WO2015136976A1 - 電動モータの制御装置及び制御方法 - Google Patents

電動モータの制御装置及び制御方法 Download PDF

Info

Publication number
WO2015136976A1
WO2015136976A1 PCT/JP2015/051058 JP2015051058W WO2015136976A1 WO 2015136976 A1 WO2015136976 A1 WO 2015136976A1 JP 2015051058 W JP2015051058 W JP 2015051058W WO 2015136976 A1 WO2015136976 A1 WO 2015136976A1
Authority
WO
WIPO (PCT)
Prior art keywords
detected
short circuit
electric motor
energized
control
Prior art date
Application number
PCT/JP2015/051058
Other languages
English (en)
French (fr)
Inventor
小関 知延
富美繁 矢次
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to KR1020167020932A priority Critical patent/KR101692196B1/ko
Priority to CN201580011305.5A priority patent/CN106105017B/zh
Priority to DE112015001258.3T priority patent/DE112015001258T5/de
Priority to US15/124,774 priority patent/US9647603B2/en
Publication of WO2015136976A1 publication Critical patent/WO2015136976A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/0241Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0487Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting motor faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/005Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of too low isolation resistance, too high load, short-circuit; earth fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators

Definitions

  • the present invention relates to a control device and a control method for an electric motor including a plurality of energization systems including an inverter and windings corresponding to a plurality of phases.
  • Patent Document 1 discloses a control device for an AC motor that supplies a voltage of a DC power source to a multiphase AC motor via a plurality of power converters.
  • the control device includes: a detection unit that detects an output current of the plurality of power converters; a first coordinate conversion unit that converts one current detection value of the power converter into a rotation coordinate; and the power converter.
  • a second coordinate conversion means for converting the other current detection value into a rotation coordinate; an average value calculation means for obtaining an average output current value from output signals of the first and second coordinate conversion means; and the average value calculation means For generating a correction signal from a voltage command generating means for generating a representative two-phase voltage command value from the output of the current, the excitation current command value and the torque current command value, and the outputs of the first and second coordinate conversion means.
  • a signal generation unit a voltage command correction unit that generates a plurality of two-phase voltage command values from the output of the correction signal generation unit and the output of the voltage command generation unit, and a three-phase voltage command from the output of the voltage command correction unit
  • Multiple command seats that generate It is composed of a converting means and to reduce the unbalanced current polyphase AC motor.
  • the present invention has been made in view of the above-described problems, and can prevent the output of a normal energizing system from being erroneously stopped when a short circuit occurs in a part of a plurality of energizing systems. It is an object of the present invention to provide a motor control device and a control method.
  • the control device for the electric motor detects the presence or absence of a short circuit for each of the plurality of energized systems, and no short circuit is detected when a short circuit is detected in a part of the plurality of energized systems.
  • a control unit for changing the control parameter of the power distribution system is provided.
  • the electric motor control method according to the present invention includes a step of inputting a detection signal of an electrical state of each winding, detecting the presence or absence of a short circuit for each of the plurality of energization systems, and a short circuit for each of the plurality of energization systems. Reading a presence / absence detection result, and changing a control parameter of an energized system in which a short circuit is not detected when a short circuit is detected in a part of the plurality of energized systems.
  • FIG. 1 is a schematic configuration diagram of an electric power steering device to which a motor control device is applied in an embodiment of the present invention. It is a circuit block diagram of the control apparatus in embodiment of this invention. It is a circuit block diagram of the control apparatus in embodiment of this invention. It is a circuit block diagram of the control apparatus in embodiment of this invention. It is a circuit block diagram of the control apparatus in embodiment of this invention. It is a circuit block diagram of the control apparatus in embodiment of this invention. It is a functional block diagram of a control device in an embodiment of the present invention. It is a flowchart which shows the procedure of the diagnostic process in embodiment of this invention. It is a flowchart which shows the procedure of the diagnostic process in embodiment of this invention. It is a flowchart which shows the procedure of the diagnostic process in embodiment of this invention.
  • FIG. 1 shows an example in which an electric motor control device according to the present invention is applied to an electric motor that generates a steering assist force in an electric power steering device for a vehicle.
  • An electric power steering apparatus 100 shown in FIG. 1 is an apparatus that is provided in a vehicle 200 and generates a steering assist force by an electric motor 130.
  • the electric power steering apparatus 100 includes a steering wheel 110, a steering torque sensor 120, an electric motor 130, an electronic control unit 150, a speed reducer 160 that decelerates the rotation of the electric motor 130 and transmits it to a steering shaft (pinion shaft) 170, and the like. Consists of.
  • the steering torque sensor 120 and the speed reducer 160 are provided in a steering column 180 that includes a steering shaft 170.
  • a pinion gear 171 is provided at the tip of the steering shaft 170.
  • the rack gear 172 moves horizontally in the direction of travel of the vehicle 200.
  • Steering mechanisms 202 for the wheels 201 are provided at both ends of the rack gear 172, and the direction of the wheels 201 is changed by the horizontal movement of the rack gear 172.
  • the steering torque sensor 120 detects a steering torque generated in the steering shaft 170 when the driver of the vehicle performs a steering operation, and outputs a detected steering torque signal ST to the electronic control unit 150.
  • the electronic control unit 150 including a microcomputer, an inverter for driving the electric motor 130, an inverter drive circuit, and the like, in addition to the steering torque signal ST, the vehicle speed sensor 190 is used as state quantity information used for determining the steering assist force.
  • the vehicle speed signal VSP and the like output from is input.
  • the electronic control unit 150 performs PWM (Pulse Width Modulation) control of energization to the electric motor 130 based on the driving state of the vehicle such as the steering torque signal ST and the vehicle speed signal VSP, thereby generating the electric motor 130. Torque, that is, steering assist force is controlled. In this way, the electronic control unit 150 constitutes a control device that drives the electric motor 130. Note that, among the inverters included in the electronic control unit 150 and the inverter drive circuit, the inverter or the inverter and the drive circuit can be provided separately from the electronic control unit 150. In this case, a control device for driving the motor 130 is configured by the electronic control unit 150 and the inverter or the inverter and the drive circuit.
  • PWM Pulse Width Modulation
  • FIG. 2 shows an example of the circuit configuration of the electronic control unit 150 and the electric motor 130.
  • the electric motor 130 shown in FIG. 2 includes a first winding set 2A composed of star-connected three-phase windings UA, VA, WA, and a second star-coupled three-phase winding UB, VB, WB.
  • the three-phase synchronous motor has a winding set 2B, and the point where the three-phase windings U, V, W are connected to each other in the first winding set 2A and the second winding set 2B is a neutral point.
  • the first winding set 2A and the second winding set 2B are provided in a cylindrical stator (not shown), and a permanent magnet rotor 201 is rotatably provided in a space formed in the center of the stator.
  • the first winding set 2A and the second winding set 2B share a magnetic circuit.
  • the first winding set 2A is directly connected to the first inverter 1A
  • the second winding set 2B is directly connected to the second inverter 1B
  • power is supplied from the first inverter 1A to the first winding set 2A.
  • electric power is supplied from the second inverter 1B to the second winding set 2B.
  • the first inverter 1A includes three sets of semiconductor switches UHA, ULA, semiconductor switches VHA, VLA, and semiconductor switches WHA that respectively drive the U-phase coil UA, the V-phase coil UA, and the W-phase coil WA of the first winding set 2A. , WLA and a three-phase bridge circuit.
  • the second inverter 1B includes three sets of semiconductor switches UHB and ULB, semiconductor switches VHB and VLB, which drive the U-phase coil UB, V-phase coil UB, and W-phase coil WB of the second winding set 2B, respectively. It consists of a three-phase bridge circuit having switches WHB and WLB.
  • an N-channel MOSFET is used as each semiconductor switch constituting the first inverter 1A and the second inverter 1B.
  • the semiconductor switches UH and UL are connected in series between the power source VB and the ground point between the drain and the source, and the U-phase is connected to the connection point between the semiconductor switch UH and the semiconductor switch UL.
  • Coil U is connected.
  • the semiconductor switches VH and VL are connected in series between the drain and the source between the power source VB and the ground point, and are connected to the connection point between the semiconductor switch VH and the semiconductor switch VL.
  • a V-phase coil V is connected.
  • the semiconductor switches WH and WL are connected in series between the power source VB and the ground point between the drain and the source, and are connected to the connection point between the semiconductor switch WH and the semiconductor switch WL.
  • W-phase coil W is connected.
  • the connection point between the semiconductor switch UH and the semiconductor switch UL, the connection point between the semiconductor switch VH and the semiconductor switch VL, and the connection point between the semiconductor switch WH and the semiconductor switch WL constitute an inverter output point.
  • the first drive circuit 303A is a circuit that drives each semiconductor switch constituting the first inverter 1A.
  • the first drive circuit 303A is a circuit that drives the semiconductor switches VHA, UHA, and WHA that are high-potential side switching elements in the first inverter 1A.
  • a high-potential side driver and three low-potential side drivers that respectively drive semiconductor switches VLA, ULA, and WLA, which are low-potential side switching elements in the first inverter 1A, are provided.
  • the second drive circuit 303B is a circuit that drives each semiconductor switch constituting the second inverter 1B, and drives the semiconductor switches VHB, UHB, and WHB that are high-potential side switching elements in the second inverter 1B, respectively.
  • the high potential side switching element can be referred to as an upstream drive element or an upper arm, and the low potential side switching element can be referred to as a downstream drive element or a lower arm.
  • the control device for the electric motor of the present embodiment includes the first winding set 2A, the first energization system including the first inverter 1A, the first winding set 2B, and the second inverter 1B.
  • Two energization systems, including an energization system, are provided.
  • the first energization system can be referred to as a first channel ch1
  • the second energization system can be referred to as a second channel ch2.
  • a power relay 304A for cutting off the power supply to the first inverter 1A is provided between the power source VB and the first inverter 1A, and to the second inverter 1B between the power source VB and the second inverter 1B.
  • a power supply relay 304B for cutting off the power supply is provided.
  • the power relays 304A and 304B are constituted by semiconductor switches, and the semiconductor switches constituting the power relays 304A and 304B are driven by drive circuits 305A and 305B.
  • electromagnetic relays that open and close by physically moving the contacts can be used.
  • the drive circuits 305A and 305B of the power relays 304A and 304B drive semiconductor switches constituting the power relays 304A and 304B in response to a command signal from the microcomputer 302. That is, the microcomputer 302 can cut off the power supply to the first inverter 1A and the power supply to the second inverter 1B independently. Further, in order to suppress fluctuations in the power supply voltage supplied to the inverters 1A and 1B, capacitors 306A and 306B are provided for connecting the power supply line between the power relays 304A and 304B and the inverters 1A and 1B and the ground point. is there.
  • a voltage monitor circuit 307 for detecting each winding end voltage of each winding set 2A, 2B is provided, and the voltage monitor circuit 307 provides a microcomputer with a detection signal of each winding end voltage of each winding set 2A, 2B. It outputs to 302. Further, pull-up resistors RA for pulling up the U-phases UA and UB of the winding groups 2A and 2B in order to fix the potentials at the ends of the windings when all the switching elements of the inverters 1A and 1B are turned off. RB is provided. The angle sensor 308 detects the angle of the rotor 201 and outputs an angle data signal to the microcomputer 302.
  • a current detector 301A that detects the drive current (motor current) of the electric motor 130 between the sources of the low potential side semiconductor switches UL, VL, WL of the first inverter 1A and the second inverter 1B and the ground point. , 301B are connected to each other.
  • the current detectors 301A and 301B can be referred to as current detection resistors, current detection means, or current sensors.
  • the outputs of the current detectors 301A and 301B are input to the amplifier circuits 311A and 311B, the outputs of the amplifier circuits 311A and 311B are input to the microcomputer 302 and the peak hold circuits 312A and 312B, and the outputs of the peak hold circuits 312A and 312B are Input to the computer 302. That is, the microcomputer 302 inputs the detected value of the motor drive current for each energization system and also the peak value of the detected value of the motor drive current.
  • phase relays 313A (U), 313A (V), and 313A (W) are respectively connected to the phase lines connecting the output point of the first inverter 1A and the three-phase windings UA, VA, and WA.
  • phase relays 313B (U), 313B (V), and 313B (W) are provided on the phase lines connecting the output point of the second inverter 1B and the three-phase windings UB, VB, and WB, respectively.
  • the phase line can be referred to as a drive line or an energization line.
  • phase current detectors 314A (U), 314A (V), and 314A detecting phase currents flowing through the three-phase windings U, V, and W, together with current detectors 301A and 301B, respectively.
  • phase current detectors 314A (U), 314A (V), and 314A (W) are arranged on a phase line connecting the output point of the first inverter 1A and the three-phase windings UA, VA, WA,
  • the phase current detectors 314B (U), 314B (V), and 314B (W) are arranged on the phase line connecting the output point of the second inverter 1B and the three-phase windings UB, VB, and WB.
  • a phase relay 313 and a phase current detector 314 can be provided on the phase lines connecting the output points of the inverters 1A and 1B and the three-phase windings U, V, and W, respectively.
  • a phase current detector 314 is provided on each of the phase lines connecting the output points of the inverters 1A and 1B and the three-phase windings U, V, and W, and the phase current detector 314 and A phase relay 313 is arranged between the windings.
  • the phase relays 313A (U), 313A (V), 313A (W), 313B (U), 313B (V), and 313B (W) shown in FIGS. 3 and 5 are semiconductor switches such as N-channel MOSFETs.
  • the microcomputer 302 is configured to be turned on / off by the microcomputer 302.
  • Each of the lines connecting the phase current detector 314 and the microcomputer 302 is a low-pass filter comprising an amplifier circuit 315A and a resistor R in series with a capacitor C in parallel with the output of the phase current detector 314.
  • a circuit 315B is provided.
  • FIG. 6 is a functional block diagram illustrating an example of control functions of the inverters 1A and 1B in the microcomputer 302.
  • the target value calculation unit 6 calculates the target assist torque, that is, the target value of the output torque of the electric motor 130, based on conditions such as steering torque, vehicle speed, and rotation speed of the electric motor 130.
  • the target value calculation unit 6 individually sets the target assist torque of the first energization system and the target assist torque of the second energization system, and generates motor torque by energization control in the first energization system,
  • the target steering assist force is generated by the sum of the motor torque generated by the energization control in the second energization system.
  • the angle calculation unit 10 inputs a signal from the angle sensor 308 and calculates the angle of the rotor 201 of the electric motor 130.
  • the motor rotation calculation unit 5 calculates the rotation speed (rpm) of the electric motor 130 based on the angle information of the rotor 201 calculated by the angle calculation unit 10, and outputs the motor rotation speed signal to the output voltage calculation unit 4 and the target value. Output to the calculation unit 6.
  • the output voltage calculation unit 4 includes target assist torque data of each energization system, rotation speed data of the electric motor 130, and d-axis actual current value Id for each energization system calculated by the three-phase to two-phase conversion unit 11. Input q-axis actual current value Iq.
  • the output voltage calculation unit 4 calculates the d-axis voltage command value Vd1 and q-axis voltage command value Vq1 of the first inverter 1A, and the d-axis voltage command value Vd2 and q-axis voltage command value Vq2 of the second inverter 1B. And output.
  • the three-phase / two-phase converter 11 is based on the output signals of the current detectors 314A (U), 314A (V), and 314A (W), that is, based on the detected value of the actual current flowing in each phase of the first winding set 2A.
  • the d-axis actual current value Id1 and the q-axis actual current value Iq1 of the first energization system are calculated.
  • the three-phase / two-phase converter 11 outputs the output signals of the current detectors 314B (U), 314B (V), and 314B (W), that is, the detected value of the actual current flowing through each phase of the second winding set 2B. Based on the above, the d-axis actual current value Id2 and the q-axis actual current value Iq2 of the second energization system are calculated.
  • the three-phase to two-phase converter 11 includes a d-axis actual current value Id1 and a q-axis actual current value Iq1 of the first energization system, and a d-axis actual current value Id2 and a q-axis actual current value Iq2 of the second energization system.
