in a certain volume of whole blood, also known as hematocrit, which reflects the nature of blood to some extent. .
  • this method is simple, it also has the following disadvantages: On the one hand, the nature of the blood sample is not only determined by the level of HCT, but as the HCT value decreases, the weight of the HCT value will become smaller and smaller, while plasma and its internal The suspension will gradually become the main influencing factor.
  • Various external factors such as ambient temperature and humidity, placement time, and storage conditions, can affect the morphology of the blood film.
  • the push dyeing machine is originally used to process abnormal samples.
  • the proportion of samples with low HCT values in abnormal samples is very high. Therefore, in this case, the guiding effect of HCT values on the push parameters will be If the push parameters are adjusted according to the HCT value, improper push parameters may be obtained, thereby affecting the effect of the blood film being pushed. Summary of the invention
  • the present application provides a push film dyeing machine push film control method, the method comprising:
  • the present application provides a push control device, including: a parameter determination module, configured to determine a push parameter according to a viscosity of a sample to be tested;
  • the control module is configured to control the pushing mechanism to push the piece according to the pushing piece parameter.
  • the present application provides a push film dyeing machine, comprising: a sample suction line for sucking a sample to be tested;
  • a syringe for driving the sample suction line to suck or discharge the sample to be tested
  • a pushing mechanism for injecting a sample to be tested on a substrate according to a pushing parameter and pushing it into a film
  • a processor wherein the processor is electrically connected to the syringe and the pushing mechanism, respectively, for controlling the driving of the suction line of the syringe Absorbing or discharging action, and obtaining according to the viscosity of the sample to be tested Push the parameters, according to the push parameters to control the push mechanism to push the film.
  • the viscosity of the sample to be tested is used to guide the setting of the parameters of the test piece. Since the viscosity of the sample to be tested reflects the comprehensive influence of many factors, it is more suitable for characterizing the nature of the sample to be tested, so the determination is based on the viscosity. The slice parameters can get a better push effect.
  • Figure 1 is a schematic view of a pusher
  • FIG. 3 is a flow chart for detecting the relative viscosity of a sample to be tested in an embodiment of the present application
  • FIG. 4 is a schematic structural view of a specific embodiment of the sample suction mechanism
  • FIG. 5 is a schematic view of a pipeline state in a relative viscosity detecting process in an embodiment of the present application
  • FIG. 6 is a schematic structural view of a viscosity detecting unit in an embodiment of the present application.
  • the sample blood volume (drop volume)
  • the three main push parameters of the push speed and the push angle As shown in Figure 1, the experience gained from the experiment: The more the blood volume V, the thicker the blood film thickness, the longer the length (the width is constant); the faster the pushing speed u, the thicker the thickness, the shorter the length; The larger the angle ⁇ , the thicker the thickness and the shorter the length.
  • the push dyeing machine guides the setting of the pusher parameters according to the viscosity of the blood sample when the blood smear is produced.
  • the factors affecting the viscosity of blood samples include the size and morphology of red blood cells, the deformability of red blood cells, the aggregation of red blood cells, the number of white blood cell platelets, and the suspension of plasma and its internal macromolecules (various proteins, lipids, Sugar), sample temperature, placement time and other factors, and blood sample viscosity reflects the combined effects of many factors, so it is more suitable for characterizing the nature of blood samples.
  • the apparent viscosity of the liquid can roughly reflect the viscosity of the liquid. Therefore, in one embodiment, the apparent viscosity of the bleeding sample can be detected by the prior art, and the setting of the pushing parameter can be guided according to the apparent viscosity of the blood sample. Push the parameters to control the push.
  • the apparent viscosity of blood is complex to detect and usually requires additional testing equipment.
  • the apparent viscosity measurement of blood is long, and the viscosity of the blood sample is easily affected by temperature and sample aging.
  • the temperature at the apparent viscosity detection is not necessarily the same as the temperature at which the sample is pushed, so the apparent viscosity is detected.
  • the viscosity of the sample also does not accurately represent the viscosity of the sample when the film is pushed.
  • the relative viscosity or viscosity ratio of the sample being tested is used to guide the setting of the pusher parameters.
  • the relative viscosity of the sample to be tested is the viscosity of the reference fluid relative to the known viscosity at the pusher temperature.
  • the temperature at which the relative viscosity of the sample to be tested is detected is taken as the pusher temperature.
  • the viscosity ratio is the ratio of the viscosity of the sample to be measured and the reference fluid.
  • the following is an example in which the relative viscosity of the sample to be tested is used to guide the pusher.
  • the flow chart is as shown in FIG. 2, and includes the following steps:
  • Step 100 Aspirate the sample to be tested.
  • step 110 the sample to be tested is subjected to the same condition as the reference fluid.
  • the detection of the reference fluid is preferably detected before the test sample is detected, i.e., the test is completed between steps 100.
  • Step 120 comparing the detection result of the sample to be tested with the detection result of the reference fluid to obtain a viscosity ratio of the sample to be measured relative to the reference fluid, and then calculating the measured value based on the apparent viscosity of the reference fluid at the test temperature.
  • the relative viscosity of the sample The viscosity of the reference fluid at each temperature can be obtained by pre-testing or querying.
  • Step 130 Determine a push parameter according to the relative viscosity of the sample to be tested.
  • the push parameters include blood drop, push speed and push angle.
  • the push parameters can be obtained by looking up the table, checking the curve or calculating the formula based on the relative viscosity. According to the experiment, the larger the relative viscosity of the sample, the less likely the blood film to push, the lower the pushing speed and the smaller the pushing angle. The smaller the relative viscosity of the sample, the easier it is to push the blood film, requiring a higher push speed and a larger push angle.
  • a comparison table of relative viscosity and push sheet parameters can be obtained through experiments of a large number of samples. When the relative viscosity of the current sample to be tested is detected, a push suitable for the sample to be tested can be obtained by checking the correspondence table. Slice parameters.
  • Step 140 Control the action of the pushing mechanism according to the pushing parameter.
  • Step 150 The pushing mechanism injects the sample to be tested on the substrate according to the pushing parameters and pushes it into a film.
  • the reference fluid Since the reference fluid is determined, its apparent viscosity at various temperatures can be obtained in advance, and in the detection process, the apparent viscosity of the reference fluid takes into account the influence of temperature, and therefore by the viscosity ratio of the reference fluid to the sample to be tested.
  • the calculated relative viscosity of the sample to be tested also takes into account the influence of temperature, and the relative viscosity of the sample to be tested is detected when the film is required to be pushed.
  • the detection time of the relative viscosity is close to the time of pushing, so it is relatively Viscosity can more accurately characterize the viscosity of the sample being tested while pushing, eliminating the effects of ambient temperature and sample storage time.
  • the embodiment of the present application proposes the concept of the viscosity characterization amount, which is the physical quantity affected by the viscosity of the substance when the material flows, and the physical quantity can be expressed as a function of viscosity, and the detection
  • the flow chart of the relative viscosity of the sample to be tested is shown in Figure 3, including the following steps:
  • step 200 the viscosity characteristic amount and temperature are detected.
  • the viscous characterization amount of the reference fluid and the sample to be tested flowing under the same conditions in the pipeline is separately detected, and the first temperature of the reference fluid at the time of testing is simultaneously detected.
  • the reference fluid should flow through the pipeline under the set conditions;
  • the sample to be tested should flow through the pipeline under the same set conditions;
  • the setting conditions may be, for example, a set flow rate, speed, or volume.
  • the pipeline for measuring the reference fluid may or may not be the same pipeline as the pipeline for detecting the sample to be tested, but the geometry of the pipeline is preferably the same.
  • Step 210 Comparing the viscosity characteristic amount of the reference fluid with the viscosity characteristic amount of the sample to be tested, and obtaining a relationship between the viscosity ratio of the reference fluid and the sample to be tested.
  • Step 220 Obtain an apparent viscosity of the reference fluid at the first temperature.
  • Step 230 calculating the viscosity of the sample to be tested based on the relationship between the viscosity ratio and the apparent viscosity of the reference fluid, and using the viscosity as the relative viscosity of the sample to be tested.
  • the pusher dyeing machine comprises a sample suction mechanism, a pusher mechanism and a processor
  • the sample suction mechanism is used for sucking or discharging the fluid
  • the pusher mechanism is used for instilling the sample to be tested on the substrate according to the pusher parameters and pushing the film into a film
  • the processor They are respectively connected with the sampling mechanism and the pushing mechanism, and are respectively used for controlling the action of the sampling mechanism and the pushing mechanism.
  • the processor is further configured to obtain a push parameter according to the viscosity of the sample to be tested, and control the push mechanism to push the slice according to the push parameter.
  • the viscosity of the sample to be tested can be input to the pusher dyeing machine after being measured outside the pusher.
  • the apparent viscosity of the sample to be tested is measured by the apparent viscosity test method, and then input into the pusher dyeing machine.
  • the push parameters are selected based on the apparent viscosity of the input.
  • the mechanism of the push dyeing machine itself is used to detect the viscosity of the sample to be tested.
  • the sample suction mechanism includes a sample suction line, a syringe and a detector, and the detector is disposed at The sample suction line is used for detecting the viscosity characteristic amount of the sample to be tested when flowing in the pipeline under the set condition, and the processor receives the viscosity characteristic amount of the detector output, processes the viscosity characteristic amount, and according to the processing result Determine the push parameters.
  • FIG. 4 is a schematic structural view of a specific embodiment of a sample suction mechanism.
  • a pressure sensor is used as a detector for detecting a viscosity characteristic amount.
  • the viscosity characteristic amount is pressure data.
  • the aspirating mechanism includes a sample suction line 1, a syringe 2, a sample needle 3, a pressure sensor 5, and a temperature sensor 6.
  • the outlet of the syringe 2 is in communication with the first end of the sample aspirating line 1, and the second end of the sample aspirating line 1 is connected with a sample needle 3 for aspirating from the test tube 4 containing the sample.
  • the pressure sensor 5 and the temperature sensor 6 are respectively disposed on the sample suction line 1, and may be disposed, for example, at the first end or the middle portion of the sample suction line 1, for detecting the pressure and temperature in the sample suction line 1, respectively.
  • the processor is electrically connected to the injector, respectively, for controlling the suction or discharge action of the syringe driving the suction line.
