WO2015136806A1 - 熱伝導性ポリマー組成物及び熱伝導性成形体 - Google Patents

熱伝導性ポリマー組成物及び熱伝導性成形体 Download PDF

Info

Publication number
WO2015136806A1
WO2015136806A1 PCT/JP2014/083293 JP2014083293W WO2015136806A1 WO 2015136806 A1 WO2015136806 A1 WO 2015136806A1 JP 2014083293 W JP2014083293 W JP 2014083293W WO 2015136806 A1 WO2015136806 A1 WO 2015136806A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer composition
aluminum nitride
less
mass
thermally conductive
Prior art date
Application number
PCT/JP2014/083293
Other languages
English (en)
French (fr)
Inventor
義治 畠山
憲一 藤川
山口 美穂
章浩 大橋
裕児 山岸
Original Assignee
日東電工株式会社
日東シンコー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社, 日東シンコー株式会社 filed Critical 日東電工株式会社
Priority to US15/124,935 priority Critical patent/US20170022407A1/en
Priority to KR1020167024851A priority patent/KR20160132024A/ko
Priority to CN201480077061.6A priority patent/CN106164179A/zh
Priority to EP14885124.9A priority patent/EP3118261A4/en
Publication of WO2015136806A1 publication Critical patent/WO2015136806A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a thermally conductive polymer composition containing aluminum nitride particles and a polymer, and a thermally conductive molded body obtained by molding the thermally conductive polymer composition.
  • the thermal conductive molded body since the molded body excellent in thermal conductivity used for heat dissipation in the above fields is often used around electronic components, the thermal conductive molded body has high thermal conductivity. In addition, it is required to have high insulating properties.
  • the thermally conductive molded body used in this type of application is formed of a polymer composition containing an inorganic filler and imparting excellent thermal conductivity.
  • an epoxy resin composition in which an inorganic filler is dispersed in an epoxy resin has excellent properties not only in thermal conductivity but also in adhesion, electrical insulation, strength, and the like. It is widely used because it can be exhibited by objects.
  • such an epoxy resin composition is widely used for a sealing material of a semiconductor device, a prepreg sheet for bonding a semiconductor device and a radiator, and the like.
  • the polymer composition usually exhibits better thermal conductivity as the content of the inorganic filler is higher and as the thermal conductivity of the inorganic filler contained is higher.
  • attempts have been made to contain a high proportion of boron nitride particles and aluminum nitride particles exhibiting particularly high thermal conductivity among the inorganic fillers in the polymer composition. Attempts have been made to increase the filling by adjusting the particle size distribution of aluminum nitride particles and controlling the interface.
  • the heat conductive molded body formed by the polymer composition can exhibit excellent thermal conductivity.
  • the polymer composition is highly filled with aluminum nitride particles, for example, in the case of producing a molded product in a heated and melted state, sufficient fluidity is not exhibited in the polymer composition, and the molded product is It is easy to leave bubbles in Even when the polymer composition is varnished with an organic solvent, if the aluminum nitride particles are highly filled with a low packing density, bubbles are formed inside after removing the organic solvent. easy. Therefore, in any case, it becomes easy to mix bubbles in the thermally conductive molded body. The presence of the bubbles causes a decrease in thermal conductivity and may cause a problem in strength and electrical insulation of the thermally conductive molded body.
  • the present invention has been made in view of the above-described problems, and provides a polymer composition that has a low risk of air bubbles being mixed into a thermally conductive molded body while being highly filled with aluminum nitride particles.
  • An object of the present invention is to provide a thermally conductive molded body that exhibits excellent properties in conductivity and the like.
  • the thermally conductive polymer composition of the present invention for solving such problems is a thermally conductive polymer composition containing aluminum nitride particles and a polymer, and the aluminum nitride particles are 20 ⁇ m or more and 200 ⁇ m or less.
  • the first particle having the maximum peak value of the particle size distribution curve in the range of 2 is included as an essential component
  • the second particle having the maximum peak value of the particle size distribution curve in the range of 0.1 ⁇ m to 10 ⁇ m is included as an optional component
  • the content of the first particles is 40% by mass or more and 100% by mass or less
  • the content of the second particles is 60% by mass or less
  • the first particles are the maximum
  • the particle diameter at the peak value is D m ( ⁇ m) and the half width of the particle size distribution curve at the maximum peak value is ⁇ D 0.5 ( ⁇ m)
  • the particle diameter at the maximum peak value is
  • the half width ratio D is ( ⁇ D 0.5 / D m ) is 1.7 or less.
  • the aluminum nitride particles contained in the thermally conductive polymer composition have a predetermined particle size distribution, the filling properties of the aluminum nitride particles are good. Therefore, for example, when the polymer composition is heated and melted when forming the thermally conductive molded body, the polymer composition can exhibit excellent fluidity. That is, according to the present invention, it is possible to provide a polymer composition having a low possibility of mixing bubbles in the thermally conductive molded body while being highly filled with aluminum nitride particles.
  • FIG. 1 is a diagram schematically showing a particle size distribution curve of aluminum mononitride particles.
  • FIG. 2 is a diagram schematically showing the particle size distribution curve of other aluminum nitride particles.
  • FIG. 3 is a diagram schematically showing a press set for producing a sheet-like molded body.
  • the polymer composition of this embodiment contains aluminum nitride particles and a polymer.
  • As said aluminum nitride particle what was obtained by the conventionally well-known method can be contained in the polymer composition of this embodiment.
  • the aluminum nitride particles for example, a direct nitriding method in which metal aluminum particles are nitrided in a high-temperature nitrogen atmosphere, a reduction nitriding method in which a mixture of aluminum oxide particles and carbon powder is reduced and nitrided in a high-temperature nitrogen atmosphere, organic Examples thereof include those obtained by a method such as a gas phase reaction method in which an aluminum gas and a nitrogen-containing gas (such as ammonia gas) are reacted in a gas phase.
  • the aluminum nitride particles may be those obtained by crushing a lump of aluminum nitride.
  • the aluminum nitride particles may be polycrystalline or single crystal.
  • the aluminum nitride particles may be a sintered body. Therefore, the aluminum nitride particles may contain impurities derived from a sintering aid other than aluminum nitride.
  • the impurity element include Y element, B element, Fe element, Si element, Ca element, Mg element, Ti element, Cr element, Cu element, Ni element, Na element, Cl element, and C element.
  • Al elements, O elements, H elements, etc. constituting Al 2 O 3 , Al (OH) 3, and the like can also be cited as impurity elements.
  • the content of each element contained as an impurity as described above is preferably 0.1% by mass or less.
  • the aluminum nitride particles may contain aluminum nitride hydrate or oxide on the surface. Furthermore, the aluminum nitride particles may be either untreated or surface-treated, and in particular, aluminum nitride has low water resistance and may contact with water to cause hydrolysis, It is preferable that surface treatment for improving water resistance is performed. That is, the aluminum nitride particles are preferably formed with a film made of an inorganic material other than an organic material or aluminum nitride, for example. The aluminum nitride particles are preferably those in which the coating is attached to the surface by chemical bonding rather than those in which the coating is physically attached to the surface.
  • Examples of the form of the aluminum nitride particles include, but are not limited to, a spherical shape (including a true spherical shape), a polyhedral particle shape, a needle shape, an indefinite shape, and a plate shape.
  • the shape of the aluminum nitride particles is preferably spherical or polyhedral.
  • the form of the aluminum nitride particles is preferably plate-like.
  • the form of the aluminum nitride particles can be confirmed by an image analysis technique, and can be confirmed using, for example, a particle image analyzer, Morphologi G3 (manufactured by Malvern).
  • the polymer composition of the present embodiment contains aluminum nitride particles so as to have a predetermined particle size distribution in order to suppress the mixing of bubbles in the thermally conductive molded body. That is, in the polymer composition of the present embodiment, it is important that the aluminum nitride particles contain, as an essential component, first particles having a maximum peak value of a particle size distribution curve in a range of 20 ⁇ m to 200 ⁇ m. It is important that the content of the first particles is 40% by mass or more and 100% by mass or less.
  • the polymer composition of the present embodiment may contain, as an optional component, the aluminum nitride particles include second particles having a maximum peak value of a particle size distribution curve in a range of 0.1 ⁇ m or more and 10 ⁇ m or less, You may contain the said 2nd particle so that content may be 60 mass% or less.
  • the particle size distribution curve of the aluminum nitride particles means a particle size distribution curve on a volume basis.
  • the maximum peak value of the first particles is preferably in the range of 20 ⁇ m to 200 ⁇ m, more preferably in the range of 30 ⁇ m to 150 ⁇ m, and in the range of 33 ⁇ m to 120 ⁇ m. Is more preferably in the range of 35 ⁇ m to 110 ⁇ m, particularly preferably in the range of 40 ⁇ m to 90 ⁇ m.
  • the content of the first particles in the polymer composition is preferably 60% by mass or more and 100% by mass or less, more preferably 60% by mass or more and 80% by mass or less, and 60% by mass or more and 70% by mass. % Or less is particularly preferable.
  • the content of the second particles in the polymer composition is preferably 40% by mass or less, more preferably 20% by mass or more and 40% by mass or less, and 30% by mass or more and 40% by mass or less. It is particularly preferred.
  • the first particle has a particle diameter at the maximum peak value (hereinafter also referred to as “maximum peak particle diameter”) as “D m ( ⁇ m)”, and the half-value width of the particle size distribution curve at the maximum peak value is “
  • maximum peak particle diameter a particle diameter at the maximum peak value
  • the ratio “D is ” of the full width at half maximum to the maximum peak particle diameter is 1.7 or less.
  • the ratio “D is ” is preferably 1.4 or less, more preferably 1.2 or less, and even more preferably 1.0 or less.
  • the lower limit value of the ratio “D is ” is usually a value exceeding zero, preferably 0.3 or more, more preferably 0.5 or more, and 0.6 or more. Is particularly preferred.
  • the ratio “D is ” is obtained as a value ( ⁇ D 0.5 / D m ) obtained by dividing the half width “ ⁇ D 0.5 ( ⁇ m)” by the maximum peak particle diameter “D m ( ⁇ m)”.
  • the maximum peak particle diameter D m ( ⁇ m) is obtained by a particle size analysis based on volume of aluminum nitride particles.
  • the half width ( ⁇ D 0.5 ) will be described with reference to FIG. 1.
  • the maximum peak particle diameter and the particle size distribution curve of the aluminum nitride particles can be confirmed by an image analysis method, and can be measured using, for example, a particle image analysis apparatus / Morophog G3 (manufactured by Malvern). it can.
  • these particle size distribution curves are 0.1 ⁇ m to 10 ⁇ m in addition to the area of 20 ⁇ m to 200 ⁇ m.
  • the curve shows a maximum and becomes a curve connected to one indicating a minimum between the two maximums, a predetermined relationship is maintained between the minimum value and the two maximum values. It is preferable to adjust the ratio of the first particles and the second particles so that the
  • the frequency value (hereinafter also referred to as “first maximum value”) at the highest inflection point LHa in an area of 20 ⁇ m or more and 200 ⁇ m or less (hereinafter also referred to as “range (A)”) is represented by “P 1 ”.
  • the frequency value (hereinafter also referred to as “second maximum value”) at the highest inflection point LHb in the area of 0.1 ⁇ m to 10 ⁇ m (hereinafter also referred to as “range (B)”) is defined as “P 2 ”.
  • the frequency value at the lowest inflection point LL1 between these two inflection points LHa and LHb (hereinafter also simply referred to as “minimum value”) is defined as “P 3 ”
  • the second maximum value (P 2 ) The aluminum nitride particles are contained in the polymer composition so that the ratio (P 1 / P 2 ) (hereinafter also referred to as “maximum value ratio (RH)”) of the first maximum value (P 1 ) to 1.2) is 1.2 or more. It is preferable to make it.
  • the maximum value ratio (RH) is preferably 1.5 or more, more preferably 1.5 or more and 15 or less, and particularly preferably 2 or more and 4 or less.
  • the second maximum / minimum value ratio (RHLb) which is the ratio of the second maximum value (P 2 ) to the minimum value (P 3 ), is preferably 2 or more, and more preferably 3 or more and 100 or less. It is particularly preferably 4 or more and 20 or less, and most preferably 10 or more and 15 or less.
  • the aluminum nitride particles a commercially available product can be used as it is, or an appropriate surface treatment can be applied to the commercially available product to be contained in the polymer composition of the present embodiment.
  • the commercially available products include “AlN050AF”, “AlN100AF”, “AlN200AF” manufactured by Globaltop Materials, “FAN-f05”, “FAN-f30”, “FAN-f50”, “FAN-f80” manufactured by Furukawa Electronics. "Toyalnite” manufactured by Toyo Aluminum Co., Ltd., "High-purity aluminum nitride powder / granules” manufactured by Tokuyama Co., Ltd., and the like.
  • the aluminum nitride particles as described above can be used alone or in combination of two or more in the polymer composition of the present embodiment.
  • the composite waveform of the particle size distribution curve of each commercially available product is as a whole. It will appear as a particle size distribution curve. Therefore, for example, when a plurality of commercially available products are contained in the polymer composition as the first particles, the entire particle size distribution curve has a plurality of maximum values, one maximum value and one or more in the range (A). May appear and shoulders.
