WO2015137474A1 - 配管又はタンク又は機器の気体溜まり解消装置 - Google Patents

配管又はタンク又は機器の気体溜まり解消装置 Download PDF

Info

Publication number
WO2015137474A1
WO2015137474A1 PCT/JP2015/057394 JP2015057394W WO2015137474A1 WO 2015137474 A1 WO2015137474 A1 WO 2015137474A1 JP 2015057394 W JP2015057394 W JP 2015057394W WO 2015137474 A1 WO2015137474 A1 WO 2015137474A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pipe
tank
equipment
negative pressure
Prior art date
Application number
PCT/JP2015/057394
Other languages
English (en)
French (fr)
Inventor
射場泰熙
Original Assignee
射場泰熙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 射場泰熙 filed Critical 射場泰熙
Priority to US15/125,082 priority Critical patent/US20170045063A1/en
Publication of WO2015137474A1 publication Critical patent/WO2015137474A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/07Arrangement or mounting of devices, e.g. valves, for venting or aerating or draining

Definitions

  • the present invention relates to elimination of gas accumulation during liquid conveyance.
  • a float type automatic air vent valve is used as a method of preventing gas (air) accumulation in tanks and equipment connected to pipes and pipes. Since the float type automatic air vent valve discharges gas to the outside of the system, it has a structure that sucks air when the system is in a non-pressure state. Moreover, some liquid was discharged at the time of gas discharge, and it was necessary to take measures against drainage (drainage pipe) outside the system at the time of failure and clogging of garbage. However, chemicals and foods that cannot be discharged outside the system are difficult to sanitize, and even in the management of dangerous liquids, the discharge does not rise or fall in the layout of the line piping, so that gas is not retained. If you bypass the pipe for a long time, it becomes complicated. In addition, it is necessary to take measures to eliminate the gas pool that is sucked by the pump.
  • the present invention provides a drawing pipe inlet at the uppermost part of the gas reservoir in the means for carrying the gas together with the liquid in the system, and connects the leading drawing pipe to the outlet side pipe to carry the gas between the tank and the equipment and the outlet side pipe.
  • a negative pressure generating head, a valve body, a throttle unit, a water wheel, or a torsional rotation generating unit that generates a force is disposed or combined to obtain a conveyance pressure to prevent gas accumulation.
  • the present invention generates gas conveying force between the tank and the device and the outlet pipe in the means for conveying the gas in the same direction in the liquid flow direction.
  • FIG. 1 is a drawing in which an inlet, an inlet pipe, and a negative pressure generating head are arranged in a gas reservoir of a pipe.
  • Example 1 FIG. 2 is a drawing in which a suction port, a suction pipe, and a negative pressure generating head are arranged in a gas reservoir of a tank or equipment.
  • Example 2 FIG. 3 is a drawing in which a suction port, a suction pipe, a negative pressure generating head, and a valve body are arranged in a gas reservoir of a tank or equipment.
  • Example 3 FIG.
  • FIG. 4 is a drawing in which a drawing port, a drawing pipe, a negative pressure generating head, a throttle unit, and a torsional rotation generating unit are arranged in a gas reservoir of a tank or equipment.
  • FIG. 5 is a drawing in which an inlet, an inlet pipe, a negative pressure generating head, and a throttle part are arranged in a gas reservoir of a tank or equipment.
  • FIG. 6 is a drawing in which a suction port, a suction pipe, a negative pressure generation head, a valve body, and a torsional rotation generation unit are arranged in a gas reservoir of a tank or equipment.
  • FIG. 5 is a drawing in which an inlet, an inlet pipe, a negative pressure generating head, and a throttle part are arranged in a gas reservoir of a tank or equipment.
  • FIG. 6 is a drawing in which a suction port, a suction pipe, a negative pressure generation head, a valve body, and a torsional rotation
  • FIG. 7 is a cross-sectional view of a gas reservoir of a tank or equipment, A, B, and angle comparison, and C, an outlet piping position.
  • FIG. 8 is a drawing in which a drawing port, a drawing pipe, a negative pressure generating head, and a water turbine and a generator or pump are arranged in a torsional rotation generating unit in a gas reservoir of a pipe.
  • FIG. 9 is a drawing in which a water inlet, a lead-in pipe, and a water turbine and a generator or pump are arranged in a torsional rotation generator in a gas reservoir of a pipe.
  • the means for obtaining the transport pressure prevents gas accumulation.
  • 1 is a cross-sectional view.
  • 13 inlet pipe inlets are arranged on the uppermost portion where the pressure is accumulated, and is connected to 6 negative pressure generating heads through 12 inlet pipes.
  • the negative pressure generating head acts as a resistance to fluid flow, and the side receiving the flow has a positive pressure and the back side has a negative pressure.
  • the negative pressure suction force increases as the resistance area of the negative pressure generating head increases.
  • inhales gas from 13 inlet pipe inlets is produced
  • suction is possible because gas has less fluid resistance of the 12 lead-in tube. This is possible if the suction force of the 6 negative pressure generating head due to the liquid flow rate exceeds the drop pressure of 3 m, but if the liquid flow rate is slow, the suction pressure becomes insufficient.
  • the required flow rate is higher when the buoyancy height of the 4 gas is higher, and the pressure difference generated by the flow rate resistance is required.
  • the pressure difference is the value obtained by subtracting the water column height above the water supply pressure and the tube resistance. Cannot be exceeded.
  • a structure that does not collect gas in a system that does not discharge outside the system using a float type air vent valve will be constructed by transportation in the system. In addition, measures to prevent water leakage are avoided, and no inflow of outside air occurs during negative pressure in the pipe.
  • FIG. 2 is a cross-sectional view.
  • nine tanks or devices are arranged between the two inlet pipes and the three outlet pipes. This will be described in terms of means for preventing 7 gas from accumulating in the upper part of these 9 tanks or equipment.
  • the 13 inlet pipe inlet is arranged at the uppermost part where 7 gas is accumulated, and is connected to the 6 negative pressure generating head through the 12 inlet pipe.
  • the negative pressure generating head has the same structure as that in the description of FIG. 6 As for the arrangement position of the negative pressure generating head, the part where the flow velocity of the three outlet pipes is fast, that is, the center part of the normal pipe is the fastest.