  • the processor further calculates a viscosity ratio of the reference fluid and the sample to be tested based on the pressure data and temperature detected by the pressure sensor 5 and the temperature sensor 6, and further calculates a relative viscosity of the sample to be tested, and then obtains a push parameter according to the viscosity of the sample to be tested. , according to the push parameters to control the push mechanism to push the film.
  • a liquid is typically selected as the reference fluid.
  • the reference fluid includes a reference gas and a reference liquid.
  • the isotonic solution is selected as the reference liquid.
  • Calibration process 1 The injector 2 controls the sample suction line 1 to draw the same volume of air as the sample suction process at the sample suction speed of the sample suction process, and the pressure sensor 5 and the temperature sensor 6 respectively sense the current in the sample suction line 1 Pressure and temperature. The pressure data and the temperature data during the recording are recorded.
  • the pressure sensor outputs a relative pressure, that is, a pressure difference with respect to the ambient atmospheric pressure.
  • Calibration process 2 Syringe 2 controls the sample suction line 1 to draw the same volume of isotonic solution in the sample suction process at the sample suction speed of the sample suction process, and the pressure sensor 5 and the temperature sensor 6 respectively sense the sample in the suction line 1 Pressure and temperature. Record pressure data and temperature data during the process.
  • Measurement process Syringe 2 Control the sample suction line 1 Aspirate the sample, pressure sensor 5 and temperature sensor 6 respectively sense the pressure and temperature in the sample line 1 at this time. Record pressure data and temperature during the process.
  • ⁇ 2 ⁇ 0 - ⁇ - ⁇ ⁇ + ⁇ 0 - ⁇ - ⁇ 2 (2)
  • is the relative viscosity of the sample to be tested
  • ⁇ D is the viscosity of the reference liquid at the first temperature
  • Q is in the pipeline
  • the flow rate of the liquid flow is the damping of the front section pipeline, which is only related to the pipeline.
  • the main influencing factors include the length and radius of the pipeline; ⁇ 2 is the damping of the pipeline in the rear section, which is only related to the pipeline.
  • the main influencing factors include the length of the pipeline. , radius, etc.; APi is the pressure difference of the reference gas, ⁇ P 2 is the pressure difference of the reference liquid, and ⁇ P 3 is the pressure difference of the sample to be tested.
  • the relative viscosity ⁇ ⁇ of the sample to be tested can be calculated according to formula (4).
  • the pressure difference in equation (4) may be replaced with an absolute pressure value when it can be considered that the temperature of the reference liquid coincides with the temperature of the sample to be tested.
  • the embodiment of the present application calculates the viscosity of the sample to be tested at a real-time temperature relative to the known reference fluid by comparing the viscosity of the unknown sample to be tested and the viscosity of the known reference fluid. There is no need to add additional testing equipment on the hardware side. It is only necessary to add a pressure sensor and a temperature sensor to the original suction mechanism. The relative viscosity of the sample to be tested can be calculated by using the data detected by the pressure sensor and the temperature sensor.
  • the sample to be tested is not only close to the time of pushing the film at the time of detecting the viscosity, but also close to the space of the push piece in the space for detecting the viscosity, which makes the temperature of the sample to be tested closer to the temperature when the viscosity is detected.
  • the temperature at which the sample is pushed, and the viscosity of the sample to be tested detected in this case is more indicative of the viscosity of the sample to be tested.
  • the user may not expect to perform the calibration process every time the film is pushed, so the reference fluid can be detected in advance, the calibration process is performed, and the detection result is retained.
  • the temperature of the isotonic solution and the temperature of the measurement process are inconsistent. The process is as follows:
  • Equations (1), (2), and (3) need to be changed to the form shown in equations (5), (6), and (7):
  • T ⁇ is the calibration temperature, isotonic solution
  • ⁇ 2 is the temperature at which the test sample measurement
  • riD T2 as isotonic solution viscosity of 2 T
  • ⁇ when suction air is T1 calibration process temperatures - the difference between line pressure and the ambient pressure; ⁇ 2 - ⁇ 1 the like to draw a calibration procedure
  • ⁇ 3 ⁇ 2 is the difference between the pressure in the pipeline and the ambient pressure during calibration (temperature is ⁇ 2 ).
  • the temperature of the isotonic solution in the pipe may be inconsistent.
  • the true viscosity at the temperature may be entered.
  • the calibration process can be performed in advance, and the pressure data of the reference flow ⁇ is measured, and when the push is required, the suction is performed, and the direct suction is performed.
  • the pressure data can be used to calculate the relative viscosity of the sample under test at the current temperature without adding additional viscosity measurement actions.
  • the reference liquid in the above embodiment can also be the same liquid as the pre-stored liquid, and can also be calculated by the detection method and the inventive concept of the above embodiment.
  • the relative viscosity of the sample was measured.
  • the calibration and measurement process of this embodiment is performed simultaneously or with a short interval, and the ambient temperature change is small, and the temperature of the reference fluid is considered to be the same as the temperature of the sample to be tested.
  • the temperature may be not measured, or the temperature sensor 6 may not be included, and the viscosity ratio may be calculated according to the pressure difference between the measured sample and the reference sample, as follows:
  • the pusher control device based on the method of the above embodiment comprises a parameter determination module and a control module, wherein the parameter determination module is configured to determine the pusher parameter according to the viscosity of the sample to be tested; and the control module is configured to control the pusher mechanism to push the slice according to the pusher parameter.
  • the parameter determination module includes a viscosity detecting unit and a parameter determining unit, wherein the viscosity detecting unit is configured to detect a relative viscosity of the sample to be tested, wherein the relative viscosity of the sample to be tested is an apparent viscosity of the sample relative to the reference fluid of a known viscosity at the pushing temperature; the parameter determining unit is used according to the The relative viscosity determines the pusher parameters.
  • the viscosity detecting unit includes a first calculating subunit 11, a temperature receiving subunit 12, a second calculating subunit 13, a comparing subunit 14, a viscosity obtaining subunit 15, and a relative viscosity calculating subunit 16.
  • the first calculating sub-unit 11 is configured to calculate a viscous characterization amount when the reference fluid flows through the set condition in the pipeline, and the viscous characterization amount is a physical quantity affected by the viscosity of the substance during the flow, and the physical quantity can be expressed as a temperature dependence function;
  • the temperature receiving subunit 12 is configured to receive a temperature in the pipeline detected by the temperature sensor, including a first temperature when detecting the reference fluid and/or a second temperature when detecting the sample to be tested;
  • the unit 13 is configured to calculate a viscosity characterization amount when the sample to be tested flows through the set condition in the pipeline;
  • the comparison subunit 14 is used to compare the viscous characterization amount of the reference fluid with the viscous characterization amount of the sample to be tested, Obtaining a relationship between the viscosity ratio of the reference fluid and the sample to be tested;
  • the viscosity acquisition subunit 15 is for obtaining the apparent viscosity of the reference fluid at the first temperature; the relationship between the relative
  • the first calculation subunit 11 is configured to receive a pressure difference in the pipeline detected by the pressure sensor when the reference fluid flows in the pipeline at a set flow rate; the second calculation subunit 13 is used to Receiving the pressure difference in the pipeline detected by the pressure sensor when the sample to be tested flows in the pipeline at a set flow rate.
  • the reference fluid When there is pre-stored liquid in the pipeline, the reference fluid includes a reference gas and a reference liquid, and the pressure data in the pipeline detected by the pressure sensor includes: a pressure difference in the pipeline when the reference gas flows in the pipeline at a set flow rate, and The pressure difference in the pipeline when the reference liquid flows through the pipeline at a set flow rate.
  • ⁇ B is the relative viscosity of the sample to be tested
  • ⁇ D is the viscosity of the reference liquid at the first temperature
  • a Pi is the pressure difference of the reference gas
  • ⁇ ⁇ 2 is the pressure difference of the reference liquid
  • ⁇ ⁇ 3 is the measured The pressure difference of the sample.
  • ⁇ ⁇ is the relative viscosity of the sample to be tested
  • ⁇ D — TI is the apparent viscosity of the reference liquid at the first temperature
  • ⁇ . — ⁇ 2 is the apparent viscosity of the reference liquid at the second temperature
  • ? 1 is the reference gas
  • ⁇ ⁇ 2 is the pressure difference of the reference liquid
  • ⁇ ⁇ 3 is the pressure difference of the sample to be tested.
  • the viscosity detecting unit can also be calculated according to the viscous characterization amount of the sample to be tested and the viscous characterization amount detected when the reference fluid flows through the same set condition in the pipeline.
  • the viscosity ratio of the sample to the reference fluid is measured, and the parameter determining unit determines the pusher parameter according to the viscosity ratio.
  • An example in the present application is to utilize pressure data from a sample aspirating process, in addition to using pressure data from other flow conditions of the blood sample in the pipeline, including but not limited to pressure data during delivery, distribution or discharge. .
  • An example in this application is to use a syringe to aspirate at a fixed flow rate, or to use other devices to obtain a fixed flow rate, such as a rotary piston pump, a peristaltic pump, etc., or to use a flow rate that varies with a specific law to aspirate, such as The flow rate is increased from 0 to 300uL/s by means of hook acceleration.
  • the viscosity indicator amount in the present application may also be other physical quantities, such as speed, for example, adding one or more light sensors at specific positions of the sample suction line. , measuring the time difference from the start of the sample to the position where the blood sample reaches the light sensor or the blood sample passes through two or more sensors during the aspiration process, as shown in Figure 5.
  • the K 2 segment blood sample or the diluent head trigger photocoupler can be tested. At the time, you can also test the time at which the tail of the dilution liquid triggers the optocoupler.
  • the pipeline will deform under pressure, the greater the viscosity, the greater the pressure difference caused by the suction action, and the resulting pipeline deformation will be greater, resulting in the time when the sample with higher viscosity reaches the optocoupler.
  • the actual motion is an acceleration motion with decreasing acceleration. The relationship between viscosity and time difference can be tested first, and then the viscosity is calculated backward according to the time difference in actual work.
  • An example of this application is a blood sample, which is equally suitable for other liquid samples, such as serum samples, body fluid samples, and the like.
  • air and isotonic solution are taken during calibration, and air can be replaced with other gases.
  • isotonic solutions can also use reagents necessary for other functions of the instrument, such as Deionized water, phosphate buffer, sterol, dye solution, etc. must be used in the dyeing process of the dyeing instrument.
  • Viscosity does not require additional calibrants and controls, based on the viscosity of the isotonic solution that must be used in the push-staining instrument.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种推片染色机及其推片控制方法、装置,在进行推片时,采用被测样本的黏性来指导推片参数的设置。由于被测样本的黏性体现了众多因素的综合影响,更适合表征被测样本的性质,因此依据黏性确定推片参数能够获得更好的推片效果。