  • the polymer composition of the present embodiment shows that the particle size distribution curve formed by all the aluminum nitride particles contained therein shows the maximum peak value in the range (A), and the maximum peak It is preferable to contain a plurality of types of aluminum nitride particles so that the particle diameter and the half-value width in terms of value satisfy the above requirements.
  • thermoplastic resins examples include thermoplastic resins, thermosetting resins and rubbers.
  • the thermoplastic resin for constituting the polymer composition is not particularly limited, for example, fluorine resin, acrylic resin, polystyrene resin, polyester resin, polyacrylonitrile resin, maleimide resin, polyvinyl acetate resin, Polyethylene resin, polypropylene resin, ethylene / vinyl acetate copolymer, polyvinyl alcohol resin, polyamide resin, polyvinyl chloride resin, polyacetal resin, polycarbonate resin, polyphenylene oxide resin, polyphenylene sulfide resin, polyether ether ketone resin (PEEK), poly Examples include allyl sulfone resin, thermoplastic polyimide resin, thermoplastic urethane resin, polyetherimide resin, polymethylpentene resin, cellulose resin, and liquid crystal polymer.
  • thermosetting resin is not particularly limited.
  • epoxy resin thermosetting polyimide resin, phenol resin, phenoxy resin, urea resin, melamine resin, diallyl phthalate resin, silicone resin, thermosetting resin
  • examples thereof include urethane resin.
  • the rubber include natural rubber, styrene / butadiene rubber, ethylene / ⁇ -olefin rubber, chloroprene rubber, silicon rubber, and fluorine rubber.
  • gum can be used individually or in combination of 2 or more types in the polymer composition of this embodiment.
  • the polymer composition In order to exhibit excellent thermal conductivity in the polymer composition, among the polymers as described above, those having a liquid crystalline structure such as a mesogen skeleton are preferable. Moreover, in order to make the polymer composition exhibit excellent properties such as adhesiveness, heat resistance, and electrical insulation, it is preferable to employ an epoxy resin or a phenol resin among the above polymers.
  • a liquid, semi-solid, or solid material can be employed at normal temperature (for example, 20 ° C.).
  • the epoxy resin for example, bisphenol type epoxy resin (for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, dimer acid modified bisphenol) Type epoxy resin), novolak type epoxy resin (eg, phenol novolak type epoxy resin, cresol novolak type epoxy resin, biphenyl type epoxy resin, etc.), naphthalene type epoxy resin, fluorene type epoxy resin (eg, bisaryl fluorene type epoxy resin) Etc.), aromatic epoxy resins such as triphenylmethane type epoxy resins (for example, trishydroxyphenylmethane type epoxy resins), for example, triepoxypropyl isocyanate Nitrogen-containing ring epoxy resins such as nurate (triglycidyl isocyanurate) and
  • the epoxy resin has an epoxy equivalent determined by JIS K 7236: 2009 of, for example, preferably 100 g / eq or more, more preferably 130 g / eq or more, and particularly preferably 150 g / eq or more. .
  • the epoxy equivalent of the epoxy resin is, for example, preferably 10,000 g / eq or less, more preferably 9000 g / eq or less, and particularly preferably 8000 g / eq or less.
  • the epoxy resin preferably has an epoxy equivalent of 5000 g / eq or less, particularly preferably 1000 g / eq or less.
  • the softening point is, for example, preferably 20 ° C. or higher, and more preferably 40 ° C. or higher.
  • the softening point of the epoxy resin is preferably 130 ° C. or lower, and more preferably 90 ° C. or lower, for example.
  • a triphenylmethane type epoxy resin is preferable as an epoxy resin contained in the polymer composition of the present embodiment.
  • the blending ratio of the epoxy resin in the polymer composition of the present embodiment is, for example, preferably 1 part by mass or more, more preferably 2 parts by mass or more, with respect to 100 parts by mass of the aluminum nitride particles.
  • the amount is more preferably at least 5 parts by mass, and particularly preferably at least 5 parts by mass.
  • the blending ratio of the epoxy resin in the polymer composition of the present embodiment is preferably 100 parts by mass or less, and more preferably 50 parts by mass or less, with respect to 100 parts by mass of the aluminum nitride particles. 20 parts by mass or less is more preferable, and 10 parts by mass or less is particularly preferable.
  • the curing agent can be further contained.
  • the curing agent include a latent curing agent that can cure an epoxy resin by heating, a phenolic curing agent, an amine compound curing agent, an acid anhydride curing agent, an amide compound curing agent. And hydrazide compound-based curing agents.
  • curing agent is preferable.
  • the phenolic curing agent include phenol compounds such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol, and / or naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene.
  • a novolac-type phenol resin obtained by condensation or cocondensation of a compound having an aldehyde group such as formaldehyde, benzaldehyde, salicylaldehyde and the like with an acidic catalyst, such as a phenol compound and / or a naphthol compound and dimethoxyparaxylene or bis
  • Phenol aralkyl resins synthesized from (methoxymethyl) biphenyl for example, biphenylene type phenol aralkyl resins, naphthol aralkyl resins
  • Aralkyl type phenol resins such as dicyclopentadiene type such as dicyclopentadiene type phenol novolak resin synthesized by copolymerization from phenol compound and / or naphthol compound and dicyclopentadiene, for example dicyclopentadiene type naphthol novolak resin
  • Phenol resins such as triphenylmethane type
  • the phenolic curing agent preferably has a hydroxyl group equivalent measured according to JIS K0070: 1992 of, for example, 70 g / eq or more, more preferably 80 g / eq or more, and 100 g / eq or more. Is particularly preferred.
  • the hydroxyl equivalent of the phenol-based curing agent is, for example, preferably 2000 g / eq or less, more preferably 1000 g / eq or less, and particularly preferably 500 g / eq or less.
  • the phenolic curing agent is preferably a phenol novolac resin or a phenolic curing agent represented by the following general formula (1).
  • R 1 is a hydroxyl group, a methyl group, an ethyl group, a propyl group, or a hydrogen atom
  • Ph 1 ”, “Ph 2 ”, and “Ph 3 ” are common to each other.
  • a non-substituted phenyl or a substituted phenyl represented by the following general formula (x) and at least two of the “Ph 1 ”, “Ph 2 ” and “Ph 3 ” have a hydroxyl group. Having substituted phenyl.
  • R 2 ” to “R 6 ” are any of a hydroxyl group, a methyl group, an ethyl group, a propyl group, or a hydrogen atom, and “R 2 ” to “R 6 ” are It may be common or different.
  • the number of hydroxyl groups of each phenyl (“Ph 1 ” to “Ph 3 ”) is preferably 1 or 2.
  • each phenyl does not have substituents other than a hydroxyl group (it is preferable that other than a hydroxyl group is a hydrogen atom). That is, the phenolic curing agent in the present embodiment is preferably, for example, 4,4 ′, 4 ′′ -methylidynetrisphenol represented by the following general formula (2).
  • the curing agent as described above is contained in the polymer composition so as to be, for example, 0.1 part by mass or more, preferably 1 part by mass or more, and more preferably 10 parts by mass or more with respect to 100 parts by mass of the epoxy resin. Is desirable.
  • the curing agent is desirably contained in the polymer composition so as to be, for example, 500 parts by mass or less, preferably 300 parts by mass or less, and more preferably 200 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
  • the ratio of the number of hydroxyl groups (N OH ) of the phenolic curing agent to the number of glycidyl groups ( NG ) of the epoxy resin (N G / N OH ) is preferably adjusted so that each compounding amount is 0.5 or more and 2.0 or less, and the ratio is preferably 0.8 or more and 1.5 or less, and 0.9 or more. More preferably, it is 1.25 or less.
  • the polymer composition of this embodiment does not need to use the said phenol type hardening
  • the polymer composition of this embodiment may be prepared by using a curing agent other than a phenolic curing agent and a phenolic curing agent (for example, an amine curing agent, an acid anhydride curing agent, a polymercaptan curing agent, a polyamino An amide curing agent, an isocyanate curing agent, a blocked isocyanate curing agent, etc.) may be used in combination.
  • a curing agent other than a phenolic curing agent and a phenolic curing agent for example, an amine curing agent, an acid anhydride curing agent, a polymercaptan curing agent, a polyamino An amide curing agent, an isocyanate curing agent, a blocked isocyanate curing agent, etc.
  • the polymer composition of this embodiment can also contain a hardening accelerator with the said hardening
  • a curing accelerator such as an imidazole compound, an imidazolinated compound, an organic phosphine compound, an acid anhydride compound, an amide compound, a hydrazide compound, or a urea compound can be contained in the polymer composition of the present embodiment.
  • the curing accelerator is preferably contained in an amount of, for example, 0.1 part by mass or more, more preferably 0.5 part by mass or more, and further preferably 1 part by mass or more with respect to 100 parts by mass of the epoxy resin. preferable.
  • the curing accelerator is preferably contained in the polymer composition so as to be 20 parts by mass or less with respect to 100 parts by mass of the epoxy resin, and is preferably contained in the polymer composition so as to be 10 parts by mass or less. It is more preferable that the polymer composition contains 5 parts by mass or less.
  • an onium salt-based curing accelerator such as a phosphonium salt-based curing accelerator or a sulfonium salt-based curing accelerator is used as a curing accelerator to be included in the polymer composition. It is preferable to do. Since many of the phenolic curing agents shown above have a softening temperature exceeding 200 ° C., those that do not exhibit excessive catalytic activity at temperatures of 200 ° C. or less are preferable as curing accelerators to be included in the polymer composition.
  • the polymer composition of the present embodiment contains a phosphonium salt-based curing accelerator such as a tetraphenylphosphonium salt-based curing accelerator or a triphenylphosphonium salt-based curing accelerator as the onium salt-based curing accelerator.
  • a phosphonium salt-based curing accelerator such as a tetraphenylphosphonium salt-based curing accelerator or a triphenylphosphonium salt-based curing accelerator as the onium salt-based curing accelerator.
  • a phosphonium salt-based curing accelerator such as a tetraphenylphosphonium salt-based curing accelerator or a triphenylphosphonium salt-based curing accelerator as the onium salt-based curing accelerator.
  • the polymer composition may further contain an additive such as a dispersant in improving wettability between the aluminum nitride particles and the polymer and suppressing aggregation of the aluminum nitride particles.
  • the dispersant may be used alone or in combination of two or more.
  • the aluminum nitride particles are sufficiently mixed with the epoxy resin or the like, and the aluminum nitride particles are favorably dispersed in the epoxy resin or the like.
  • the mixing can be performed, for example, by stirring or shaking the aluminum nitride particles and the epoxy resin.
  • the agitation can be performed by a known method that applies shearing force to the aluminum nitride particles and the epoxy resin, and can be performed using a mill (ball mill, roll mill, etc.), a kneader (kneader, roll, etc.), a mortar, or the like.
  • the aluminum nitride particles and the epoxy resin are agitated, and the agitation is performed using a stirring deaerator (hybrid mixer or the like) in order to remove bubbles from the obtained polymer composition. You may go.
  • the mixing ratio of the aluminum nitride particles in preparing the polymer composition is, for example, 10 to 4900 parts by weight, preferably 100 to 2400 parts by weight, and more preferably 300 to 1500 parts by weight with respect to 100 parts by weight of the polymer. Part, particularly preferably 400 to 1000 parts by weight.
  • the concentration of the aluminum nitride powder of this embodiment in the thermally conductive molded body is, for example, 9 to 98% by mass, preferably 50 to 96% by mass, more preferably 75 to 94% by mass, and particularly preferably 80 to 90% by mass. It is desirable to produce the polymer composition according to this embodiment by mixing the aluminum nitride powder and the polymer so as to be 91% by mass.
  • the polymer composition of this embodiment may contain a solvent and be varnished from the viewpoint of improving the handleability.
  • the solvent include hydroxyl group-containing aliphatic hydrocarbons such as alcohol (for example, methanol, ethanol, propanol, isopropanol etc.), carbonyl group-containing aliphatic hydrocarbons such as ketone (for example, acetone, methyl ethyl ketone, cyclohexanone, cyclohexane).
  • Pentanone, etc. aliphatic hydrocarbons (eg, pentane, hexane, etc.), halogenated aliphatic hydrocarbons (eg, dichloromethane, chloroform, trichloroethane, etc.), halogenated aromatic hydrocarbons (eg, chlorobenzene, dichlorobenzene, etc.)
  • orthodichlorobenzene ether
  • ether for example, tetrahydrofuran, etc.
  • aromatic hydrocarbon for example, benzene, toluene, xylene, etc.
  • nitrogen-containing compounds for example, N-methylpyrrolidone (NMP), Down, acetonitrile, dimethylformamide, etc.
  • aprotic solvents e.g., dimethyl sulfoxide (DMS), dimethyl formamide, etc.
  • examples of the solvent include alicyclic hydrocarbons (eg, cyclopentane, cyclohexane, etc.), esters (eg, ethyl acetate), polyols (eg, ethylene glycol, glycerin, etc.), acrylics, etc.
  • alicyclic hydrocarbons eg, cyclopentane, cyclohexane, etc.
  • esters eg, ethyl acetate
  • polyols eg, ethylene glycol, glycerin, etc.
  • acrylics etc.
  • Monomers eg, isostearyl acrylate, lauryl acrylate, isobornyl acrylate, butyl acrylate, methacrylate, acrylic acid, tetrahydrofurfuryl acrylate, 1,6-hexanediol diacrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate) , Phenoxyethyl acrylate, acroyl morpholine, etc.), vinyl group-containing monomers (eg, styrene, ethylene, etc.). These solvents can be used alone or in combination of two or more.
  • the blending ratio of the solvent in producing the polymer composition is, for example, 30 to 1900 parts by weight, preferably 50 to 900 parts by weight, and more preferably 100 to 500 parts by weight with respect to 100 parts by weight of the polymer. can do.
  • the polymer composition of this embodiment does not need to contain the said solvent, when a polymer is liquefied under normal temperature normal pressure (20 degreeC, 1 atmosphere), or when a polymer melts by heating. .
  • the polymer itself contained in the polymer composition is such that it exhibits fluidity in an unheated state or in a heated state, it is good when molding a thermally conductive molded body with the polymer composition. Since workability can be exhibited, it is not necessary to contain a solvent.