  • the 7 gas conveying force is generated by the sum of the pressure difference due to the difference in cross-sectional area between 9 tanks or equipment and 3 outlet pipes depending on the flow velocity and the suction force of the 6 negative pressure generating head. Utilizing the action of 7 gases flowing into the leading 12 lead-in pipe due to resistance when the liquid moves from 9 tanks or equipment to the 3 outlet pipe. This is possible when the flow velocity is high as a condition, but when it is slow, the carrying force of 7 gases becomes insufficient.
  • the required flow rate needs to be proportional to the 5 air pool height.
  • FIG. 7 is a side view. If 3 outlet pipes are arranged at the top of 9 tanks or equipment as shown in FIG. 7C, gas accumulation will not occur, but 3 outlet pipes are arranged in the center of 9 tanks or as shown in FIGS.
  • C in FIG. 7 is a problem as the axial position of the rotating bodies.
  • 7B when the 13 inlet pipe inlet is stopped at the position where the 13 inlet pipe inlet comes to the top, the gas is sucked and disappears, but the 13 inlet pipe inlet is stopped at the position of 60 degrees in FIG. It is possible to store the same amount of gas every time. For example, it becomes easy to change the ratio of gas to liquid by changing the angle of the position where the 13 inlets come. This is effective when a mousse product is made by mixing gas and liquid by rotating 9 tanks or equipment.
  • FIG. 5 is a cross-sectional view.
  • an eight throttle part is provided, and the eight throttle part is equivalent to an orifice.
  • the conveying force of 7 gas is generated by the sum of the pressure difference due to the difference in cross-sectional area between 9 tanks or equipment and 8 throttle parts due to the flow velocity and the suction force of the 6 negative pressure generating head.
  • FIG. 4 is a cross-sectional view showing the AA ′ cross-section in the figure.
  • FIG. 5 shows an arrangement in which a 14 twist rotation generator is provided.
  • the negative pressure generating head has the same structure as that in the description of FIG.
  • a 14-torsion rotation generator and an 8-throttle part are arranged at the connection between 9 tanks or equipment and the 3 outlet pipe.
  • the 19 liquid flows merge from the 16 inflow direction to the 17 twist rotation gathering direction by 15 inflow holes provided in the 14 torsion rotation generation unit.
  • the 15 inflow holes are eccentrically arranged in the 14 twist rotation generating portion and arranged in four directions. The number of directions is increased or decreased depending on the diameter and fluid viscosity.
  • 15 inflow holes are arranged in 4 rows and 2 rows, and a total of 8 15 inflow holes are described. However, one or a plurality of 15 inflow holes can generate a rotating flow.
  • the fluid twists and accelerates toward the 8 throttling part and flows in the direction of 18 centrifugal diffusion, so that a sufficient flow velocity is generated in the vicinity of the 6 negative pressure generating head of the 3 outlet pipe, and the 6 negative pressure generating head Negative pressure also increases.
  • the gas conveying force is generated by the sum of the pressure difference due to the difference in cross-sectional areas of 9 tanks or equipment and 8 throttle parts according to the flow velocity and the suction force of the 6 negative pressure generating head.
  • the effect of the 14 torsional rotation generator is advantageous in reducing the flow velocity resistance by preventing the turbulent flow from the 9 tanks or equipment to the 3 outlets, reducing the resistance, and increasing the cross-sectional area of the 8 throttling part.
  • FIG. 3 is a cross-sectional view.
  • nine tanks or devices are arranged between the two inlet pipes and the three outlet pipes. This will be described in terms of means for preventing 7 gas from accumulating in the upper part of these 9 tanks or equipment.
  • the 13 inlet pipe inlet is arranged at the uppermost part where 7 gas is accumulated, and is connected to the 6 negative pressure generating head through the 12 inlet pipe.
  • the negative pressure generating head has the same structure as that in the description of FIG. 21 valve body (open position) and 22 valve body (closed position) are the same valve body, and have shown the position. There are buoyancy type, gravity type and spring type.
  • the shaft pin of the 20 valves is arranged on the lower side to be a buoyancy type.
  • the valve pin When the valve pin is provided by arranging the shaft pin of the 20 valves on the upper side, it operates as a gravity type.
  • the gravity type is the weight of the valve body.
  • the shaft pin of the 20 valve can be closed corresponding to all angles such as up and down.
  • the valve element is located at the connection between 9 tanks or equipment and 3 outlet pipes, but is located on the 9 tank or equipment side from the 6 negative pressure generating head.
  • the gas transport force is generated by the sum of the transport force due to the pressure difference due to the difference in cross-sectional area between 9 tanks or equipment and 3 outlet pipes due to the flow velocity, the pressure difference due to the suction force of the 6 negative pressure generating head, and the closing force of the valve body.
  • 6 No negative pressure generating head is provided, and also functions as an opening of a 12 lead-in pipe.
  • the negative pressure suction force at this time is generated by the sum of the difference in pressure due to the pressure difference due to the pressure difference due to the difference in cross-sectional area between 9 tanks or equipment and 3 outlet pipes depending on the flow velocity.
  • the valve body is closed by buoyancy, spring force or gravity, but the flow velocity is generated and the force to open the valve body works, and the opening gradually increases. .
  • FIG. 6 is a transverse cross-sectional view showing the AA ′ cross section.
  • the inlet of 13 inlet pipes is arranged at the uppermost portion where 7 gas is accumulated, and is connected to the head 6 for generating negative pressure through the inlet 12 pipe.
  • the negative pressure generating head has the same structure as that in the description of FIG.
  • a 14-torsion rotation generator and a valve body are arranged at the connection between 9 tanks or equipment and the 3 outlet pipe.
  • 21 valve body (open position) and 22 valve body (closed position) are the same valve body, and have shown the position.
  • the shaft pin of the 20 valves is arranged on the lower side to be a buoyancy type.
  • When the valve pin is provided by arranging the shaft pin of the 20 valves on the upper side, it operates as a gravity type.
  • the gravity type is the weight of the valve body.
  • the shaft pin of the 20 valve can be closed corresponding to all angles such as up and down.
  • the combination of the number of 15 inflow holes depends on the properties of the liquid and the method of use.
  • the 15 inflow holes are eccentrically arranged in the 14 twist rotation generating portion and arranged in four directions. The number of directions is increased or decreased depending on the diameter and fluid viscosity.