Description

推片染色机及其推片控制方法、 装置 技术领域
本发明涉及医疗设备, 具体涉及推片染色机及其推片控制方法。 背景技术
推片染色机的主要作用就是对常规检查后发现异常、 需要进行镜检 样本制作血涂片, 并进行染色。 在将被检样本制作成适合镜检的血涂片 时, 需要根据样本的性质设定滴血量、推片速度和推片角度等推片参数, 将血膜推展到合适的外观形态与合适的血膜厚度。
目前常用的推片技术主要基于样本的 HCT值来调整推片参数, HCT 值指的是一定容积的全血中红细胞所占的百分比, 又称红细胞比容, 其 在一定程度上反映血液的性质。这种方法虽然简便,但也存在以下不足: 一方面, 血样的性质不仅仅决定于 HCT值的高低, 并且随着 HCT值降 低, HCT值的影响权重会越来越小, 而血浆及其内部悬浊物将逐渐变为 主要影响因素。 各种外界因素, 例如环境温湿度、 放置时间、 保存条件 等, 都会影响到血膜的形态。 例如, 同样的血样, 同样推片参数下, 温 度越低血膜会越短越厚, 温度越高血膜则会越长越薄。 另一方面, 推片 染色机本来就是用于对异常样本进行处理,异常样本中 HCT值偏低的样 本比例很高, 因此, 在这种情况下, HCT值对推片参数的指导作用将会 降低, 如果根据 HCT值来调整推片参数, 可能得到不适当的推片参数, 从而影响血膜被推展的效果。 发明内容
依据本申请的第一方面,本申请提供一种推片染色机推片控制方法, 该方法包括:
根据被测样本的黏性确定推片参数;
按照推片参数控制推片。
依据本申请的第二方面, 本申请提供一种推片控制装置, 包括: 参数确定模块, 用于根据被测样本的黏性确定推片参数;
控制模块, 用于按照推片参数控制推片机构推片。
依据本申请的第三方面, 本申请提供一种推片染色机, 包括: 吸样管路, 用于吸取被测样本;
注射器, 用于驱动吸样管路吸取或排出被测样本;
推片机构,用于按照推片参数在基片上滴注被测样本并推展成薄膜; 处理器, 所述处理器分别与注射器和推片机构电连接, 用于控制注 射器驱动吸样管路的吸取或排出动作, 并根据所述被测样本的黏性得到 推片参数, 按照推片参数控制推片机构推片。
本申请实施例中采用被测样本的黏性来指导推片参数的设置, 由于 被测样本的黏性体现了众多因素的综合影响, 更适合表征被测样本的性 质, 因此依据黏性确定推片参数能够获得更好的推片效果。
附图说明
图 1是推片示意图;
图 2是本申请一种实施例中推片流程图;
图 3是本申请一种实施例中被测样本的相对粘度的检测流程图; 图 4是吸样机构一种具体实施例的结构示意图;
图 5是本申请一种实施例中相对粘度检测过程中管路状态示意图; 图 6是本申请一种实施例中粘度检测单元的结构示意图。
具体实施方式
如果要将血滴推展成外观尺寸(血膜面积, 宽度, 长度, 外观形状) 和镜下细胞分布均满足临床要求的血涂片, 必须要合理的选择样本滴血 体积(滴血量)、推片速度和推片角度三个主要的推片参数。如图 1所示, 依据实验得到的经验: 滴血量 V越多, 血膜厚度越厚, 长度越长 (宽度 一定); 推片速度 u越快, 厚度越厚, 长度越短; 推片角度 α越大, 厚度 越厚, 长度越短。
在本申请实施例中, 推片染色机在制作血涂片时, 根据血样的黏性 来指导推片参数的设置。影响血样黏性的因素除了 HCT值,还包括红细 胞的大小和形态、 红细胞的变形能力、 红细胞的聚集性、 白细胞血小板 的数量, 血浆及其内部的高分子悬浮物质(各种蛋白质, 脂类, 糖类) 、 样本温度、 放置时间等因素, 而血样黏性体现了众多因素的综合影响, 因此更适合表征血样的性质。
液体的表观粘度大致可反映液体的黏性, 因此在一种实施例中, 可 通过已有的技术检测出血样的表观粘度, 根据血样的表观粘度来指导推 片参数的设置,按照推片参数来控制推片。但血液的表观粘度检测复杂, 通常需要另外附加检测设备。 另外血液的表观粘度测量等待时间长, 血 样的黏性容易受温度和样本老化的影响, 表观粘度检测时的温度不一定 和样本在推片时的温度相同, 因此表观粘度检测出的样本黏性也不能准 确代表推片时的样本黏性。
在本申请优选的实施例中, 采用被测样本的相对粘度或粘度比值来 指导推片参数的设置。 被测样本的相对粘度为样本在推片温度下相对于 已知粘度的参照流体的粘度, 本申请中, 将检测被测样本的相对粘度时 的温度作为推片温度。 粘度比值为被测样本与参照流体的粘度比值。 检 测被测样本的相对粘度或粘度比值时, 首先选择至少一种参照流体, 通 过将参照流体和被测样本经相同设定条件的测试, 可计算出被测样本的 相对粘度或粘度比值。
下面以采用被测样本的相对粘度来指导推片为例进行说明。
当参照流体确定后,可预先得出参照流体在各种温度下的表观粘度, 当需要推片时, 其流程图如图 2所示, 包括以下步骤:
步骤 100 , 吸取被测样本。
步骤 110, 将被测样本经过和参照流体相同条件的检测。 参照流体 的检测优选在被测样本检测之前检测完毕,即在步骤 100之间检测完毕。
步骤 120 ,将被测样本的检测结果和参照流体的检测结果进行比较, 从而获得被测样本相对于参照流体的粘度比, 然后以测试温度下参照流 体的表观粘度为基础, 计算出被测样本的相对粘度。 参照流体在各温度 下的粘度可通过预先测试或查询的方式得到。
步骤 130, 根据被测样本的相对粘度确定推片参数。 推片参数主要 包括滴血量、 推片速度和推片角度等。 推片参数可根据相对粘度通过查 表、 查曲线或计算公式的方式得到。 根据实验, 样本相对粘度越大, 血 膜越不容易推展, 需要较低的推片速度, 较小的推片角度。 样本相对粘 度越小, 血膜越容易推展, 需要较高的推片速度和较大的推片角度。 根 据这一规律, 例如可通过大量样本的实验, 得到相对粘度和推片参数的 对应表, 当检测到当前被测样本的相对粘度时, 通过查对应表可得到适 合于该被测样本的推片参数。
步骤 140 , 按照推片参数控制推片机构动作。
步骤 150, 推片机构按照推片参数在基片上滴注被测样本并推展成 薄膜。
由于参照流体是确定的,其在各种温度下的表观粘度可以预先得到, 而在检测过程中, 参照流体的表观粘度考虑了温度的影响, 因此通过参 照流体和被测样本的粘度比值计算出的被测样本的相对粘度也考虑了温 度的影响, 并且, 当需要推片时才对被测样本的相对粘度进行检测, 相 对粘度的检测时间与推片时间相距 4艮近, 因此相对粘度能够更准确表征 推片时被测样本的黏性,消除了环境温度和样本存储时间等因素的影响。
为检测被测样本的相对粘度,本申请实施例提出黏性表征量的概念, 黏性表征量为物质流动时受物质的黏性影响的物理量, 该物理量可表示 为粘度的函数关系式, 检测被测样本的相对粘度的流程图如图 3所示, 包括以下步骤:
步骤 200, 检测黏性表征量和温度。 分别检测参照流体和被测样本 在管路中以相同条件流过时的黏性表征量, 同时检测参照流体在测试时 的第一温度。 检测参照流体的黏性表征量时, 参照流体应以设定条件在 管路中流过; 检测被测样本的黏性表征量时, 被测样本应以相同的设定 条件在管路中流过; 设定条件例如可以是设定的流量、 速度或体积。 检 测参照流体的管路可以和检测被测样本的管路是同一管路, 也可以不是 同一管路, 但管路的几何尺寸优选相同。