  • a d-axis actual current value Id1 and a q-axis actual current value Iq1 of the first energization system are output to the output voltage calculation unit 4 and the target value calculation unit 6, respectively.
  • the d-axis voltage command value Vd1 and the q-axis voltage command value Vq1 output from the output voltage calculation unit 4 are input to the first output duty calculation unit 7A.
  • the first output duty calculator 7A is configured to generate the d-axis duty Dutyd1 and q in the PWM control of the first inverter 1A based on the d-axis voltage command value Vd1, the q-axis voltage command value Vq1, and the power supply voltage of the first inverter 1A. Calculate the axis duty Dutyq1. Further, the d-axis voltage command value Vd2 and the q-axis voltage command value Vq2 output from the output voltage calculation unit 4 are input to the second output duty calculation unit 7B.
  • the second output duty calculator 7B is configured to generate d-axis duty Dutyd2 and q in PWM control of the second inverter 1B based on the d-axis voltage command value Vd2, the q-axis voltage command value Vq2, and the power supply voltage of the second inverter 1B. Calculate the axis duty Dutyq2.
  • the first two-phase / three-phase converter 8A receives the d-axis duty Dutyd1, the q-axis duty Dutyq1, and the rotor angle information of the electric motor 130, which are output from the first output duty calculator 7A. Then, the first two-phase three-phase converter 8A calculates and outputs the duty command values DutyU1, DutyV1, and DutyW1 for the three phases of the first winding set 2A.
  • the second two-phase / three-phase converter 8B receives the d-axis duty Dutyd2, the q-axis duty Dutyq2 output from the second output duty calculator 7B, and information on the rotor angle of the electric motor 130. Then, the second two-phase / three-phase converter 8B calculates and outputs duty command values DutyU2, DutyV2, and DutyW2 for the three phases of the second winding set 2B.
  • the first dead time compensation unit 9A receives the duty command values DutyU1, DutyV1, and DutyW1 output from the first two-phase / three-phase conversion unit 8A, and receives the duty command values DutyU1, DutyV1, and DutyW1 subjected to dead time compensation. Calculate and output to inverter 1A.
  • the second dead time compensator 9B receives the duty command values DutyU2, DutyV2, and DutyW2 output from the second two-phase / three-phase converter 8B, and receives the duty command values DutyU2, DutyV2, DutyW2 is calculated and output to inverter 1B.
  • Dead time compensation is a PWM that creates a gate signal for a switching element by delaying the rise of a PWM signal, which is a result of comparing a triangular wave and a command value, by a dead time so that the upper and lower arms of the inverters 1A and 1B are not short-circuited. In the control, it is a process for suppressing a voltage drop due to a dead time voltage.
  • the determination unit 12 outputs the phase current detectors 314A (U), 314A (V), 314A (W), 314B (U), 314B (V), and 314B (W), and the peak hold circuits 312A and 312B. Output, output of voltage monitor circuit 307, duty command values DutyU1, DutyV1, DutyW1 for each of the three phases of the first winding set 2A, duty command values DutyU2, DutyV2, DutyW2 for the three phases of the second winding set 2B, etc. input. Then, the determination unit 12 individually performs failure diagnosis of each energization system based on the above input signal, and according to the result of the failure diagnosis, the first energization system off command signal and the second energization system off command. Control the output of the signal.
  • the OFF command signal for the first energization system output from the determination unit 12 is input to the first ON / OFF unit 13A.
  • the first ON / OFF unit 13A operates all the switching elements of the first inverter 1A to turn off, and stops the operation of the first inverter 1A, in other words, the current output of the first inverter 1A.
  • the OFF command signal for the second energization system output from the determination unit 12 is input to the second ON / OFF unit 13B.
  • the second ON / OFF unit 13B When the second ON / OFF unit 13B receives the OFF command signal, it turns off all the switching elements of the second inverter 1B, and stops the operation of the second inverter 1B, in other words, the current output of the second inverter 1B.
  • the off command signal of the first energization system and the off command signal of the second energization system output by the determination unit 12 are output to the target value calculation unit 6. Then, the target value calculation unit 6 operates either the first energization system or the second energization system according to the output state of the stop command of the inverters 1A and 1B by the determination unit 12, or either one of them. A target assist torque for each energization system is calculated according to whether the operation is performed.
  • the routines shown in the flowcharts of FIGS. 7 to 10 are executed by the microcomputer 302 by interruption processing every predetermined time.
  • the predetermined time can be set to about 1 ms, for example.
  • step S501 the microcomputer 302 detects whether or not a second system diagnosis flag, which is a flag that is raised when the second diagnosis process is performed for the second energized system, is set to 1.
  • the second system diagnosis flag and the first system diagnosis flag described later are “0”
  • the second system diagnosis flag indicates a state before the start of the second diagnosis process, and when it is “1”, the second diagnosis is performed. It indicates that the process is being performed. If it is “2”, it indicates that the energized system is abnormal by the second diagnosis process. If it is “3”, it indicates the detection result of the abnormal state. Indicates that the process to be confirmed is suspended.
  • the microcomputer 302 proceeds to step S502 and performs the first diagnosis process for the first energized system. Determine the result. As will be described later, the microcomputer 302 performs the first diagnosis process in the energized state and the non-energized state for verifying the determination result by the first diagnosis process for each of the first energized system and the second energized system. When the second diagnosis process is performed and the second diagnosis process for the second energization system is not performed, the result of the first diagnosis process for the first energization system is determined.
  • the microcomputer 302 determines whether there is an abnormality in the sum of the current detection values of the three phases, whether there is an overcurrent exceeding the motor current value, whether there is an abnormality in the energization control, and so on. Diagnose based on the PWM operation state of the switching element. Specifically, the microcomputer 302 generates an abnormality in the energized system when the absolute value of the sum of the phase current detection values of each energized system exceeds the threshold value (threshold value> 0) for a set time. And the total abnormality flag is raised to 1. That is, the microcomputer 302 makes a normal determination for the energized system when the sum of the phase current values is close to zero, and abnormal when the sum of the phase current values is out of the normal range near zero. Make a decision.
  • the microcomputer 302 determines the occurrence of overcurrent for the energization system and sets the overcurrent flag. Launch to 1. In other words, the microcomputer 302 determines the occurrence of an abnormality such as an overshoot of the energized current when the peak value of the motor current value exceeds the allowable maximum value.
  • the microcomputer 302 continues in a state where the absolute value of the difference between the phase current estimated value estimated from the output duty ratio in the PWM control and the phase current detected value exceeds the predetermined current value for a predetermined time in each energization system.
  • An abnormality in energization control is determined for the energization system, and a control abnormality flag is set to 1.
  • the microcomputer 302 determines an abnormality in the energization control for the energized system when the current corresponding to the setting of the duty ratio does not flow in each phase and the control deviation exceeds the allowable error.
  • step S502 the microcomputer 302 indicates that the total abnormality flag (1), the overcurrent flag (1), and the control abnormality flag (1) are all 0 indicating the result of the first diagnosis process for the first energized system. If no abnormality is detected in the first power distribution system, the process proceeds to step S503.
  • the first system diagnosis flag which is a flag that is set to 1 when the second diagnosis process is being performed for the first energized system
  • step S504 the microcomputer 302 indicates that the total abnormality flag (2), the overcurrent flag (2), and the control abnormality flag (2) all indicate the result of the first diagnosis process for the second energized system. Determine if it is 0 or at least one is 1.
  • the microcomputer 302 detects the abnormality of the second energization system in the first diagnosis process when all of the sum abnormality flag (2), the overcurrent flag (2), and the control abnormality flag (2) are 0. If not, this routine is terminated as it is.
  • step S505 the microcomputer 302 detects whether or not the second diagnosis process, which is a diagnosis process for specifying the fault location, is being performed on the first energized system in which the abnormality is detected in the first diagnosis process. .
  • step S506 the microcomputer 302 stops the PWM operation of the inverter 1A of the first energization system to perform the second diagnosis process, and fixes all the switching elements of the inverter 1A to the off state, that is, the first While performing the process which makes 1 energization system a de-energization control state, the process which raises a 1st system diagnosis flag to 1 is implemented.
  • step S507 the microcomputer 302 proceeds to step S507 and stops the PWM operation of the first inverter 1A of the first energization system, that is, performs control to fix all the switching elements of the first inverter 1A to the OFF state. It is determined whether or not a predetermined time has passed.
  • the predetermined time in step S507 is based on the time from when all the switching elements of the first inverter 1A are fixed to the OFF state until all the switching elements of the first inverter 1A are actually stabilized in the OFF state. Pre-adapted time.
  • the microcomputer 302 performs the step This routine is ended as it is from S507, and the transition to the next step is delayed.
  • the diagnosis process is performed in a state where the switching element of the first inverter 1A is not actually stable in the off state, and erroneous diagnosis of the presence or absence of abnormality is suppressed.
  • a short circuit occurs between the first energization system and the second energization system
  • by controlling all the switching elements of the inverter of one energization system to be off current flows through the short circuit path
  • the outflow stops and each phase current in the other energizing system returns to a normal value.
  • the effect of current inflow and outflow through the short circuit path remains, and each phase current in the other energizing system has an abnormal value. May show.
  • step S508 after the time until all the switching elements are actually stabilized in the OFF state after the OFF control of all the switching elements of the energized system in which the abnormality is detected in the first diagnosis process. Proceed to the following. When a predetermined time has elapsed since the control for fixing all the switching elements of the inverter 1A to the OFF state, the microcomputer 302 proceeds from step S507 to step S508.
  • step S508 the microcomputer 302 determines whether or not the state in which the absolute value of the sum of the three-phase current detection values of the second energization system exceeds the threshold continues for a predetermined time or more. And, if the absolute value of the sum total of the three-phase current detection values of the second energization system does not exceed the threshold value, or if the duration value has not reached the predetermined time even if the absolute value of the sum exceeds the threshold value, The microcomputer 302 proceeds to step S509, and starts a second diagnosis process which is a diagnosis for identifying a failure location of the first energized system.
  • step S509 the microcomputer 302 performs the second diagnosis process for the first energization system in step S509 in a state where all the switching elements of the inverter 1A are turned off, that is, This is carried out in the non-energized control state of the first energization system.
  • the microcomputer 302 performs, as the second diagnosis process, a process for diagnosing the presence or absence of a short circuit between the energized systems, a process for diagnosing the presence or absence of a power / ground fault, a process for diagnosing the presence or absence of a disconnection of the energized line, A process for diagnosing the presence or absence of a malfunction in the detection function, a process for diagnosing the presence or absence of a malfunction in the peak detection function of the motor current, etc.
  • the microcomputer 302 sets the output voltage to one phase of the winding set of the first energization system in which the abnormality is detected to be high or low, and the phase output control relates to the phase current detection value of the second energization system or the second The occurrence of a short circuit between the systems is detected when it affects the sum of the three-phase current detection values of the energized system.
  • the microcomputer 302 sequentially switches one phase with the output voltage being high or low, and when the control of the output voltage in all three phases does not affect the phase current of the second conduction system, a short circuit between the conduction systems. Judge that there is no.
  • the process of diagnosing the presence or absence of a power fault or a ground fault includes a power fault that is a short circuit between a winding and a power source in the first energization system that has detected an abnormality, and a winding in the first energization system that has detected an abnormality.
  • This is a process for diagnosing the presence or absence of a ground fault, which is a short circuit between a line and a ground point.
  • the power fault includes a short circuit between the drive line of each winding and the power supply and a short circuit of the high potential side switching element
  • the ground fault includes a short circuit between the drive line of each winding and the grounding point. Short circuit and short circuit of the low potential side switching element are included.
  • the microcomputer 302 turns on the power supply relays 304A and 304B, and controls the high-potential side switching element or the low-potential side based on the winding end voltages in a state where all the switching elements constituting the inverters 1A and 1B are controlled to be off. Diagnose the switching element for short circuit. Further, the microcomputer 302 diagnoses the presence or absence of a short circuit between the drive line and the power source or the ground point based on the winding end voltages in a state where the power relays 304A and 304B are turned off.
  • the microcomputer 302 detects that the sum of the winding end voltages of the three phases detected by the voltage monitor circuit 307A is out of a predetermined range based on the fixed potential by the pull-up resistor RA or Determine the occurrence of a ground fault.
  • the process of diagnosing the presence or absence of disconnection of the energization line is a process of diagnosing whether or not a disconnection has occurred in each drive line of each winding of the first energization system that detected the abnormality.
  • the microcomputer 302 sets the output voltage to one phase of the winding set of the first energization system in which the abnormality is detected to be high or low
  • the microcomputer 302 When the voltage detection value does not become a voltage value corresponding to high or low control, the occurrence of disconnection of the energization line is diagnosed.
  • the microcomputer 302 sequentially switches one phase with the output voltage being high or low, and when the control of the output voltage is reflected in the voltage detection values of the other phases in all three phases, the microcomputer 302 It is determined that there is no disconnection.
  • the diagnosis of the phase current detection function is a process of diagnosing whether or not an abnormality has occurred in the phase current detector 314, that is, the current detection function of each phase of the first energization system.
  • the microcomputer 302 causes a failure of the phase current detector 314A. Diagnose.
  • the diagnosis of the peak detection function of the motor current is a detection function of the peak value of the motor current, that is, a process of diagnosing whether or not the peak hold circuit 312A has failed.
  • the microcomputer 302 has a function of detecting the peak value of the motor current when the detection result of the peak value of the motor current exceeds a predetermined current value in a state where all the switching elements of the first inverter 1A are off, that is, The occurrence of a failure in the peak hold circuit 312A is diagnosed.
  • the microcomputer 302 causes a short circuit and a power fault between the energized systems in a state where the PWM operation of the first inverter 1A is stopped for the first energized system in which the occurrence of abnormality is detected in the first diagnosis process.
  • a second diagnosis process for diagnosing whether or not a ground fault, disconnection of the energized line, failure of the phase current detection function, or failure of the peak detection function of the motor current is performed. Then, the microcomputer 302 proceeds to step S510 to detect whether or not the second diagnosis process is completed. If the second diagnosis process is in progress, the microcomputer 302 ends the routine as it is. The process proceeds to S511.
  • the microcomputer 302 determines that the second system diagnosis flag is not 1 in step S501, and further, in step S502, the first diagnosis for the first energized system. If it is determined that an abnormality has been detected in the process and there is no abnormality in the sum of the three-phase currents of the second energized system, the process proceeds to steps S505 to S510. And if it detects that the 2nd diagnostic process about the 1st electricity supply system was completed by Step S510, it will progress to Step S511.
  • step S511 the microcomputer 302 determines whether or not a failure has been detected in the second diagnosis process for the first energized system in which an abnormality has been detected in the first diagnosis process.
  • the microcomputer 302 detects the occurrence of a failure in the first energized system as a result of performing the second diagnostic process on the first energized system in which the abnormality is detected in the first diagnostic process, the microcomputer 302 proceeds to step S512.
  • step S512 the microcomputer 302 performs a fail-safe process for controlling the switching element of the first inverter 1A of the first energization system to a predetermined state, and the abnormality detection of the first energization system is confirmed in the first system diagnosis flag. “2” is set, and “2” is set to indicate that the abnormality detection has been confirmed in the total abnormality flag (1), the overcurrent flag (1), and the control abnormality flag (1).