  • the 7 gas conveying force is generated by the sum of the pressure difference due to the difference in cross-sectional area between 9 tanks or equipment and 3 outlet pipes due to the flow velocity, the pressure difference due to the suction force of the 6 negative pressure generating head and the closing force of the valve body.
  • No negative pressure generating head is provided, and also functions as an opening of a 12 lead-in pipe.
  • the 7 gas conveying force at this time is generated by the sum of the pressure difference due to the difference in cross-sectional area between 9 tanks or equipment and 3 outlet pipes due to the flow velocity and the pressure difference due to the closing force of the valve body.
  • the valve body is closed by buoyancy, spring force, or gravity, but the flow rate is generated and the force to open the valve body is actuated to gradually increase the opening degree.
  • the resistance increases in proportion to the flow velocity in the case of the orifice.
  • the hydrodynamic force that hits the valve element opens the valve element strongly by the centrifugal force.
  • the centrifugal force for opening the valve body is a force for pressing the valve body as compared with the case of FIG. 3, and the valve body is fully opened stably with a smaller flow rate. Even if the initial operating pressure when the flow rate is small is the same as that in FIG. 3, the increase in resistance due to the flow velocity when fully opened can be reduced. In addition, even at a small flow rate, a sufficient flow velocity is generated at the outer peripheral portion of the 3 outlet pipe near the 6 negative pressure generating head, and the negative pressure of the 6 negative pressure generating head increases.
  • Loss resistance can be reduced from small to large flow rates, and gas can be sucked and conveyed efficiently.
  • rot occurs when 7 gases accumulate, so that it is desired to function with less loss resistance and with a lower flow rate.
  • the water pressure varies depending on the time zone depending on each region, and the water pressure and flow rate also change depending on the diameter of the water meter and the amount of use in the surroundings. Freshness can be secured.
  • FIG. 8 is a cross-sectional view showing the AA ′ cross section in the figure. If the water level of 9 tanks or equipment is higher than 3 outlet pipes in the flow from 2 inlet pipes to 9 tanks or equipment in the inflow direction of 1 liquid and 3 outlet pipes, accumulation of gas or air occurs. As a mechanism for eliminating the accumulation of gas or air, a 13 inlet pipe, a 12 inlet pipe, and a 6 negative pressure generating head are provided at the top of 9 tanks or equipment to generate a pressure difference between 9 tanks or equipment and 3 outlet pipes. 7 gas is discharged to the 3 outlet pipe. A 14-twist rotation generator is provided between 9 tanks or 3 outlet pipes.
  • This 14 torsional rotation generating unit is a 24 power generation unit in which 15 inflow holes shown in the AA ′ cross section are eccentric from the center line and arranged in 4 directions so that fluid in 16 inflow directions enters the 25 water turbine and connects the 25 water turbines. Is generating electricity.
  • the water flow that has passed through the 25 water turbine generates a torsional rotation and flows in the direction of the three outlet pipes with centrifugal force.
  • the generation of the pressure difference is the pressure difference generated from Bernoulli's theorem due to the difference in cross-sectional area between 9 tanks or equipment and 3 outlet pipes, and the pressure difference generated at 6 negative pressure generating heads. There is also a pressure difference due to the resistance of the water turbine between the tubes.
  • the 6 negative pressure generating head generates a negative pressure with a pressure difference between the surface on which the fluid hits and the surface opposite to the surface, but the negative pressure generating force increases as the surface on which the fluid hits increases.
  • the resistance loss of the pipe increases, so if the pressure difference other than the 6 negative pressure generating head is large, either the 6 negative pressure generating head is not provided, or the surface that the fluid contacts is reduced and the resistance is reduced. Also good. That is, when the hydraulic resistance of the water turbine is sufficient, a force to send 7 gas to the 3 outlet pipes can be obtained, so that the 6 negative pressure generating head can have only the opening of the 12 lead-in pipes.
  • FIG. 9 is a cross-sectional view showing the AA ′ cross section. Except for the 6 negative pressure generating head shown in FIG. 8, the arrangement position of the two lead-in pipes is changed.
  • Nine tanks or the top of the equipment is provided with 13 inlet pipe inlets and 12 inlet pipes, which are connected to the upper part of the 4-twisted rotation generator.
  • a pressure difference between 9 tanks or equipment and 3 outlet pipes is generated, and 7 gases are discharged to the 3 outlet pipes.
  • a 14-twist rotation generator is provided between 9 tanks or 3 outlet pipes.
  • This 14 torsional rotation generating part is made up of 15 inflow holes shown in the AA ′ cross section being decentered from the center line and arranged in the lower two directions so that the fluid in the 16 inflow direction enters the 25 water turbine and connects the 25 water turbine.
  • the power generation department generates electricity. It is also possible to use a pump instead of the power generation unit.
  • the water flow that has passed through the 25 water turbine generates a torsional rotation and flows in the direction of the three outlet pipes with centrifugal force.
  • the process of drawing 7 gases from the 12 inlet pipe and the 13 inlet pipe inlet connected to the upper side of the 14 torsion rotation generating part is that the fluid in the 16 inflow direction rotates the 25 water turbine and the flow rate of each of the 15 inlet holes and the 12 inlet pipes by the blades of the 25 water turbine.
  • the suction force of the 12 lead-in pipes is generated by the action of trying to make them the same. Further, if the gas accumulation is eliminated, the liquid flows and generates a torsional rotation in three directions.
  • the difference from FIG. 8 is the suction force of the water wheel, but the arrangement position of the 12 lead-in pipes.
  • the components are the same as compared with the case where the 6 negative pressure generating head is not provided in FIG.
  • the attachment position of the 3 outlet pipe is connected to a position close to 9 tanks or the upper part of the equipment, the length of the 12 inlet pipe is eliminated, and 7 gases can be discharged only at the inlet of the 13 inlet pipe. This is only a configuration when gas accumulation occurs.
  • Water can be stored when used for water pipes, and can be used when water is shut off. In addition, when used for cold / hot water piping, the piping can be raised and lowered, and gas can be discharged in the machine room. Refrigerant and oil have similar advantages. Wide range of use for food, medicine, dangerous goods factory equipment line and nuclear equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)