步骤 210, 将参照流体的黏性表征量和被测样本的黏性表征量进行 比较, 得到含有参照流体和被测样本的粘度比值的关系式。
步骤 220 , 获取参照流体在第一温度下的表观粘度。
步骤 230, 根据粘度比值的关系式和参照流体的表观粘度计算被测 样本的粘度, 将该粘度作为被测样本的相对粘度。
以下以黏性表征量为压力差为例进行详细说明。
实施例 1 :
推片染色机包括吸样机构、 推片机构和处理器, 吸样机构用于吸取 或排出流体, 推片机构用于按照推片参数在基片上滴注被测样本并推展 成薄膜, 处理器分别与吸样机构和推片机构连接, 分别用于控制吸样机 构和推片机构动作。 本申请中, 处理器还用于根据被测样本的黏性得到 推片参数, 按照推片参数控制推片机构推片。
被测样本的黏性可以通过用户在推片机外测得后输入推片染色机, 例如采用表观粘度的测试方法测得被测样本的表观粘度, 然后输入推片 染色机, 由处理器响应该输入, 根据输入的表观粘度选择推片参数。
在一种优选的实施例中, 当需要推片时, 采用推片染色机自身的机 构来检测被测样本的黏性, 吸样机构包括吸样管路、 注射器和检测器, 检测器设置在吸样管路上, 用于检测被测样本在管路中以设定条件流过 时的黏性表征量, 处理器接收检测器输出黏性表征量, 对黏性表征量进 行处理, 并根据处理结果确定推片参数。
如图 4所示为吸样机构一种具体实施例的结构示意图,本实施例中, 采用压力传感器作为检测黏性表征量的检测器, 此种情况下, 黏性表征 量为压力数据。 吸样机构包括吸样管路 1、 注射器 2、 样本针 3、 压力传 感器 5和温度传感器 6。 注射器 2的出口与吸样管路 1的第一端连通, 吸样管路 1 的第二端接有样本针 3 , 样本针 3用于从装有样本的试管 4 中吸样。 压力传感器 5和温度传感器 6分别设置在吸样管路 1上, 例如 可设置在吸样管路 1的第一端或中部, 分别用于检测吸样管路 1中的压 力和温度。 处理器分别与注射器电连接, 用于控制注射器驱动吸样管路 的吸取或排出动作。
处理器还根据压力传感器 5和温度传感器 6检测的压力数据和温度 计算参照流体和被测样本的粘度比,并进一步计算被测样本的相对粘度, 然后根据被测样本的黏性得到推片参数, 按照推片参数控制推片机构推 片。 在具体实施例中, 通常会选择液体作为参照流体。 为了保证吸样的 准确性, 正常情况下吸样管路和注射器中有液体, 同时为了避免血细胞 在接触到液体时形态发生变化, 该液体要求是等渗溶液。 这种情况下, 为方便计算, 参照流体包括参照气体和参照液体, 在一种具体实例中, 选择等渗溶液作为参照液体。 具体测试过程如下:
1.校准过程一: 注射器 2控制吸样管路 1 以吸样过程的吸样速度吸 取与吸样过程同等体积的空气, 压力传感器 5和温度传感器 6分别感知 此时吸样管路 1中的压力和温度。 记录过程中的压力数据和温度数据, 本实施例中, 压力传感器输出的为相对压力, 即相对于环境大气压的压 力差。
2.校准过程二: 注射器 2控制吸样管路 1 以吸样过程的吸样速度吸 取吸样过程同等体积的等渗溶液, 压力传感器 5和温度传感器 6分别感 知此时吸样管路 1中的压力和温度。记录过程中的压力数据和温度数据。
3.测量过程: 注射器 2控制吸样管路 1吸取样本, 压力传感器 5和 温度传感器 6分别感知此时吸样管路 1中的压力和温度。 记录过程中的 压力数据和温度。
4.取 3个过程中同一时刻的管路压力数据, 分别记参照气体的压力 差为 ΔΡ1、 参照液体的压力差为 ΔΡ2和被测样本的压力差为 ΔΡ3。在其 它实施例中,如果压力传感器输出的是绝对压力值, 则分别将参照气体、 参照液体和被测样本的绝对压力值与环境大气压力 Ρ0 之间的差值分别 记为 ΔΡ1、 Δ Ρ2 ^ Δ Ρ3 , 该时刻管路状态如图 5所示, 图 5中 7为管路 中的等渗溶液, 8为管路中的空气样本, 9为管路中的样本, 10为隔离 气柱。 如果校准过程和测量过程的时间比较接近, 则可看作校准过程和 测量过程的温度一致, 则 ΔΡ1、 ΔΡ2和 ΔΡ3满足如公式( 1 )〜公式( 3 ) 所述关系; (1)
ΑΡ20-ρ-κι0-ρ-κ2 (2)
ΑΡ30-ρ-Κι +ηΒ -ρ-Κ2 (3) 其中, η 为被测样本的相对粘度, η D为参照液体在第一温度下的 粘度, Q为管路中液体流动的流量, 为前段管路阻尼, 只与管路相关, 主要影响因素包括管路长度、 半径等; κ2为后段管路阻尼, 只与管路相 关, 主要影响因素包括管路长度、 半径等; APi为参照气体的压力差, △ P2为参照液体的压力差, △ P3为被测样本的压力差。
将公式( 1 )代入公式( 2 ), 并将公式( 2 )和公式( 3 )相比后得 1 公式 (4) 如下:
ΑΡ,-ΑΡ,
ΑΡ -ΑΡ, 通过查询 η。,可根据公式 (4) 计算出被测样本的相对粘度 η Β
在其它实施例中, 如果压力传感器输出的是绝对压力值, 当可以认 为参照液体的温度与被测样本的温度一致的情况下, 公式(4)中的压力 差可以替换成绝对压力值。
本申请实施例通过将未知的被测样本的黏性和已知的参照流体的黏 性进行比较, 从而计算出被测样本在实时温度下相对于该已知参照流体 的粘度, 这种方案在硬件方面不需要增加额外的检测设备, 只需要在原 有的吸样机构上增加一个压力传感器和温度传感器即可, 利用压力传感 器和温度传感器检测的数据即可计算出被测样本的相对粘度。 当推片染 色机处于恒温环境中时, 可以不需要在吸样机构上增加温度传感器, 可 由另外提供的温度计测得推片染色机所在的环境温度, 根据该环境温度 得到参照液体的表观粘度。 本实施例中, 被测样本不但在检测粘度的时 间上与推片的时间接近,而且在检测粘度的空间上也与推片的空间接近, 这使得被测样本检测粘度时的温度更接近于推片时的温度, 这种情况下 检测出的被测样本的粘度更能表征被测样本的黏性。 实施例 2:
在实际应用中,用户可能不期望在每次推片时,都要执行校准过程, 因此可预先对参照流体进行检测, 执行校准过程, 并保留检测结果。 对 于校准过程(即实施例 1的步骤 1、 2)等渗溶液温度和测量过程(步骤 3 ) 温度不一致的情况, 处理过程如下:
检测压力和温度的过程与实施例 1相同。
公式( 1 )、 公式( 2 )和公式( 3 )需要更改为如公式( 5 )、 公式( 6 ) 和公式 (7) 所示形式:
ΔΡι η =η。 T1 Q KX (5)
Figure imgf000007_0001
^Px n 7 l = LD T2.Q.KI (7) 式中, T\为校准时等渗溶液的温度; τ2为被测样本测量时的温度; ηο Τ1为等渗溶液在 Τ\时的粘度; riD T2为等渗溶液在 T2时的粘度; ΔΡ T1 为校准过程吸取空气时(温度为 —管路中压力与环境压力的差值; Δ— Ρ2Τ1为校准过程吸取等渗溶液时(温度为 )管路中压力与环境压力的差 值; ΔΡ3 Τ2为校准时 (温度为 Τ2) 管路中压力与环境压力的差值。
需要通过步骤 1、 2中的温度数据对公式(5)和公式(6)进行修正, 结果如公式 (8)、 公式 (9) 所示: Λ^— n ^n = Γ2 · ρ· ( 8 )