  • step S513 changes the control parameter of the second energization system according to the failure location of the first energization system and the operation state of the switching element of the first energization system,
  • the total abnormality flag (2), overcurrent flag (2), and control abnormality flag (2) of the two energization systems are all cleared to zero, and the PWM operation of the second inverter 1B of the second energization system is started. That is, if an abnormality is detected in the first diagnosis process for the first energization system and further an abnormality is detected in the second diagnosis process for the first energization system, the first inverter is set in a non-energized state. While the output of 1A is stopped, the energization control of the second energization system is performed, and the electric motor 130 is driven by the output of the second inverter 1B.
  • step S512 an example of a fail-safe process for controlling the switching element of the first inverter 1A in step S512 to a predetermined state is shown below.
  • the microcomputer 302 holds all the switching elements of the first inverter 1A in the off control state. However, the control parameter of the second energization system that continues the operation is not changed.
  • the microcomputer 302 turns on or off each switching element of the first inverter 1A in the fail-safe mode as exemplified in FIGS. Hold on. Further, the microcomputer 302 changes the control parameter of the second energization system in consideration of an apparent inductance reduction due to the cancellation of the magnetic flux of the second energization system by the first energization system. Further, the microcomputer 302 sets the target assist torque of the second energization system so that it compensates for the brake torque and magnetic flux cancellation due to the loop current generated in the first energization system than when the first energization system is normal. Increase the process.
  • FIG. 11 to FIG. 14 show an example of a fail safe mode that is an on / off control pattern of the switching element in a short circuit occurrence state in the energization system.
  • the short-circuiting is performed in four modes: a short circuit of the high potential side switching element of the inverter, a short circuit of the low potential side switching element of the inverter, a power fault of the phase drive line, and a ground fault of the phase drive line. Divide.
  • the fail-safe mode illustrated in FIGS. 11 to 14 is a control pattern that is commonly applied to the first energization system and the second energization system.
  • the fail-safe mode of FIG. 11 is a pattern in which one of the high-potential side switching element and the low-potential side switching element constituting the inverter of the energization system in which a short circuit has occurred is controlled to be on and the other is controlled to be off.
  • the switching element to be controlled is selected according to the failure mode.
  • the fail-safe mode shown in FIG. 11 when a short circuit occurs in any of the high-potential side switching elements, all of the high-potential side switching elements are controlled to be turned off, while all of the low-potential side switching elements are turned on.
  • the pattern to be controlled is selected.
  • any of the phase drive lines when a short circuit occurs in any of the low-potential side switching elements, when a power fault occurs in any of the phase drive lines, any of the phase drive lines If a ground fault has occurred, a pattern is selected in which all of the high potential side switching elements are controlled to be turned on while all of the low potential side switching elements are controlled to be off.
  • the power relay 304 that cuts off the power supply to the inverter of the energized system in which the failure has occurred is one of a short circuit of the high potential side switching element, a short circuit of the low potential side switching element of the inverter, or a ground fault of the phase drive line.
  • the power relay 304A can be controlled to be turned on or off when the phase drive line power fault has occurred.
  • any of the drive lines of each phase has a power fault
  • all of the low potential side switching elements are controlled to be turned off while all of the high potential side switching elements are controlled.
  • bidirectional current flows through the high-potential side switching element that is turned on, brake current is generated continuously, and the power line is connected via the low-potential side switching element. There is no short circuit to ground.
  • any of the drive lines for each phase has a power fault, even if the power relay is turned off, power is supplied to the phase drive lines, so the power relay can be kept on. In addition, it can be controlled to be uniformly off based on the failure of the first energization system. In addition, when any of the drive lines of each phase is grounded, all the low potential side switching elements are controlled to be turned off according to the fail safe mode shown in FIG. If controlled to ON, bidirectional current will flow through the ON high potential side switching element, brake current will be generated continuously, and power supply to the inverter will be controlled to turn off the power relay Therefore, the power supply does not flow into the grounding point through the ground fault location.
  • the high-potential side switching element and the low-potential side switching element of the energization system in which the energization abnormality has occurred If one is controlled to be in an energized state in which the impedance between the phases is reduced, the brake current generated in the energized system in which an abnormality has occurred is continuously generated without a half-wave waveform.
  • the compensation accuracy for correcting the inverter output of the normal power distribution system so as to cancel the brake torque is Compared to the case of a half-wave waveform, the accuracy of compensation control is improved.
  • the compensation control of the target assist torque based on the brake current becomes easier than the case where the waveform of the brake current becomes a half-wave waveform, The control program can be simplified. For this reason, the development cost of the control program can be suppressed, and the capacity of the control program can be reduced, thereby reducing the product cost.
  • the on-control of the switching element on the side where the short circuit has occurred is not performed, but together with the switching element on the side where no short circuit has occurred as in the fail-safe mode shown in FIG. 12. All the switching elements on the side where the short circuit is generated can be controlled to be turned on. Further, when a ground fault occurs in any of the phase drive lines, the power relay can be controlled to be turned off to prevent the power source power from flowing into the grounding point through the ground fault location. According to the safe mode, the high potential side switching element can be controlled to be turned on and the low potential side switching element can be controlled to be on.
  • the on / off control of the switching element and the power relay with respect to the drive line power fault is set to be the same.
  • the brake current is continuously generated as in the case where the switching element is controlled to be turned on / off according to the fail-safe mode of FIG. Obtainable.
  • the switching element on the side where the short circuit occurs can be controlled to be on, and the switching element on the side where no short circuit has occurred can be controlled to be off. If the switching element on the side where no short circuit occurs is controlled to be off, the power supply current can be prevented from flowing toward the ground point by the off-controlled switching element. Even so, similar actions and effects can be obtained.
  • the fail-safe mode shown in FIG. 13 when a ground fault occurs in any of the drive lines, the high potential side switching element can be controlled to be off and the low potential side switching element can be controlled to be on. In this case, since the power supply current can be prevented from flowing toward the grounding point by the high-potential side switching element that is controlled to be off, the same operation and effect can be obtained regardless of whether the power supply relay is on or off. It will be. That is, the fail safe mode shown in FIG. 13 can also be applied to a motor drive circuit that does not include a power relay that individually cuts off power supply to each inverter.
  • the on / off control of the switching element and the power supply relay with respect to the drive line power fault is common.
  • the power relay can be controlled to be either on or off. That is, in the fail safe mode of FIG. 13, the brake current can be continuously generated as in the case of adopting the fail mode of FIG. 11 and FIG. 12, and the brake current is not easily affected by the failure state. In addition, there is an effect that there is no need to control the power relay regardless of the failure state.
  • the fail-safe mode shown in FIG. 14 controls all the switching elements constituting the inverter of the energized system in which the abnormality has occurred to be turned off regardless of the occurrence location of the short circuit.
  • the power relay 304 can be controlled to be either on or off.
  • the electronic control unit 150 can uniformly control the power supply relay 304 to be on or off regardless of the failure mode in the fail-safe mode shown in FIG.
  • step S513 the control parameter changing process in step S513 will be described in detail.
  • a short circuit occurs in the first energization system
  • a loop current is generated via the short-circuit location, so that the magnetic flux generated by the normal energization of the second energization system is canceled and the inductance of the second energization system is apparently reduced.
  • the operation of the first energization system is stopped and the electric motor 130 is driven by the energization control of the second energization system, an overshoot of the energization current is likely to occur.
  • the microcomputer 302 sets the output control responsiveness of the second inverter 1B when there is no short circuit in the first energization system in order to suppress the overshoot of the energization current in the second energization system. Lower than. Specifically, the microcomputer 302 makes the control gain in the output control of the second inverter 1B smaller than when the short circuit does not occur in the first energization system, thereby responsiveness of the output control of the second inverter 1B. Is made lower than when no short circuit occurs in the first energization system.
  • the microcomputer 302 can reduce the gain of the process of determining the operation amount of the inverter according to the control deviation as the process of reducing the response of the inverter output control. That is, when the microcomputer 302 determines the duty ratio in PWM control of the switching element of the inverter by proportional, integral, or differential operation according to the difference between the actual current value and the command current value, the proportional constant, integral constant, At least one of the differential constants is corrected in a direction in which the responsiveness decreases. Further, as a change in the control gain, the microcomputer 302 can perform a process of reducing the cutoff frequency in the low-pass filter process of the current detection value.
  • the energization current of the second energization system will overshoot. It can suppress and it can suppress that the abnormality of a 2nd electricity supply system will be misdetected with generation
  • the second energization system can operate normally, an overshoot of the energization current of the second energization system is suppressed so that the occurrence of a failure is not erroneously diagnosed due to the influence of the loop current of the first energization system.
  • the driving of the electric motor 130 by the two energization systems can be continued.
  • the inductance of the second energization system is apparently reduced and the energization current is increased, an abnormality is easily diagnosed in the overcurrent diagnosis and the energization control diagnosis of the first diagnosis process.
  • the microcomputer 302 changes the control parameter changes such that the motor current peak value threshold value and the difference current threshold value between the phase current estimation value and the phase current detection value are larger than when the first energization system is normal. This makes it difficult to detect an abnormality in the second energization system. Thereby, generation
  • the microcomputer 302 replaces the threshold value used for the diagnostic processing with or together with the threshold value change, such as the peak value of the motor current, the phase current detection value, the difference between the phase current estimated value and the actual current detection value, etc.
  • the detection data can be corrected in a direction in which an abnormality is less likely to occur, that is, in a direction in which the absolute value becomes smaller.
  • the microcomputer 302 can perform at least one of a change in control gain and a change in state quantities such as detection data and threshold values used in the first diagnosis process.
  • the change in the fail-safe mode which is the control pattern of the switching element of the first energization system applied when an abnormality occurs in the first energization system, and the control parameters of the second energization system described above are driven for each phase.
  • This is an example of control when the phase relay 313 is not provided on the line.
  • produced are turned off, and all the phase relays 313 of the 1st electricity supply system are turned off, It can be set as the structure which does not change the control parameter of the 2nd electricity supply system which is normal.
  • phase relay 313 when the phase relay 313 is provided, turning off all the phase relays 313 can suppress the loop current from flowing through the short-circuited portion, and the magnetic flux generated by the normal second energization system is canceled. This is because it can be suppressed.
  • the microcomputer 302 when the short circuit between the energization systems, the first energization system is abnormal, and the second energization system is normal, the microcomputer 302 performs the above-described processing of step S512 and step S513, and the first energization system. Is stopped, and the energization control of the second energization system is performed.
  • step S501 when returning to step S501 again, the microcomputer 302 proceeds to step S501 ⁇ step S502 ⁇ step S503 ⁇ step S504, and stops the operation of the first energization system while the second energization system is normal. And the state of conducting the energization control of the second energization system is maintained.
  • the microcomputer 302 confirms that the failure of the first energization system is confirmed, the operation of the first energization system is stopped, and the energization control of the second energization system is performed based on the above-described first system diagnosis flag and the like.
  • the failure of the second energization system is detected in this state, the operation of the second energization system is also stopped and the drive of the electric motor 130 is stopped.
  • the steps S515 to S523 are the same as steps S505 to S513, although the target energization system is different from the steps S505 to S513 described above. Accordingly, when the first energization system is normal and an abnormality occurs in the second energization system, the microcomputer 302 proceeds to step S515 from the state where the process has been completed as it is from step S504. In the same manner as described above, the second diagnosis process for the second energization system is performed, and if an abnormality of the second energization system is detected in the second diagnosis process, the operation of the second energization system is stopped. The electric motor 130 is driven by the energization control.
  • the microcomputer 302 controls the second inverter 1B of the second energization system to a predetermined state, and sets control parameters in the energization control of the first energization system. change.
  • the microcomputer 302 performs steps S504 to S515 and S516. -The process proceeds to step S517, and after the standby time after the inverter OFF control has elapsed, the process proceeds to step S518.
  • step S527 since a short circuit has occurred in the first energization system, even if the standby time after the off control has elapsed and the process proceeds to step S518, the microcomputer 302 causes the sum of the three-phase currents in the first energization system to be abnormal. It will detect that it is a value. Thereby, the microcomputer 302 proceeds from step S518 to step S524, and since the first system diagnosis flag is not “3”, the microcomputer 302 further proceeds to step S527.
  • step S527 the microcomputer 302 sets “3” in the first system diagnosis flag.
  • the microcomputer 302 proceeds to step S505 and the subsequent steps, performs the second diagnosis process for the first energization system, and diagnoses the failure of the first energization system, proceeds to step S512 and step S513 to perform the first energization.
  • the operation of the system is stopped, and the electric motor 130 is driven by the energization control of the second energization system.
  • a similar process is also performed when a short circuit occurs in the second energization system and an abnormality in the first energization system is erroneously diagnosed by the first diagnosis process due to the short circuit.
  • the motor control device includes a connection structure in which the three-phase windings U, V, and W are referred to as a delta connection or a triangular connection in addition to the electric motor 130 in which the three-phase windings U, V, and W are star-connected.
  • the present invention can also be applied to an electric motor that is connected with a wire.
  • control device for the electric motor according to the present invention is also provided in an apparatus provided with three or more winding sets composed of three-phase windings U, V, W and three or more inverters for driving each winding set. Can be applied.
  • the motor to which the control device according to the present invention is applied is not limited to an electric motor that generates a steering assist force in an electric power steering device for a vehicle, but a motor as an actuator of a variable valve mechanism of an engine, It can be applied to various motors such as a motor used for driving a pump.
  • an abnormality of the electric power steering device using the electric motor can be notified to the vehicle driver by operating a warning device such as a lamp or a buzzer. .
  • 1st dead time compensation part 9B: Second dead time compensation unit
  • 11 Three-phase to two-phase conversion unit
  • 12 Determination unit
  • 13A First ON / OFF unit
  • 13B Second ON / OFF unit
  • 130 Electric motor
  • 150 Electronic control unit ( Control device), 301UA, 301VA, 301WA, 301UB, 301VB, 301WB ... current sensor (current detector), 302 ... microcomputer, 304A, 304B ... power relay, 307 ... voltage monitor circuit, UHA, V A, WHA, UHB, VHB, WHB ... high potential side switching elements, ULA, VLA, WLA, ULB, VLB, WLB ... low potential side switching elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