  • the heat conductive polymer composition according to the present embodiment exhibits good fluidity as described above, it can be easily molded into various forms and employed as a material for forming various heat conductive molded bodies. can do.
  • a thermally conductive molded body and a method for producing the same will be described using a polymer sheet obtained by molding the polymer composition into a sheet.
  • a polymer sheet in addition to the polymer composition alone, a substrate sheet formed with a polymer layer composed of the polymer composition on one or both sides of the substrate sheet, or a fibrous substrate sheet Examples of the polymer sheet impregnated and supported are described below, but in the following, a polymer sheet mainly composed of the polymer composition will be described.
  • the polymer sheet of the present embodiment is a thermally conductive molded body obtained by molding the polymer composition into a sheet as described above, and includes a heat generating member that generates heat and a heat radiating member for radiating the heat of the heat generating member. It is suitable for use as a heat conductive sheet or the like interposed therebetween.
  • the thickness of the heat conductive sheet is appropriately set according to the use and purpose, and is, for example, 1 to 1000 ⁇ m, preferably 10 to 600 ⁇ m, more preferably 50 to 400 ⁇ m, and particularly preferably 100 to 300 ⁇ m. .
  • the thermally conductive sheet can be produced by performing the following steps (1a) to (1c).
  • the thermally conductive sheet can be produced by performing the following steps (2a) to (2c). .
  • (2a) The polymer composition is heated to a temperature at which the curing reaction of the thermosetting resin does not proceed excessively and to a temperature at which the polymer composition is easily deformable (for example, 60 to 150 ° C.) to soften the polymer composition. Heating process.
  • (2b) The coating film formation process which forms a coating film by apply
  • the said heat conductive sheet can be produced by implementing the processes like the following (3a) and (3b).
  • the said coating-film formation process can be implemented by well-known coating methods, such as a spin coater method and a bar coater method, for example, and can be implemented by the hand-coating method using a well-known applicator.
  • the viscosity of the polymer composition can be appropriately adjusted using an evaporator or the like.
  • the degree of curing may be adjusted by heating the dried coating film, or the dried coating film may be completely cured ( (C stage) state.
  • heating the dried coating film while pressurizing it in the thickness direction with a hot press machine or the like is advantageous in preventing air bubbles from being present in the thermally conductive sheet.
  • the case where the polymer which comprises the heat conductive sheet is a thermoplastic resin is also the same.
  • the hot pressing step is performed by continuously applying pressure for about 10 minutes in a press machine that has been heated to a preset temperature. It can implement by the method of cooling with applying.
  • the hot pressing step for example, pressurizes the heat conductive sheet at room temperature until reaching a set pressure, and then pressurizes the set temperature from the normal temperature to the set pressure.
  • a method may be employed in which the heat conductive sheet is heated to a preset temperature for a predetermined time and then cooled to room temperature while being pressurized. By carrying out the hot pressing step in this manner, a thermally conductive sheet having a high thermal conductivity can be obtained.
  • the contained polymer is a thermosetting resin
  • the desired cured state is obtained.
  • a stage sheet and a C stage sheet can be obtained.
  • the heating temperature in the hot pressing step is, for example, 60 ° C. or higher.
  • the heating temperature is preferably 80 ° C. or higher and 250 ° C. or lower, more preferably 90 ° C. or higher and 220 ° C. or lower, and further preferably 100 ° C. or higher and 200 ° C. or lower.
  • the heating temperature in the hot pressing step is, for example, 70 ° C. or more and 160 ° C. or less in a temperature range of 60 ° C. or more.
  • it is 80 degreeC or more and 150 degrees C or less.
  • the heating temperature is preferably 120 ° C. or higher, more preferably 130 ° C. or higher and 250 ° C. or lower, and 150 ° C. or higher when curing is sufficiently advanced. It is especially preferable to set it as 220 degrees C or less.
  • the heating time in the hot pressing step is preferably 5 minutes or more, more preferably 7 minutes or more and 30 minutes or less, and particularly preferably 10 minutes or more and 20 minutes or less, when obtaining a B stage sheet.
  • the heating time for obtaining the C stage sheet is preferably 10 minutes or more, more preferably 30 minutes or more, and particularly preferably 1 hour or more.
  • Such a hot pressing process can also be performed under vacuum conditions. Further, instead of the above method, it is also possible to form the heat conductive sheet using an extruder equipped with a flat die (T-die) or the like.
  • the heat conductive molded object of this embodiment can be obtained also with molding machines other than the above.
  • the thermally conductive molded body of this embodiment can be molded as a thermally conductive block by putting the polymer composition in a mold and thermoforming such as hot pressing.
  • the aluminum nitride particles are contained in a predetermined particle size distribution, excellent fluidity is exhibited in the polymer composition in the coating film forming step and the like. And since it is easy to reduce a bubble by implementing a hot press process, it is excellent in thermal conductivity, and the partial discharge start voltage is high, and it can be excellent in mechanical strength.
  • the heat conductive sheet which is the sheet-like heat conductive molded article has the advantages as described above, it is used in, for example, a heat dissipation sheet provided between the CPU and the fin, an inverter of an electric vehicle, etc. It is suitably used as a heat dissipation sheet for power cards.
  • Ep1 Ep1
  • EPPN-501HY An epoxy resin (trade name “EPPN-501HY”) produced by Nippon Kayaku Co., Ltd., which is represented by the following general formula (3) and has an epoxy equivalent of 169 g / eq.
  • Ep2 Ep2
  • YX4000HK An epoxy resin (trade name “YX4000HK”) manufactured by Mitsubishi Chemical Co., which is a substance represented by the following general formula (4) and has an epoxy equivalent of 192 g / eq.
  • Ep3 An epoxy resin manufactured by Mitsubishi Chemical Corporation (trade name “YL6121H”) having a mixture of the substance represented by the general formula (4) and the substance represented by the following general formula (5) and having an epoxy equivalent of 175 g / eq.
  • TPK Tetraphenylphosphonium tetraphenylborate
  • F1 Product name “FAN-f80” manufactured by Furukawa Denshi
  • F2 Furukawa Electronics
  • F3 Furukawa Electronics
  • F4 Globaltop Materials
  • AlN200AF Product name “AlN100AF”
  • F6 Toyo Aluminum Co., Ltd., trade name “Toyal Night TM”
  • F7 Furukawa Electronics Co., Ltd., trade name “FAN-f05”
  • F8 Product name “H grade” manufactured by Tokuyama Corporation
  • the aluminum nitride particles are analyzed in the form as shown in FIG. 1, and the maximum peak intensity (P) and the particle diameter indicating the maximum peak value for the maximum peak value in the range of 20 ⁇ m to 200 ⁇ m of the particle size distribution curve ( D m ), half-value (P / 2) of the maximum peak intensity, particle size (D H ) on the coarse grain side at the two intersections of the straight line L passing through the half-value and parallel to the horizontal axis and the particle size distribution curve
  • the particle diameter (D L ) on the fine particle side, the difference between these ( ⁇ D 0.5 ), and the ratio of the half-value width to the particle diameter at the maximum peak value ( ⁇ D 0.5 / D m ) were determined. The results are shown in Table 1.
  • Tables 3 to 8 show the composition of the epoxy resin composition for producing the heat conductive sheet.
  • Varnish-like epoxy resin compositions were prepared with the blending amounts shown in Tables 3 to 8.
  • an epoxy resin and a phenolic curing agent were charged in a container dedicated to a hybrid mixer.
  • the solvent described in the table 30% by mass of methyl ethyl ketone (MEK) and 70% by mass of toluene were charged into the container.
  • MEK methyl ethyl ketone
  • the container was set in a hybrid mixer and stirred.
  • the stirring time at this time was basically set to 10 minutes, and the resin solution was prepared by extending as appropriate according to the degree of melting of the resin.
  • a predetermined amount of Aerosil was added to this resin solution, and the mixture was stirred for 3 minutes with a hybrid mixer.
  • a predetermined amount of TPPK was added to the resin solution and stirred for 3 minutes with a hybrid mixer.
  • the primary set (L1) was first formed by laminating the mat pet (MP) / laminated body / mat pet (MP) in this order from the bottom. And prepare what sandwiched this primary set (L1) with aluminum plate (AP) from both sides, and put this with cushioning sheet (CS) consisting of 15 cushion papers and 1 mat pet (MP) And sandwiched between top plates (EP) for hot press to form a press set.
  • the primary set (L1) has one layer, the press set is laminated in order from the top (aluminum plate) / buffer sheet / matpet / aluminum plate (AP) / primary set (L1).
  • Aluminum plate (AP) / matt pet / buffer sheet / top plate (aluminum plate) see FIG. 3A).
  • the aluminum plate (AP) and the primary set (L1) are alternately stacked in two to four steps as required (in the case of four-step stacking: see FIG. 3B). In this way, it was formed.
  • This press set was placed on a press plate heated to 120 ° C., pressed under vacuum for 10 minutes, cooled to room temperature, and the dried coating films were adhered to each other.
  • a plurality of laminates in which dry coatings are bonded and integrated with each other by this press are manufactured, and one side or both sides of the matte pet are removed and stacked, and the vacuum press is similarly performed at 120 ° C for 10 minutes.
  • a B stage sheet having a thickness of 400 ⁇ m in which four layers of the dried coating film were laminated and a B stage sheet having a thickness of about 1 mm in which ten layers of the dried coating film were laminated were produced.
  • a spacer is interposed as necessary so as to keep the film thickness so that excessive pressure is not applied to the laminate.
  • B stage sheets those having a thickness of about 1 mm were used for fluidity evaluation by a compression viscoelasticity test described later.
  • a B stage sheet having a thickness of 400 ⁇ m was also used as a C stage sheet by the following method, and was used for measurement of thermal conductivity and porosity described later.
  • ⁇ Production of C stage sheet> Prepare a press set similar to the one prepared in the preparation of the B stage sheet except that one B stage sheet was used instead of the two sheet samples cut out from the mat pet on which the dry coating film was formed, This was placed on a press plate heated to 180 ° C., pressed under vacuum for 10 minutes, and then cooled to room temperature to prepare a C stage sheet. In the vacuum pressing, a spacer is interposed as necessary so as to keep the film thickness so that excessive pressure is not applied to the laminate.
  • the production conditions for the B stage sheet and the C stage sheet are based on the above conditions, but the press temperature, the press time, and the like were appropriately changed according to the formulation. Details of the pressing conditions are shown in Tables 3 to 8 together with the evaluation results shown below.
  • a peak width (difference between large and small particle diameters) at a position half the peak height of the average particle diameter is determined as a half-value width [ ⁇ D0.5 ( ⁇ m)], and the average particle
  • range (A) a range from 20 ⁇ m to 200 ⁇ m
  • range (B) a range from 0.1 ⁇ m to 10 ⁇ m
  • the AB ratio is determined as follows based on the following conditions.
  • Condition 1 (AB ratio) ⁇ 1.2
  • Condition 2 1.2 ⁇ (AB ratio)
  • Condition 3 1.5 ⁇ (AB ratio) ⁇ 15
  • Condition 4 2 ⁇ (AB ratio) ⁇ 4 (Judgment) “ ⁇ ”: When the condition 1 is met “ ⁇ ”: When the condition 2 is met only “ ⁇ ”: When the conditions 2 and 3 are met, and when the condition 4 is not met “ ⁇ ”: All the conditions 2 to 4 are met if it applies
  • the AB ratio is determined as follows based on the following conditions.
  • Condition 1 (AC ratio) ⁇ 3 or (BC ratio) ⁇ 2
  • Condition 2 3 ⁇ (AC ratio) and 2 ⁇ (BC ratio)
  • Condition 3 8 ⁇ (AC ratio) ⁇ 120 and 3 ⁇ (BC ratio) ⁇ 100
  • Condition 4 30 ⁇ (AC ratio) ⁇ 60 and 4 ⁇ (BC ratio) ⁇ 20
  • Condition 5 30 ⁇ (AC ratio) ⁇ 40 and 10 ⁇ (BC ratio) ⁇ 15 (Judgment) “ ⁇ ”: When the condition 1 is satisfied “ ⁇ ”: When only the condition 2 is satisfied “ ⁇ ”: When the conditions 2 and 3 are satisfied, and when the conditions 4 and 5 are not satisfied “O”: When the conditions 2 to 4 are satisfied Applicable but not applicable to condition 5 “ ⁇ ”: Applicable to all conditions 2 to 5
  • the actually measured density ( ⁇ E ) was measured using a density measuring device manufactured by METTLER TOLEDO. That is, the measured density ( ⁇ E ) was determined by an underwater substitution method using 25 ° C. water according to JIS K7112: 1999.
  • the theoretical density ( ⁇ T ) was calculated assuming that the density of aluminum nitride is 3.26 g / cm 3 and the density of epoxy resin is 1.3 g / cm 3 .
  • 100 g of a polymer composition containing 85.3% by mass of aluminum nitride particles has a volume of 26.2 cm 3 (85.3 / 3.26) and a volume of 11.3 cm 3 (14.7 / 1.3), the theoretical density was calculated as approximately 2.66 g / cm 3 (100 / (26.2 + 11.3)).
  • the table shows the results of determining the porosity as follows. “ ⁇ ”: Porosity of 3.0% or more “ ⁇ ”: Porosity of less than 3.0%
  • thermal diffusivity in the thickness direction and the surface direction of the C-stage sheet was measured using a xenon flash under the evaluation conditions shown in Table 2 below, and the theoretical density and theoretical value calculated above were obtained for the obtained thermal diffusivity.
  • the thermal conductivity was calculated by multiplying the specific heat.
  • the theoretical specific heat of the polymer composition was calculated by setting the specific heat of the aluminum nitride particles to 0.74 kJ / kgK and the specific heat of the epoxy resin or the like to 1.5 kJ / kgK. For example, a polymer containing 85.3% by mass of aluminum nitride particles was calculated with a theoretical specific heat of approximately 0.85 kJ / kgK (0.853 ⁇ 0.74 + 0.147 ⁇ 1.5).
  • compression modulus of 100 MPa or more “ ⁇ ”: compression modulus of 50 MPa or more and less than 100 MPa “ ⁇ ”: compression modulus of 25 MPa or more and less than 50 MPa “ ⁇ ”: compression modulus of 10 MPa or more and less than 25 MPa “ ⁇ ⁇ ”: Compression modulus is less than 10 MPa