AP2 n H^IL ^ r,D Ti . Q . Ki + r,D Ti . ρ . ^ ( 9) 将公式( 8 )代入公式( 9 ), 并将公式( 9 )和公式( 7 )相比后得 1 公式 ( 10 ) 如下:
对于吸样管路较长或校准过程和测量过程时间相距较长的情况, 管 路中的等渗溶液的温度可能不一致, 采用本实施例的方案, 可对温度进 温度下的真实粘度。 ' ^ ' 采用本实施例, 由于参照流体是确定的, 因此可以预先执行校准过 程, ^测出参照流 ^的压 ^数据, 待需要推片时: 再进行吸^羊,、直接利 体的压力数据, 即可计算出被测样本在当前温度下的相对粘度, 不需要 增加额外的粘度测量动作。
根据本申请的发明实质和公开的内容, 本领域技术人员可以理解, 上述实施例中的参照液体也可以与预存液体不是同一种液体, 通过上述 实施例的检测方法和发明构思, 也可以计算被测样本的相对粘度。 实施例 3 :
本实施例的校准和测量过程同时或间隔时间较短的先后进行, 环境 温度变化小, 视为参照流体的温度和被测样本的温度相同。 在实施例 1 的方案上, 可以不测温度, 或者不包括温度传感器 6, 根据被测样本的 压力差与参照样本的压力差计算粘度比值, 如下:
Figure imgf000008_0001
然后根据粘度比值 ,利用预设的不同温度下粘度比值与推片参数 之间的关系, 输出当前环境温度下的推片参数。 环境温度为推片染色机 所在的环境中的温度, 可通过推片染色机上的温度传感器测得, 也可以 通过另外的温度计测得。 基于上述实施例方法的推片控制装置包括参数确定模块和控制模 块, 参数确定模块用于根据被测样本的黏性确定推片参数; 控制模块用 于按照推片参数控制推片机构推片。 参数确定模块包括粘度检测单元和 参数确定单元, 粘度检测单元用于检测被测样本的相对粘度, 被测样本 的相对粘度为样本在推片温度下相对于已知粘度的参照流体的表观粘 度; 参数确定单元用于根据所述相对粘度确定推片参数。
如图 6所示, 粘度检测单元包括第一计算子单元 11、 温度接收子单 元 12、 第二计算子单元 13、 比较子单元 14、 粘度获取子单元 15和相对 粘度计算子单元 16。 第一计算子单元 11用于计算参照流体在管路中以 设定条件流过时的黏性表征量, 所述黏性表征量为流动时受物质的黏性 影响的物理量, 该物理量可表示为粘度的函数关系式; 温度接收子单元 12用于接收温度传感器检测的管路中的温度, 包括检测参照流体时的第 一温度和 /或检测被测样本时的第二温度; 第二计算子单元 13用于计算 被测样本在管路中以设定条件流过时的黏性表征量;比较子单元 14用于 将参照流体的黏性表征量和被测样本的黏性表征量进行比较, 得到含有 参照流体和被测样本的粘度比值的关系式;粘度获取子单元 15用于获取 参照流体在第一温度下的表观粘度;相对粘度计算子单元 16根据粘度比 值的关系式和参照流体的粘度计算被测样本的粘度, 将该粘度作为被测 样本的相对粘度。
当黏性表征量为压力数据时,第一计算子单元 11用于接收参照流体 在管路中以设定流量流过时压力传感器检测的管路中的压力差; 第二计 算子单元 13 用于接收被测样本在管路中以设定流量流过时压力传感器 检测的管路中的压力差。
当管路中有预存液体时, 参照流体包括参照气体和参照液体, 压力 传感器检测的管路中的压力数据包括: 参照气体在管路中以设定流量流 过时管路中的压力差, 和参照液体在管路中以设定流量流过时管路中的 压力差。
当不考虑校准过程和测量过程的温度差别时, 被测样本的相对粘度 通过以下公式计算:
ΑΡ, - AR
ΑΡΊ -AR
其中, η B为被测样本的相对粘度, η D为参照液体在第一温度下的 粘度, A Pi为参照气体的压力差, Δ Ρ2为参照液体的压力差, Δ Ρ3为被 测样本的压力差。
当考虑校准过程和测量过程的温度差别时, 被测样本的相对粘度通 过以下公式计算:
?]D τιΑΡ3― ?]D τ2ΑΡ
ΑΡΊ - AR
其中, η Β为被测样本的相对粘度, η D_TI为参照液体在第一温度下 的表观粘度, η。—τ2为参照液体在第二温度下的表观粘度, ?1为参照气 体的压力差, Δ Ρ2为参照液体的压力差, Δ Ρ3为被测样本的压力差。 当推片染色机处于恒温环境中时, 可以不需要在吸样机构上增加温 度传感器, 可由另外提供的温度计测得推片染色机所在的环境温度, 根 据该环境温度得到参照液体的表观粘度。
根据本申请公开的内容, 本领域技术人员可以理解, 粘度检测单元 还可以根据被测样本的黏性表征量和参照流体在管路中以相同设定条件 流过时检测的黏性表征量计算被测样本与参照流体的粘度比值, 参数确 定单元根据粘度比值确定推片参数。 此种情况下, 通常需要检测推片染 色机所在的环境温度, 根据粘度比值和环境温度通过查表、 查曲线或计 算公式的方式得到推片参数。
本申请中的示例是利用从试管中吸样过程的压力数据, 除此外, 还 可以利用血样在管路中其它流动状态下的压力数据, 包括但不仅限于输 送、 分配或排出过程中的压力数据。
本申请中示例是利用注射器以固定的流量进行吸样, 也可以使用别 的装置以获得固定的流量, 如旋转活塞泵、 蠕动泵等, 还可以使用以特 定规律变化的流量来吸样,比如流量从 0以勾加速的方式增加到 300uL/s 等。
根据本申请的发明实质和公开的内容, 本领域技术人员可以理解, 本申请中的黏性表征量还可以是其它物理量, 例如速度, 例如在吸样管 路特定位置增加一个或多个光传感器, 测量从吸样开始到血样到达光传 感器的位置或吸样过程中血样经过两个或多个传感器的时间差, 如图 5 所示 , 例如可以测试 K2段血样或稀释液头部触发光耦的时间 ,也可以测 试^段稀释液尾部触发光耦的时间。 因为管路在压力下会发生变形, 粘 度越大, 吸样动作产生的压力差就越大, 因此而产生的管路变形就会越 大, 从而导致粘度越大的样本到达光耦的时间就越长或血样到达两个光 耦的时间差就越大。 即可以以此关系计算血样粘度。 实际运动是一个加 速度不断递减的加速运动, 可以先通过测试出来粘度和时间差之间的关 系, 然后在实际工作时根据时间差反算出粘度。
本申请中示例是血液样本, 该方法同样适合于其它液体样本, 如血 清样本、 体液样本等。
本申请中, 校准时吸取的是空气和等渗溶液, 空气可以替换成其它 气体, 比如有些测试需要在无氧环境下进行测试, 等渗溶液也可以使用 仪器其它功能所必须的试剂, 如在推片染色仪器中染色过程中必须使用 到的去离子水、 磷酸緩冲液、 曱醇、 染液等。 本申请有以下几个优点:
1. 结构简单, 利用推片染色仪器原有的吸样机构, 只需要增加一个 压力传感器和温度传感器即可;
2. 不需要增加额外的测量粘度相关的动作,直接利用仪器吸样机构 吸样过程的压力数据;
3. 粘度不需要额外的校准物和质控物, 以推片染色仪器必需要使用 的等渗溶液的粘度为基准。
本领域技术人员可以理解, 上述实施方式中各种方法的全部或部分 步骤可以通过程序来指令相关硬件完成, 该程序可以存储于一计算机可 读存储介质中, 存储介质可以包括: 只读存储器、 随机存储器、 磁盘或 光盘等。
以上应用了具体个例对本发明进行阐述, 只是用于帮助理解本发明 并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想, 可以对上述具体实施方式进行变化。