 本発明は、インバータと複数の相に対応する巻線とで構成される通電系統を複数備えた電動モータの制御装置及び制御方法に関する。本発明では、通電状態での第1診断処理で1つの通電系統について異常を検出すると、異常を検出した通電系統を非通電状態として第2診断処理を実施する。そして、第2診断処理で短絡の発生を検出すると、正常な通電系統の制御ゲインを低下させ、また、正常な通電系統についての第1診断処理で用いる閾値を、異常が診断され難くなる方向に変更し、正常な通電系統の通電制御を継続する。これにより、複数の通電系統のうちの一部に短絡が発生したときに、正常な通電系統の出力を停止してしまうことを抑制できる。

Description

電動モータの制御装置及び制御方法
 本発明は、インバータと複数の相に対応する巻線とで構成される通電系統を複数備えた電動モータの制御装置及び制御方法に関する。
 特許文献1には、直流電源の電圧を複数台の電力変換器を介して多相交流電動機に供給する交流電動機の制御装置が開示されている。
 この制御装置は、前記複数台の電力変換器の出力電流を検出する検出手段と、前記電力変換器の一方の電流検出値を回転座標に変換する第1の座標変換手段と前記電力変換器の他方の電流検出値を回転座標に変換する第2の座標変換手段と、前記第1と第2の座標変換手段の出力信号から平均出力電流値を求める平均値演算手段と、前記平均値演算手段の出力と励磁電流指令値及びトルク電流指令値とから代表の2相電圧指令値を生成する電圧指令生成手段と、前記第1と第2の座標変換手段の出力とから補正信号を生成する補正信号生成手段と、前記補正信号生成手段の出力と前記電圧指令生成手段の出力とから複数の2相電圧指令値を生成する電圧指令補正手段と、前記電圧指令補正手段の出力から3相電圧指令を生成する複数の指令座標変換手段とから構成され、多相交流電動機の不平衡電流を低減することを特徴とする。
特許第2614788号公報
 インバータと複数の相に対応する巻線とで構成される通電系統を複数備えた電動モータにおいて、短絡が発生した1つの通電系統のインバータのスイッチング素子を全てオフしても、短絡した箇所を経由してループ電流が生じることで、正常である通電系統の通電で発生する磁束をキャンセルしてしまう場合がある。
 このような場合、正常である通電系統の見かけ上のインダクタンスが小さくなって通電電流がオーバーシュートすることで、過電流や通電制御の異常が誤って検出され、正常な通電系統のインバータの出力を停止させてしまう可能性があった。
 本発明は上記問題点に鑑みなされたものであり、複数の通電系統のうちの一部に短絡が発生したときに、正常な通電系統の出力を誤って停止してしまうことを抑制できる、電動モータの制御装置及び制御方法を提供することを目的とする。
 そのため、本願発明に係る電動モータの制御装置は、複数の通電系統それぞれについて短絡の有無を検出し、前記複数の通電系統のうちの一部で短絡が検出されたときに短絡が検出されなかった通電系統の制御パラメータを変更する制御部を備える。
 また、本願発明に係る電動モータの制御方法は、各巻線の電気状態の検出信号を入力し、複数の通電系統それぞれについて短絡の有無を検出するステップと、前記複数の通電系統それぞれについての短絡の有無の検出結果を読み込み、前記複数の通電系統のうちの一部で短絡が検出されたときに短絡が検出されなかった通電系統の制御パラメータを変更するステップと、を含む。
 上記発明によると、短絡が発生した通電系統に影響されて正常な通電系統について過電流や通電制御の異常が誤って検出されることを抑制でき、正常である通電系統の出力が継続させることが可能になる。
本発明の実施形態においてモータ制御装置を適用する電動パワーステアリング装置の概略構成図である。 本発明の実施形態における制御装置の回路構成図である。 本発明の実施形態における制御装置の回路構成図である。 本発明の実施形態における制御装置の回路構成図である。 本発明の実施形態における制御装置の回路構成図である。 本発明の実施形態における制御装置の機能ブロック図である。 本発明の実施形態における診断処理の手順を示すフローチャートである。 本発明の実施形態における診断処理の手順を示すフローチャートである。 本発明の実施形態における診断処理の手順を示すフローチャートである。 本発明の実施形態における診断処理の手順を示すフローチャートである。 本発明の実施形態における短絡が発生した通電系統の制御パターンを示す図である。 本発明の実施形態における短絡が発生した通電系統の制御パターンを示す図である。 本発明の実施形態における短絡が発生した通電系統の制御パターンを示す図である。 本発明の実施形態における短絡が発生した通電系統の制御パターンを示す図である。
 以下に本発明の実施の形態を説明する。
 図1は、本発明に係る電動モータの制御装置を、車両用の電動パワーステアリング装置において操舵補助力を発生する電動モータに適用した例を示す。
 図1に示す電動パワーステアリング装置100は、車両200に備えられ、操舵補助力を電動モータ130によって発生させる装置である。
 電動パワーステアリング装置100は、ステアリングホイール110、操舵トルクセンサ120、電動モータ130、電子制御ユニット150、電動モータ130の回転を減速してステアリングシャフト(ピニオンシャフト)170に伝達する減速機160などを含んで構成される。
 操舵トルクセンサ120及び減速機160は、ステアリングシャフト170を内包するステアリングコラム180内に設けられる。
 ステアリングシャフト170の先端にはピニオンギア171が設けられていて、このピニオンギア171が回転すると、ラックギア172が車両200の進行方向左右に水平移動する。
 ラックギア172の両端にはそれぞれ車輪201の操舵機構202が設けられており、ラックギア172が水平移動することで車輪201の向きが変えられる。
 操舵トルクセンサ120は、車両の運転者がステアリング操作を行うことでステアリングシャフト170に発生する操舵トルクを検出し、検出した操舵トルクの信号STを電子制御ユニット150に出力する。
 マイクロコンピュータ、電動モータ130を駆動するためのインバータ、インバータの駆動回路などを備える電子制御ユニット150には、操舵補助力の決定に用いる状態量の情報として、操舵トルク信号STの他、車速センサ190が出力する車速の信号VSPなどが入力される。
 そして、電子制御ユニット150は、操舵トルク信号ST、車速信号VSPなどの車両の運転状態に基づいて電動モータ130への通電をPWM(Pulse Width Modulation)制御し、以って、電動モータ130の発生トルク、つまり、操舵補助力を制御する。このように、電子制御ユニット150は、電動モータ130を駆動する制御装置を構成する。
 なお、電子制御ユニット150に含まれるインバータ、インバータの駆動回路のうち、インバータ、若しくは、インバータ及び駆動回路を、電子制御ユニット150の外部に別体として設けることができる。この場合、電子制御ユニット150と、インバータ、若しくは、インバータ及び駆動回路とによってモータ130を駆動する制御装置が構成されることになる。
 図2は、電子制御ユニット150及び電動モータ130の回路構成の一例を示す。
 図2に示す電動モータ130は、スター結線される3相巻線UA、VA、WAからなる第1巻線組2Aと、同じくスター結線される3相巻線UB、VB、WBからなる第2巻線組2Bとを有する3相同期電動機であり、第1巻線組2A及び第2巻線組2Bにおいて3相巻線U、V、Wが互いに接続された点は中性点をなす。
 第1巻線組2A及び第2巻線組2Bは図示省略した円筒状の固定子に設けられ、該固定子の中央部に形成した空間に永久磁石回転子201が回転可能に備えられ、第1巻線組2Aと第2巻線組2Bとは磁気回路を共有する。
 そして、第1巻線組2Aは第1インバータ1Aと直接接続され、第2巻線組2Bは第2インバータ1Bと直接接続され、第1巻線組2Aには第1インバータ1Aから電力が供給され、第2巻線組2Bには第2インバータ1Bから電力が供給される。
 第1インバータ1Aは、第1巻線組2AのU相コイルUA、V相コイルUA及びW相コイルWAをそれぞれに駆動する3組の半導体スイッチUHA,ULA、半導体スイッチVHA,VLA、半導体スイッチWHA,WLAを備えた3相ブリッジ回路からなる。
 また、第2インバータ1Bは、第2巻線組2BのU相コイルUB、V相コイルUB及びW相コイルWBをそれぞれに駆動する3組の半導体スイッチUHB,ULB、半導体スイッチVHB,VLB、半導体スイッチWHB,WLBを備えた3相ブリッジ回路からなる。
 本実施形態では、第1インバータ1A及び第2インバータ1Bを構成する各半導体スイッチとしてNチャンネル型MOSFETを用いる。
 第1インバータ1A及び第2インバータ1Bにおいて、半導体スイッチUH,ULは、電源VBと接地点との間にドレイン-ソース間が直列接続され、半導体スイッチUHと半導体スイッチULとの接続点にU相コイルUが接続される。
 また、第1インバータ1A及び第2インバータ1Bにおいて、半導体スイッチVH,VLは、電源VBと接地点との間にドレイン-ソース間が直列接続され、半導体スイッチVHと半導体スイッチVLとの接続点にV相コイルVが接続される。
 また、第1インバータ1A及び第2インバータ1Bにおいて、半導体スイッチWH,WLは、電源VBと接地点との間にドレイン-ソース間が直列接続され、半導体スイッチWHと半導体スイッチWLとの接続点にW相コイルWが接続される。
 なお、半導体スイッチUHと半導体スイッチULとの接続点、半導体スイッチVHと半導体スイッチVLとの接続点、及び、半導体スイッチWHと半導体スイッチWLとの接続点は、インバータ出力点を構成する。
 第1駆動回路303Aは、第1インバータ1Aを構成する各半導体スイッチを駆動する回路であり、第1インバータ1Aにおける高電位側スイッチング素子である半導体スイッチVHA,UHA,WHAをそれぞれに駆動する3つの高電位側ドライバと、第1インバータ1Aにおける低電位側スイッチング素子である半導体スイッチVLA,ULA,WLAをそれぞれに駆動する3つの低電位側ドライバとを備えている。
 また、第2駆動回路303Bは、第2インバータ1Bを構成する各半導体スイッチを駆動する回路であり、第2インバータ1Bにおける高電位側スイッチング素子である半導体スイッチVHB,UHB,WHBをそれぞれに駆動する3つの高電位側ドライバと、第2インバータ1Bにおける低電位側スイッチング素子である半導体スイッチVLB,ULB,WLBをそれぞれに駆動する3つの低電位側ドライバとを備えている。
 なお、高電位側スイッチング素子を上流側駆動素子或いは上アームと称し、低電位側スイッチング素子を下流側駆動素子或いは下アームと称することができる。
 そして、第1駆動回路303A及び第2駆動回路303Bは、マイクロコンピュータ302からの指令信号に応じてインバータ1A、1Bを構成する各半導体スイッチを駆動する。
 上記のように、本実施形態の電動モータの制御装置は、第1巻線組2A、第1インバータ1Aを含む第1通電系統と、第1巻線組2B、第2インバータ1Bを含む第2通電系統との2つの通電系統を備えている。
 なお、第1通電系統を第1チャンネルch1と称し、第2通電系統を第2チャンネルch2と称することができる。
 また、電源VBと第1インバータ1Aとの間に、第1インバータ1Aへの電源供給を遮断するための電源リレー304Aを設け、電源VBと第2インバータ1Bとの間に、第2インバータ1Bへの電源供給を遮断するための電源リレー304Bを設けてある。
 本実施形態において、電源リレー304A及び電源リレー304Bは半導体スイッチで構成され、電源リレー304A、304Bを構成する半導体スイッチは、駆動回路305A、305Bで駆動される。
 なお、電源リレー304A、304Bとして、接点を物理的に動かして開閉する電磁リレーを用いることができる。
 電源リレー304A、304Bの駆動回路305A、305Bは、マイクロコンピュータ302からの指令信号に応じて電源リレー304A、304Bを構成する半導体スイッチを駆動する。つまり、マイクロコンピュータ302は、第1インバータ1Aへの電源供給と、第2インバータ1Bへの電源供給とをそれぞれ独立に遮断できるようになっている。
 また、インバータ1A、1Bに供給される電源電圧の変動を抑制するために、電源リレー304A、304Bとインバータ1A、1Bとの間の電源ラインと接地点とを接続するコンデンサ306A、306Bを設けてある。
 また、各巻線組2A、2Bの各巻線端電圧をそれぞれに検出する電圧モニタ回路307を設けてあり、電圧モニタ回路307は、各巻線組2A、2Bの各巻線端電圧の検出信号をマイクロコンピュータ302に出力する。更に、インバータ1A、1Bのスイッチング素子が全てオフされたときの各巻線端の電位を固定するために、各巻線組2A、2BのU相UA,UBをプルアップするためのプルアップ抵抗RA、RBを設けてある。
 角度センサ308は、ロータ201の角度を検出し、角度データの信号をマイクロコンピュータ302に出力する。
 更に、第1インバータ1A及び第2インバータ1Bの低電位側の半導体スイッチUL,VL,WLのソースと接地点との間に、電動モータ130の駆動電流(モータ電流)を検出する電流検出器301A,301Bがそれぞれ接続される。
 なお、電流検出器301A,301Bは、電流検出抵抗、電流検出手段、或いは、電流センサと称することができる。
 電流検出器301A,301Bの出力は増幅回路311A,311Bに入力され、増幅回路311A,311Bの出力はマイクロコンピュータ302及びピークホールド回路312A,312Bに入力され、ピークホールド回路312A,312Bの出力はマイクロコンピュータ302に入力される。
 つまり、マイクロコンピュータ302は、通電系統毎のモータ駆動電流の検出値を入力すると共に、モータ駆動電流の検出値のピーク値を入力する。
 なお、図3に示すように、第1インバータ1Aの出力点と3相巻線UA、VA、WAとを結ぶ相ラインそれぞれに、相リレー313A(U)、313A(V)、313A(W)を設け、同様に、第2インバータ1Bの出力点と3相巻線UB、VB、WBとを結ぶ相ラインそれぞれに、相リレー313B(U)、313B(V)、313B(W)を設けることができる。
 なお、相ラインを駆動ライン又は通電ラインと称することができる。
 また、図4に示すように、電流検出器301A,301Bと共に、3相巻線U、V、Wそれぞれに流れる相電流を検出する相電流検出器314A(U)、314A(V)、314A(W)、314B(U)、314B(V)、314B(W)を設けることができる。
 図4において、相電流検出器314A(U)、314A(V)、314A(W)は、第1インバータ1Aの出力点と3相巻線UA、VA、WAとを結ぶ相ラインに配置され、相電流検出器314B(U)、314B(V)、314B(W)は、第2インバータ1Bの出力点と3相巻線UB、VB、WBとを結ぶ相ラインに配置される。