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、窒化アルミニウム粒子が高充填されながらも熱伝導性成形体に気泡を混入させるおそれの低いポリマー組成物として、特定の粒度分布を有する窒化アルミニウム粒子と、ポリマーとを含有する熱伝導性ポリマー組成物を提供する。

Description

熱伝導性ポリマー組成物及び熱伝導性成形体
 本発明は、窒化アルミニウム粒子とポリマーとを含有する熱伝導性ポリマー組成物、及び、該熱伝導性ポリマー組成物を成形して得られる熱伝導性成形体に関する。
 近年、電子機器等について、設置箇所の省スペース化や、軽量化の要求が高まりつつある。
 また、制御機構の局所化や、クラウドの活用が進み、電子機器の小型化や高性能化の要求が高まりつつある。
 それに伴い、デバイスからの発熱量が大きくなってきており、優れた放熱性が求められる機会が増大している。
 例えば、高輝度LED、パソコン、自動車のモータ制御機構、電力を変換し制御するパワーエレクトロニクス技術を利用したデバイス等に用いられる半導体装置の技術分野等では、優れた放熱性を発揮させることが強く要望されている。
 なお、上記のような分野において放熱のために利用される熱伝導性に優れた成形体は、電子部品周辺で利用され場合が多いことから、当該熱伝導性成形体には高い熱伝導性に加えて高い絶縁性を有することが求められている。
 この種の用途において用いられる熱伝導性成形体は、多くの場合、無機フィラーを含有させて優れた熱伝導性を付与させたポリマー組成物によって形成されている。
 このような熱伝導性ポリマー組成物のなかでも無機フィラーをエポキシ樹脂に分散させたエポキシ樹脂組成物は、熱伝導性のみならず接着性、電気絶縁性、強度などにおいても優れた特性をその成形物に発揮させ得ることから広く用いられている。
 具体的には、このようなエポキシ樹脂組成物は、半導体装置の封止材や半導体装置と放熱器とを接着させるためのプリプレグシートなどに広く用いられている。
 なお、ポリマー組成物は、通常、無機フィラーの含有率が高いほど、そして、含有する無機フィラーの熱伝導性が高いほど優れた熱伝導性を発揮する。
 このようなことを背景として、ポリマー組成物に無機フィラーの中でも特に高い熱伝導性を示す窒化ホウ素粒子や窒化アルミニウム粒子を高い割合で含有させることが試みられており、例えば、下記特許文献1においては窒化アルミニウム粒子の粒度分布の調整や界面の制御による高充填化が試みられている。
日本国特開平6-24715号公報
 ポリマー組成物に窒化アルミニウム粒子を高充填させると、当該ポリマー組成物によって形成される熱伝導性成形体に優れた熱伝導性を発揮させることができるようになる。
 その一方で、ポリマー組成物に窒化アルミニウム粒子を高充填させると、例えば、加熱溶融状態にして成形体を作製するような場合において、当該ポリマー組成物に十分な流動性が発揮されずに成形体内に気泡を残存させ易い。
 また、有機溶剤によってポリマー組成物をワニス化させたような場合であっても、窒化アルミニウム粒子が充填密度の低い状態で高充填されていると前記有機溶剤を除去した後に内部に気泡を形成させ易い。
 従って、いずれのような場合においても熱伝導性成形体中に気泡を混在させ易くなる。
 該気泡の存在は、熱伝導性を低下させる原因になるとともに熱伝導性成形体の強度や電気絶縁性に問題を生じさせるおそれを有する。
 本発明は、上記のような問題点に鑑みてなされたものであり、窒化アルミニウム粒子が高充填されながらも熱伝導性成形体に気泡を混入させるおそれの低いポリマー組成物を提供し、ひいては熱伝導性などにおいて優れた特性を発揮する熱伝導性成形体を提供することを課題としている。
 このような課題を解決するための本発明の熱伝導性ポリマー組成物は、窒化アルミニウム粒子と、ポリマーとを含有する熱伝導性ポリマー組成物であって、前記窒化アルミニウム粒子は、20μm以上200μm以下の範囲に粒度分布曲線の最大ピーク値を有する第1の粒子を必須成分として含有し、0.1μm以上10μm以下の範囲に粒度分布曲線の最大ピーク値を有する第2の粒子を任意成分として含有しており、前記第1の粒子の含有量が40質量%以上100質量%以下で、前記第2の粒子の含有量が60質量%以下であり、且つ、前記第1の粒子が、前記最大ピーク値における粒子径をDm(μm)とし、前記最大ピーク値における粒度分布曲線の半値幅をΔD0.5(μm)とした際に、前記最大ピーク値における粒子径に対する前記半値幅の比率Dis(ΔD0.5/Dm)が1.7以下となっているものである。
 本発明においては、熱伝導性ポリマー組成物に含有される窒化アルミニウム粒子が所定の粒度分布を有していることから当該窒化アルミニウム粒子の充填性が良好なものとなる。
 従って、例えば、熱伝導性成形体の形成に際してポリマー組成物を加熱溶融状態にさせたりした場合に当該ポリマー組成物に優れた流動性を発揮させることができる。
 即ち、本発明によれば、窒化アルミニウム粒子が高充填されながらも熱伝導性成形体に気泡を混入させるおそれの低いポリマー組成物が提供され得る。
図1は、一窒化アルミニウム粒子の粒度分布曲線を模擬的に示した図である。 図2は、他の窒化アルミニウム粒子の粒度分布曲線を模擬的に示した図である。 図3は、シート状の成形体を作製するためのプレスセットを模擬的に示した図である。
 以下に、本発明の実施の形態について説明する。
 本実施形態のポリマー組成物は、窒化アルミニウム粒子と、ポリマーとを含有している。
 前記窒化アルミニウム粒子としては、従来公知の方法で得られたものを本実施形態のポリマー組成物に含有させうる。
 即ち、前記窒化アルミニウム粒子としては、例えば、金属アルミニウム粒子を高温の窒素雰囲気下で窒化する直接窒化法、酸化アルミニウム粒子と炭素粉末との混合物を高温の窒素雰囲気で還元窒化する還元窒化法、有機アルミニウムガスと、窒素含有ガス(アンモニアガス等)とを気相反応させる気相反応法等の方法で得られるものなどが挙げられる。
 また、前記窒化アルミニウム粒子としては、窒化アルミニウムの塊を破砕して得られたものを用いてもよい。
 また、前記窒化アルミニウム粒子は、多結晶のものであってもよく、単結晶のものであってもよい。
 さらに、窒化アルミニウム粒子は、焼結体であってもよい。
 従って、窒化アルミニウム粒子は、窒化アルミニウム以外にも焼結助剤などに由来する不純物を含有していても良い。
 該不純物の元素としては、Y元素、B元素、Fe元素、Si元素、Ca元素、Mg元素、Ti元素、Cr元素、Cu元素、Ni元素、Na元素、Cl元素、C元素などが挙げられる。
 また、窒化アルミニウムを構成している以外にAl23やAl(OH)3等を構成しているAl元素やO元素、H元素なども不純物元素として挙げられる。
 本実施形態における窒化アルミニウム粒子は、上記のように不純物として含まれる各元素の含有量がそれぞれ0.1質量%以下であることが好ましい。
 また、窒化アルミニウム粒子は、表面に窒化アルミニウムの水和物や酸化物を含有するものであってもよい。
 さらに、窒化アルミニウム粒子は、無処理のものであっても表面処理されたものであっても良く、特に、窒化アルミニウムは耐水性が低く、水と接触して加水分解を生じる場合があるため、耐水性向上のための表面処理が施されていることが好ましい。
 即ち、該窒化アルミニウム粒子は、例えば、有機物や窒化アルミニウム以外の無機物による被膜が形成されていることが好ましい。
 なお、窒化アルミニウム粒子は、前記被膜が物理的に表面付着しているものよりも前記被膜が化学結合により表面付着されているものが好ましい。
 前記窒化アルミニウムの粒子の形態としては、例えば、球状(真球状を含む)、多面体粒形状、針状、不定形状、板状等が挙げられるが、これらに限定されるものではない。
 後述する熱伝導性成形体における窒化アルミニウムの充填率を高めやすくするという観点から、窒化アルミニウムの粒子の形態は、球状や多面体粒形状であることが好ましい。
 また、後述する熱伝導性成形体に優れた熱伝導性を発揮させるという観点からは、窒化アルミニウムの粒子の形態は、板状であることが好ましい。
 なお、窒化アルミニウムの粒子の形態は、画像解析的手法によって確認することができ、例えば、粒子画像分析装置・モフォロギG3(Malvern社製)を用いて確認することができる。
 本実施形態のポリマー組成物は、熱伝導性成形体への気泡の混在を抑制する上において、所定の粒度分布となるように窒化アルミニウム粒子を含有することが重要である。
 即ち、本実施形態のポリマー組成物は、前記窒化アルミニウム粒子が、20μm以上200μm以下の範囲に粒度分布曲線の最大ピーク値を有する第1の粒子を必須成分として含有していることが重要であり、前記第1の粒子の含有量が40質量%以上100質量%以下であることが重要である。
 また、本実施形態のポリマー組成物は、前記窒化アルミニウム粒子が、0.1μm以上10μm以下の範囲に粒度分布曲線の最大ピーク値を有する第2の粒子を任意成分として含有していてもよく、含有量が60質量%以下となるように前記第2の粒子を含有していてもよい。
 なお、本明細書において、窒化アルミニウム粒子の粒度分布曲線は、体積基準での粒度分布曲線を意味するものとする。
 なお、前記第1の粒子の最大ピーク値は、20μm以上200μm以下の範囲内であることが好ましく、30μm以上150μm以下の範囲内であることがより好ましく、33μm以上120μm以下の範囲内であることがさらに好ましく、35μm以上110μm以下の範囲内であることが特に好ましく、40μm以上90μm以下の範囲内であることがとりわけ好ましい。
 また、第1の粒子のポリマー組成物における含有量は、60質量%以上100質量%以下であることが好ましく、60質量%以上80質量%以下であることがより好ましく、60質量%以上70質量%以下であることが特に好ましい。
 従って、前記第2の粒子のポリマー組成物における含有量は、40質量%以下であることが好ましく、20質量%以上40質量%以下であることがより好ましく、30質量%以上40質量%以下であることが特に好ましい。
 また、前記第1の粒子は、前記最大ピーク値における粒子径(以下「最大ピーク粒子径」ともいう)を「Dm(μm)」とし、前記最大ピーク値における粒度分布曲線の半値幅を「ΔD0.5(μm)」とした際に、最大ピーク粒子径に対する前記半値幅の比率「Dis」が1.7以下であることが重要である。
 さらに、前記比率「Dis」は、1.4以下であることが好ましく、1.2以下であることがより好ましく、1.0以下であることがさらに好ましい。
 なお、前記比率「Dis」の下限値は、通常、ゼロを超える値であり、0.3以上であることが好ましく、0.5以上であることがより好ましく、0.6以上であることが特に好ましい。
 前記比率「Dis」は、前記半値幅「ΔD0.5(μm)」を前記最大ピーク粒子径「Dm(μm)」で除した値(ΔD0.5/Dm)として求められる。
 ここで前記最大ピーク粒子径Dm(μm)は、窒化アルミニウム粒子の体積基準での粒度解析によって求められるものである。
 そして、前記半値幅(ΔD0.5)については、図1を例示しつつ説明すると、粒径を横軸とし、縦軸をその大きさの粒子の発生頻度として窒化アルミニウム粒子の体積基準での粒度分布曲線CDを描き、前記範囲内(20μm-200μm)での発生頻度の最大値を「P」とした際に、その半分の値(P/2)における粒度分布曲線CDのピーク幅により求められるものである。
 即ち、前記半値幅(ΔD0.5)は、前記の半分の値(P/2)を示す点を通って横軸に平行する直線Lと前記粒度分布曲線CDとの2つの交点XH,XLの内、前記最大ピーク粒子径よりも粗粒側の交点XHの位置における粒径(DH)から細粒側の交点XLの位置における粒径(DL)を減じた値(DH-DL)として求められるものである。
 なお、前記窒化アルミニウム粒子の最大ピーク粒子径や粒度分布曲線については、画像解析的手法によって確認することができ、例えば、粒子画像分析装置・モフォロギG3(Malvern社製)を用いて測定することができる。
 ここで、図2に例示するように、第1の粒子とともに前記の第2の粒子を含有させた結果として、これらの粒度分布曲線が、20μm以上200μm以下のエリア以外にも0.1μm以上10μm以下のエリアにおいて極大を示す曲線となり、且つ、この2つの極大の間に極小を示す一つにつながった曲線となる場合、この極小値と2つの極大値との間に所定の関係が保たれるように第1の粒子と第2の粒子との割合を調整することが好ましい。
 具体的には、20μm以上200μm以下のエリア(以下「範囲(A)」ともいう)で最も高い変曲点LHaにおける頻度の値(以下、「第1極大値」ともいう)を「P1」、0.1μm以上10μm以下のエリア(以下「範囲(B)」ともいう)で最も高い変曲点LHbにおける頻度の値(以下、「第2極大値」ともいう)を「P2」とし、この2つの変曲点LHa,LHbの間における最も低い変曲点LL1における頻度の値(以下、単に「極小値」ともいう)を「P3」とした際に、第2極大値(P2)に対する第1極大値(P1)の比率(P1/P2)(以下「極大値比(RH)」ともいう)が1.2以上となるように窒化アルミニウム粒子をポリマー組成物に含有させることが好ましい。
 前記極大値比(RH)の値が低いということは、ポリマー組成物に微細な粒径の窒化アルミニウム粒子が比較的多く含まれる傾向にあることを意味し、加熱溶融状態などにおけるポリマー組成物の流動性が低くなる傾向にあることを意味する。
 従って、本実施形態においては、前記極大値比(RH)が1.5以上であることが好ましく、1.5以上15以下であることがより好ましく、2以上4以下であることが特に好ましい。
 また、前記極小値(P3)に対する前記第1極大値(P1)の比率(P1/P3)や、前記極小値(P3)に対する前記第2極大値(P2)の比率(P2/P3)が低い値を示す場合は、ポリマー組成物の流動性が低くなる傾向にある。