Abstract

 課題 配管や配管につながるタンク及び機器の気体溜まりを取り除く場合において、配管や配管につながるタンク及び機器が不圧状態でも外気の吸入がなく、故障時の系統外への排液対策を必要としない装置。 解決手段 本発明は、系統内の液体と共に気体を搬送する手段において気体溜まりの最上部に引き込み管入口を設け、通ずる引き込み管を出口側配管に接続してタンク及び機器と出口側配管の間で気体搬送力を生成する負圧生成へッド又は弁体又は絞り部又は水車又はねじれ回転生成部を配置し、又は組合せて搬送圧力を得る手段で、気体溜まりを防止する。

Description

配管又はタンク又は機器の気体溜まり解消装置
本発明は、液体搬送時の気体溜まり解消に関する。
 従来、配管や配管につながるタンクや機器の気体(空気)溜まりを防ぐ方法としてフロート式自動空気抜き弁を使用している。フロート式自動空気抜き弁は系統外に気体を排出するので、系統内が不圧状態の時、空気を吸入してしまう構造である。また、気体排出時に多少の液体が排出されてしまい、故障及びゴミ詰まり時の系統外への排液対策(排水管)が必要であった。
 しかし、系統外に排出が行えない薬品や食品などは衛生上困難であり、危険な液体の管理上も排出が行配管のレイアウトにおいて高さを上下しない事で気体を溜めない様にしているが、配管を長く迂回させると複雑になる。また、ポンプにより吸引を行う気体溜まりの解消対策を行う必要があった。
特開2001−311526号公報 特開2006−266553号公報 特開H8−210795号公報
 配管や配管につながるタンク及び機器の気体溜まりを取り除く場合において、配管や配管につながるタンク及び機器が不圧状態でも外気の吸入がなく、故障時の系統外への排液対策を必要としない装置。
 本発明は、系統内の液体と共に気体を搬送する手段において気体溜まりの最上部に引き込み管入口を設け、通ずる引き込み管を出口側配管に接続してタンク及び機器と出口側配管の間で気体搬送力を生成する負圧生成ヘッド又は弁体又は絞り部又は水車又はねじれ回転生成部を配置し、又は組合せて搬送圧力を得る手段で、気体溜まりを防止する。
 フロート式自動空気抜き弁は系統外に気体を排出していたが本発明は同統内の気体を液体の流れ方向に搬送する手段においてタンク及び機器と出口管の間で気体搬送力を生成して引き込み管により気体を搬送する手段を設け、系統外からの配管負圧時の空気の吸入が無くなり、品質の向上と故障率の低下と排液対策が必要では無くなる事による排液配管の省略につながる。また、循環回路では回路途中に複数個所の空気溜まりがあっても液体と共に気体を経路搬送させ、最終的に1箇所の気体排出手段で行える。
 図1は、配管の気体溜まり部に引き込み口と引き込み管と負圧生成ヘッドを配置した図面である。(実施例1)
 図2は、タンク又は機器の気体溜まり部に引き込み口と引き込み管と負圧生成ヘッドを配置した図面である。(実施例2)
 図3は、タンク又は機器の気体溜まり部に引き込み口と引き込み管と負圧生成ヘッドと弁体を配置した図面である。(実施例3)
 図4は、タンク又は機器の気体溜まり部に引き込み口と引き込み管と負圧生成ヘッドと絞り部とねじれ回転生成部を配置した図面である。
 図5は、タンク又は機器の気体溜まり部に引き込み口と引き込み管と負圧生成ヘッドと絞り部を配置した図面である。
 図6は、タンク又は機器の気体溜まり部に引き込み口と引き込み管と負圧生成ヘッドと弁体とねじれ回転生成部を配置した図面である。
 図7は、タンク又は機器の気体溜まり部の断面でA,B,は角度比較を表し、Cは出口配管位置を表した図面である。
 図8は、配管の気体溜まり部に引き込み口と引き込み管と負圧生成ヘッドとねじれ回転生成部に水車と発電機又はポンプを配置した図面である。(実施例4)
 図9は、配管の気体溜まり部に引き込み口と引き込み管とねじれ回転生成部に水車と発電機又はポンプを配置した図面である。
 気体を搬送する手段において、搬送圧力を得る手段で、気体溜まりを防止する。
 図1は横断面図である。2入口管から3出口管へ液体が流れている場合、2入口管から3出口管の間が3m上下にクランクした配管で説明すると、クランク上部に7気体が溜まる事を防ぐ手段において、7気体が溜まる最上部に13引き込み管入口を配置し、12引き込み管を通じ6負圧生成ヘッドにつながっている。6負圧生成ヘッドは流体の流れの抵抗となり、流れを受ける側が正圧、背側が負圧となる。その負圧側に開孔があり12引き込み管を負圧にする構造である。同じ液体流速であれば6負圧生成ヘッドの抵抗面積が大きい程、負圧吸引力は増す正比例。13引き込み管入口から気体を吸引する負圧を生成する。また、気体と液体では気体の方が12引き込み管の流体抵抗が少ない事で吸引を可能にしている。液体流速による6負圧生成ヘッドの吸引力が3mの落差分の圧力を超えていれば可能となるが液体流速が遅い場合は吸引圧力が不足してくる。必要流速は4気体の浮力高さが高いほど流速抵抗で発生する圧力差が必要であるが液体が水の場合で説明すると圧力差の発生は送水圧力以上の水柱高と管抵抗を引いた値を越えられない。フロート式空気抜き弁を使用した系統外排出を行わない方式で気体を溜めない構造を系統内搬送で構築する。また、漏水対策も回避し管内負圧時の外気の流入も起こらない構成である。
 図2は横断面図である。2入口管から3出口管へ1液体の流入方向に液体が流れている場合、2入口管と3出口管の間に9タンク又は機器が配置されている。この9タンク又は機器の上部に7気体が溜まる事を防ぐ手段において説明すると、7気体が溜まる最上部に13引き込み管入口を配置し、12引き込み管を通じ6負圧生成ヘッドにつながっている。6負圧生成ヘッドは図1の説明中の物と同じ構造である。6負圧生成ヘッドの配置位置については3出口管の流速の早い部分、通常管の中央部付近が一番早い。7気体搬送力は流速による9タンク又は機器と3出口管の各断面積の差による圧力差と6負圧生成ヘッドの吸引力の和により発生する。9タンク又は機器から3出口管に液体が移動する時の抵抗により7気体の方が先12引き込み管に流れて行く作用を利用している。条件として流速が早い場合に可能となるが遅い場合は7気体の搬送力が不足してくる。必要流速は5空気溜り高さにより比例した流速が必要である。また、12引き込み管の配置位置は11側板部の内部に配置しているが11側板部の19液体側に単独又は沿わす形で配置しても同じ効果である。