Claims

权 利 要 求
1. 一种推片染色机推片控制方法, 其特征在于包括:
根据被测样本的黏性确定推片参数;
按照推片参数控制推片。
2.如权利要求 1所述的方法, 其特征在于, 根据被测样本的黏性确 定推片参数包括:
检测被测样本在管路中以设定条件流过时的黏性表征量, 所述黏性 表征量为物质流动时受物质的黏性影响的物理量, 该物理量可表示为粘 度的函数关系式;
对被测样本的黏性表征量进行处理;
根据处理结果确定推片参数。
3.如权利要求 2所述的方法, 其特征在于, 根据被测样本的相对粘 度确定推片参数, 所述被测样本的相对粘度为样本在推片温度下相对于 已知表观粘度的参照流体的粘度;对被测样本的黏性表征量的处理包括: 将被测样本的黏性表征量与参照流体在管路中以相同设定条件流过 时的黏性表征量进行比较;
根据比较结果和已知的参照流体的表观粘度计算被测样本的粘度, 将该粘度作为被测样本的相对粘度。
4.如权利要求 3所述的方法, 其特征在于, 根据所述相对粘度通过 查表、 查曲线或计算公式的方式得到推片参数。
5.如权利要求 3所述的方法, 其特征在于, 在检测参照流体在管路 中以相同设定条件流过时的黏性表征量时,同时检测管路中的第一温度, 参照流体的粘度为参照流体在第一温度下的表观粘度。
6.如权利要求 5所述的方法, 其特征在于, 在检测被测样本在管路 中以设定条件流过时的黏性表征量时, 还同时检测管路中的第二温度。
7.如权利要求 2所述的方法, 其特征在于, 根据被测样本与参照流 体的粘度比值确定推片参数, 对被测样本的黏性表征量的处理包括: 将被测样本的黏性表征量与参照流体在管路中以相同设定条件流过 时的黏性表征量进行比较, 得到被测样本与参照流体的粘度比值。
8.如权利要求 7所述的方法, 其特征在于, 在检测被测样本在管路 中以设定条件流过时的黏性表征量时, 还同时检测环境温度, 根据所述 粘度比值和环境温度通过查表、查曲线或计算公式的方式得到推片参数。
9.如权利要求 2-8 中任一项所述的方法, 其特征在于, 所述黏性表 征量为压力数据, 所述压力数据包括绝对压力值或相对于环境大气压的 压力差。
10. 如权利要求 9所述的方法, 其特征在于, 当管路中有预存液体 时, 所述参照流体包括参照气体和参照液体, 参照流体的压力数据包括 参照气体的压力数据和参照液体的压力数据。
11. 如权利要求 5所述的方法, 其特征在于, 所述黏性表征量为压 力差, 当管路中有预存液体时, 所述参照流体包括参照气体和参照液体, 所述被测样本的相对粘度通过以下公式计算:
_ AP3 - AP 其中, η B为被测样本的相对粘度, η D为参照液体在第一温度下的 粘度, 为参照气体的压力差, Δ Ρ2为参照液体的压力差, Δ Ρ3为被 测样本的压力差。
12. 如权利要求 6所述的方法, 其特征在于, 所述黏性表征量为压 力差, 当管路中有预存液体时, 所述参照流体包括参照气体和参照液体; 所述被测样本的相对粘度通过以下公式计算:
η„ - ~ = =
ΑΡ2 - ΑΡ,
其中, η Β为被测样本的相对粘度, η D_TI为参照液体在第一温度下 的粘度, η。— T2为参照液体在第二温度下的粘度, 为参照气体的压力 差, Δ Ρ2为参照液体的压力差, Δ Ρ3为被测样本的压力差。
13. 如权利要求 10-11中任一项所述的方法, 其特征在于, 所述参 照液体为被测样本的等渗溶液。
14. 如权利要求 3-8中任一项所述的方法, 其特征在于, 所述管路 为推片染色机的吸样管路, 通过控制吸样管路吸取等体积的参照流体和 被测样本, 从而使得参照流体和被测样本流过管路的流量相同。
15. 如权利要求 2-8中任一项所述的方法, 其特征在于, 所述黏性 表征量为速度。
16.—种推片控制装置, 其特征在于包括:
参数确定模块, 用于根据被测样本的黏性确定推片参数;
控制模块, 用于按照推片参数控制推片机构推片。
17. 如权利要求 16所述的推片控制装置, 其特征在于, 参数确定 模块包括:
粘度检测单元, 用于接收被测样本在管路中以设定条件流过时检测 的黏性表征量, 对被测样本的黏性表征量进行处理, 所述黏性表征量为 物质流动时受物质的黏性影响的物理量, 该物理量可表示为粘度的函数 关系式;
参数确定单元, 用于根据粘度检测单元的处理结果确定推片参数。
18. 如权利要求 17所述的推片控制装置, 其特征在于, 粘度检测 单元用于根据被测样本的黏性表征量和参照流体在管路中以相同设定条 件流过时检测的黏性表征量计算被测样本的相对粘度, 所述被测样本的 相对粘度为样本在推片温度下相对于已知粘度的参照流体的粘度; 参数 确定单元用于根据所述相对粘度确定推片参数。
19. 如权利要求 18所述的推片控制装置, 其特征在于, 粘度检测 单元包括:
第一计算子单元, 用于计算参照流体在管路中以设定条件流过时的 黏性表征量, 所述黏性表征量为流动时受物质的黏性影响的物理量, 该 物理量可表示为粘度的函数关系式;
第二计算子单元, 用于计算被测样本在管路中以设定条件流过时的 黏性表征量;
比较子单元, 用于将参照流体的黏性表征量和被测样本的黏性表征 量进行比较, 得到含有参照流体和被测样本的粘度比值的关系式;
粘度获取子单元, 用于获取参照流体的粘度;
相对粘度计算子单元, 根据粘度比值的关系式和参照流体的粘度计 算被测样本的粘度, 将该粘度作为被测样本的相对粘度。
20. 如权利要求 17-19中任一项所述的推片控制装置,其特征在于, 所述黏性表征量为压力数据, 所述第一计算子单元用于接收参照流体在 管路中以设定流量流过时压力传感器检测的管路中的压力数据; 所述第 二计算子单元用于接收被测样本在管路中以设定流量流过时压力传感器 检测的管路中的压力数据。
21. 如权利要求 20所述的推片控制装置, 其特征在于, 粘度检测 单元还包括:
温度接收子单元, 用于接收参照流体在管路中流过时温度传感器检 测的管路中的第一温度;
所述粘度获取子单元用于获取参照流体在第一温度下的表观粘度。
22. 如权利要求 21 所述的推片控制装置, 其特征在于, 当管路中 有预存液体时, 所述参照流体包括参照气体和参照液体, 压力传感器检 测的管路中的压力数据包括参照气体的压力数据、 参照液体的压力数据 和被测样本的压力数据; 所述被测样本的相对粘度等于被测样本的压力 数据与参照气体的压力数据的差值除以参照液体的压力数据与参照气体 的压力数据的差值后再乘以参照液体在第一温度下的表观粘度。
23. 如权利要求 21 所述的推片控制装置, 其特征在于, 当管路中 有预存液体时, 所述参照流体包括参照气体和参照液体, 压力数据为相 对于环境大气压的压力差, 压力传感器检测的管路中的压力差包括参照 气体的压力差、 参照液体的压力差和被测样本的压力差;
温度接收子单元还用于接收被测样本在管路中以设定流量流过时温 度传感器检测的管路中的第二温度;