 このことから、前記極小値(P3)に対する前記第1極大値(P1)の比率たる第1極大極小値比(RHLa:P1/P3)は、3以上であることが好ましく、8以上120以下であることがより好ましく、30以上60以下であることが特に好ましく、30以上40以下であることが最も好ましい。
 また、前記極小値(P3)に対する前記第2極大値(P2)の比率たる第2極大極小値比(RHLb)は、2以上であることが好ましく、3以上100以下であることがより好ましく、4以上20以下であることが特に好ましく、10以上15以下であることが最も好ましい。
 前記窒化アルミニウム粒子としては、市販品をそのまま、或いは、この市販品に適宜な表面処理を施して本実施形態のポリマー組成物に含有させうる。
 この市販品としては、Globaltop Materials社製の「AlN050AF」、「AlN100AF」、「AlN200AF」、古河電子社製の「FAN-f05」、「FAN-f30」、「FAN-f50」、「FAN-f80」、東洋アルミニウム社製の「トーヤルナイト」、トクヤマ社製の「高純度窒化アルミニウム粉末・顆粒」などが挙げられる。
 なお、上記のような窒化アルミニウム粒子は、本実施形態のポリマー組成物において単独使用または2種類以上併用することができる。
 ここで、本実施形態のポリマー組成物に前記第1の粒子や前記第2の粒子として上記のような市販品を複数含有させると、個々の市販品が有する粒度分布曲線の合成波形が全体の粒度分布曲線となって現れることになる。
 従って、例えば、複数の市販品を前記第1の粒子としてポリマー組成物に含有させた場合、全体の粒度分布曲線には前記範囲(A)に複数の極大値や、1つの極大値と1以上のショルダーとが現れたりすることがある。
 本実施形態のポリマー組成物は、このような場合においても、含有される全ての窒化アルミニウム粒子によって形成される粒度分布曲線が、前記範囲(A)において最大ピーク値を示し、且つ、該最大ピーク値における粒子径と半値幅とが前記の要件を満たすように複数種類の窒化アルミニウム粒子を含有することが好ましい。
 このような窒化アルミニウム粒子とともにポリマー組成物を構成させる前記ポリマーとしては、熱可塑性樹脂、熱硬化性樹脂、ゴムなどが挙げられる。
 前記ポリマー組成物を構成させるための熱可塑性樹脂としては、特に限定されるものではないが、例えば、フッ素樹脂、アクリル樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリアクリロニトリル樹脂、マレイミド樹脂、ポリ酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂(PEEK)、ポリアリルスルホン樹脂、熱可塑性ポリイミド樹脂、熱可塑性ウレタン樹脂、ポリエーテルイミド樹脂、ポリメチルペンテン樹脂、セルロース樹脂、液晶ポリマーなどが挙げられる。
 前記熱硬化性樹脂としては、特に限定されるものではないが、例えば、エポキシ樹脂、熱硬化性ポリイミド樹脂、フェノール樹脂、フェノキシ樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、熱硬化性ウレタン樹脂などが挙げられる。
 前記ゴムとしては、天然ゴム、スチレン・ブタジエンゴム、エチレン・αオレフィンゴム、クロロプレンゴム、シリコンゴム、フッ素ゴムなどが挙げられる。
 なお、上記のような樹脂やゴムは、本実施形態のポリマー組成物において単独使用または2種類以上併用することができる。
 ポリマー組成物に優れた熱伝導性を発揮させる上において、前記のようなポリマーの中でも、メソゲン骨格のような液晶性構造を有するものが好ましい。
 また、接着性、耐熱性、電気絶縁性などにおいて優れた特性をポリマー組成物に発揮させる上において、前記のようなポリマーの中でも、エポキシ樹脂やフェノール樹脂を採用することが好ましい。
 前記エポキシ樹脂を本実施形態のポリマー組成物に含有させる際には、常温(例えば20℃)において、液体状、半固形状、又は、固形状のものを採用することができる。
 具体的には、前記エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂(例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、ダイマー酸変性ビスフェノール型エポキシ樹脂など)、ノボラック型エポキシ樹脂(例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂など)、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂(例えば、ビスアリールフルオレン型エポキシ樹脂など)、トリフェニルメタン型エポキシ樹脂(例えば、トリスヒドロキシフェニルメタン型エポキシ樹脂など)などの芳香族系エポキシ樹脂、例えば、トリエポキシプロピルイソシアヌレート(トリグリシジルイソシアヌレート)、ヒダントインエポキシ樹脂などの含窒素環エポキシ樹脂、例えば、脂肪族系エポキシ樹脂、例えば、脂環式エポキシ樹脂(例えば、ジシクロペンタジエン型エポキシ樹脂などのジシクロ環型エポキシ樹脂など)、例えば、グリシジルエーテル型エポキシ樹脂、例えば、グリシジルアミン型エポキシ樹脂などが挙げられる。
 前記エポキシ樹脂は、JIS K 7236:2009によって求められるエポキシ当量が、例えば、100g/eq以上であることが好ましく、130g/eq以上であることがさらに好ましく、150g/eq以上であることが特に好ましい。
 また、エポキシ樹脂のエポキシ当量は、例えば、10000g/eq以下であることが好ましく、9000g/eq以下であることがさらに好ましく、8000g/eq以下であることが特に好ましい。
 なかでも、エポキシ樹脂は、前記エポキシ当量が、5000g/eq以下であることが好ましく、1000g/eq以下であることが特に好ましい。
 また、エポキシ樹脂は、常温固形状である場合には、軟化点が、例えば、20℃以上であることが好ましく、40℃以上であることがより好ましい。
 また、前記エポキシ樹脂の軟化点は、例えば、130℃以下であることが好ましく、90℃以下であることがより好ましい。
 なお、上記のようなエポキシ樹脂の中でも、本実施形態のポリマー組成物に含有させるエポキシ樹脂としては、トリフェニルメタン型エポキシ樹脂が好ましい。
 本実施形態のポリマー組成物における前記エポキシ樹脂の配合割合は、窒化アルミニウム粒子100質量部に対して、例えば、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、3質量部以上であることがさらに好ましく、5質量部以上であることが特に好ましい。
 また、本実施形態のポリマー組成物における前記エポキシ樹脂の配合割合は、窒化アルミニウム粒子100質量部に対して、例えば、100質量部以下であることが好ましく、50質量部以下であることがより好ましく、20質量部以下であることがさらに好ましく、10質量部以下であることが特に好ましい。
 本実施形態のポリマー組成物にエポキシ樹脂を含有させる際には、さらに、その硬化剤を含有させることができる。
 該硬化剤としては、例えば、加熱によりエポキシ樹脂を硬化させることができる潜在性硬化剤などが挙げられ、フェノール系硬化剤、アミン化合物系硬化剤、酸無水物系硬化剤、アミド化合物系硬化剤、ヒドラジド化合物系硬化剤などが挙げられる。
 本実施形態における前記硬化剤としては、フェノール系硬化剤が好ましい。
 該フェノール系硬化剤としては、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノールなどのフェノール化合物および/またはα-ナフトール、β-ナフトール、ジヒドロキシナフタレンなどのナフトール化合物と、ホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒドなどのアルデヒド基を有する化合物とを酸性触媒下で縮合または共縮合させて得られるノボラック型フェノール樹脂、例えば、フェノール化合物および/またはナフトール化合物とジメトキシパラキシレンまたはビス(メトキシメチル)ビフェニルから合成されるフェノール・アラルキル樹脂、例えば、ビフェニレン型フェノール・アラルキル樹脂、ナフトール・アラルキル樹脂などのアラルキル型フェノール樹脂、例えば、フェノール化合物および/またはナフトール化合物とジシクロぺンタジエンから共重合により合成されるジシクロペンタジエン型フェノールノボラック樹脂、例えば、ジシクロペンタジエン型ナフトールノボラック樹脂などのジシクロぺンタジエン型フェノール樹脂、例えば、トリフェニルメタン型フェノール樹脂、例えば、テルペン変性フェノール樹脂、例えば、パラキシリレンおよび/またはメタキシリレン変性フェノール樹脂、例えば、メラミン変性フェノール樹脂などが挙げられる。
 前記フェノール系硬化剤は、JIS K0070:1992に準じて測定される水酸基当量が例えば、70g/eq以上であることが好ましく、80g/eq以上であることがさらに好ましく、100g/eq以上であることが特に好ましい。
 また、フェノール系硬化剤の水酸基当量は、例えば、2000g/eq以下であることが好ましく、1000g/eq以下であることがさらに好ましく、500g/eq以下であることが特に好ましい。
 前記フェノール系硬化剤としては、フェノールノボラック樹脂、または、下記一般式(1)で表されるフェノール系硬化剤が好ましい。
Figure JPOXMLDOC01-appb-C000001
(ただし、「R1」は、水酸基、メチル基、エチル基、プロピル基、又は、水素原子のいずれかであり、「Ph1」、「Ph2」及び「Ph3」は、互いに共通していても異なっていてもよく、下記一般式(x)で表される非置換フェニル又は置換フェニルで、且つ当該「Ph1」、「Ph2」及び「Ph3」の内の少なくとも2つが水酸基を有する置換フェニルである。)
Figure JPOXMLDOC01-appb-C000002
(ただし、式中の「R2」~「R6」は、水酸基、メチル基、エチル基、プロピル基、又は、水素原子のいずれかであり、「R2」~「R6」は、互いに共通していても異なっていても良い。)
 また、前記フェノール系硬化剤としては、各フェニル(「Ph1」~「Ph3」)の水酸基の数が、1又は2であることが好ましい。
 また、前記フェノール系硬化剤としては、各フェニルに水酸基以外の置換基を有していないことが好ましい(水酸基以外が水素原子であることが好ましい)。
 即ち、本実施形態における前記フェノール系硬化剤は、例えば、下記一般式(2)に示す4,4’,4”-メチリジントリスフェノールなどであることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記のような硬化剤は、エポキシ樹脂100質量部に対し、例えば、0.1質量部以上、好ましくは1質量部以上、さらに好ましくは10質量部以上となるようにポリマー組成物に含有させることが望ましい。
 また、前記硬化剤は、エポキシ樹脂100質量部に対し、例えば、500質量部以下、好ましくは300質量部以下、さらに好ましくは200質量部以下となるようにポリマー組成物に含有させることが望ましい。
 また、前記硬化剤としてフェノール系硬化剤を採用する場合には、通常、フェノール系硬化剤の水酸基の数(NOH)が前記エポキシ樹脂のグリシジル基(NG)の数との比率(NG/NOH)が0.5以上2.0以下となるようにそれぞれの配合量を調整することが好ましく、前記比率は、0.8以上1.5以下であることが好ましく、0.9以上1.25以下であることがより好ましい。
 なお、本実施形態のポリマー組成物は、前記フェノール系硬化剤を1種単独で用いる必要はなく、2種以上のフェノール系硬化剤を併用してもよい。
 また、本実施形態のポリマー組成物は、要すれば、フェノール系硬化剤とフェノール系硬化剤以外の硬化剤(例えば、アミン系硬化剤、酸無水物系硬化剤、ポリメルカプタン系硬化剤、ポリアミノアミド系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等)を併用するようにしてもよい。
 また、本実施形態のポリマー組成物は、前記硬化剤とともに硬化促進剤を含有させることもできる。
 具体的には、例えば、イミダゾール化合物、イミダゾリン化含物、有機ホスフィン化合物、酸無水物化合物、アミド化合物、ヒドラジド化合物、ユリア化合物などの硬化促進剤を本実施形態のポリマー組成物に含有させうる。
 該硬化促進剤は、エポキシ樹脂100質量部に対し、例えば、0.1質量部以上含有させることが好ましく、0.5質量部以上含有させることがより好ましく、1質量部以上含有させることがさらに好ましい。
 また、前記硬化促進剤は、エポキシ樹脂100質量部に対し、20質量部以下となるようにポリマー組成物に含有させることが好ましく、10質量部以下となるようにポリマー組成物に含有させることがより好ましく、5質量部以下となるようにポリマー組成物に含有させることが特に好ましい。
 前記硬化剤としてフェノール系硬化剤を採用する場合には、ポリマー組成物に含有させる硬化促進剤としては、ホスホニウム塩系硬化促進剤、スルホニウム塩系硬化促進剤などのオニウム塩系硬化促進剤を採用することが好ましい。
 前記に示したフェノール系硬化剤は、軟化温度が200℃を超えるものが多いため、ポリマー組成物に含有させる硬化促進剤としては200℃以下の温度において触媒活性が過度に発揮されないものが好ましい。
 そのようなことから本実施形態のポリマー組成物は、前記オニウム塩系硬化促進剤としてテトラフェニルホスホニウム塩系硬化促進剤やトリフェニルホスホニウム塩系硬化促進剤といったホスホニウム塩系硬化促進剤を含有させることが特に好ましく、テトラフェニルホスホニウムテトラフェニルボレートを含有させることが最も好ましい。
 前記ポリマー組成物は、前記窒化アルミニウム粒子と前記ポリマーとの濡れ性の向上や、前記窒化アルミニウム粒子の凝集を抑制する上において分散剤などの添加剤をさらに含有させることができる。