また、図1の様に11側板部の外側に12引き込み管を設けても可能である。よって9タンク又は機器内の7気体の搬送は液体流速を早めて行う。液体流速の設定は3出口管の面積と9タンク又は機器の面積の差に比例する。図7は側面図である。図7のCの様に9タンク又は機器の最上部に3出口管を配置すれば、気体の溜りは発生しないが図7のA及びBの様に9タンク又はの中央に3出口管を配置し、もって2入口管と3出口管を主軸とする9タンク又は機器が回転体であるとした場合図7のCは回転体の軸位置としては不具合である。また、図7のBは最上部に13引き込み管入口がくる位置に停止している場合は気体が吸引され、無くなるが図7のBの60度の位置に13引き込み管入口を停止させた場合、毎回同じ気体量を溜める事が可能である。たとえば13引き込み入口がくる位置の角度を変える事で気体と液体の比率を変化さすことが容易となる。気体と液体を9タンク又は機器の回転動作によりミキシングさせムース状の製品を作る場合などに有効である。従来のフロート式空気抜き弁では不可能であり、これを可能にする技術的要素である。
 図5は横断面図である。図2に8絞り部を設け、8絞り部はオリフィスと同等である。7気体の搬送力は流速による9タンク又は機器と8絞り部の各断面積の差による圧力差と6負圧生成ヘッドの吸引力の和により発生する。5空気溜り高さと流速が一定とした場合にシンプルな構造である。
 図4は横断面図であり図中にA−A´断面を記載している。図5に14ねじれ回転生成部を設けた配置である。6負圧生成ヘッドは図1の説明中の物と同じ構造である。9タンク又は機器と3出口管の接続部に14ねじれ回転生成部と8絞り部を配置している。19液体の流れは14ねじれ回転生成部に設けられた15流入孔により16流入方向から17ねじれ回転集合方向に合流する。A−A´断面図の様に14ねじれ回転生成部に15流入孔が偏芯して4方向に配置している。方向数は口径や流体粘度により増減配置する。図4の横断面図には15流入孔は4個2列、計8個の15流入孔を記載しているが1個でも複数個でも回転流を発生さす事ができる。流体がねじれ回転して8絞り部に向かって加速し、18遠心拡散方向に流れる事で3出口管の6負圧生成ヘッド付近は外周部も十分な流速が発生して6負圧生成ヘッドの負圧力も増大する。気体搬送力は流速による9タンク又は機器と8絞り部の各断面積の差による圧力差と6負圧生成ヘッドの吸引力との和により発生する。14ねじれ回転生成部の効力は9タンク又は機器から3出口への乱流を防止させ抵抗を下げ、8絞り部の断面積を大きく出来る事による流速抵抗の低減に優位である。流体粘度や流速によっては絞り部8を設けないストレートとする事も可能である。また、比較的少ない流量でも6負圧生成ヘッドに負圧を効率良く発生させる外周部の流速が得られる。しかも、弁体などの可動部がないので耐久性が格段にある。
 図3は横断面図である。2入口管から3出口管へ1液体の流入方向に液体が流れている場合、2入口管と3出口管の間に9タンク又は機器が配置されている。
 この9タンク又は機器の上部に7気体が溜まる事を防ぐ手段において説明すると、7気体が溜まる最上部に13引き込み管入口を配置し、12引き込み管を通じ6負圧生成ヘッドにつながっている。6負圧生成ヘッドは図1の説明中の物と同じ構造である。21弁体(開位置)と22弁体(閉位置)は同一弁体であり位置を示している。弁体は浮力式、重力式、スプリング式がある。20弁の軸ピンを下側に配置して浮力式とする。また20弁の軸ピンを上側に配置して弁体を設ける場合は重力式として作用させる。重力式は弁体の自重である。弁体をスプリング力で作用さす場合は20弁の軸ピンは上下など全角度に対応して閉じる事が出来る。弁体の配置位置は9タンク又は機器と3出口管の接続部であるが6負圧生成ヘッドより9タンク又は機器側に配置する。気体搬送力は流速による9タンク又は機器と3出口管の各断面積の差による圧力差による搬送力と6負圧生成ヘッドの吸引力と弁体の閉止力による圧力差の和により発生するが6負圧生成ヘッドを設けず12引き込み管の開口としても機能する。この時の負圧吸引力は流速による9タンク又は機器と3出口管の各断面積の差による圧力差による搬送力と弁体の閉止力による圧力差の和により発生する。動作は弁体が浮力又はスプリング力又は重力により閉じているが流速が発生して弁体を開こうとする力がはたらき、徐々に開度を増す事となり、流速が早い場合は全開に近くなる。オリフィスの抵抗と比較するとオリフィスの場合は流速に比例して抵抗が増す。開閉する弁体の場合は開度による弁体部分の抵抗は一定に近くなるので浮力又はスプリング力又は重力による一定の設定圧力差を発生させる事が可能になり的確に7気体を搬送する事が可能となる。
 図6は横断面図であり図中にA−A´断面を記載している。7気体が溜まる最上部に13引き込み管入口を配置し、12引き込み管を通じ6負圧生成ヘッドにつながっている。6負圧生成ヘッドは図1の説明中の物と同じ構造である。9タンク又は機器と3出口管の接続部に14ねじれ回転生成部と弁体を配置している。21弁体(開位置)と22弁体(閉位置)は同一弁体であり位置を示している。弁体は浮力式、重力式、スプリング式がある。20弁の軸ピンを下側に配置して浮力式とする。また20弁の軸ピンを上側に配置して弁体を設ける場合は重力式として作用させる。重力式は弁体の自重である。弁体をスプリング力で作用さす場合は20弁の軸ピンは上下など全角度に対応して閉じる事が出来る。19液体の流れは14ねじれ回転生成部に設けられた15流入孔により16流入方向から17ねじれ回転集合方向に合流する。図4で述べたが15流入孔の数の組み合わせは液体の性質や使用方法による。A−A´断面図の様に14ねじれ回転生成部に15流入孔が偏芯して4方向に配置している。方向数は口径や流体粘度により増減配置する。7気体搬送力は流速による9タンク又は機器と3出口管の各断面積の差による圧力差と6負圧生成ヘッドの吸引力と弁体の閉止力による圧力差の和により発生する。6負圧生成ヘッドを設けず12引き込み管の開口としても機能する。この時の7気体搬送力は流速による9タンク又は機器と3出口管の各断面積の差による圧力差と弁体の閉止力による圧力差の和により発生する。動作は弁体が浮力又はスプリング力又は重力により閉じているが流速が発生して弁体を開こうとする力がはたらき徐々に開度を増す事となり、流速が早い場合は全開に近くなる。