 更に、図5に示すように、インバータ1A、1Bの出力点と3相巻線U、V、Wとを結ぶ相ラインに、相リレー313及び相電流検出器314をそれぞれ設けることができる。
 図5に示した例では、インバータ1A、1Bの出力点と3相巻線U、V、Wとを結ぶ相ラインに、相電流検出器314をそれぞれ設け、更に、係る相電流検出器314と各巻線との間に相リレー313を配置してある。
 図3及び図5に示した相リレー313A(U)、313A(V)、313A(W)、313B(U)、313B(V)、313B(W)は、Nチャンネル型MOSFETなどの半導体スイッチで構成され、マイクロコンピュータ302によってオン/オフが制御される。
 また、図4及び図5に示した相電流検出器314A(U)、314A(V)、314A(W)、314B(U)、314B(V)、314B(W)の出力はそれぞれマイクロコンピュータ302に入力され、相電流検出器314とマイクロコンピュータ302とを接続するラインそれぞれには、増幅回路315A、及び、相電流検出器314の出力に並列するコンデンサCと直列する抵抗器Rからなるローパスフィルタ回路315Bを配置してある。
 図6は、マイクロコンピュータ302におけるインバータ1A、1Bの制御機能の一例を示す機能ブロック図である。
 目標値演算部6は、操舵トルクや車速や電動モータ130の回転速度などの条件に基づいて目標アシストトルク、つまり、電動モータ130の出力トルクの目標値を演算する。
 ここで、目標値演算部6は、第1通電系統の目標アシストトルクと、第2通電系統の目標アシストトルクとを個別に設定し、第1通電系統での通電制御で発生させるモータトルクと、第2通電系統での通電制御で発生させるモータトルクとの総和で、目標の操舵補助力を発生させる。
 角度演算部10は、角度センサ308の信号を入力して電動モータ130のロータ201の角度を演算する。
 モータ回転演算部5は、角度演算部10が演算したロータ201の角度の情報に基づいて電動モータ130の回転速度(rpm)を演算し、モータ回転速度の信号を出力電圧演算部4及び目標値演算部6に出力する。
 出力電圧演算部4は、各通電系統の目標アシストトルクのデータ、電動モータ130の回転速度のデータ、更に、3相2相変換部11で演算された通電系統毎のd軸実電流値Id、q軸実電流値Iqを入力する。
 そして、出力電圧演算部4は、第1インバータ1Aのd軸電圧指令値Vd1,q軸電圧指令値Vq1、及び、第2インバータ1Bのd軸電圧指令値Vd2,q軸電圧指令値Vq2を演算して出力する。
 3相2相変換部11は、電流検出器314A(U)、314A(V)、314A(W)の出力信号、つまり、第1巻線組2Aの各相に流れる実電流の検出値に基づき第1通電系統のd軸実電流値Id1及びq軸実電流値Iq1を演算する。
 また、3相2相変換部11は、電流検出器314B(U)、314B(V)、314B(W)の出力信号、つまり、第2巻線組2Bの各相に流れる実電流の検出値に基づき第2通電系統のd軸実電流値Id2、q軸実電流値Iq2を演算する。
 そして、3相2相変換部11は、第1通電系統のd軸実電流値Id1、q軸実電流値Iq1、及び、第2通電系統のd軸実電流値Id2、q軸実電流値Iq2のデータを、出力電圧演算部4と目標値演算部6とにそれぞれ出力する。
 出力電圧演算部4が出力するd軸電圧指令値Vd1,q軸電圧指令値Vq1は、第1出力デューティ演算部7Aに入力される。
 第1出力デューティ演算部7Aは、d軸電圧指令値Vd1、q軸電圧指令値Vq1、及び、第1インバータ1Aの電源電圧に基づいて、第1インバータ1AのPWM制御におけるd軸デューティDutyd1及びq軸デューティDutyq1を演算する。
 また、出力電圧演算部4が出力するd軸電圧指令値Vd2及びq軸電圧指令値Vq2は、第2出力デューティ演算部7Bに入力される。
 第2出力デューティ演算部7Bは、d軸電圧指令値Vd2、q軸電圧指令値Vq2、及び、第2インバータ1Bの電源電圧に基づいて、第2インバータ1BのPWM制御におけるd軸デューティDutyd2及びq軸デューティDutyq2を演算する。
 第1の2相3相変換部8Aは、第1出力デューティ演算部7Aから出力されるd軸デューティDutyd1、q軸デューティDutyq1、更に、電動モータ130のロータ角度の情報を入力する。そして、第1の2相3相変換部8Aは、第1巻線組2Aの3相それぞれのデューティ指令値DutyU1、DutyV1、DutyW1を演算して出力する。
 また、第2の2相3相変換部8Bは、第2出力デューティ演算部7Bから出力されるd軸デューティDutyd2、q軸デューティDutyq2、更に、電動モータ130のロータ角度の情報を入力する。そして、第2の2相3相変換部8Bは、第2巻線組2Bの3相それぞれのデューティ指令値DutyU2、DutyV2、DutyW2を演算して出力する。
 第1デッドタイム補償部9Aは、第1の2相3相変換部8Aから出力されるデューティ指令値DutyU1、DutyV1、DutyW1を入力し、デッドタイム補償を施したデューティ指令値DutyU1、DutyV1、DutyW1を演算してインバータ1Aに出力する。
 また、第2デッドタイム補償部9Bは、第2の2相3相変換部8Bから出力されるデューティ指令値DutyU2、DutyV2、DutyW2を入力し、デッドタイム補償を施したデューティ指令値DutyU2、DutyV2、DutyW2を演算してインバータ1Bに出力する。
 デッドタイム補償とは、インバータ1A,1Bの上下アームが短絡しないように、三角波と指令値とを比較した結果であるPWM信号の立ち上がりをデッドタイム分だけ遅らせてスイッチング素子のゲート信号を作成するPWM制御において、デッドタイム電圧による電圧降下などを抑制するための処理である。
 また、判定部12は、相電流検出器314A(U)、314A(V)、314A(W)、314B(U)、314B(V)、314B(W)の出力、ピークホールド回路312A,312Bの出力、電圧モニタ回路307の出力、第1巻線組2Aの3相それぞれのデューティ指令値DutyU1、DutyV1、DutyW1、第2巻線組2Bの3相それぞれのデューティ指令値DutyU2、DutyV2、DutyW2などを入力する。
 そして、判定部12は、上記の入力信号に基づいて各通電系統の故障診断を個別に行い、当該故障診断の結果に応じて、第1通電系統のオフ指令信号、第2通電系統のオフ指令信号の出力を制御する。
 判定部12が出力する第1通電系統のオフ指令信号は、第1ON/OFF部13Aに入力される。第1ON/OFF部13Aは、オフ指令信号を入力すると、第1インバータ1Aのスイッチング素子の全てをオフに操作し、第1インバータ1Aの動作、換言すれば、第1インバータ1Aの電流出力を停止させる。
 同様に、判定部12が出力する第2通電系統のオフ指令信号は、第2ON/OFF部13Bに入力される。第2ON/OFF部13Bは、オフ指令信号を入力すると、第2インバータ1Bのスイッチング素子の全てをオフに操作し、第2インバータ1Bの動作、換言すれば、第2インバータ1Bの電流出力を停止させる。
 また、判定部12が出力する第1通電系統のオフ指令信号、第2通電系統のオフ指令信号は、目標値演算部6に出力される。
 そして、目標値演算部6は、判定部12によるインバータ1A、1Bの停止指令の出力状態に応じて、つまり、第1通電系統と第2通電系統との双方を動作させるか、いずれか一方を動作させるかに応じて、通電系統毎の目標アシストトルクを演算する。
 次に、判定部12の処理機能を、図7-図10のフローチャートに従って説明する。
 図7-図10のフローチャートに示すルーチンは、マイクロコンピュータ302が、所定時間毎の割り込み処理により実行する。
 上記所定時間は、例えば1ms程度の時間とすることができる。
 まず、マイクロコンピュータ302は、ステップS501では、第2通電系統について第2診断処理を行っている場合に立ち上げるフラグである第2系統診断フラグが1に立ち上がっているか否かを検出する。
 なお、上記の第2系統診断フラグ、及び、後述する第1系統診断フラグは、「0」である場合は第2診断処理の開始前の状態を表し、「1」である場合は第2診断処理の実施中であることを表し、「2」である場合は第2診断処理により通電系統が異常であることが確定されたことを表し、「3」である場合は異常状態の検出結果を確定する処理を中断している状態であることを表す。
 マイクロコンピュータ302は、第2系統診断フラグ=0であって、第2通電系統について第2診断処理を開始する前である場合には、ステップS502へ進み、第1通電系統について第1診断処理の結果を判定する。
 後述するように、マイクロコンピュータ302は、第1通電系統及び第2通電系統それぞれについて、通電状態での第1診断処理と、当該第1診断処理による判定結果を検証するための非通電状態での第2診断処理とを行うようになっており、第2通電系統についての第2診断処理を実施していない場合には、第1通電系統についての第1診断処理の結果を判定する。
 マイクロコンピュータ302は、第1診断処理として、3相それぞれの電流検出値を総和した値の異常の有無、モータ電流値が閾値を超える過電流の有無、通電制御の異常の有無などを、インバータのスイッチング素子のPWM操作状態で診断する。
 詳細には、マイクロコンピュータ302は、各通電系統の相電流検出値の総和の絶対値が閾値(閾値>0)を超えている状態が設定時間だけ継続したときに、当該通電系統について異常の発生を判定し、総和異常フラグを1に立ち上げる。つまり、マイクロコンピュータ302は、相電流値の総和が零近傍である場合に当該通電系統について正常判定を行い、相電流値の総和が零近傍の正常範囲から外れている場合に当該通電系統について異常判定を行う。
 また、マイクロコンピュータ302は、各通電系統のモータ電流値のピーク値が設定電流値を超えている状態が所定時間継続したときに、当該通電系統について過電流の発生を判定し、過電流フラグを1に立ち上げる。つまり、マイクロコンピュータ302は、モータ電流値のピーク値が許容最大値を超える値を保持する場合に、通電電流のオーバーシュートなどの異常発生を判定する。
 更に、マイクロコンピュータ302は、各通電系統において、PWM制御における出力デューティ比から推定した相電流推定値と相電流検出値との差の絶対値が所定電流値を超える状態が所定時間だけ継続すると、当該通電系統について通電制御の異常を判定し、制御異常フラグを1に立ち上げる。つまり、マイクロコンピュータ302は、デューティ比の設定に見合う電流が各相に流れていない状態で、制御偏差が許容誤差を超えて大きい場合に、当該通電系統について通電制御の異常を判定する。
 上記のように、第1診断処理では、通電系統に異常の有無が個別に診断されるが、異常要因の特定は行われない。
 ステップS502で、マイクロコンピュータ302は、第1通電系統について第1診断処理の結果を示す、総和異常フラグ(1)、過電流フラグ(1)、制御異常フラグ(1)の全てが0で、第1通電系統の異常を第1診断処理で検出していない場合、ステップS503へ進む。
 ステップS503で、マイクロコンピュータ302は、第1通電系統について第2診断処理を行っている場合に1に立ち上げるフラグである第1系統診断フラグが1に立ち上がっているか否かを検出する。
 そして、マイクロコンピュータ302は、第1系統診断フラグ=0であって、第1通電系統について第2診断処理を開始する前である場合には、ステップS504へ進み、第2通電系統についての第1診断処理の結果を判定する。
 即ち、マイクロコンピュータ302は、ステップS504にて、第2通電系統についての第1診断処理の結果を示す、総和異常フラグ(2)、過電流フラグ(2)、制御異常フラグ(2)の全てが0であるか少なくとも1つが1であるかを判定する。
 そして、マイクロコンピュータ302は、総和異常フラグ(2)、過電流フラグ(2)、制御異常フラグ(2)の全てが0である場合、つまり、第2通電系統の異常を第1診断処理で検出していない場合、本ルーチンをそのまま終了させる。
 ここで、例えば、第1通電系統に、3相電流総和値の異常、過電流、通電制御の異常のうちの少なくとも1つが発生し、総和異常フラグ(1)、過電流フラグ(1)、制御異常フラグ(1)のうちの少なくとも1つが1になると、マイクロコンピュータ302は、ステップS502からステップS505へ進むことになる。
 ステップS505で、マイクロコンピュータ302は、第1診断処理で異常を検出した第1通電系統について、故障個所を特定するための診断処理である第2診断処理を実施中であるか否かを検出する。
 第1通電系統についての第1診断処理で故障が検出された当初で、第2診断処理が実施されていない状態であれば、マイクロコンピュータ302は、ステップS505からステップS506へ進む。
 ステップS506で、マイクロコンピュータ302は、第2診断処理を実施するために第1通電系統のインバータ1AのPWM操作を停止し、インバータ1Aのスイッチング素子の全てをオフ状態に固定する処理、つまり、第1通電系統を非通電制御状態にする処理を実施すると共に、第1系統診断フラグを1に立ち上げる処理を実施する。
 次いで、マイクロコンピュータ302は、ステップS507へ進み、第1通電系統の第1インバータ1AのPWM操作を停止してから、つまり、第1インバータ1Aのスイッチング素子の全てをオフ状態に固定する制御を行ってから所定時間が経過したか否かを判断する。
 ステップS507の所定時間は、第1インバータ1Aのスイッチング素子の全てをオフ状態に固定する制御を行ってから、実際に第1インバータ1Aのスイッチング素子の全てがオフ状態に安定するまでの時間に基づき予め適合された時間である。
 そして、第1インバータ1Aのスイッチング素子の全てをオフ状態に固定する制御を行ってから前記所定時間が経過していれば、第1インバータ1Aのスイッチング素子の全てが実際にオフ状態に安定していると推定できるように、前記所定時間が設定されている。
 第1インバータ1Aのスイッチング素子の全てをオフ状態に固定する制御を行ってから所定時間が経過していない場合、つまり、オフ状態に安定するまでの待機状態であれば、マイクロコンピュータ302は、ステップS507からそのまま本ルーチンを終了させ、次のステップへの移行を遅延させる。
 これにより、第1インバータ1Aのスイッチング素子が実際にオフ状態に安定していない状態で診断処理が実施され、異常の有無が誤診断されることを抑制する。
 例えば、第1通電系統と第2通電系統との間での短絡が発生している場合、一方の通電系統のインバータの全スイッチング素子をオフに制御することで、短絡経路を介した電流の流入、流出は停止し、他方の通電系統における各相電流は正常値に戻ることになる。しかし、インバータをオフにした制御の直後でオフ状態に安定していない状態では、短絡経路を介した電流の流入、流出の影響が残っていて、他方の通電系統における各相電流が異常値を示す可能性がある。