 前記分散剤をポリマー組成物に含有させる場合には、当該分散剤は、1種単独であっても、2種以上の併用であってもよい。
 また、ポリマー組成物における分散剤の配合量は、前記窒化アルミニウム粒子100質量部に対し、0.01質量部以上含有させることが好ましく、0.1質量部以上含有させることがより好ましい。
 また、前記分散剤の配合量は、前記窒化アルミニウム粒子100質量部に対し、10質量部以下とすることが好ましく、5質量部以下とすることがより好ましい。
 上記のような成分を混合してポリマー組成物を作製するのに際しては、前記窒化アルミニウム粒子を前記エポキシ樹脂などと十分混合し、前記窒化アルミニウム粒子を前記エポキシ樹脂などに良好に分散させることが好ましい。
 前記混合は、例えば、前記窒化アルミニウム粒子と、前記エポキシ樹脂とを撹拌し、又は、振とうすることで行うことができる。
 前記撹拌は、窒化アルミニウム粒子及びエポキシ樹脂に剪断力を与える公知の方法で行うことができ、ミル(ボールミル、ロールミル等)、混練機(ニーダー、ロール等)、乳鉢等を用いて行うことができる。
 また、本実施形態においては、前記窒化アルミニウム粒子と、前記エポキシ樹脂とを撹拌すると共に、得られるポリマー組成物から気泡を除去すべく、撹拌脱泡機(ハイブリッドミキサー等)を用いて前記撹拌を行ってもよい。
 前記ポリマー組成物を作製する際の前記窒化アルミニウム粒子の配合割合は、前記ポリマー100質量部に対して、例えば、10~4900質量部、好ましくは100~2400質量部、さらに好ましくは300~1500質量部、特に好ましくは400~1000質量部である。
 換言すれば、熱伝導性成形体における本実施形態の窒化アルミニウム粉末の濃度が、例えば9~98質量%、好ましくは50~96質量%、さらに好ましくは75~94質量%、特に好ましくは80~91質量%となるように、前記窒化アルミニウム粉末と前記ポリマーとを混合して、本実施形態に係るポリマー組成物を作製することが望ましい。
 本実施形態のポリマー組成物は、取り扱い性を向上させるという観点から、溶媒を含有してワニス化させてもよい。
 前記溶媒としては、例えば、アルコール等のヒドロキシル基含有脂肪属炭化水素(例えば、メタノール、エタノール、プロパノール、イソプロパノール等)、ケトンなどのカルボニル基含有脂肪属炭化水素(例えば、アセトン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン等)、脂肪族炭化水素(例えば、ペンタン、ヘキサン等)、ハロゲン化脂肪族炭化水素(例えば、ジクロロメタン、クロロホルム、トリクロロエタン等)、ハロゲン化芳香族炭化水素(例えば、クロロベンゼン、ジクロロベンゼン(具体的には、オルトジクロロベンゼン)等)、エーテル(例えば、テトラヒドロフラン等)、芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン等)、含窒素化合物(例えば、N-メチルピロリドン(NMP)、ピリジン、アセトニトリル、ジメチルホルムアミド等)、非プロトン性溶媒(例えば、ジメチルスルホキシド(DMS)、ジメチルホルムアミド等)等が挙げられる。
 また、前記溶媒としては、上記の他に、例えば、脂環族炭化水素(例えば、シクロペンタン、シクロヘキサン等)、エステル(例えば、酢酸エチル等)、ポリオール(例えば、エチレングリコール、グリセリン等)、アクリル系モノマー(例えば、イソステアリルアクリレート、ラウリルアクリレート、イソボロニルアクリレート、ブチルアクリレート、メタクリレート、アクリル酸、テトラヒドロフルフリルアクリレート、1,6-ヘキサンジオールジアクリレート、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート、フェノキシエチルアクリレート、アクロイルモルフォリン等)、ビニル基含有モノマー(例えば、スチレン、エチレン等)等が挙げられる。
 これらの溶媒は、単独使用又は2種以上併用することができる。
 前記ポリマー組成物を作製する際の前記溶媒の配合割合は、前記ポリマー100質量部に対して、例えば、30~1900質量部、好ましくは50~900質量部、さらに好ましくは100~500質量部とすることができる。
 なお、本実施形態のポリマー組成物は、ポリマーが常温常圧(20℃、1気圧)下で液状である場合や、ポリマーが加熱によって溶融する場合には、前記溶媒を含有しなくてもよい。
 即ち、ポリマー組成物に含有されるポリマー自体が、非加熱状態、又は、加熱状態において流動性を発揮するようなものであれば、ポリマー組成物によって熱伝導性成形体を成形する際に良好な作業性が発揮されうることから溶媒を含有させなくてもよい。
 本実施形態に係る熱伝導性ポリマー組成物は、上記のように良好なる流動性を示すことから種々の形態に成形加工することが容易であり、各種の熱伝導性成形体の形成材料として採用することができる。
 次いで、以下においては、前記ポリマー組成物をシート状に成形して得られるポリマーシートを例に熱伝導性成形体とその作製方法を説明する。
 なお、ポリマーシートとしては、前記ポリマー組成物のみからなるものの他に、基材シートの片面、又は、両面に前記ポリマー組成物からなるポリマー層を形成させたものや、繊維質の基材シートに前記ポリマー組成物を含浸担持させたものなどが挙げられるが、以下においては、主としてポリマー組成物のみからなるポリマーシートについて説明する。
 本実施形態のポリマーシートは、上記のように前記ポリマー組成物をシート状に成形した熱伝導性成形体で、発熱を生じる発熱部材と、該発熱部材の熱を放熱するための放熱部材との間に介装される熱伝導性シートなどとして利用されるのに好適なものである。
 前記熱伝導性シートの厚みは、用途及び目的に応じて適宜設定されるものであるが、例えば1~1000μm、好ましくは10~600μm、より好ましくは50~400μm、特に好ましくは100~300μmである。
 前記ポリマー組成物に含まれる樹脂が熱可塑性樹脂である場合には、前記熱伝導性シートは、以下の(1a)~(1c)のような工程を実施して作製することができる。
(1a)ポリマー組成物が易変形性を示す軟化状態となるように、ポリマー組成物を、例えば、100~350℃に加熱する加熱工程。
(1b)上記加熱工程において軟化状態にさせたポリマー組成物を適宜な支持板上に塗布することにより塗膜を形成する塗膜形成工程。
(1c)上記塗膜形成工程で作製した塗膜を冷却して硬化させることによって、熱伝導性シートを得るシート形成工程。
 また、前記樹脂組成物に含まれる樹脂が熱硬化性樹脂である場合には、前記熱伝導性シートは、以下の(2a)~(2c)のような工程を実施して作製することができる。
(2a)熱硬化性樹脂の硬化反応が過度に進行しない程度の温度且つポリマー組成物が易変形性を示す温度(例えば、60~150℃)に加熱して当該ポリマー組成物を軟化状態にさせる加熱工程。
(2b)上記加熱工程において軟化状態にさせたポリマー組成物を適宜な支持板上に塗布することにより塗膜を形成する塗膜形成工程。
(2c)上記塗膜形成工程で作製した塗膜を冷却して硬化させることによって、前記熱硬化性樹脂が半硬化状態(Bステージ状態)となっている熱伝導性シートを得るシート形成工程。
 さらに、前記樹脂組成物が前記溶媒を含有する場合には、前記熱伝導性シートは、以下の(3a)及び(3b)のような工程を実施して作製することができる。
(3a)ポリマー組成物を適宜な支持板上に塗布することにより、ウェット状態の塗膜を形成する塗膜形成工程。
(3b)前記塗膜形成工程で得た塗膜から溶媒を揮発除去させることにより、熱伝導性シートとなる乾燥塗膜を得るシート形成工程。
 なお、前記塗膜形成工程は、例えば、スピンコータ法、バーコータ法などの公知の塗布方法により実施可能であり、公知のアプリケータを用いた手塗り方法によって実施可能である。
 また、前記塗膜形成工程に際しては、前記ポリマー組成物の粘度をエバポレーターなどを用いて適宜調整することができる。
 さらに、前記乾燥塗膜を形成しているポリマーが熱硬化性樹脂である場合には、前記乾燥塗膜を加熱して硬化度合いを調整しても良く、また、前記乾燥塗膜を完全硬化(Cステージ)状態となるようにしてもよい。
 特に、熱プレス機などによって乾燥塗膜を厚み方向に加圧しつつ加熱することは、熱伝導性シート内に気泡などが存在することを防止する上において有利となる。
 なお、このような利点については、熱伝導性シートを構成しているポリマーが熱可塑性樹脂である場合も同じである。
 この熱プレス工程を前記シート形成工程後に追加実施する場合、該熱プレス工程は、一旦作製した熱伝導性シートを、設定温度まで昇温したプレス機内で10分間程度圧力を加え続けた後、圧力をかけたまま冷却するような方法によって実施することができる。
 このように既に加熱された熱プレスを用いる方法に代えて、前記熱プレス工程は、例えば、設定圧力に到達するまで熱伝導性シートを常温で加圧し、ついで、加圧したまま常温から設定温度まで熱伝導性シートを加熱して設定した時間の熱プレスを行い、その後、加圧したまま常温まで冷却する方法を採用しても良い。
 このように熱プレス工程を実施することで、熱伝導性シートとして高熱伝導率化されたものを得ることができ、含有されるポリマーが熱硬化性樹脂の場合、所望の硬化状態となったBステージシートやCステージシートを得ることができる。
 前記熱プレス工程における加熱温度は、例えば、60℃以上とされる。
 該加熱温度は80℃以上250℃以下であることが好ましく、90℃以上220℃以下であることがより好ましく、100℃以上200℃以下であることがさらに好ましい。
 前記Bステージシートを得る場合は、加熱をし過ぎない方が好ましいことから、前記熱プレス工程における加熱温度は、60℃以上の温度範囲の内、例えば、70℃以上160℃以下とすることが好ましく、80℃以上150℃以下とすることがより好ましい。
 また、前記Cステージシートを得る場合は、硬化を十分に進行させる上において、前記加熱温度は、120℃以上とすることが好ましく、130℃以上250℃以下とすることがより好ましく、150℃以上220℃以下とすることが特に好ましい。
 前記熱プレス工程における加熱時間は、Bステージシートを得る場合は、5分以上とすることが好ましく、7分以上30分以下とすることがより好ましく、10分以上20分以下とすることが特に好ましい。
 なお、前記Cステージシートを得る場合の前記加熱時間は、10分以上であることが好ましく、30分以上であることがより好ましく、1時間以上であることが特に好ましい。
 このような熱プレス工程は、真空条件下で実施することも可能である。
 また、上記のような方法に代えて、フラットダイ(T-ダイ)などを装着した押出成形機を用いて熱伝導性シートを形成させることも可能である。
 また、本実施形態の熱伝導性成形体は、上記以外の成形機でも得ることができる。
 例えば、本実施形態の熱伝導性成形体は、ポリマー組成物を金型に入れ、熱プレスなどの熱成形によって、熱伝導性ブロックとして成形することもできる。
 本実施形態のポリマー組成物や熱伝導性成形体は、窒化アルミニウム粒子が所定の粒度分布となって含有されているために前記塗膜形成工程などにおいて優れた流動性がポリマー組成物に発揮され、且つ、熱プレス工程を実施することにより気泡を減少されやすいことから熱伝導性に優れるとともに部分放電開始電圧が高く、機械的強度に優れたものとなり得る。
 そして、シート状の前記熱伝導性成形体たる熱伝導性シートは、上記のような利点を有することから、例えば、CPUとフィンとの間に設けられる放熱シートや、電気自動車のインバータなどで利用されるパワーカードの放熱シート等として好適に用いられる。
 なお、ここではこれ以上に詳細な説明を繰り返さないが、本実施形態のポリマー組成物、及び、熱伝導性成形体については、上記例示に限定されるものではなく上記例示に適宜な変更を加え得るものある。
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
<エポキシ組成物の調製>
 評価用のエポキシ組成物を調整すべく以下の材料を用意した。
(エポキシ樹脂:Ep1)
 日本化薬社製の下記一般式(3)で表される物質で、エポキシ当量が169g/eqのエポキシ樹脂(商品名「EPPN-501HY」)。
Figure JPOXMLDOC01-appb-C000004
 (ただし、式中の「n」は、1~3の数を表す。)
(エポキシ樹脂:Ep2)
 下記一般式(4)で表される物質でエポキシ当量が192g/eqの三菱化学社製のエポキシ樹脂(商品名「YX4000HK」)。
Figure JPOXMLDOC01-appb-C000005
(エポキシ樹脂:Ep3)
 前記一般式(4)で表される物質と下記一般式(5)で表される物質との混合物でエポキシ当量が175g/eqの三菱化学社製のエポキシ樹脂(商品名「YL6121H」)。
Figure JPOXMLDOC01-appb-C000006
(フェノール系硬化剤:C1)
 群栄化学工業社製、水酸基当量 105g/eqの下記一般式(6)で表される物質(商品名「GS-200」)。
Figure JPOXMLDOC01-appb-C000007
(フェノール系硬化剤:C2)
 和光純薬社製、水酸基当量 97g/eqの下記一般式(2)で表される4,4’,4”-メチリジントリスフェノール。
Figure JPOXMLDOC01-appb-C000008
(フェノール系硬化剤:C3)
 本州化学工業社製、水酸基当量 138g/eqの下記一般式(7)で表される物質(商品名「DHTP-M」)。
Figure JPOXMLDOC01-appb-C000009
(硬化促進剤:CA)
 テトラフェニルホスホニウムテトラフェニルボレート(TPPK)。
(分散剤:D1)
ビックケミー・ジャパン社製、分散剤、商品名「DISPER BYK-111」