オリフィスによる抵抗と比較するとオリフィスの場合は流速に比例して抵抗が増す。弁体の場合は全開すれば弁体部分による抵抗は無くなり管の抵抗と同じになり開度による抵抗は一定となる。この事から流速が少ない場合でも浮力又はスプリング力による一定の圧力差(9タンク又は機器内の圧力と6負圧生成ヘッドのある3出口管の圧力)を発生させる事が可能になり全開まで一定に近い抵抗を生み出し、的確に7気体を搬送する事が可能になる。流体がねじれ回転して18遠心拡散方向に流れる事で21弁体(開位置)を流体の遠心力により押さえ込む方向に働く。同じ流量の場合14ねじれ回転生成部があると弁体に当たる水流力が遠心力分強く弁体を開く。図3の場合より弁体を開にする遠心力が弁体を押さえ込む力となりより少ない流量で安定して弁体が全開する。流量の少ない時の初動圧力は図3と同じでも全開時の流速による抵抗の増大は少なくする事が出来る。また、小流量でも3出口管の6負圧生成ヘッド付近の外周部も十分な流速が発生して6負圧生成ヘッドの負圧力も増大する。小流量から大流量まで損失抵抗を小さくでき、効率よく気体の吸引搬送が行える。たとえば、水道と空気の場合で実施した場合、7気体が溜まると腐敗が起こるため、より損失抵抗を少なくする機能と少ない流量でも機能する事が望まれる。また、各地方により水道圧は時間帯により変化し、水道メーターの口径や周囲の使用量によっても水圧や流量が変化する事から小流量でも空気溜りを防ぐ事でタンクや機器を接続した場合の鮮度が確保できる。
 図8は横断面図であり図中にA−A´断面を記載している。1液体の流入方向に2入口管から9タンク又は機器に流れ3出口管への流れの中で9タンク又は機器の水面高さが3出口管より高い場合、気体又は空気の溜まりが発生する。この気体又は空気の溜まりを解消する機構として9タンク又は機器の最上部に13引き込み管入口と12引き込み管と6負圧生成ヘッドを設け、9タンク又は機器と3出口管の圧力差を生成して7気体を3出口管に排出するものである。9タンク又は機器から3出口管の間に14ねじれ回転生成部を設ける。この14ねじれ回転生成部はA−A´断面に表記した15流入孔を中心線から偏芯させ4方向に配置して16流入方向の流体が25水車に進入し25水車を接続した24発電部で発電を行っている。25水車を通過した水流はねじれ回転を生成して3出口管方向に遠心力をともない流れる。圧力差の生成は9タンク又は機器と3出口管の断面積の違いによるベルヌーイの定理の流速から発生する圧力差と6負圧生成ヘッドに発生する圧力差であるが9タンク又は機器と3出口管の間の水車の抵抗による圧力差も生じる。流量が増せば水車の回転抵抗は増し、24発電部の発電エネルギーが増す事になる。流量流速と共に電力量に置き換わるエネルギー移動が発生し、水流による発電の圧力損失となる。これにより気体溜まりを解消さす圧力差を発生させている。図3、図4、図5との違いにおいて、本来圧力差は抵抗損失でエネルギーロスであるが電力に置換える事で気体の排出と同時に省エネルギー発電を実現している。水流による発電は様々あるが、気体溜まりの解消に利用している点が特徴である。発電された電力は蓄電や蓄電池の自然消耗の補助充電や制御並びに状態表示の電源として利用する事ができる。また、6負圧生成ヘッドは流体が当たる面と反対面の圧力差で負圧を生成しているが流体の当たる面が大きいほど負圧生成力は増す。同時に管路の抵抗損失が増してしまうので6負圧生成ヘッド以外の圧力差が大きい場合は、6負圧生成ヘッドを設けないか、もしくは流体の当たる面を小さくして抵抗を少なく配置しても良い。つまり、水車の流体抵抗が十分ある時は7気体を3出口管に送る力が得られるので6負圧生成ヘッドは12引き込み管の開口のみとする事ができる。図4、図6にも通ずるが14ねじれ回転生成部は液体が9タンク又は機器から3出口管への突入する時に急激に流速が早まり乱流が発生する。この乱流抵抗を低減できる効果があり、水車を効率よく回転さす事を兼ねている。図9は横断面図であり図中にA−A´断面を記載している。図8の6負圧生成ヘッドを除き2引き込み管の配置位置を変更している。9タンク又は機器の最上部に13引き込み管入口と12引き込み管を設け、4ねじれ回転生成部の上部に繋がっている。9タンク又は機器と3出口管の圧力差を生成して7気体を3出口管に排出するものである。9タンク又は機器から3出口管の間に14ねじれ回転生成部を設ける。この14ねじれ回転生成部はA−A´断面に表記した15流入孔を中心線から偏芯させ下側2方向に配置して16流入方向の流体が25水車に進入し25水車を接続した24発電部で発電を行っている。また、発電部の替わりにポンプとする事も可能である。25水車を通過した水流はねじれ回転を生成して3出口管方向に遠心力をともない流れる。14ねじれ回転生成部の上側に繋がる12引き込み管と13引き込み管入口から7気体を引き込むプロセスは16流入方向の流体が25水車を回転させ25水車の羽により各15流入孔と12引き込み管の流量を同じにしようとする働きにより12引き込み管の吸引力が発生する。また、気体の溜まりが解消されれば液体が流れ3方向のねじれ回転を生成する。図8との差異は水車の吸引力であるが12引き込み管の配置位置の違いであり、図8に6負圧生成ヘッドを設けない場合と比較すれば構成要素は同じである。また、3出口管の取り付け位置を9タンク又は機器の上部に近い位置に接続すれば12引き込み管の長さが無くなり13引き込み管入口のみで7気体の排出が可能になる。あくまで、気体溜まりが発生する場合の構成である。
 水道配管に利用すると貯水が可能になり断水の時利用できる。又、冷温水配管に利用すると配管の上げ下げが可能になり機械室で気体の排出が行える点と配管腐食を防ぐ利点は大きい。冷媒やオイルも同様の利点がある。食品、薬品、危険物の工場設備ライン及び原子力設備も対象であり利用範囲が広い。
1、液体の流入方向
2、入口管
3、出口管
4、気体の浮力高さ
5、空気溜り高さ
6、負圧生成ヘッド
7、気体
8、絞り部
9、タンク又は機器
10、気泡
11、側板部
12、引き込み管
13、引き込み管入口
14、ねじれ回転生成部
15、流入孔
16、流入方向
17、ねじれ回転集合方向
18、遠心拡散方向
19、液体
20、弁の軸ピン
21、弁体(開位置)
22、弁体(閉位置)
23、小流量時の流れ
24、発電部
25、水車

Claims (8)

  1.  タンク又は機器において気体溜まりの最上部に引き込み管入口があり、気体を搬送する引き込み管と気体を出口管に放出する負圧生成ヘッドを構成し、タンク又は機器と出口管の間で気体搬送手段を設けてなる気体溜まり防止装置。
  2.  タンク又は機器において気体溜まりの最上部に引き込み管入口があり、気体を搬送する引き込み管と気体を出口管に放出する負圧生成ヘッドと液体のねじれ回転生成部を構成し、タンク又は機器と出口管の間で気体搬送力を生成してなる気体溜まり防止装置。
  3.  タンク又は機器において気体溜まりの最上部に引き込み管入口があり、気体を搬送する出口管に通ずる引き込み管と液体のねじれ回転生成部に水車を設け、タンク又は機器と出口管の間で気体搬送力を生成してなる気体溜まり防止装置。
  4.  タンク又は機器において気体溜まりの最上部に引き込み管入口があり、気体を搬送する引き込み管と気体を出口管に放出する負圧生成ヘッドと浮力式又は重力式又はスプリング式の弁体を設け、タンク又は機器と出口管の間で気体搬送力を生成してなる気体溜まり防止装置。
  5.  タンク又は機器において気体溜まりの最上部に引き込み管入口があり、気体を搬送する引き込み管と気体を出口管に放出する負圧生成ヘッドと液体のねじれ回転生成部に水車と発電部又はポンプを設け、タンク又は機器と出口管の間で気体搬送力を生成してなる気体溜まり防止装置。」
  6.  タンク又は機器において気体溜まりの最上部に引き込み管入口があり、気体を搬送する引き込み管と気体を出口管に放出する負圧生成ヘッドと液体のねじれ回転生成部に絞り部を設け、タンク又は機器と出口管の間で気体搬送力を生成してなる気体溜まり防止装置。
  7.  タンク又は機器において気体溜まりの最上部に引き込み管入口があり、気体を搬送する引き込み管と気体を出口管に放出する負圧生成ヘッドと絞り部を設け、タンク又は機器と出口管の間で気体搬送力を生成してなる気体溜まり防止装置。
  8.  タンク又は機器において気体溜まりの最上部に引き込み管入口があり、気体を搬送する引き込み管と気体を出口管に放出する負圧生成ヘッドと浮力式又は重力式又はスプリング式の弁体と液体のねじれ回転生成部を設け、タンク又は機器と出口管の間で気体搬送力を生成してなる気体溜まり防止装置。
PCT/JP2015/057394 2014-03-10 2015-03-06 配管又はタンク又は機器の気体溜まり解消装置 WO2015137474A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/125,082 US20170045063A1 (en) 2014-03-10 2015-03-06 Apparatus for eliminating gas accumulation in pipe, tank or equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-064672 2014-03-10
JP2014064672A JP6462227B2 (ja) 2014-03-10 2014-03-10 配管又はタンク又は機器の気体溜まり解消装置

Publications (1)

Publication Number Publication Date
WO2015137474A1 true WO2015137474A1 (ja) 2015-09-17

Family

ID=54071911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057394 WO2015137474A1 (ja) 2014-03-10 2015-03-06 配管又はタンク又は機器の気体溜まり解消装置

Country Status (3)

Country Link
US (1) US20170045063A1 (ja)
JP (1) JP6462227B2 (ja)
WO (1) WO2015137474A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105624U (ja) * 1974-02-02 1975-08-30
JPS62297593A (ja) * 1986-06-16 1987-12-24 鹿島建設株式会社 配管用エア抜きシステム
JPH04258424A (ja) * 1991-02-14 1992-09-14 Inax Corp 真空式下水道の伏越
JPH09133300A (ja) * 1995-11-08 1997-05-20 Kubota Corp 空気注入式の汚水圧送管路
JP3138373U (ja) * 2007-10-18 2007-12-27 有海 宮脇 水流コーン体
JP2012522640A (ja) * 2009-04-07 2012-09-27 ツイスター ビー.ブイ. スワール弁を備える分離システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US378600A (en) * 1888-02-28 Sewer-valve
US2881781A (en) * 1955-12-14 1959-04-14 Richard D Adams Concentrate entraining injector and mixer
US3304564A (en) * 1965-10-04 1967-02-21 Green Jack Apparatus for cleaning a body of liquid and maintaining its level
US3807434A (en) * 1971-09-20 1974-04-30 L Rasmussen Automatic self-operating feeder
JPS4943202A (ja) * 1972-08-31 1974-04-23
JPH0842440A (ja) * 1994-08-01 1996-02-13 Senji Okuda 水道管の水流による発電装置
JPH09273646A (ja) * 1996-04-05 1997-10-21 S I S:Kk 節水装置
JP3828327B2 (ja) * 1999-12-07 2006-10-04 株式会社リコー インク供給機構及び記録装置
JP2004298840A (ja) * 2003-04-01 2004-10-28 Tetsuhiko Fujisato 気体溶解量調整器
JP3158191U (ja) * 2010-01-07 2010-03-18 エフケイ・ライフサービス株式会社 パイプ発電装置
JP5871740B2 (ja) * 2012-07-27 2016-03-01 三菱電機株式会社 エジェクタ
JP6316613B2 (ja) * 2014-02-06 2018-04-25 株式会社シバウラ防災製作所 水ポンプ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105624U (ja) * 1974-02-02 1975-08-30
JPS62297593A (ja) * 1986-06-16 1987-12-24 鹿島建設株式会社 配管用エア抜きシステム
JPH04258424A (ja) * 1991-02-14 1992-09-14 Inax Corp 真空式下水道の伏越
JPH09133300A (ja) * 1995-11-08 1997-05-20 Kubota Corp 空気注入式の汚水圧送管路
JP3138373U (ja) * 2007-10-18 2007-12-27 有海 宮脇 水流コーン体
JP2012522640A (ja) * 2009-04-07 2012-09-27 ツイスター ビー.ブイ. スワール弁を備える分離システム

Also Published As

Publication number Publication date
JP6462227B2 (ja) 2019-01-30
JP2015169333A (ja) 2015-09-28
US20170045063A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
CN104500463B (zh) 一种潜液泵液压控制系统
US9435344B1 (en) Liquid sealed pump
CN206786697U (zh) 给水再循环系统
CN108194440A (zh) 一种液压调速阀及液压系统
WO2015137474A1 (ja) 配管又はタンク又は機器の気体溜まり解消装置
CN102369384A (zh) 包括排气阀和止回阀的组合阀装置
JP2019082251A (ja) 配管又はタンク又は機器の気体溜まり解消装置
JP6539074B2 (ja) 液体圧送装置
CN107490412A (zh) 一种带旁通机构的油耗监测仪
CN207131921U (zh) 一种用于污水排放的球形止回阀
CN208966560U (zh) 一种用于隔膜泵的板阀以及隔膜泵
CN207892901U (zh) 一种水利工程用射流泵
CN204950588U (zh) 出水排气阀及管线机
US20140134021A1 (en) Pump for a Domestic Appliance
CN106574639A (zh) 气动泵
CN103925223B (zh) 一种高吸程射流泵辅助浮筒装置
JP5894862B2 (ja) 温水生成装置
JP5917131B2 (ja) エゼクタ式真空ポンプ
CN206768981U (zh) 一种油气田矿井废水输送装置
CN216589180U (zh) 一种用于冷却塔的特制泵
CN208703580U (zh) 高流量溶液循环系统
CN211715404U (zh) 一种负压蒸发用离心压缩机蜗壳积液排水结构
CN205714687U (zh) 一种双软管隔膜泵
CN208935037U (zh) 一种用于输送饱和气液两相流的双吸泵
CN110935339B (zh) 气压式双槽循环系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15125082

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761731

Country of ref document: EP

Kind code of ref document: A1