所述被测样本的相对粘度通过以下公式计算: ηη - ~ = = 其中, η B为被测样本的相对粘度, η D_TI为参照液体在第一温度下 的粘度, η。— T2为参照液体在第二温度下的粘度, A Pi为参照气体的压力 差, Δ Ρ2为参照液体的压力差, Δ Ρ3为被测样本的压力差。
24. 如权利要求 23所述的推片控制装置, 其特征在于, 所述参照 液体为被测样本的等渗溶液, 所述管路为推片染色机的吸样管路, 通过 控制吸样管路吸取等体积的参照流体和被测样本, 从而使得参照流体和 被测样本流过管路的流量相同。
25. 如权利要求 18所述的推片控制装置, 其特征在于, 参数确定 单元根据所述相对粘度通过查表、 查曲线或计算公式的方式得到推片参 数。
26. 如权利要求 17所述的推片控制装置, 其特征在于, 粘度检测 单元用于根据被测样本的黏性表征量和参照流体在管路中以相同设定条 件流过时检测的黏性表征量计算被测样本与参照流体的粘度比值, 参数 确定单元用于根据所述粘度比值确定推片参数。
27. 如权利要求 26所述的推片控制装置, 其特征在于, 参数确定 单元根据所述粘度比值和环境温度通过查表、 查曲线或计算公式的方式 得到推片参数。
28.—种推片染色机, 其特征在于包括:
吸样管路, 用于吸取被测样本;
注射器, 用于驱动吸样管路吸取或排出被测样本;
推片机构,用于按照推片参数在基片上滴注被测样本并推展成薄膜; 处理器, 所述处理器分别与注射器和推片机构电连接, 用于控制注 射器驱动吸样管路的吸取或排出动作, 并根据所述被测样本的黏性得到 推片参数, 按照推片参数控制推片机构推片。
29.如权利要求 28所述的推片染色机, 其特征在于, 还包括: 检测器, 其设置在吸样管路上, 用于检测被测样本在管路中以设定 条件流过时的黏性表征量, 所述黏性表征量为流动时受物质的黏性影响 的物理量, 该物理量可表示为粘度的函数关系式, 所述检测器的输出端 耦合到处理器;
所述处理器接收检测器输出黏性表征量, 对黏性表征量进行处理, 并根据处理结果确定推片参数。
30.如权利要求 29所述的推片染色机, 其特征在于,
所述吸样管路还用于吸取参照流体;
所述检测器还用于检测参照流体在管路中以设定条件流过时的黏性 表征量; 所述处理器还用于控制注射器驱动吸样管路吸取或排出参照流体和 被测样本,将被测样本的黏性表征量与参照流体的黏性表征量进行比较, 根据比较结果和已知的参照流体的表观粘度计算被测样本的相对粘度, 根据被测样本的相对粘度确定推片参数, 所述被测样本的相对粘度为样 本在推片温度下相对于已知表观粘度的参照流体的粘度。
31. 如权利要求 29所述的推片染色机, 其特征在于, 所述检测器 为压力传感器, 所述黏性表征量为压力传感器检测的压力数据。
32. 如权利要求 30所述的推片染色机, 其特征在于, 还包括: 温度传感器, 其设置在吸样管路上, 用于感知流体流过吸样管路时 管路中的温度并输出至处理器。
33.如权利要求 32所述的推片染色机, 其特征在于,
所述吸样管路还用于吸取参照流体;
所述检测器用于分别检测参照流体和被测样本在管路中以设定条件 流过时的压力数据, 并输出至处理器。
34. 如权利要求 33所述的推片染色机, 其特征在于, 所述处理器 根据压力传感器和温度传感器的输出计算参照流体和被测样本的粘度比 值, 然后根据测试温度下已知的参照流体的表观粘度计算被测样本的相 对粘度, 根据所述相对粘度确定推片参数, 所述被测样本的相对粘度为 样本在推片温度下相对于已知表观粘度的参照流体的粘度。
35. 如权利要求 34所述的推片染色机, 其特征在于, 当需要推片 时, 所述处理器控制注射器驱动吸样管路吸取设定体积的参照流体, 接 收压力传感器检测的参照流体的压力和温度传感器检测的管路中的第一 温度; 然后所述处理器控制注射器驱动吸样管路吸取设定体积的被测样 本, 接收压力传感器检测的被测样本的压力数据, 根据被测样本和参照 流体的压力数据和粘度的关系, 计算被测样本的相对粘度。
36. 如权利要求 34所述的推片染色机, 其特征在于, 所述参照流 体包括参照气体和参照液体, 在推片前, 所述处理器分别控制注射器驱 动吸样管路吸取设定体积的参照气体和参照液体, 分别接收压力传感器 检测的参照气体的压力数据、 参照液体的压力数据和温度传感器检测的 管路中的第一温度; 当需要推片时, 所述处理器控制注射器驱动吸样管 路吸取设定体积的被测样本, 接收压力传感器检测的被测样本的压力数 据和温度传感器检测的管路中的第二温度, 然后根据被测样本和参照流 体的压力数据和粘度的关系, 计算被测样本的相对粘度。
37. 如权利要求 31 所述的推片染色机, 其特征在于, 所述处理器 根据压力传感器的输出计算参照流体和被测样本的粘度比值, 根据所述 粘度比值和环境温度确定推片参数。
PCT/CN2014/073797 2014-03-20 2014-03-20 推片染色机及其推片控制方法、装置 WO2015139276A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2014/073797 WO2015139276A1 (zh) 2014-03-20 2014-03-20 推片染色机及其推片控制方法、装置
CN201911312739.5A CN111060383B (zh) 2014-03-20 2014-03-20 推片染色机及其推片控制方法
CN201480074056.XA CN105934663B (zh) 2014-03-20 2014-03-20 推片染色机及其推片控制方法、装置
US15/271,089 US9995660B2 (en) 2014-03-20 2016-09-20 Smear staining machine and smearing control method and device thereof
US15/963,819 US10648892B2 (en) 2014-03-20 2018-04-26 Smear staining machine
US16/808,177 US11333586B2 (en) 2014-03-20 2020-03-03 Smear staining machine
US17/701,490 US11808676B2 (en) 2014-03-20 2022-03-22 Smear staining machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/073797 WO2015139276A1 (zh) 2014-03-20 2014-03-20 推片染色机及其推片控制方法、装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/271,089 Continuation US9995660B2 (en) 2014-03-20 2016-09-20 Smear staining machine and smearing control method and device thereof

Publications (1)

Publication Number Publication Date
WO2015139276A1 true WO2015139276A1 (zh) 2015-09-24

Family

ID=54143694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073797 WO2015139276A1 (zh) 2014-03-20 2014-03-20 推片染色机及其推片控制方法、装置

Country Status (3)

Country Link
US (4) US9995660B2 (zh)
CN (2) CN105934663B (zh)
WO (1) WO2015139276A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134664A1 (zh) * 2019-12-31 2021-07-08 深圳迈瑞生物医疗电子股份有限公司 一种样本分析系统及其自动精度管理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20163488A1 (it) * 2016-05-16 2017-11-16 Univ Degli Studi Di Siena Sistema per guidare il passo di un soggetto

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083759A (en) * 1997-12-30 2000-07-04 University Of Hawaii Blood smearing cassette
CN101694431A (zh) * 2009-10-15 2010-04-14 北京赛尔蒂扶科技发展有限公司 一种自动化的外周血液推片装置
US20130021461A1 (en) * 2011-07-22 2013-01-24 Constitution Medical, Inc. Sample applicator sensing and positioning
CN103175722A (zh) * 2013-03-26 2013-06-26 宁波卫生职业技术学院 涂片机
CN103364236A (zh) * 2012-04-10 2013-10-23 深圳迈瑞生物医疗电子股份有限公司 确定推片参数的装置、方法、推片染色机及血涂片制作方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650332A (en) * 1995-11-14 1997-07-22 Coulter International Corp. Method for the preparation of microscope slides
US7131318B2 (en) * 2004-09-28 2006-11-07 Phase Psl Instrument Inc. Viscometer
US7300804B2 (en) * 2004-11-15 2007-11-27 Beckman Coulter, Inc. Method and apparatus for controlling the uniform smearing of a biological liquid over a substrate
CN2814396Y (zh) * 2005-08-22 2006-09-06 北京普利生仪器有限公司 基于加样毛细管路的流体粘度测量装置
CN1920526B (zh) * 2005-08-22 2012-01-11 北京普利生仪器有限公司 一种毛细管路的流体粘度测量方法及装置
CN2855326Y (zh) * 2005-12-21 2007-01-10 深圳迈瑞生物医疗电子股份有限公司 血涂片制备装置
CN100415314C (zh) * 2006-03-17 2008-09-03 浙江浙大医学仪器有限公司 注射器推杆安装不正确报警传动装置
JP2008161492A (ja) * 2006-12-28 2008-07-17 Nippon Seimitsu Sokki Kk 血液の流動性評価方法および装置
CN201555750U (zh) * 2009-06-03 2010-08-18 浙江安瑞森信息材料有限公司 光盘旋涂涂胶模拟测试定位架
GB2489920A (en) * 2011-04-06 2012-10-17 Peters Aremu Apparatus and method for automatically preparing pre-analysis cytological specimens
WO2013101777A1 (en) * 2011-12-28 2013-07-04 Abbott Laboratories Automated smear making apparatus
CN103364242B (zh) * 2013-07-11 2015-05-13 四川美生科技有限公司 全自动医学检验血液推片染色机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083759A (en) * 1997-12-30 2000-07-04 University Of Hawaii Blood smearing cassette
CN101694431A (zh) * 2009-10-15 2010-04-14 北京赛尔蒂扶科技发展有限公司 一种自动化的外周血液推片装置
US20130021461A1 (en) * 2011-07-22 2013-01-24 Constitution Medical, Inc. Sample applicator sensing and positioning
CN103364236A (zh) * 2012-04-10 2013-10-23 深圳迈瑞生物医疗电子股份有限公司 确定推片参数的装置、方法、推片染色机及血涂片制作方法
CN103175722A (zh) * 2013-03-26 2013-06-26 宁波卫生职业技术学院 涂片机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134664A1 (zh) * 2019-12-31 2021-07-08 深圳迈瑞生物医疗电子股份有限公司 一种样本分析系统及其自动精度管理方法

Also Published As

Publication number Publication date
CN105934663A (zh) 2016-09-07
US9995660B2 (en) 2018-06-12
US11333586B2 (en) 2022-05-17
US20220214251A1 (en) 2022-07-07
US20190120733A1 (en) 2019-04-25
US11808676B2 (en) 2023-11-07
CN105934663B (zh) 2020-01-14
US10648892B2 (en) 2020-05-12
CN111060383A (zh) 2020-04-24
US20200240880A1 (en) 2020-07-30
CN111060383B (zh) 2022-06-14
US20170010191A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
US20070177986A1 (en) Method and apparatus for evaluating a dosing operation
US11874199B2 (en) Device and process for determining the size of a leak hole in a sample
US11524130B2 (en) Device, system and method for thermal capnography
EA025809B1 (ru) Способ и устройство для измерения концентрации алкоголя в выдыхаемом воздухе
EP2861983B1 (en) Method for measuring breath alcohol concentration and apparatus therefor
US11808676B2 (en) Smear staining machine
US6632679B1 (en) Method to determine the speed of sedimentation of blood and other parameters correlated thereto, and relative apparatus
US20160054297A1 (en) Method and apparatus for detecting breath alcohol concentration based on acoustic breath sampler
CN110383075A (zh) 自动分析装置
JP4054324B2 (ja) 液中の気泡の検出方法
JP7461973B2 (ja) 補償システムおよび分析物バイオセンサ内のサーミスタ感知の方法
CN117469139A (zh) 用于血液流变仪的泵速控制系统及其控制方法
IT201800004630A1 (it) Apparato e procedimento per la determinazione della velocita' di sedimentazione del sangue e di altri parametri ad essa correlati
CN114112169A (zh) 一种压力检测电路以及血液分析装置
CA2938402C (en) Biomarker normalization
EP2799880A1 (en) Apparatus and method for measuring hemostatic function using blood mobility
JP2019053058A (ja) 粒子分析装置
JP2007093252A (ja) 電解質分析装置の温調システム
JP2003344432A (ja) 動的な計量流体量判定方法および関連装置
US10041406B2 (en) Flow rate measurement device, fuel efficiency measurement device, program for flow rate measurement device and flow rate measurement method
JP2019120561A (ja) センサモジュール
CN202735327U (zh) 盘装微量氧气体检测仪
CN114522297B (zh) 医用输液泵检测仪的检定方法、装置、终端、存储介质
WO2022201485A1 (ja) 粘度や表面張力を測定するシステム、および粘度や表面張力を測定する方法
JP2001033358A (ja) 自動分注装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/03/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14886040

Country of ref document: EP

Kind code of ref document: A1