(添加剤:D2)
 日本アエロジル社製、超微粒子高熱法シリカ、商品名「アエロジル」
(添加剤:D3)
 アドマテックス社製、超微粒子シリカ、商品名「アドマナノ SV-1」
(窒化アルミニウム粒子:F1~F8)
F1:古河電子社製、商品名「FAN-f80」
F2:古河電子社製、商品名「FAN-f50j」
F3:古河電子社製、商品名「FAN-f30」
F4:Globaltop Materals社製、商品名「AlN200AF」
F5:Globaltop Materals社製、商品名「AlN100AF」
F6:東洋アルミニウム社製、商品名「トーヤルナイトTM」
F7:古河電子社製、商品名「FAN-f05」
F8:トクヤマ社製、商品名「Hグレード」
 上記窒化アルミニウム粒子を図1に示したような形で解析し、粒度分布曲線の20μm以上200μm以下の範囲における最大ピーク値について、最大ピーク強度(P)、該最大ピーク値を示した粒子径(Dm)、前記最大ピーク強度の半値(P/2)、該半値を通って横軸に平行する直線Lと粒度分布曲線との2つの交点の内の粗粒側における粒径(DH)、細粒側における粒径(DL)並びにこれらの差(ΔD0.5)、及び、最大ピーク値における粒子径に対する半値幅の比率(ΔD0.5/Dm)を求めた。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000010
<ワニスの作製>
 熱伝導性シートを作製するためのエポキシ樹脂組成物の配合を表3~8に示す。
 この表3~8に示した配合量でワニス状のエポキシ樹脂組成物を作製した。
 まず、初めにエポキシ樹指とフェノール系硬化剤とをハイブリッドミキサー専用の容器に仕込んだ。
 次いで表に記載の溶媒、30質量%のメチルエチルケトン(MEK)と70質量%のトルエンとを前記の容器に仕込んだ。
 このとき、エポキシ樹脂及び溶媒を仕込んだ容器に対して、必要に応じて、70℃の熱水による湯せんを行った。
 次にエポキシ樹脂等を溶解するため、前記容器をハイブリッドミキサーにセットして攪拌した。
 この時の攪拌時間は、基本的には10分間とし、樹脂の溶け具合に応じて適宜延長し樹脂溶液を作製した。
 次いで、この樹脂溶液に所定量のアエロジルを添加しハイブリッドミキサーで3分間攪拌した。
 さらに、所定量のTPPKを樹脂溶液に添加しハイブリッドミキサーで3分間攪拌した。
 その後、表に記載の量の半分の窒化アルミニウム粒子を樹脂溶液に加え、1分間ハイブリッドミキサーで攪拌し、残りの半分の窒化アルミニウム粒子をさらに加えた後、3分間ハイブリッドミキサーで攪拌してワニス状のエポキシ樹脂組成物を作製した。
 これを、3分間真空脱泡処理し、熱伝導性シートを作製するための塗工液とした。
<熱伝導性シートの作製>
 初めに、塗工台(ガラス板)の表面から埃を除去し、該塗工台に、粗化処理面を上にしてマットペット(PET)を配置し、固定した。
 次に、前記塗工液を厚み300μm用のアプリケータを用いて手塗により塗工し、前記マットペット上にウェット塗膜を形成させた。
 このウェット塗膜の形成されたマットペットをSUS製の板上に乗せて110℃の乾燥機中で10分間乾燥した。
 なお、溶剤にシクロぺンタノンを使用した場合は、上記条件に代えて130℃×10分の乾燥を行った。
<Bステージシートの作製>
 前記乾燥によって乾燥塗膜の形成されたマットペットを所定の大きさ、(例えば、50mm×50mm)に切り出して熱プレス用のシートサンプルとし、該シートサンプルを必要枚数作製した。
 次いで、図3に示すように、このシートサンプル(SP)を2枚重ね合わせ、且つ、乾燥塗膜(S1)が内側となるように重ね合わせて積層体(マットペット(S2)/乾燥塗膜(S1)/乾燥塗膜(S1)/マットペット(S2))を作製した。
 そして、この積層体に対して熱プレス工程を実施するためのプレスセットを形成させた。
 このプレスセットの形成に際しては、下から順に、マットペット(MP)/積層体/マットペット(MP)の順に積層してまずは一次セット(L1)を形成させた。
 そして、この1次セット(L1)を両側からアルミ板(AP)で挟み込んだものを用意し、これを15枚のクッション紙からなる緩衝性シート(CS)及び1枚のマットペット(MP)を介して熱プレス用の天板(EP)の間に挟み込みプレスセットを形成させた。
 該プレスセットの積層構造は、1次セット(L1)が1段の場合、下から順に、天板(アルミ板)/緩衝性シート/マットペット/アルミ板(AP)/1次セット(L1)/アルミ板(AP)/マットペット/緩衝性シート/天板(アルミ板)とした(図3の(A)参照)。
 なお、このプレスセットは、必要に応じて、アルミ板(AP)と1次セット(L1)とを交互に2~4段重ね(4段重ねの場合:図3の(B)参照)となるようにして形成させた。
 このプレスセットを120℃に加熱したプレス板上に配置し、真空下で10分間プレスした後、常温まで冷却し乾燥塗膜どうしを接着させた。
 このプレスによって乾燥塗膜どうしが接着一体化された積層体を複数作製し、これらの片面、又は、両面からマットペットを取り除いたもの重ね合わせて、同様に120℃×10分間の真空プレスを実施して、乾燥塗膜が4層積層された厚み400μmのBステージシートと、乾燥塗膜が10層積層された厚み約1mmのBステージシートとを作製した。
 なお、真空プレスに際しては、膜厚を保持するためなど、必要に応じてスペーサーを介装させて積層体に過度な圧力が加わらないようにした。
 このBステージシートの内、厚み約1mmのものは後述する圧縮粘弾性試験による流動性の評価に利用した。
 また、厚み400μmのBステージシートも、以下に示す方法でCステージシートとし、後述する熱伝導率の及び空隙率の測定に利用した。
<Cステージシートの作製>
 乾燥塗膜の形成されたマットペットから切出した2枚のシートサンプルに代えて1枚のBステージシートを用いたこと以外はBステージシートの作製にあたって用意したものと同様のプレスセットを用意し、これを180℃に加熱したプレス板上に配置し、真空下で10分間プレスした後、常温まで冷却しCステージシートを作製した。
 なお、真空プレスに際しては、膜厚を保持するためなど、必要に応じてスペーサーを介装させて積層体に過度な圧力が加わらないようにした。
 なお、Bステージシート及びCステージシートの作製条件については、上記のような条件を基本とするが、プレス温度やプレス時間等については配合に応じて適宜変更を加えた。
 このプレス条件についての詳細は、以下に示す評価の結果とともに表3~8に示す。
(評価方法)
<粒子径・形状の測定>
 F1~F8までの窒化アルミニウム粒子は、以下のようにして粒子径、粒度分布、粒子形状を確認した。
(1)レーザー回折式散乱法
 おおよそ50mgほどの粒子を1ccの測定溶媒中に分散させ、超音波処理を10分施して、粒度分布測定用の粒子分散液とした。
 粒度分布測定用の容器に希釈用溶媒を入れ、さらに、前記粒子分散液を測定用の容器に適量を入れて攪拌し、その後、島津製作所社製の「SALD-2100」を用いて粒度分布の測定を行った。
(2)画像解析法
 初めに、1~19mm3の所定量の粒子を圧縮空気でガラス板上に分散固定化した。
 次いで、スペクトリス社製の粒子画像分析装置「モフォロギG3」を用い、5mm角から20mm角の面積に固定化された粒子の光学画像を取得した。
 その後、取得した10万個以上100万個以下の粒子画像から、「solidity=0.91」のパラメータを用いてフィルタ処理を行い、粒度分布解析を行った。
 なお、粒度分布、および平均粒子径の解析に際しては、取得したデータを体積換算し、それぞれのデータ11個ずつを用いてスムージングを行った。
 また、この体積換算の粒度分布曲線について、平均粒子径のピーク高さの半分の位置におけるピーク幅(大小の粒子径の差)を半値幅[ΔD0.5(μm)]として求め、前記平均粒子径[Dm(μm)]との比率[Dis]を下記の式(a)により求めた。
 Dis=(ΔD0.5/Dm) ・・・(a)
 さらに、粒度分布の解析では、20μm以上200μm以下の範囲(以下「範囲(A)」ともいう)と0.1μm以上10μm以下の範囲(以下「範囲(B)」ともいう)の2の領域における粒度分布曲線の最大値(ピーク)について解析を行った。
 また、前記範囲(A)における前記最大値(以下「ピーク(A)」ともいう)と前記範囲(B)における前記最大値(以下「ピーク(B)」ともいう)との間における粒度分布曲線の最小値(以下「最小値(C)」ともいう)と、前記ピーク(A)及び前記ピーク(B)との関係についても解析を行った。
(評価1:(A)/(B)比)
 下記式に基づき、ピーク(B)に対するピーク(A)の比率(以下「AB比」ともいう)を算出した。
 AB比=[ピーク(A)高さ]/[ピーク(B)高さ]
 表には、このAB比について、下記条件に基づき以下のように判定した結果を示す。
条件1: (AB比)<1.2
条件2:   1.2≦(AB比)
条件3:   1.5≦(AB比)≦15
条件4:     2≦(AB比)≦4
(判定)
「×」:条件1に該当する場合
「△」:条件2のみに該当する場合
「○」:条件2、3に該当し、条件4に該当しない場合
「◎」:条件2~4の全てに該当する場合
(評価2:(A)/(C)比、(B)/(C)比)
 下記式に基づき、ピーク(A)に対する最小値(C)の比率(以下「AC比」ともいう)、及び、ピーク(B)に対する最小値(C)の比率(以下「BC比」ともいう)を算出した。
 AC比=[ピーク(A)高さ]/[最小値(C)高さ]
 BC比=[ピーク(B)高さ]/[最小値(C)高さ]
 表には、このAB比について、下記条件に基づき以下のように判定した結果を示す。
条件1: (AC比)≦3 又は (BC比)≦2
条件2: 3<(AC比) 且つ 2<(BC比)
条件3: 8≦(AC比)≦120 且つ 3≦(BC比)≦100
条件4: 30≦(AC比)≦60 且つ 4≦(BC比)≦20
条件5: 30≦(AC比)≦40 且つ 10≦(BC比)≦15
(判定)
「×」:条件1に該当する場合
「△」:条件2のみに該当する場合
「●」:条件2、3に該当し、条件4、5に該当しない場合
「○」:条件2~4に該当し、条件5に該当しない場合
「◎」:条件2~5の全てに該当する場合
<空隙率の評価>
 厚み400μmのCステージシートを用い、該Cステージシート内に含まれる空隙の割合(空隙率)を評価した。
 空隙率(φ)は、理論密度(ρT)と実測の密度(ρE)から下記の式(b)により算出した。
 空隙率(φ)=(1-ρE/ρT)  ・・・(b)
 なお、実測の密度(ρE)については、メトラートレド社製の密度測定装置を用いて測定した。
 即ち、実測の密度(ρE)については、JIS K7112:1999に準じ25℃の水を用いた水中置換法により求めた。
 また、理論密度(ρT)は、窒化アルミニウムの密度を3.26g/cm3、エポキシ樹脂などの密度を1.3g/cm3として算出した。
 例えば、窒化アルミニウム粒子を85.3質量%含むポリマー組成物100gは、体積が26.2cm3(85.3/3.26)の窒化アルミニウム粒子と、体積が11.3cm3(14.7/1.3)のポリマーのみによって構成されているものと考え、理論密度をおおよそ2.66g/cm3(100/(26.2+11.3))として計算した。
 表には、この空隙率について、以下のように判定した結果を示す。
「×」:空隙率3.0%以上
「○」:空隙率3.0%未満
<熱伝導率の評価>
 前記のようにして作製した400μm厚みのCステージシートから、一辺1cmの正方形のテストピースと直径2.5cmの円形のテストピースとを切り出し、黒化処理として受光部と検出部にそれぞれレーザー加工用反射防止剤であるFC-153ブラックガードスプレーを薄く塗布し(乾燥厚み10μm以下)、前記正方形テストピースを厚み方向の熱拡散率測定用試料とし、前記円形テストピースを面方向の熱拡散率測定用試料とした。
 次に、下記表2に示す評価条件でキセノンフラッシュを用いてCステージシートの厚み方向と面方向との熱拡散率を測定し、得られた熱拡散率に上記で算出した理論密度と理論的な比熱とを乗じることで熱伝導率を求めた。
Figure JPOXMLDOC01-appb-T000011
 なお、ポリマー組成物の理論比熱は、窒化アルミニウム粒子の比熱を0.74kJ/kgK、エポキシ樹脂などの比熱を1.5kJ/kgKとして算出した。
 例えば、窒化アルミニウム粒子を85.3質量%含むポリマーは、理論比熱をおおよそ0.85kJ/kgK(0.853×0.74+0.147×1.5)として算出した。
<流動性の評価>
 前記の方法により約1mm厚みとなるように作製したを用いて圧縮粘弾性試験を実施した。
 まず、Bステージシートから一辺15mmの正方形のテストピースを切り出した。
 このテストピースを英弘精機社製の引張圧縮試験機(テクスチャーアナライザー)のステージに乗せて、付属の恒温槽により温度雰囲気を80℃にセットして、φ5mmのステンレス製の探子を用いて圧縮試験を行った。
 この時の圧縮弾性率を求めて、流動性の指標とし下記のように判定を行った。
(判定:基準)
「×」:圧縮弾性率が100MPa以上
「△」:圧縮弾性率が50MPa以上100MPa未満
「●」:圧縮弾性率が25MPa以上50MPa未満
「○」:圧縮弾性率が10MPa以上25MPa未満
「◎」:圧縮弾性率が10MPa未満
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 上記の結果からも、本発明によれば窒化アルミニウム粒子が高充填されながらも熱伝導性成形体に気泡を混入させるおそれの低いポリマー組成物が得られることがわかる。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2014年3月10日付けで出願された日本特許出願(特願2014-046119)に基づいており、その全体が引用により援用される。