 そこで、マイクロコンピュータ302は、第1診断処理で異常を検出した通電系統の全スイッチング素子をオフ制御してから、全スイッチング素子が実際にオフ状態に安定するまでの時間が経過してからステップS508以降に進む。
 そして、インバータ1Aの全スイッチング素子をオフ状態に固定する制御を行ってから所定時間が経過すると、マイクロコンピュータ302は、ステップS507からステップS508に進む。
 ステップS508で、マイクロコンピュータ302は、第2通電系統の3相電流検出値の総和の絶対値が閾値を超えている状態が所定時間以上継続しているか否かを判定する。
 そして、第2通電系統の3相電流検出値の総和の絶対値が閾値を超えていないか、若しくは、総和の絶対値が閾値を超えていてもその継続時間が所定時間に達していない場合、マイクロコンピュータ302は、ステップS509へ進み、第1通電系統の故障個所を特定する診断である第2診断処理を開始する。
 なお、ステップS506での処理後にステップS509へ進むことで、マイクロコンピュータ302は、ステップS509での第1通電系統についての第2診断処理を、インバータ1Aのスイッチング素子の全てがオフされた状態、つまり、第1通電系統の非通電制御状態で実施することになる。
 マイクロコンピュータ302は、第2診断処理として、通電系統間での短絡の有無を診断する処理、天絡・地絡の有無を診断する処理、通電ラインの断線の有無を診断する処理、相電流の検出機能の故障の有無を診断する処理、モータ電流のピーク検出機能の故障の有無を診断する処理などを実施する。
 マイクロコンピュータ302は、異常を検出した第1通電系統の巻線組のうちの1相への出力電圧をハイ又はローとし、係る相出力制御が、第2通電系統の相電流検出値又は第2通電系統の3相電流検出値の総和に影響する場合に、系統間での短絡の発生を検出する。ここで、マイクロコンピュータ302は、出力電圧をハイ又はローとする1相を順次切り替え、3相全てで出力電圧の制御が第2通電系統の相電流に影響しない場合に、通電系統間での短絡はないと判定する。
 また、天絡・地絡の有無を診断する処理は、異常を検出した第1通電系統における巻線と電源との間の短絡である天絡、及び、異常を検出した第1通電系統における巻線と接地点との間の短絡である地絡の有無を診断する処理である。
 なお、天絡には、各巻線の駆動ラインと電源との間での短絡、高電位側スイッチング素子の短絡が含まれ、地絡には、各巻線の駆動ラインと接地点との間での短絡、低電位側スイッチング素子の短絡が含まれる。
 マイクロコンピュータ302は、電源リレー304A、304Bをオンにし、インバータ1A、1Bを構成するスイッチング素子を全てオフに制御している状態での各巻線端電圧に基づき、高電位側スイッチング素子又は低電位側スイッチング素子の短絡の有無を診断する。
 また、マイクロコンピュータ302は、電源リレー304A、304Bをオフにしている状態での各巻線端電圧に基づき、駆動ラインと電源又は接地点との間での短絡の有無を診断する。具体的には、マイクロコンピュータ302は、電圧モニタ回路307Aが検出した3相それぞれの巻線端電圧の加算値が、プルアップ抵抗RAによる固定電位に基づく所定範囲を外れている場合に天絡又は地絡の発生を判定する。
 通電ラインの断線の有無を診断する処理は、異常を検出した第1通電系統の各巻線それぞれの駆動ラインで断線が発生しているか否かを診断する処理である。マイクロコンピュータ302は、異常を検出した第1通電系統の巻線組のうちの1相への出力電圧をハイ又はローとしたときに、第1通電系統の巻線組のうちの他の相の電圧検出値が、ハイ又はロー制御に相当する電圧値にならない場合に、通電ラインの断線発生を診断する。マイクロコンピュータ302は、出力電圧をハイ又はローとする1相を順次切り替え、3相全てで出力電圧の制御が他の相の電圧検出値に反映される場合に、第1通電系統における駆動ラインの断線はないと判定する。
 相電流の検出機能の診断は、第1通電系統の各相の電流検出機能、つまり、相電流検出器314に異常が発生しているか否かを診断する処理である。マイクロコンピュータ302は、第1インバータ1Aのスイッチング素子全てがオフである状態で、各巻線の相電流検出値の総和が所定電流値を超えている場合に、相電流検出器314Aの故障の発生を診断する。
 モータ電流のピーク検出機能の診断は、モータ電流のピーク値の検出機能、つまり、ピークホールド回路312Aの故障の有無を診断する処理である。マイクロコンピュータ302は、第1インバータ1Aのスイッチング素子全てがオフである状態で、モータ電流のピーク値の検出結果が、所定電流値を超えている場合にモータ電流のピーク値の検出機能、つまり、ピークホールド回路312Aの故障の発生を診断する。
 上記のようにして、マイクロコンピュータ302は、第1診断処理で異常の発生を検出した第1通電系統について、第1インバータ1AのPWM操作を停止した状態で、通電系統間での短絡、天絡・地絡、通電ラインの断線、相電流の検出機能の故障、モータ電流のピーク検出機能の故障が発生しているか否かを診断する第2診断処理を実施する。
 そして、マイクロコンピュータ302は、ステップS510へ進み、第2診断処理が完了したか否かを検出し、第2診断処理の途中であれば本ルーチンをそのまま終了させ、第2診断処理が完了するとステップS511へ進む。
 第1通電系統についての第2診断処理の途中である場合、マイクロコンピュータ302は、ステップS501で第2系統診断フラグが1でないと判定し、更に、ステップS502で第1通電系統についての第1診断処理で異常を検出していると判定し、第2通電系統の3相電流の総和に異常がなければ、ステップS505-ステップS510に進むことになる。
 そして、ステップS510で第1通電系統についての第2診断処理が完了したことを検出すると、ステップS511へ進む。
 ステップS511で、マイクロコンピュータ302は、第1診断処理で異常発生を検出した第1通電系統について、第2診断処理で故障の発生を検出したか否かを判別する。
 マイクロコンピュータ302は、第1診断処理で異常を検出した第1通電系統について第2診断処理を実施した結果、第1通電系統の故障の発生を検出すると、ステップS512へ進む。
 マイクロコンピュータ302は、ステップS512において、第1通電系統の第1インバータ1Aのスイッチング素子を所定状態に制御するフェイルセーフ処理を実施し、第1系統診断フラグに第1通電系統の異常検出が確定したことを表す「2」を設定し、更に、総和異常フラグ(1)、過電流フラグ(1)、制御異常フラグ(1)にそれぞれ異常検出が確定したことを表す「2」を設定する。
 次いで、マイクロコンピュータ302は、ステップS513へ進み、第1通電系統の故障個所、及び、第1通電系統のスイッチング素子の操作状況に応じて、第2通電系統の制御パラメータを変更し、また、第2通電系統の総和異常フラグ(2)、過電流フラグ(2)、制御異常フラグ(2)を全て零にクリアし、更に、第2通電系統の第2インバータ1BのPWM操作を開始させる。
 つまり、第1通電系統についての第1診断処理で異常が検出され、更に、第1通電系統についての第2診断処理でも異常が検出されると、第1通電系統を非通電状態として第1インバータ1Aの出力を停止させる一方、第2通電系統の通電制御を実施し、第2インバータ1Bの出力で電動モータ130を駆動させる。
 ここで、ステップS512における第1インバータ1Aのスイッチング素子を所定状態に制御するフェイルセーフ処理の一例を、以下に示す。
 例えば、第2診断処理に含まれる複数の診断処理のうちの少なくとも1つで第1通電系統の異常を検出した場合、マイクロコンピュータ302は、第1インバータ1Aのスイッチング素子を全てオフ制御状態に保持し、動作を継続させる第2通電系統の制御パラメータについても変更を行わない。
 一方、第2診断処理の短絡の発生を検出した場合、マイクロコンピュータ302は、第1インバータ1Aの各スイッチング素子を、例えば、図11-図14に例示するようなフェイルセーフモードでオン又はオフ制御状態に保持する。また、マイクロコンピュータ302は、第1通電系統によって第2通電系統の磁束がキャンセルされることによる見掛け上のインダクタンス低減を考慮して、第2通電系統の制御パラメータを変更する。更に、マイクロコンピュータ302は、第1通電系統で発生するループ電流によるブレーキトルク分及び磁束のキャンセル分を補うように、第2通電系統の目標アシストトルクを、第1通電系統が正常であるときよりも増大させる処理を行う。
 図11-図14は、通電系統における短絡の発生状態でのスイッチング素子のオン/オフ制御パターンであるフェイルセーフモードの一例を示す。
 なお、図11-図14では、短絡を、インバータの高電位側スイッチング素子の短絡、インバータの低電位側スイッチング素子の短絡、相駆動ラインの天絡、相駆動ラインの地絡の4態様に場合分けする。
 また、図11-図14に例示したフェイルセーフモードは、第1通電系統と第2通電系統とに共通して適用される制御パターンである。
 図11のフェイルセーフモードは、短絡が発生した通電系統のインバータを構成する高電位側スイッチング素子と低電位側スイッチング素子との一方をオンに制御し、他方をオフに制御するパターンであって、オン制御するスイッチング素子を故障態様に応じて選択する。
 図11に示したフェイルセーフモードでは、高電位側スイッチング素子のいずれかに短絡が発生している場合、高電位側スイッチング素子の全てをオフに制御する一方で、低電位側スイッチング素子の全てをオンに制御するパターンが選択される。
 また、図11に示したフェイルセーフモードでは、低電位側スイッチング素子のいずれかに短絡が発生している場合、相駆動ラインのいずれかに天絡が発生している場合、相駆動ラインのいずれかに地絡が発生している場合のいずれかであれば、高電位側スイッチング素子の全てをオンに制御する一方で、低電位側スイッチング素子の全てをオフに制御するパターンが選択される。
 なお、故障が発生した通電系統のインバータへの電源供給を遮断する電源リレー304は、高電位側スイッチング素子の短絡、インバータの低電位側スイッチング素子の短絡、相駆動ラインの地絡のいずれかの故障が発生している場合はオフに制御されるが、相駆動ラインの天絡が発生している場合には、電源リレー304Aはオン又はオフのいずれにも制御され得る。
 なお、図11-図14における電源リレーについての「オン操作又はオフ操作」は、電源リレー304Aはオン又はオフのいずれにも制御できることを示す。
 従って、図11のフェイルセーフモードでは、短絡が発生したときに故障個所に関わらずに電源リレー304をオフすることができる他、高電位側スイッチング素子の短絡、低電位側スイッチング素子の短絡、相駆動ラインの地絡のいずれかが発生している場合に電源リレー304をオフし、相駆動ラインの天絡が発生している場合に電源リレー304をオンに保持させることもできる。
 図11に示すフェイルセーフモードを採用すると、高電位側スイッチング素子のいずれかに短絡が発生している場合、高電位側スイッチング素子の全てをオフに制御する一方で低電位側スイッチング素子の全てをオンに制御するから、オンした低電位側スイッチング素子を介して双方向の電流が流れるようになり、非通電制御状態とする通電系統で発生するブレーキ電流は連続的に発生するようになる。更に、インバータへの電源供給が電源リレーのオフ制御で遮断されるから、短絡が発生しているしている高電位側スイッチング素子及びオン制御される低電位側スイッチング素子を介して、電源ラインが接地点に短絡されることがない。
 また、図11に示したフェイルセーフモードでは、低電位側スイッチング素子の全てをオフに制御する一方で高電位側スイッチング素子の全てをオンに制御すれば、オンした高電位側スイッチング素子を介して双方向の電流が流れるようになり、ブレーキ電流は連続的に発生するようになる。更に、インバータへの電源供給が電源リレーのオフ制御で遮断されるから、短絡している低電位側スイッチング素子及びオン制御される高電位側スイッチング素子を介して電源ラインが接地点に短絡されることがない。
 また、各相の駆動ラインのいずれかが天絡している場合に、図11に示したフェイルセーフモードに従い、低電位側スイッチング素子の全てをオフに制御する一方で高電位側スイッチング素子の全てをオンに制御すれば、オンした高電位側スイッチング素子を介して双方向の電流が流れるようになり、ブレーキ電流は連続的に発生するようになると共に、低電位側スイッチング素子を介して電源ラインが接地点に短絡されることがない。
 各相の駆動ラインのいずれかが天絡している場合、電源リレーをオフ制御しても、相の駆動ラインに電源が供給されることになるので、電源リレーはオン状態を保持させることができる他、第1通電系統の故障に基づき一律にオフに制御することもできる。
 また、各相の駆動ラインのいずれかが地絡している場合、図11に示したフェイルセーフモードに従い、低電位側スイッチング素子の全てをオフに制御する一方で、高電位側スイッチング素子の全てをオンに制御すれば、オンした高電位側スイッチング素子を介して双方向の電流が流れるようになり、ブレーキ電流は連続的に発生するようになると共に、インバータへの電源供給が電源リレーのオフ制御で遮断されるから、地絡箇所を介して電源電力が接地点に流れ込むことがない。
 上記のように、異常が発生した通電系統のインバータのスイッチング素子を図11に示すフェイルセーフモードに従い制御することで、通電異常が発生した通電系統の高電位側スイッチング素子と低電位側スイッチング素子との一方を各相間のインピーダンスが小さくなるような通電状態に制御すれば、異常が発生した通電系統で発生するブレーキ電流が半波波形とならずに連続的に発生するようになる。
 そして、ブレーキ電流が連続的に発生すれば、ブレーキトルクを相殺するように正常な通電系統のインバータ出力を補正する補償制御を行うときに、各相を流れるブレーキ電流の検出精度は、ブレーキ電流が半波波形となる場合に比べて高まり、補償制御の精度が向上する。
 また、図11に示すフェイルモードでは、ブレーキ電流が連続的に発生することで、ブレーキ電流に基づく目標アシストトルクの補償制御が、ブレーキ電流の波形が半波波形となる場合に比べて容易となり、制御プログラムを簡易化できる。このため、制御プログラムの開発コストを抑制でき、また、制御プログラムの容量を少なくでき、以って、製品コストを抑制することができる。
 なお、図11に示したフェイルセーフモードでは、短絡が発生している側のスイッチング素子のオン制御を行わないが、図12に示すフェイルセーフモードのように、短絡が発生していない側のスイッチング素子と共に短絡が発生している側のスイッチング素子も全てオンに制御させることができる。
 また、相の駆動ラインのいずれかに地絡が発生している場合、電源リレーをオフ制御することで電源電力が地絡箇所を介して接地点に流れ込むことを阻止できるので、図12のフェイルセーフモードに従い、高電位側スイッチング素子をオン制御すると共に低電位側スイッチング素子をオン制御させることができる。
 なお、図11のフェイルセーフモードと図12のフェイルセーフモードとで、駆動ラインの天絡に対するスイッチング素子及び電源リレーのオン/オフ制御は同じに設定される。
 そして、図12に示すフェイルセーフモードを採用した場合も、図11のフェイルセーフモードに従ってスイッチング素子をオン/オフ制御する場合と同様に、ブレーキ電流が連続的に発生することになり、同様な作用効果を得ることができる。
 また、図13に示すフェイルセーフモードのように、低電位側スイッチング素子のいずれかに短絡が発生している場合、及び、高電位側スイッチング素子のいずれかに短絡が発生している場合に、短絡が発生している側のスイッチング素子をオン制御し、短絡が発生していない側のスイッチング素子をオフに制御することができる。
 そして、短絡が発生していない側のスイッチング素子をオフに制御すれば、オフ制御したスイッチング素子によって電源電流が接地点に向けて流れることを阻止できるので、電源リレーはオン/オフのいずれの状態であっても、同様の作用、効果が得られることになる。
 また、図13に示すフェイルセーフモードのように、駆動ラインのいずれかに地絡が発生した場合、高電位側スイッチング素子をオフに制御し、低電位側スイッチング素子をオンに制御することができる。この場合、オフ制御した高電位側スイッチング素子によって電源電流が接地点に向けて流れることを阻止できるので、電源リレーはオン/オフのいずれの状態であっても、同様の作用、効果が得られることになる。
 つまり、図13に示すフェイルセーフモードは、各インバータへの電源供給を個別に遮断する電源リレーを備えないモータ駆動回路にも適用することができる。
 ここで、図11,図12,図13のフェイルセーフモードにおいて、駆動ラインの天絡に対するスイッチング素子及び電源リレーのオン/オフ制御は共通であり、図13の制御パターンでも、駆動ラインの天絡では電源リレーはオン又はオフのいずれにも制御することができる。
 つまり、図13のフェイルセーフモードでは、図11や図12のフェイルモードを採用する場合と同様に、ブレーキ電流を連続的に発生させることができ、また、ブレーキ電流が故障状態に影響を受け難くなるという作用効果を奏すると共に、故障状態に関わらずに、電源リレーを制御する必要性がなくなるという効果がある。
 また、図14に示すフェイルセーフモードは、短絡の発生箇所に関わらずに、異常が発生した通電系統のインバータを構成する全スイッチング素子をオフに制御する。ここで、図14に示すフェイルセーフモードでは、電源リレー304はオン又はオフのいずれにも制御できる。
 図14に示すように、短絡が発生した通電系統のインバータを構成するスイッチング素子を全てオフに制御するモードを採用する場合、高電位側スイッチング素子の短絡、低電位側スイッチング素子の短絡、相駆動ラインの天絡、相駆動ラインの地絡のいずれが発生している場合であっても、電源電力が接地点に流れ込むことを抑制できる。
 従って、電子制御ユニット150は、図14に示すフェイルセーフモードにおいて、故障態様とは無関係に電源リレー304を一律にオン又はオフに制御することができる。
 次に、ステップS513における制御パラメータの変更処理を詳細に説明する。
 第1通電系統で短絡が発生すると、短絡箇所を経由したループ電流が生じることで、正常である第2通電系統の通電で発生する磁束がキャンセルされ、第2通電系統のインダクタンスが見掛け上小さくなり、第1通電系統の動作を停止し、第2通電系統の通電制御で電動モータ130を駆動するときに通電電流のオーバーシュートが発生し易くなる。
 そこで、マイクロコンピュータ302は、第2通電系統での通電電流がオーバーシュートすることを抑制するために、第2インバータ1Bの出力制御の応答性を、第1通電系統に短絡が発生していないときよりも低下させる。
 具体的には、マイクロコンピュータ302は、第2インバータ1Bの出力制御における制御ゲインを第1通電系統に短絡が発生していないときよりも小さくすることで、第2インバータ1Bの出力制御の応答性を、第1通電系統に短絡が発生していないときよりも低下させる。
 例えば、マイクロコンピュータ302は、インバータの出力制御の応答性を低下させる処理として、制御偏差に応じてインバータの操作量を決定する処理のゲインを低下させることができる。つまり、マイクロコンピュータ302は、インバータのスイッチング素子のPWM制御におけるデューティ比を、実電流値と指令電流値との差に応じた比例、積分、微分動作で決定する場合に、比例定数、積分定数、微分定数のうちの少なくとも1つを、応答性が低下する方向に補正する。
 また、制御ゲインの変更として、マイクロコンピュータ302は、電流検出値のローパスフィルタ処理における遮断周波数を低下させる処理を実施することができる。
 上記のようにして第2インバータ1Bの出力制御の応答性を低下させることで、第2通電系統の巻線インダクタンスが見掛け上小さくなっても、第2通電系統の通電電流がオーバーシュートすることを抑制でき、オーバーシュートの発生に伴って第2通電系統の異常が誤検出されてしまうことを抑制できる。
 つまり、短絡が発生した第1通電系統の動作を停止させ、正常である第2通電系統の通電制御によって電動モータ130を駆動しているときに、第1通電系統のループ電流の影響で第2通電系統の通電電流がオーバーシュートし、これによって、第2通電系統の異常が判定されてしまうと、両通電系統の動作を停止させてしまうことになり、電動モータ130の駆動が不能になってしまう。
 そこで、第2通電系統は正常動作できるので、第1通電系統のループ電流の影響で故障発生が誤診断されることがないように、第2通電系統の通電電流のオーバーシュートを抑制し、第2通電系統による電動モータ130の駆動が継続できるようにする。
 また、第2通電系統のインダクタンスが見掛け上小さくなり、通電電流が大きくなることで、第1診断処理の過電流の診断や通電制御の診断において異常が診断され易くなる。そこで、マイクロコンピュータ302は、制御パラメータの変更として、モータ電流ピーク値の閾値や相電流の推定値と相電流の検出値との差の閾値などを第1通電系統が正常であるときよりも大きくすることで、第2通電系統の異常が検出され難くする。これにより、第2通電系統についての第1診断処理での誤診断の発生を抑制する。
 また、マイクロコンピュータ302は、診断処理に用いる閾値の変更に代えて、又は、閾値の変更と共に、モータ電流のピーク値、相電流検出値、相電流推定値と実電流検出値との差などの検出データを、異常が発生され難くなる方向、つまり、絶対値が小さくなる方向に修正することができる。
 なお、マイクロコンピュータ302は、制御ゲインの変更と、第1診断処理で用いる検出データや閾値などの状態量の変更との少なくとも一方を実施することができる。
 ところで、上記で説明した、第1通電系統で異常が発生したときに適用する第1通電系統のスイッチング素子の制御パターンであるフェイルセーフモード及び第2通電系統の制御パラメータの変更は、各相の駆動ラインに相リレー313を備えない場合の制御例である。
 そして、各相の駆動ラインに相リレー313を備える場合は、異常が発生した第1通電系統のスイッチング素子を全てオフ制御し、かつ、第1通電系統の相リレー313の全てをオフ制御し、正常である第2通電系統の制御パラメータの変更を行わない構成とすることができる。
 これは、相リレー313を備える場合、全ての相リレー313をオフすることで、短絡部位を経由してループ電流が流れることを抑制でき、正常な第2通電系統の通電で発生する磁束がキャンセルされてしまうことを抑制できるためである。
 例えば、通電系統間での短絡や、第1通電系統が異常で第2通電系統が正常である場合、マイクロコンピュータ302は、前述したステップS512、ステップS513の処理を実施して、第1通電系統の動作を停止させ、第2通電系統の通電制御を実施する。
 この状態で、再度ステップS501に戻った場合、マイクロコンピュータ302は、ステップS501→ステップS502→ステップS503→ステップS504と進み、第2通電系統が正常である間は、第1通電系統の動作を停止させ、第2通電系統の通電制御を行う状態を維持する。
 マイクロコンピュータ302は、第1通電系統の故障が確定し、第1通電系統の動作を停止させ、第2通電系統の通電制御を実施していることを、前述の第1系統診断フラグなどに基づいて判断し、係る状態で第2通電系統の故障を検出すると、第2通電系統についてもその動作を停止させ、電動モータ130の駆動を停止させる。
 なお、ステップS515-ステップS523の各ステップは、前述したステップS505-ステップS513とは対象とする通電系統が異なるが、ステップS505-ステップS513と同様な処理を行う。
 従って、第1通電系統が正常で、第2通電系統に異常が生じた場合には、マイクロコンピュータ302は、ステップS504からそのまま処理を終了していた状態から、ステップS515へ進むようになり、前述と同様に、第2通電系統についての第2診断処理を実施し、第2診断処理で第2通電系統の異常が検出されれば、第2通電系統の動作を停止し、第1通電系統の通電制御によって電動モータ130を駆動することになる。
 このとき、第2通電系統に短絡が発生していれば、マイクロコンピュータ302は、第2通電系統の第2インバータ1Bを所定状態に制御し、かつ、第1通電系統の通電制御における制御パラメータを変更する。
 一方、例えば、第1通電系統に短絡が発生し、係る短絡に影響されて第2通電系統の異常を第1診断処理で誤診断した場合、マイクロコンピュータ302は、ステップS504からステップS515、ステップS516-ステップS517に進み、インバータのオフ制御後の待機時間が経過してから、ステップS518に進むことになる。
 ここで、第1通電系統に短絡が発生しているので、オフ制御後の待機時間が経過してからステップS518に進んでも、マイクロコンピュータ302は、第1通電系統における3相電流の総和が異常値であることを検出することになる。
 これにより、マイクロコンピュータ302は、ステップS518からステップS524へ進み、第1系統診断フラグが「3」でないことから、更に、ステップS527に進む。
 ステップS527で、マイクロコンピュータ302は、第1系統診断フラグに「3」を設定する。
 次いで、マイクロコンピュータ302は、ステップS505以降へ進んで、第1通電系統についての第2診断処理を実施し、第1通電系統の故障を診断すると、ステップS512、ステップS513へ進んで、第1通電系統の動作を停止させ、第2通電系統の通電制御で電動モータ130を駆動する状態に移行させる。
 第2通電系統に短絡が発生し、係る短絡に影響されて第1通電系統の異常を第1診断処理で誤診断した場合も、同様な処理が実施されることになる。
 図7-図10のフローチャートに示す処理によると、2つの通電系統のいずれか一方に短絡が発生した場合、他方の正常な通電系統の動作を、制御パラメータを変更した上で継続させる。
 従って、短絡が発生した通電系統でループ電流が発生し、これによって正常な通電系統で発生する磁束がキャンセルされても、正常な通電系統でのモータ電流がオーバーシュートすることを抑制し、また、正常な通電系統の故障が誤診断されることを抑制できる。
 そして、通電系統の一方に短絡が発生しても、他方の正常な通電系統によって電動モータ130の駆動を継続させることで、電動パワーステアリング装置においてはアシストトルクを発生させることができる。
 また、一方の通電系統に短絡が発生し、他方の通電系統の通電電流がオーバーシュートする状態で、他方の通電系統の異常が先に検出されても、一方の通電系統の相電流の総和の異常に基づいて一方の通電系統の第2診断処理を実施し、短絡の発生を検出できるので、誤って両通電系統の動作を停止させてしまうことを抑制できる。
 また、第1通電系統と第2通電系統との間での短絡が発生したときには、一方の通電系統の全スイッチング素子をオフに操作した後、実際にオフ状態に安定する期間の経過を待ってから、換言すれば、通電系統間での電流の流入、流出が停止した状態で、他方の通電系統での制御異常の有無を診断する。従って、通電系統間で短絡が発生したときに双方の通電系統が異常判定されてしまうことを抑制し、他方の通電系統を動作させ電動モータ130の駆動を継続させることができる。
 以上、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば種々の変形態様を採り得ることは自明である。
 本発明に係るモータ制御装置は、3相巻線U,V,Wがスター結線される電動モータ130の他、3相巻線U,V,Wがデルタ結線或いは三角結線と称される結線構造で結線される電動モータにも適用できる。
 また、図7-図10のフローチャートに示す処理では、一方の通電系統について第2診断処理を行っている間は、他方の通電系統について第1診断処理で異常が診断されているか否かのチェックを行わない構成としたが、一方の通電系統の第2診断処理中に、他方の通電系統での異常が第1診断処理で検出されているか否かをチェックし、異常診断されている場合には当該通電系統の全スイッチング素子をオフ制御して待機させる構成とすることができる。
 また、3相巻線U、V、Wからなる巻線組を3個以上備え、それぞれの巻線組を駆動するインバータを3個以上備える装置においても、本発明に係る電動モータの制御装置を適用することができる。
 また、本発明に係る制御装置を適用するモータは、車両用の電動パワーステアリング装置において操舵補助力を発生する電動モータに限定されるものではなく、エンジンの可変動弁機構のアクチュエータとしてのモータや、ポンプ駆動に用いられるモータなどの種々のモータに適用できる。
 また、複数の通電系統のいずれかに故障が発生したときに、電動モータを使用する電動パワーステアリング装置の異常を、ランプ、ブサーなどの警告装置を作動させて車両の運転者に知らせることができる。
 1A…第1インバータ、1B…第2インバータ、2A…第1巻線組、2B…第2巻線組、4…出力電圧演算部、5…モータ回転演算部、6…目標値演算部、7A…第1出力デューティ演算部、7B…第2出力デューティ演算部、8A…第1の2相3相変換部、8B…第2の2相3相変換部、9A…第1デッドタイム補償部、9B…第2デッドタイム補償部、11…3相2相変換部、12…判定部、13A…第1ON/OFF部、13B…第2ON/OFF部、130…電動モータ、150…電子制御ユニット(制御装置)、301UA、301VA、301WA、301UB、301VB、301WB…電流センサ(電流検出器)、302…マイクロコンピュータ、304A,304B…電源リレー、307…電圧モニタ回路、UHA,VHA,WHA,UHB,VHB,WHB…高電位側スイッチング素子、ULA,VLA,WLA,ULB,VLB,WLB…低電位側スイッチング素子

Claims (14)

  1.  インバータと複数の相に対応する巻線とで構成される通電系統を複数備えた電動モータの制御装置において、
     前記複数の通電系統それぞれについて短絡の有無を検出し、前記複数の通電系統のうちの一部で短絡が検出されたときに短絡が検出されなかった通電系統の制御パラメータを変更する制御部を含む、電動モータの制御装置。
  2.  前記制御部は、通電状態の通電系統について異常の有無を検出する第1処理と通電停止状態の通電系統について異常の有無を検出する第2処理とによって、前記複数の通電系統それぞれについて短絡の有無を検出する、請求項1記載の電動モータの制御装置。
  3.  前記制御部は、前記第1処理で異常が検出された通電系統について前記第2処理を実施し、前記第2処理で異常が検出されなかったときに、前記第1処理で異常が検出されなかった通電系統について前記第2処理を実施する、請求項2記載の電動モータの制御装置。
  4.  前記制御部は、前記第1処理で異常が検出されなかった通電系統について前記第2処理を実施するときに、前記第1処理で異常が検出された通電系統のインバータの駆動を可能な状態にする、請求項3記載の電動モータの制御装置。
  5.  前記制御部は、前記複数の通電系統のうちの一部で短絡が検出されたときに、短絡が検出されなかった通電系統における出力制御の応答性が前記複数の通電系統の全てで短絡が検出されなかったときに比べて低下するように、短絡が検出されなかった通電系統の制御パラメータを変更する、請求項1記載の電動モータの制御装置。
  6.  前記制御部は、前記複数の通電系統のうちの一部で短絡が検出されたときに、短絡が検出されなかった通電系統における出力制御のゲインを、前記複数の通電系統の全てで短絡が検出されなかったときに比べて低下させる、請求項5記載の電動モータの制御装置。
  7.  前記制御部は、前記複数の通電系統のうちの一部で短絡が検出されたときに、制御パラメータの変更として、前記第1処理において異常が検出され難くなる方向に前記第1処理で用いる状態量を変更する、請求項2記載の電動モータの制御装置。
  8.  前記制御部は、短絡が検出された通電系統について、前記インバータの駆動をオフする処理と、前記巻線の通電ラインに配置された相リレーをオフする処理との少なくとも一方を実施する、請求項1記載の電動モータの制御装置。
  9.  前記制御部は、前記複数の通電系統のうちの一部で短絡が検出されたときに、短絡が検出された通電系統の動作を停止させ、短絡が検出されなかった通電系統の動作を、制御パラメータを変更して継続させる、請求項1記載の電動モータの制御装置。
  10.  前記制御部は、前記複数の通電系統のうちの一部で短絡が検出されたときに、制御パラメータの変更として、短絡の有無の検出において比較する状態量の検出値と閾値との少なくとも一方を短絡が検出され難くなる方向に変更する、請求項9記載の電動モータの制御装置。
  11.  前記制御部は、前記複数の通電系統のうちの一部で短絡が検出されたときに、制御偏差に応じて操作量を決定する処理のゲインを、短絡が検出されなかった通電系統について低下させる、請求項9記載の電動モータの制御装置。
  12.  インバータと複数の相に対応する巻線とで構成される通電系統を複数備えた電動モータの制御方法であって、
     各巻線の電気状態の検出信号を入力し、前記複数の通電系統それぞれについて短絡の有無を検出するステップと、
     前記複数の通電系統それぞれについての短絡の有無の検出結果を読み込み、前記複数の通電系統のうちの一部で短絡が検出されたときに短絡が検出されなかった通電系統の制御パラメータを変更するステップと、
     を含む、電動モータの制御方法。
  13.  前記複数の通電系統それぞれについての短絡の有無の検出結果を読み込み、前記複数の通電系統のうちの一部で短絡が検出されたときに、短絡が検出された通電系統の動作を停止させ、短絡が検出されなかった通電系統の動作を継続させるステップを更に含む、請求項12記載の電動モータの制御方法。
  14.  前記制御パラメータを変更するステップは、短絡が検出されなかった通電系統について短絡が検出され難くなるように制御パラメータを変更するステップを含む、請求項13記載の電動モータの制御方法。
PCT/JP2015/051058 2014-03-14 2015-01-16 電動モータの制御装置及び制御方法 WO2015136976A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167020932A KR101692196B1 (ko) 2014-03-14 2015-01-16 전동 모터의 제어 장치 및 제어 방법
CN201580011305.5A CN106105017B (zh) 2014-03-14 2015-01-16 电动机的控制装置及控制方法
DE112015001258.3T DE112015001258T5 (de) 2014-03-14 2015-01-16 Steuerung und Steuerungsverfahren für Elektromotor
US15/124,774 US9647603B2 (en) 2014-03-14 2015-01-16 Controller and control method for electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-051592 2014-03-14
JP2014051592A JP6211443B2 (ja) 2014-03-14 2014-03-14 電動モータの制御装置

Publications (1)

Publication Number Publication Date
WO2015136976A1 true WO2015136976A1 (ja) 2015-09-17

Family

ID=54071430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051058 WO2015136976A1 (ja) 2014-03-14 2015-01-16 電動モータの制御装置及び制御方法

Country Status (6)

Country Link
US (1) US9647603B2 (ja)
JP (1) JP6211443B2 (ja)
KR (1) KR101692196B1 (ja)
CN (1) CN106105017B (ja)
DE (1) DE112015001258T5 (ja)
WO (1) WO2015136976A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3223424A1 (en) * 2016-03-21 2017-09-27 Simmonds Precision Products, Inc. Motor drive, harness, and motor fault detection for a multi-channel electric brake actuator controller
EP3467989A4 (en) * 2016-05-25 2019-06-26 Mitsubishi Electric Corporation ELECTRONIC CONTROL DEVICE

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302727B2 (ja) * 2014-04-10 2018-03-28 日立オートモティブシステムズ株式会社 電動モータの制御装置
DE112016003391T5 (de) * 2015-07-29 2018-04-19 Panasonic Intellectual Property Management Co., Ltd. Drahtlosladevorrichtung
EP3131198B1 (en) * 2015-08-10 2022-06-08 Goodrich Actuation Systems Limited Control strategy of a dual lane fault tolerant permanent magnet motor to reduce drag torque under fault condition
JP6669540B2 (ja) 2016-03-14 2020-03-18 日立オートモティブシステムズ株式会社 モータアクチュエータ、及びそれを用いたパワーステアリング装置
JP6533754B2 (ja) 2016-03-17 2019-06-19 日立オートモティブシステムズ株式会社 電子制御装置及びその制御方法
JP6257689B2 (ja) * 2016-04-22 2018-01-10 三菱電機株式会社 同期機制御装置
CN106428200B (zh) * 2016-12-05 2019-03-08 潍柴动力股份有限公司 多相电机控制方法、控制器及多相电机电动转向泵系统
WO2018179197A1 (ja) * 2017-03-30 2018-10-04 三菱電機株式会社 電動パワーステアリング装置
DE102017211136A1 (de) * 2017-06-30 2019-01-03 Audi Ag Lenksystem mit redundant angesteuerten Elektromotoren
JP6863136B2 (ja) 2017-06-30 2021-04-21 株式会社デンソー 電流センサの状態判定装置、車載回転電機システム
KR102039742B1 (ko) * 2017-08-11 2019-11-01 (주)아이티공간 구동부의 정밀 예지 보전방법
WO2019031683A1 (ko) * 2017-08-11 2019-02-14 (주)아이티공간 구동부의 정밀 예지 보전방법
JP6838251B2 (ja) * 2017-10-11 2021-03-03 日立Astemo株式会社 モータ駆動制御装置及びモータ電力供給線の異常検知方法
TWI666460B (zh) * 2018-08-10 2019-07-21 東元電機股份有限公司 馬達層間短路快篩方法
US10848093B2 (en) * 2018-08-30 2020-11-24 Steering Solutions Ip Holding Corporation Electrical power steering with two controllers using uniform steering angle control
US20220166361A1 (en) * 2019-03-28 2022-05-26 Nidec Corporation Power converter, drive, and power steering device
CN110654250A (zh) * 2019-09-30 2020-01-07 潍柴动力股份有限公司 一种燃料电池电动汽车用鼓风机系统、控制方法及装置
EP3832882A1 (en) 2019-12-03 2021-06-09 ABB Schweiz AG Method of controlling a multi-phase electrical machine
JP7294183B2 (ja) * 2020-02-20 2023-06-20 株式会社デンソー 異常監視装置
CN112953357B (zh) * 2021-02-22 2024-02-23 上海电气集团股份有限公司 一种电机系统控制方法、电机系统、装置、介质及芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201194A (ja) * 2008-02-19 2009-09-03 Toyota Motor Corp 回転電機の異常検出装置および異常検出方法
JP2010011688A (ja) * 2008-06-30 2010-01-14 Hitachi Ltd 回転電機駆動制御装置
JP2010115082A (ja) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp モータ制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614788B2 (ja) 1991-04-24 1997-05-28 株式会社日立製作所 交流電動機制御装置
JP3331753B2 (ja) * 1994-07-12 2002-10-07 アイシン・エィ・ダブリュ株式会社 ロータ位置検出手段の異常検出装置及び異常検出方法並びにモータ制御装置
JP5014034B2 (ja) * 2007-09-12 2012-08-29 オムロンオートモーティブエレクトロニクス株式会社 多相交流モータ駆動装置
JP5428634B2 (ja) 2009-08-10 2014-02-26 株式会社ジェイテクト 電動パワーステアリング装置の制御装置
JP5622053B2 (ja) 2012-02-09 2014-11-12 株式会社デンソー 多相回転機の制御装置、および、これを用いた電動パワーステアリング装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009201194A (ja) * 2008-02-19 2009-09-03 Toyota Motor Corp 回転電機の異常検出装置および異常検出方法
JP2010011688A (ja) * 2008-06-30 2010-01-14 Hitachi Ltd 回転電機駆動制御装置
JP2010115082A (ja) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp モータ制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3223424A1 (en) * 2016-03-21 2017-09-27 Simmonds Precision Products, Inc. Motor drive, harness, and motor fault detection for a multi-channel electric brake actuator controller
EP3467989A4 (en) * 2016-05-25 2019-06-26 Mitsubishi Electric Corporation ELECTRONIC CONTROL DEVICE

Also Published As

Publication number Publication date
JP2015177620A (ja) 2015-10-05
KR101692196B1 (ko) 2017-01-02
US9647603B2 (en) 2017-05-09
JP6211443B2 (ja) 2017-10-11
CN106105017B (zh) 2019-02-26
CN106105017A (zh) 2016-11-09
KR20160097376A (ko) 2016-08-17
DE112015001258T5 (de) 2016-12-22
US20170033725A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2015136976A1 (ja) 電動モータの制御装置及び制御方法
JP6302727B2 (ja) 電動モータの制御装置
US10097129B2 (en) Drive controller and drive control method for electric motor
JP6220696B2 (ja) 電動モータの駆動制御装置
US9787240B2 (en) Controller and control method for motor
JP6040963B2 (ja) 回転機の制御装置
JP6815483B2 (ja) 電動パワーステアリング装置
KR102066364B1 (ko) 전력 변환 장치 및 전동 파워 스티어링 장치
JPWO2018037506A1 (ja) 回転機の制御装置及び電動パワーステアリングの制御装置
JP4921883B2 (ja) 電気車制御装置
WO2020090279A1 (ja) 駆動システム及び制御方法
JP2018057224A (ja) モータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761618

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167020932

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15124774

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 112015001258

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761618

Country of ref document: EP

Kind code of ref document: A1