Claims (6)

  1.  窒化アルミニウム粒子と、ポリマーとを含有する熱伝導性ポリマー組成物であって、
     前記窒化アルミニウム粒子は、20μm以上200μm以下の範囲に粒度分布曲線の最大ピーク値を有する第1の粒子を必須成分として含有し、0.1μm以上10μm以下の範囲に粒度分布曲線の最大ピーク値を有する第2の粒子を任意成分として含有しており、前記第1の粒子の含有量が40質量%以上100質量%以下で、前記第2の粒子の含有量が60質量%以下であり、且つ、前記第1の粒子が、前記最大ピーク値における粒子径をDm(μm)とし、前記最大ピーク値における粒度分布曲線の半値幅をΔD0.5(μm)とした際に、前記最大ピーク値における粒子径に対する前記半値幅の比率Dis(ΔD0.5/Dm)が1.7以下となっている熱伝導性ポリマー組成物。
  2.  前記窒化アルミニウム粒子において、必須成分である前記第1の粒子が30μm以上150μm以下の範囲に前記最大ピーク値を有し、該第1の粒子の含有量が60質量%以上100質量%以下で、任意成分である前記第2の粒子が1μm以上10μm以下の範囲に前記最大ピーク値を有し、該第2の粒子の含有量が40質量%以下であり、前記比率Disが1.4以下である請求項1記載の熱伝導性ポリマー組成物。
  3.  前記比率Disが1.2以下である請求項2記載の熱伝導性ポリマー組成物。
  4.  前記ポリマーとしてエポキシ樹脂が含有されている請求項1乃至3の何れか1項に記載の熱伝導性ポリマー組成物。
  5.  請求項1乃至4の何れか1項に記載の熱伝導性ポリマー組成物を成形してなる熱伝導性成形体。
  6.  前記熱伝導性ポリマー組成物をシート状に成形したポリマーシートである請求項5記載の熱伝導性成形体。
PCT/JP2014/083293 2014-03-10 2014-12-16 熱伝導性ポリマー組成物及び熱伝導性成形体 WO2015136806A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/124,935 US20170022407A1 (en) 2014-03-10 2014-12-16 Thermally conductive polymer composition and thermally conductive molding
KR1020167024851A KR20160132024A (ko) 2014-03-10 2014-12-16 열전도성 중합체 조성물 및 열전도성 성형체
CN201480077061.6A CN106164179A (zh) 2014-03-10 2014-12-16 热传导性聚合物组合物和热传导性成型体
EP14885124.9A EP3118261A4 (en) 2014-03-10 2014-12-16 Thermally conductive polymer composition and thermally conductive molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014046119A JP2015168791A (ja) 2014-03-10 2014-03-10 熱伝導性ポリマー組成物及び熱伝導性成形体
JP2014-046119 2014-03-10

Publications (1)

Publication Number Publication Date
WO2015136806A1 true WO2015136806A1 (ja) 2015-09-17

Family

ID=54071271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083293 WO2015136806A1 (ja) 2014-03-10 2014-12-16 熱伝導性ポリマー組成物及び熱伝導性成形体

Country Status (6)

Country Link
US (1) US20170022407A1 (ja)
EP (1) EP3118261A4 (ja)
JP (1) JP2015168791A (ja)
KR (1) KR20160132024A (ja)
CN (1) CN106164179A (ja)
WO (1) WO2015136806A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073727A1 (ja) * 2015-10-29 2017-05-04 日東電工株式会社 熱伝導性シート及び半導体モジュール

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201307804D0 (en) * 2013-04-30 2013-06-12 Element Six Ltd Composite material, articles comprising same and method for making same
GB2553896B (en) 2016-07-14 2019-09-25 Accenture Global Solutions Ltd Product test orchestration
US11781053B2 (en) 2018-12-25 2023-10-10 Fuji Polymer Industries Co., Ltd. Thermally conductive composition and thermally conductive sheet using the same
JP6692512B1 (ja) * 2018-12-25 2020-05-13 富士高分子工業株式会社 熱伝導組成物及びこれを用いた熱伝導性シート
JP7315136B2 (ja) * 2018-12-26 2023-07-26 株式会社Flosfia 結晶性酸化物半導体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256295A (ja) * 2010-06-10 2011-12-22 Shin Kobe Electric Mach Co Ltd 熱硬化性樹脂組成物並びにプリプレグ及び積層板
JP2012211225A (ja) * 2011-03-30 2012-11-01 Hitachi Chemical Co Ltd 樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
WO2013065758A1 (ja) * 2011-11-02 2013-05-10 日立化成株式会社 樹脂組成物、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板、プリント配線板及びパワー半導体装置
WO2013145961A1 (ja) * 2012-03-30 2013-10-03 昭和電工株式会社 硬化性放熱組成物
JP2015013927A (ja) * 2013-07-03 2015-01-22 株式会社Adeka 湿気硬化性樹脂組成物及び熱伝導シート

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59303215D1 (de) 1992-02-07 1996-08-22 Ciba Geigy Ag Füllstoff für wärmeleitende Kunststoffe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256295A (ja) * 2010-06-10 2011-12-22 Shin Kobe Electric Mach Co Ltd 熱硬化性樹脂組成物並びにプリプレグ及び積層板
JP2012211225A (ja) * 2011-03-30 2012-11-01 Hitachi Chemical Co Ltd 樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
WO2013065758A1 (ja) * 2011-11-02 2013-05-10 日立化成株式会社 樹脂組成物、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板、プリント配線板及びパワー半導体装置
JP2013234313A (ja) * 2011-11-02 2013-11-21 Hitachi Chemical Co Ltd エポキシ樹脂組成物、その半硬化体および硬化体、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板、プリント配線板、およびパワー半導体装置
WO2013145961A1 (ja) * 2012-03-30 2013-10-03 昭和電工株式会社 硬化性放熱組成物
JP2015013927A (ja) * 2013-07-03 2015-01-22 株式会社Adeka 湿気硬化性樹脂組成物及び熱伝導シート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073727A1 (ja) * 2015-10-29 2017-05-04 日東電工株式会社 熱伝導性シート及び半導体モジュール

Also Published As

Publication number Publication date
EP3118261A4 (en) 2017-10-18
KR20160132024A (ko) 2016-11-16
JP2015168791A (ja) 2015-09-28
EP3118261A1 (en) 2017-01-18
US20170022407A1 (en) 2017-01-26
CN106164179A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
JP6375140B2 (ja) 熱伝導性ポリマー組成物及び熱伝導性成形体
WO2015136806A1 (ja) 熱伝導性ポリマー組成物及び熱伝導性成形体
CN103429634B (zh) 树脂组合物、树脂片、树脂片固化物、树脂片层叠体、树脂片层叠体固化物及其制造方法、半导体装置、以及led装置
CN105339413B (zh) 树脂组合物、树脂片、树脂片固化物、树脂片结构体、树脂片结构体固化物、树脂片结构体固化物的制造方法、半导体装置及led装置
WO2012046814A1 (ja) 多層樹脂シート及びその製造方法、樹脂シート積層体及びその製造方法、多層樹脂シート硬化物、金属箔付き多層樹脂シート、並びに半導体装置
CN103459149A (zh) 多层树脂片、树脂片叠层体、多层树脂片固化物及其制造方法、带有金属箔的多层树脂片、以及半导体装置
US11840619B2 (en) Epoxy resin composition, thermally-conductive material precursor, B-stage sheet, prepreg, heat dissipation material, laminate, metal substrate, and printed circuit board
US20140248504A1 (en) Resin composition, resin sheet, cured resin sheet, resin-adhered metal foil and heat dissipation device
WO2017073727A1 (ja) 熱伝導性シート及び半導体モジュール
JP2013179277A (ja) 熱伝導性シート
TW201634547A (zh) 樹脂組成物及其製備方法
JP2011162642A (ja) 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
JP6801659B2 (ja) エポキシ樹脂組成物、フィルム状エポキシ樹脂組成物及び電子装置
JP2020200478A (ja) 樹脂組成物、硬化物、封止用フィルム及び封止構造体
CN104416998A (zh) 部件密封用薄膜的制造方法
JP6536045B2 (ja) 樹脂組成物、樹脂シート及び樹脂シート硬化物
JP5888584B2 (ja) 樹脂組成物、樹脂シート、プリプレグシート、樹脂硬化物シート、構造体、および動力用又は光源用半導体デバイス
JP2015189884A (ja) 熱硬化性樹脂組成物、樹脂シート、プリプレグ及び積層板
JP7005906B2 (ja) 多層樹脂シート、多層樹脂シートの製造方法、多層樹脂シート硬化物、多層樹脂シート積層体、及び多層樹脂シート積層体硬化物
TWI752222B (zh) 密封用薄膜、密封結構體、及密封結構體的製造方法
JP6845178B2 (ja) 半導体封止用熱硬化性樹脂シートの製造方法及び半導体装置の封止方法
WO2018199310A1 (ja) 封止用フィルム、封止構造体及び封止構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885124

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014885124

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014885124

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167024851

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15124935

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE