WO2015136041A1 - Feuerfeste materialien enthaltend einen mischkristall mit spinell-struktur - Google Patents

Feuerfeste materialien enthaltend einen mischkristall mit spinell-struktur Download PDF

Info

Publication number
WO2015136041A1
WO2015136041A1 PCT/EP2015/055193 EP2015055193W WO2015136041A1 WO 2015136041 A1 WO2015136041 A1 WO 2015136041A1 EP 2015055193 W EP2015055193 W EP 2015055193W WO 2015136041 A1 WO2015136041 A1 WO 2015136041A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
weight
mixture
refractory materials
materials according
Prior art date
Application number
PCT/EP2015/055193
Other languages
English (en)
French (fr)
Inventor
Holger Friedrich
Matthias Boll
Hans Strasser
Rainer Ortmann
Original Assignee
Lanxess Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland Gmbh filed Critical Lanxess Deutschland Gmbh
Priority to EP15709207.3A priority Critical patent/EP3116843A1/de
Publication of WO2015136041A1 publication Critical patent/WO2015136041A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/105Refractories from grain sized mixtures containing chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/047Refractories from grain sized mixtures containing chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/12Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/42Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/482Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • C04B2235/3243Chromates or chromites, e.g. aluminum chromate, lanthanum strontium chromite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to refractory materials obtained by heating a mixture Z containing a spinel-type mixed crystal to at least 250 ° C, and to the use of these refractories for lining thermal processing equipment and transport vessels, for Construction of construction elements and for heat recovery and thermal insulation.
  • Refractory materials usually have no clear melting point, but melt or soften within a more or less narrow temperature range. Therefore, instead of the melting point, a point detectable on softening is determined by examining the Seger-Kegel drop point. Due to their resistance to high temperatures, they are mostly used as materials and products for lining of heat engineering plants of the basic industry. Refractory materials may consist of high melting oxides, silicates, carbides, nitrides, and other materials. However, some of these refractories retain their refractoriness only in a reducing atmosphere, such as metallic nitrides and pure carbon.
  • the refractory materials preferably have other mechanical properties in addition to their property of fire resistance as a thermomechanical property.
  • the refractory materials In their use, for example as. Lining of equipment for thermal processes, the refractory materials must be stable to wear, which requires high strength. As a mechanical property, the strength at both room temperature and at high temperatures is of great importance.
  • the abrasion resistance of the refractory materials increases with increasing cold or hot compressive strength and is a measure of the strength of the refractory material.
  • Cold crush strength is the maximum force per unit area that a refractory has at room temperature before it breaks.
  • the hot compressive strength indicates at which pressure and at what high temperature the refractory material breaks.
  • TiO 2 titanium dioxide
  • MgC0 3 90% magnesite
  • chromium ore idealized: FeCr 2 0 4
  • the cold compressive strength of pure corundum could not be increased by the addition of magnesium-aluminum spinels (Ding et al., Key Engineering Materials (2013), 544, Testing and Evaluation of Inorganic Materials III, p 316-320).
  • DE 692523 A describes the admixture of chrome ore residue, as obtained in the alkaline digestion of chromium ores, to alumina solders for the production of self-hardening mortar, stamping, patch and paint compositions.
  • alumina sols alumina is not present as a solid, but in the finest distribution in the aqueous medium.
  • the clay rosins with the added chromium ore residue are self-hardening and provide, without heating the mixture but merely by hydraulic setting, the hardened masses which are a type of cement.
  • the chrome ore residue must first be subjected to an annealing treatment and then a grinding before mixing with the alumina sols.
  • the object of the present invention was to provide refractory materials based on a special mixture, wherein the refractory materials should preferably have a high strength. In addition, the refractory materials should preferably have a high corrosion resistance. Further, in the specific mixture from which the refractories should be obtained, Si0 2 should not be the main component.
  • the refractory materials should preferably be used in industry for the lining of equipment for thermal processes (melting, firing and heat treatment plants) and transport vessels, for the construction of structural elements such as wear-resistant, technical and / or mechanical components, for heat recovery and for the insulation should be suitable. Surprisingly, it could be found that the solution of the problem is achieved by refractory materials obtained by heating a mixture Z on "
  • mixture Z contains the following components:
  • the wt .-% - are based on the component A, one or more of the oxides selected from the group consisting of Al 2 0 3 , Zr0 2 , BeO, MgO, TiO 2 , Fe 2 O 3 , Cr 2 O 3 , La 2 O 3 , Ta 2 O 5 and SnO 2 , and 2 to 30 wt%, preferably 3 to 15 wt% of one Component B, wherein the
  • % By weight, based on the total mass of the components A, B and, if present, C in the mixture Z, and the component B is at least 80% by weight, preferably at least 85% by weight, particularly preferably at least 90 wt .-%, wherein the wt .-% - are based on the component B, a mixed crystal containing spinel structure containing at least the oxides Fe 2 0 3 , Al 2 0 3 , MgO and Cr 2 0 3 contains, and
  • Component C contains carbon.
  • Refractory materials in the sense of this invention are materials which have a Seger-Kegel drop point of at least 1500 ° C. (fire resistance according to DIN 51060 with reference to DIN EN 993-12 and DIN EN 993-13).
  • the mixture Z to be used according to the invention preferably contains a total of less than 1 1% by weight of SiO 2 , preferably less than 5% by weight of SiO 2 , the percentages by weight being based on the total mass of components A, B and, if present , C in the mixture Z are related.
  • Component A is a total of less than 1 1% by weight of SiO 2 , preferably less than 5% by weight of SiO 2 , the percentages by weight being based on the total mass of components A, B and, if present , C in the mixture Z are related.
  • the refractory materials according to the invention are obtained by heating the mixture Z to be used according to the invention, which contains the following component A:
  • Component A preferably contains at least 80% by weight, preferably at least 90% by weight, the weight percentages relating to component A being selected from one or more of the oxides selected from the group consisting of Al 2 0 3 , MgO, Fe 2 0 3 and Cr 2 0 3 . More preferably, component A is at least 80 wt .-%, preferably at least 90 wt .-%, wherein the wt .-% - are based on the component A, one or more of the oxides selected from the group consisting of Al 2 O 3 and MgO.
  • Component A may contain up to 20% by weight, preferably up to 10% by weight, of other components, the percentages by weight being based on component A. Other components are not the main components of the
  • Si0 2 is preferably only up to 8 wt .-%, more preferably up to 5 wt .-% in the
  • Component A wherein the wt .-% - are based on the component A.
  • the one oxide or the plurality of oxides of component A can be used in any particle sizes.
  • it may be one or more oxides of component A having a particle size of 1 to 6 mm or having a particle size of less than 1 mm.
  • a mixture of one or more oxides of component A having a particle size of from 1 to 6 mm, preferably from 1 to 4 mm, and of one or more oxides of component A is preferred a particle size of less than 1 mm, preferably less than 0.5 mm, used as component A.
  • the component A contains a mixture A consisting of 40 to 80 wt .-%, preferably 50 to 70 wt .-%, wherein the wt .-% are based on the mixture A, of one or more oxides of component A with a particle size of from 1 to 6 mm, preferably from 1 to 4 mm, and from 20 to 60% by weight, preferably from 30 to 50% by weight, wherein the weight% is based on the mixture A, of one or more Oxides of component A having a particle size of less than 1 mm, preferably less than 0.5 mm.
  • the component A is at least 80 wt .-%, preferably at least 90 wt .-%, wherein the wt .-% - are based on the component A, from Al 2 0 3 .
  • Preferred refractory materials according to the invention are obtained by heating a mixture Z comprising component A which contains at least 80% by weight, preferably at least 90% by weight, the percentages by weight being based on component A, of Al 2 0 3 , preferably at least 800 ° C, more preferably at least 1200 ° C, most preferably at least 1450 ° C.
  • a mixture A consisting of 40 to 80 wt .-%, preferably 50 to 70 wt .-%, wherein the wt .-% are based on the mixture A, Al 2 0 3 with a particle size of 1 to 6 mm , preferably from 1 to 4 mm, and 20 to 60 wt .-%, preferably 30 to 50 wt .-%, wherein the wt .-% of the mixture A, Al 2 0 3 having a particle size of less than 1 mm , preferably of less than 0.5 mm, used as component A.
  • the refractory materials of the invention thus obtained have excellent chemical resistance. At room temperature they are almost invulnerable by acids and alkalis. This property is retained even in the high temperature range on contact with corrosive melts.
  • component A consists of at least 80% by weight, preferably at least 90% by weight, the percentages by weight being based on component A, of MgO.
  • Preferred refractory materials according to the invention are obtained by heating a mixture Z containing component A, which is at least 80 wt .-%, preferably at least 90 wt .-%, wherein the wt .-% data are based on the component A, of MgO is at least 800 ° C, more preferably at least 1200 ° C, most preferably at least 1450 ° C.
  • the mixture Z to be used according to the invention preferably contains component A which consists of at least 80% by weight, preferably at least 90% by weight, the weight percentages being based on component A, of MgO, and preferably component C and / or component D, which are described in more detail below.
  • a mixture A consisting of 40 to 80 wt .-%, preferably 50 to 70 wt .-%, wherein the wt .-% are based on the mixture A, MgO having a particle size of 1 to 6 mm, preferably from 1 to 4 mm, and 20 to 60 wt .-%, preferably 30 to 50 wt .-%, wherein the wt .-% are based on the mixture A, MgO having a particle size of less than 1 mm, preferably of less than 0.5 mm , used as component A.
  • the refractory materials according to the invention are obtained by heating the mixture Z to be used according to the invention, which contains the following component B:
  • a component B From 2 to 30% by weight, preferably from 3 to 15% by weight, of a component B, the percentages by weight being based on the total mass of the components A, B and, if present, C in the mixture Z, and component B comprises at least 80% by weight, preferably at least 85% by weight, particularly preferably at least 90% by weight, the weight percentages being based on component B, a mixed crystal with spinel Contains structure containing at least the oxides Fe 2 0 3 , Al 2 0 3 , MgO and Cr 2 0 3 .
  • mixed crystal with spinel structure is understood to mean an oxide having a three-dimensionally repeating arrangement of the oxide ions, in which the oxide ions form a cubic-dense packing (spinel arrangement) and the metal cations are ordered or disordered and form part of the octahedral gaps
  • the metal cations preferentially occupy a part of the octahedral gaps and tetrahedral gaps.
  • the spinel-type mixed crystal is a uniform, homogeneous solid, if the octahedral voids and tetrahedral voids are disorganized, the spinelike mixed crystal may also be regarded as a solid solution.
  • the oxides Fe 2 O 3 , Al 2 O 3 , MgO and Cr 2 O 3 form the structure of the spinel-type mixed crystal described above.
  • the metal cations present in at least the spinel type mixed crystal are Fe (II), Fe (III), Al (III), Mg (II) and Cr (III).
  • the mixed crystal with spinel structure of component B preferably contains
  • component B may contain up to 20 wt .-%, preferably up to 15 wt .-%, more preferably up to 10 wt .-% of other components.
  • other components are not understood to mean the main constituents of components A, C and D.
  • examples of such other components are CaO, TiO 2 and SiO 2 , wherein SiO 2 is preferably present only up to 8 wt .-%, particularly preferably up to 5 wt .-%, in the component B, wherein the wt .-% Data are based on component B.
  • the mixed crystal with spinel structure can also be characterized by its cubic lattice parameter.
  • the mixed crystal with spinel structure preferably has a lattice parameter of 822 pm to 835 pm.
  • lattice parameter is used in the sense of this invention as a synonym for lattice constant.
  • component B chromium ore residues obtained during the oxidative alkaline decomposition of chromium ore can be used. These usually contain residues of hexavalent chromium. In principle, it is not essential to the invention whether component B contains hexavalent chromium or not. For this reason, the chromium ore residues obtained in the oxidative alkaline digestion of chromium ore can be used directly as component B of the mixture Z to be used according to the invention.
  • component B of the present invention is contained by a reduction process. More preferably, component B of the present invention is obtained by a reduction process comprising the steps of i) mixing an oxide solid containing the oxides Fe 2 O 3 , Al 2 O 3 , MgO and Cr 2 O 3 and containing Cr (VI) up to 80,000 ppm Cr (VI), more preferably up to 50,000 ppm Cr (VI), having a carbon-containing compound which is in the range from 20 to 100 ° C, ii) treating the mixture obtained according to i) under a protective atmosphere in an indirectly heated one Reactor at a temperature of 700 ° C to 1 100 ° C, more preferably at a temperature of 800 ° C to 1000 ° C, iii) cooling the reaction product obtained under ii) under protective atmosphere to at least 300 ° C, preferably to at least 150 ° C.
  • a reduction process comprising the steps of i) mixing an oxide solid containing the oxides Fe 2 O 3 , Al 2 O 3 , MgO
  • the oxidic solid from step i) is preferably a chromium ore residue, preferably a chromium ore residue formed during the digestion of chromium ore, for example chromite (chromium ironstone) with sodium carbonate, for the production of sodium monochromate as starting material for obtaining further chromium chemicals.
  • part of the sodium carbonate necessary for oxidative alkaline digestion may be replaced by calcium carbonate CaC0 3 or dolomite (CaMg (CO 3 ) 2 ) or calcium oxide CaO (lime).
  • CaMg (CO 3 ) 2 dolomite
  • CaO calcium oxide
  • the high-lime, no-lime or low-lime process, chromium ore residue can be recovered in 1 of its composition, in particular the CaO content, fluctuate. Chromium ore residues from the high-lime process have up to 35% by weight of CaO, those from the no-lime process usually less than 5% by weight of CaO, while those from the low-lime process have from 5 to 35% by weight. % CaO lie.
  • the CaO content of the oxidic solid from step i) is preferably less than 10% by weight of CaO, particularly preferably less than 5% by weight of CaO.
  • oxidic solids are preferably used in which at least 90% of the particles are less than 500 ⁇ m, more preferably less than 300 ⁇ m. This can - if necessary - by a step i) upstream screening and / or grinding can be achieved.
  • a polyhydroxy compound more preferably glycerol or a liquid polyethylene glycol, most preferably polyethylene glycol having a molecular weight of up to 600, is used.
  • the thermal reduction in step ii) can be carried out in a continuously operating or discontinuously operating indirectly heated reactor, wherein continuously operating indirectly heated reactors are particularly preferred.
  • continuously operating indirectly heated reactors are particularly preferred.
  • An example of this are gas- or electrically indirectly heated rotary kilns.
  • the cooled reaction product obtained after step iii) may optionally be subjected to further screening and / or grinding.
  • the cooled reaction product obtained after step iii) can be worked up according to the alkaline digestion process I described in WO 2014006196 A1 and the Cr (VI) content in the alkaline extract can be determined by means of UV / Vis spectroscopy.
  • the cooled reaction product obtained after step iii) can also be worked up according to the modified alkaline digestion process II described in WO 2014006196 A1.
  • the Cr (VI) content of component B prepared by the above-described reduction process is less than 640 ppb Cr (VI), more preferably less than 107 ppb Cr (VI).
  • the mixed crystal with spinel structure of component B can also be obtained from the corresponding hydroxides or oxyhydrates, for example FeOOH, AlOOH, CrOOH, Mg (OH) 2 . From these hydroxides or oxyhydrates, however, first the uniform homogeneous phase of the mixed crystal must 1 ⁇ be prepared with spinel structure.
  • Such a uniform homogeneous phase of the spinel-structure mixed crystal can be obtained from the corresponding hydroxides, for example by a solid-state reaction, for example by mixing together the hydroxides, optionally pressing, heating and, if appropriate, annealing the hydroxide mixture.
  • Preferred refractory materials according to the invention are obtained by heating the mixture Z to be used according to the invention, which contains, in addition to component A and component B, the following component C: 0.5 to 25% by weight, preferably 1 to 15% by weight, of a component C, where
  • % By weight, based on the total mass of the components A, B and C in the mixture Z, which contain at least 86% by weight, preferably at least 92% by weight, the percentages by weight being based on Component C, contains carbon.
  • component C preference is given to using graphite or carbon black or mixtures thereof.
  • graphite is used as component C.
  • carbon black of component C preference is given to using thermal and furnace blacks based on natural gas and / or oil.
  • Preferred refractory materials according to the invention are obtained by carrying out the heating of a mixture Z comprising component A and component B and component C in the absence of air.
  • the mixture Z to be used according to the invention comprises from 80 to 97% by weight of component A, the weight percentages being based on the total mass of components A, B and C in mixture Z, with component A being too at least 80 wt .-%, preferably at least 90 wt .-%, wherein the wt .-% - refers to the component A, consists of MgO, and 3 to 15 wt .-% of component B, wherein the wt % Of the total mass of the components A, B and C in the mixture Z, and 0.5 to 25 wt .-%, preferably 1 to 15 wt .-%, wherein the wt .-% - information on the Total mass of components A, B and C in the mixture Z, the component C.
  • Such a preferred mixture Z to be used according to the invention is preferably heated with exclusion of air, wherein the heating preferably takes place to at least 350.degree.
  • Further preferred refractory materials according to the invention are obtained by heating a mixture Z comprising component A which comprises at least 80% by weight, preferably at least 90% by weight, the percentages by weight being based on component A. MgO, and containing component B and component C, to at least 800 ° C, preferably to at least 1200 ° C, more preferably to at least 1450 ° C.
  • component C up to 14% by weight, preferably up to 8% by weight, of other components may be present.
  • other components are not understood to mean the main constituents of components A, B and D. Examples of such other components are oily components, pyrolysis products and polycyclic aromatics.
  • component C is to reduce wear by decreasing the depth of infiltration as well as binding the preferred refractory materials. Furthermore, the component C leads to an improvement in thermal shock resistance by increasing the thermal conductivity and lowering the thermal expansion of the preferred refractory materials.
  • the total mass of the components A, B and, if present, C is at least 50% by weight, preferably at least 65% by weight, more preferably at least 75% by weight, of the total mass of the mixture Z.
  • this water is preferably up to 20% by weight, more preferably up to 10% by weight, very preferably up to 5% by weight, the percentages by weight being based on the total mass of the mixture Z are included.
  • Preferred refractory materials according to the invention are obtained by heating the mixture Z to be used according to the invention, which contains component D and component C and optionally component C as further component component D, component D being one or more binders.
  • the mixture Z to be used according to the invention can contain up to 25% by weight, preferably up to 10% by weight, the percentages by weight being based on the total mass of the mixture Z, of the component D.
  • one or more binders of component D is selected from the group of clays, alumina cements, inorganic phosphates, alkali metal silicates, ethyl silicates, inorganic sulfates, boron oxides, coking binders, preferably pitch or synthetic resins or mixtures thereof, starch and lignosulfonates.
  • Pitch is a fusible blend of polycyclic aromatic hydrocarbons obtained by the fractional distillation of crude tar resulting from coking coal.
  • phenolic resins synthetic polycondensation products of phenol and formaldehyde
  • Liquid phenolic resins, solid phenolic resins or mixtures thereof may be used.
  • a mixture of liquid and solid phenolic resins is used as component D.
  • Particular preference is given to using a mixture of a liquid phenolic resin and a solid phenolic resin in a ratio of from 1.1: 1 to 3: 1, preferably from 1: 5: 1 to 2.5: 1,% by weight:% by weight.
  • the pyrolysis of synthetic resins is in contrast to pitch in the solid state.
  • the coking binders also introduce carbon into the mixture Z.
  • the carbon which is contained in a mixture Z to be used according to the invention can be introduced into the mixture Z not only by component C, but also by component D, for example by coking binders of component D.
  • the mixture Z to be used according to the invention preferably contains component A which comprises at least 80% by weight, preferably at least 90% by weight, the percentages by weight being based on component A, of MgO, and graphite as Component C and phenolic resin as component D.
  • the preparation can consist, for example, of comminuting the raw materials by breaking or grinding, fractionating the material to be crushed by sieving or sifting and producing the mouldable mixture according to a given raw material and grain concept by homogeneous mixing, usually with water and optionally a binder of component D.
  • the optionally prepared raw materials of components A and B and optionally other components such as component C and / or component D can be brought into a specific shape before heating.
  • the choice of the shaping method depends on the deformability of the batch, depending on water content and plasticity, the desired properties of the finished product, but also on the number of pieces and the complexity of the shape of the product.
  • Examples of forming processes are extrusion molding of plastic blends, hydraulic pressing and tumbling of blends of 2 to 6% moisture with pressing pressures of normally 40 to 120 N / mm 2 , manual or mechanical pounding for complex shapes or smaller number of parts to be manufactured , Isostatic pressing for mostly fine-grained high-quality products with pressing pressures of at least 300 N / mm 2 and slip casting for mostly fine-grained components and special parts, even for larger blocks.
  • the mixture Z to be used according to the invention can also be a shaped body, provided that it has been brought into a mold by shaping processes, preferably by one of the shaping processes described above.
  • the moldings which are obtained by a pressing process as a molding process are understood in the context of the present invention as pellets.
  • Preferred refractory materials according to the invention are obtained by heating the mixture Z to be used according to the invention, the mixture Z being used as a shaped body.
  • Preferred refractory materials according to the invention are obtained by heating the mixture Z to be used according to the invention, wherein the mixture Z is used as a compact. ", _
  • the mixture Z to be used according to the invention preferably shaped body, particularly preferably compact, is preferably dried before heating, preferably to at least 150 ° C., in order to avoid drying cracks or defects after heating.
  • the drying time can - depending on the size and drying behavior of the molding - be several days to weeks.
  • Heating in the context of this invention means the thermal treatment of the mixture Z.
  • the heating can be carried out in continuously operating channel furnaces, depending on the selected temperature and the amount of mixture Z to be heated or the number and size of the shaped bodies used as mixture Z. Tunnel furnaces or even in batchwise operating chamber furnaces.These ovens are usually oil or gas heated.
  • the heating is usually carried out in air. If the mixture Z to be used according to the invention contains oxidation-sensitive constituents, such as, for example, component C and / or binder of component D, preferably coking binders of component D, the heating is preferably carried out in the absence of air.
  • the mixture Z to be used according to the invention is heated to at least 800 ° C., particularly preferably to at least 1200 ° C., very particularly preferably to at least 1450 ° C.
  • the duration of heating in the context of the present invention is preferably several hours, more preferably 1 to 4 hours.
  • the refractory materials according to the invention can be post-treated after they have been obtained.
  • the content of carbon in the refractory materials according to the invention can be increased by first obtaining refractory materials according to the invention and mixing them, preferably after drying, with component C and / or coking binders of component D again and to at least 250 ° C., preferably up to at least 350 ° C, heated.
  • the invention accordingly relates to preferred refractory materials obtained by heating the mixture Z to be used according to the invention and then mixing the ""
  • component C By mixing the resulting refractory materials with component C and / or coking binders of component D, preferably with pitch as component D, and heating this mixture to at least 250 ° C, preferably to at least 350 ° C, by crosslinking a high molecular and infusible Resit grid formed around the refractory materials.
  • the invention accordingly relates to preferred refractory materials obtained by heating the mixture Z to be used according to the invention and then mixing the resulting refractory materials with the component D pitch and heating this mixture to 150 to 200 ° C under vacuum.
  • the aftertreatment of the refractory materials according to the invention may also consist of cutting and / or grinding the refractory materials according to the invention.
  • This post-treatment may be required, for example, in mortar-free, that is joint-free, laying the refractory materials according to the invention as stones or blocks, unless the dimensional accuracy of the refractory materials according to the invention is sufficient.
  • For the lining of plants often the previously described lining, in which the previously given in shape refractory materials are used.
  • the invention accordingly relates to preferred refractory materials obtained by heating the mixture Z to be used according to the invention and then cutting and / or grinding the obtained refractory materials.
  • Preferred refractory materials according to the invention obtained by heating a mixture Z comprising component A, which is at least 80 wt .-%, preferably at least 90 wt .-%, wherein the wt .-% - are based on the component A, of MgO and containing component C may be dried or tempered at a temperature of at least 150 ° C in order to increase the strength through additional chemical reactions and / or to drive off volatile constituents or water of hydration. 1
  • the invention accordingly relates to preferred refractory materials obtained by heating the mixture Z to be used according to the invention, containing component A, which is at least 80% by weight, preferably at least 90% by weight, the percentages by weight being based on the component A, composed of MgO, and containing Component C, and then heating the obtained refractories at at least 150 ° C.
  • one or more binders of component D may also be added to the refractory materials according to the invention in a post-treatment in order to facilitate their handling in the respective field of application, for example in the lining of equipment.
  • the invention further relates to the use of refractory materials according to the invention as a lining of equipment for thermal processes (melting, firing and heat treatment plants) and as a lining of transport vessels, for the construction of structural elements such as wear-resistant, technical and / or mechanical components, for heat recovery and for the thermal insulation.
  • Refractory materials according to the invention which are obtained from the mixture Z to be used according to the invention are preferably used for the above-described use, the mixture Z to be used according to the invention being used as a shaped body.
  • the refractory materials according to the invention obtained by heating a mixture Z to be used according to the invention, containing component A, which contains at least 80% by weight, preferably at least 90% by weight, the percentages by weight being based on component A.
  • component A which contains at least 80% by weight, preferably at least 90% by weight, the percentages by weight being based on component A.
  • component C consisting of MgO, and containing component C, are preferably used in the steel industry, especially as wear liners in oxygen blowing converters, but also in electric arc furnaces and in Stahlg discern- and post-treatment ladles and construction elements. Preferably, they are used where high hot erosion resistance is required. Examples of such areas of application are the scrap impact and pin areas and the mouth of converters.
  • the refractory materials according to the invention are independent of their subsequent use, ie, for example, whether they are used industrially with simultaneous mechanical and corrosive load at continuous temperatures of about 1300 ° C, at lower temperatures or at room temperature. Numerous construction elements such as Wear-resistant, technical and / or mechanical components made of refractory materials can also be used at significantly lower temperatures or even at room temperature.
  • the starting material for the preparation of component B in the examples of the invention below is chromium ore residue obtained from the industrial production process of sodium monochromate starting from chromite (chromium iron ore) via an oxidative alkaline digestion with sodium carbonate (so-called no-lime process).
  • the chrome ore residue produced in the production process of sodium monochromate after solid-liquid separation in the form of a moist filter cake was merely dried but not sieved or ground.
  • the composition of the dried chrome ore residue can be found in Table 1 below. It had a Cr (VI) content of 856 ppm.
  • Table 1 shows the composition of COPR, which was used as starting material for the preparation of the reduced COPRs, which was used as component B in the inventive examples. All data in wt .-% based on the total mass of the COPRs.
  • the dried chromium ore residue described above was reduced according to the method disclosed in WO 2014006196 A1 for the reduction of hexavalent chromium in oxidic solids.
  • the dried chromium ore residue was with 2Q of a carbonaceous compound, in the range of 20 to 100 ° C liquid (1 .5 wt .-% polyethylene glycol, PEG, having a molecular weight of 380 to 420) mixed to obtain wetted chrome ore particles.
  • This mixture was introduced into an electrically indirectly heated rotary kiln with 22.5 kg / h.
  • the stovepipe had a total length of 1 .5 m, of which 1 .1 m were heated.
  • the pipe diameter was 0.3 m and the furnace was operated at 900 rpm at 3 rpm. In the oven, a protective atmosphere of carbon dioxide prevailed.
  • the resulting product was cooled to at least 150 ° C under carbon dioxide atmosphere.
  • the black reduced chromium ore reaction product was removed, screened through a 300 ⁇ sieve and worked up about 10 g of the fine fraction according to the alkaline digestion process I described in WO 2014006196 A1 and the Cr (VI) content in the alkaline extract by means of UV / Vis spectroscopy determined. It was below the limit of 640 ppb.
  • the Cr (VI) content was still below the limit of quantification even when the reduced chromic acid residue reaction product was worked up according to the modified alkaline digestion process II described in WO 2014006196 A1.
  • the Cr (VI) content in the reduced chromium ore reaction product was thus below 107 ppb Cr (VI).
  • the reduced chromium ore residue thus obtained no longer detectable in this way Cr (VI).
  • the lattice parameter of the reduced chrome ore residue was determined on powder samples by X-ray diffraction and ranged from 822 pm to 835 pm.
  • This Cr (VI) -free chromium ore residue was used as component B for the preparation of the refractory materials according to the invention in the following examples.
  • Refractory materials 1. 1 Refractory materials with Al 2 0 3 in component A
  • Mixtures 2 and 3 which correspond to mixtures Z to be used according to the invention, were prepared with aluminum oxide as component A and Cr (VI) -free chromium ore residue as component B, whose preparation is described above.
  • the alumina used was sintered corundum T 60 from Almatis GmbH, Germany.
  • the alumina employed was a mixture of alumina having a particle size of 1 to 3 mm, in Table 2 referred to as "Al 2 0 3 coarse”, and alumina with a particle size of less than 0.5 mm, in Table 2 as "AI 2 O 3 fine ", before.
  • a mixture 1 of "Al 2 0 3 coarse” and "Al 2 0 3 fine" served as component A, wherein mixture 1 contained no component B.
  • KDF cold compressive strength
  • HDF 1450 hot compressive strength at 1450 ° C.
  • composition of the tested mixtures 1 to 3 and the results obtained on the refractory materials are given in Table 2 (mixtures heated to 1600 ° C) and Table 3 (mixtures heated to 1650 ° C).
  • Table 2 shows the compositions of mixtures 1 to 3 with 0 wt .-%, 5 wt .-% and 10 wt .-% Cr (VI) -free Chromomerzschreibstand as component B, wherein the wt .-% information on the total mass of components A and B in the mixture, and properties of the refractories obtained after heating to 1600 ° C.
  • Table 3 shows the composition of mixtures 1 to 3 with 0 wt .-%, 5 wt .-% and 10 wt .-% Cr (VI) -free Chromomerzschreibstand as component B, wherein the wt .-% information on the total mass Components A and B in the mixture and properties of the refractories are obtained when heated to 1650 ° C.
  • the refractory materials of the invention are characterized by a high cold compressive strength and high hot compressive strength.
  • Mixtures 5 and 6 which correspond to mixtures Z to be used according to the invention were prepared with magnesium oxide as component A and Cr (VI) -free chrome ore residue as component B, whose preparation is described above, and fine-crystalline graphite as component C.
  • Sintered magnesia was used as magnesium oxide the company NEDMAG, Netherlands.
  • the magnesium oxide used was a mixture of magnesium oxide having a particle size of 1 to 2 mm, referred to as "MgO coarse” in Table 3, and magnesium oxide having a particle size of smaller than 0.1 mm, referred to as "MgO fine” in Table 3.
  • the reference used was a mixture 4 of "MgO coarse” and "MgO fine” as component A and fine-crystalline graphite as component C, with mixture 4 containing no component B.
  • the binder used in component D was a mixture of 4% by weight of a liquid phenolic resin and 2% by weight of a solid phenolic resin, the percentages by weight being based on the total mass of the mixture.
  • the pellets were annealed at 400 ° C with exclusion of air for 2 hours.
  • the annealed pellets were heated in a graphite bed at 1500 ° C for 2 hours in air. One end of the pellets was exposed to the furnace atmosphere.
  • oxidation resistance To evaluate the oxidation resistance, a compact was halved after heating at 1500 ° C. for 2 hours. The cut surface was evaluated and the area of the so-called black core (SK) determined.
  • the black core is the unburned carbon. Its size, expressed as a percentage of the total cut surface, serves as a measure of oxidation resistance.
  • Table 4 shows the composition of mixtures 4 to 6 with 0 wt .-%, 5 wt .-% and 10 wt .-% Cr (VI) -free Chromomerzschreibstand as component B, wherein the wt .-% information on the total mass components A, B and C are in the mixture and the weight percentage of component D is based on the total weight of the respective mixture, and the properties of the refractories are obtained after heating to 1500 ° C.
  • the refractory materials according to the invention are characterized by a high cold compressive strength, a low porosity, a high bulk density and a high oxidation resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Feuerfeste Materialien, erhalten durch Erhitzen einer Mischung Z auf wenigstens 250 °C, bevorzugt auf wenigstens 350 °C, dadurch gekennzeichnet, dass die Mischung Z folgende Komponenten enthält: * 80 bis 97 Gew.-% einer Komponente A, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, die zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus einem oder mehreren der Oxide ausgewählt aus der Gruppe bestehend aus Al2O3, Zr O2, Be O, Mg O, Ti O2, Fe2O3, Cr2O3, La2O3, Ta2O5 und SnO2 besteht, und * 3 bis 15 Gew.-% einer Komponente B, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, und die Komponente B zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 85 Gew.-%, besonders bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente B bezogen sind, einen Mischkristall mit Spinell-Struktur enthält, der wenigstens die Oxide Fe2O3, Al2O3, Mg O und Cr2O3 enthält, wobei der Mischkristall mit Spinell-Struktur der Komponente B * 30 bis 80 Gew. %, bevorzugt 40 bis 68 Gew. %, Fe2O3, * 10 bis 60 Gew. %, bevorzugt 15 bis 43 Gew. %, Al2O3, * 5 bis 55 Gew. %, bevorzugt 10 bis 38 Gew. %, MgO und * 5 bis 55 Gew. %, bevorzugt 7 bis 35 Gew. %, Cr2O3, enthält, wobei die Gew.-% bezogen sind auf die Masse des Mischkristalls mit Spinell-Struktur, und * 0 bis 15 Gew.-% einer Komponente C, wobei die Gew.-%-Angaben die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, die zu wenigstens 86 Gew.-%, bevorzugt zu wenigstens 92 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente C bezogen sind, Kohlenstoff enthält.

Description

Feuerfeste Materialien enthaltend einen Mischkristall mit Spinell-Struktur
Die vorliegende Erfindung betrifft feuerfeste Materialien, die durch Erhitzen einer Mischung Z, enthaltend einen Mischkristall mit Spinell-Struktur, auf wenigstens 250 °C erhalten werden, sowie die Verwendung dieser feuerfesten Materialien für die Auskleidung von Anlagen für thermische Prozesse sowie von Transportgefäßen, für den Bau von Konstruktionselementen und für die Wärmerückgewinnung und Wärmedämmung.
Feuerfeste Materialien haben zumeist keinen eindeutigen Schmelzpunkt, sondern schmelzen beziehungsweise erweichen innerhalb eines mehr oder weniger engen Temperaturbereiches. Anstelle des Schmelzpunktes wird deshalb ein beim Erweichen feststellbarer Punkt durch die Prüfung des Seger-Kegel-Fallpunktes bestimmt. Aufgrund ihrer Beständigkeit bei hohen Temperaturen werden sie meist als Werkstoffe und Erzeugnisse zur Auskleidung von wärmetechnischen Anlagen der Grundstoffindustrie eingesetzt. Feuerfeste Materialien können aus hoch schmelzenden Oxiden, Silicaten, Carbiden, Nitriden und anderen Materialien bestehen. Jedoch behalten einige dieser feuerfesten Materialien ihre Feuerfestigkeit nur in reduzierender Atmosphäre, wie beispielsweise metallische Nitride und reiner Kohlenstoff.
Für ihre Anwendung bei hohen Temperaturen ist es besonders wichtig, dass die feuerfesten Materialien neben ihrer Eigenschaft der Feuerfestigkeit als thermischmechanische Eigenschaft bevorzugt noch weitere mechanische Eigenschaften aufweisen. Bei ihrer Verwendung, beispielsweise als. Auskleidung von Anlagen für thermische Prozesse, müssen die feuerfesten Materialien stabil gegenüber Verschleiß sein, was eine hohe Festigkeit erfordert. Als mechanische Eigenschaft ist die Festigkeit sowohl bei Raumtemperatur als auch bei hohen Temperaturen von großer Bedeutung. Die Abriebfestigkeit der feuerfesten Materialien steigt mit steigender Kalt- bzw. Heißdruckfestigkeit und ist ein Maß für die Festigkeit des feuerfesten Materials. Die Kaltdruckfestigkeit ist die Höchstkraft pro Flächeneinheit, die ein feuerfestes Material bei Raumtemperatur aufweist, bevor es bricht. Die Heißdruckfestigkeit gibt an, bei welchem Druck und welcher hohen Temperatur das feuerfeste Material bricht.
Somit ist es generell erstrebenswert, feuerfeste Materialien mit einer hohen Festigkeit zu erhalten. Eine Erhöhung der Kaltdruckfestigkeit wurde beispielsweise durch Zusatz von SiC zu Keramiken aus Aluminiumoxid-haltigen Gießmassen festgestellt (Zawrah et al., Advances in Applied Ceramics (2005), 104(6), S. 312-317). Dabei konnte durch einen Zusatz von 8 Gew.-% SiC zu der Aluminiumoxid-haltigen Gießmasse nahezu eine Verdoppelung der Kaltdruckfestigkeit der Keramiken festgestellt werden.
Auch der Zusatz von Titandioxid (Ti02) zu einer Mischung, die aus 90% Magnesit (MgC03) und 10% Chromerz (idealisiert: FeCr204) hergestellt wurde, führte zu einem Anstieg der Kaltdruckfestigkeit der aus dieser Mischung erhaltenen Feuerfeststeine (Kalpakli, Refractories and Industrial Ceramics (2008), 49(4), S. 314-319), wobei die optimale Ti02-Zusatzmenge bei 3 Gew.-% lag.
Die Kaltdruckfestigkeit von reinem Korundmaterial (a-AI203) konnte durch den Zusatz von Magnesium-Aluminium-Spinellen nicht erhöht werden (Ding et al., Key Engineering Materials (2013), 544, Testing and Evaluation of Inorganic Materials III, S. 316-320). Der Zusatz von 15 Gew.-% und 30 Gew.-% Magnesium-Aluminium-Spinell zu reinem Korundmaterial führte nach deren Erhitzen für 3 Stunden bei 1 100 °C und für 3 Stunden bei 1400 °C zu Proben mit geringeren Kaltdruckfestigkeiten als Proben aus reinem Korundmaterial ohne Zusatz der Magnesium-Aluminium-Spinelle.
Chromerzrückstände - im englischen auch als Chromite Ore Processing Residue, COPR, bezeichnet - fallen als Nebenprodukte bei der Gewinnung von Chromchemikalien ausgehend von Chromit, Chromeisenstein, an. Wenn der Chromerzrückstand in seiner ausgelaugten Form und ohne entsprechende zusätzliche Behandlung deponiert wird - wie es früher oftmals der Fall war - können noch über Jahrzehnte hinweg die schwerlöslichen Cr(VI)-Verbindungen langsam herausgelöst werden und somit Cr(VI) in die Umwelt gelangen. Deshalb sind das Grundwasser und das Erdreich um viele Chromerzrückstands-Deponien herum hochgradig mit Cr(VI) belastet. Aber auch wenn das Cr(VI) in dem COPR mittels eines Reduktionsverfahrens in unbedenkliches Cr(lll) überführt werden kann, wäre es dennoch von Vorteil, sowohl eine Wiederverwertungsmöglichkeit für das COPR als auch für das reduzierte COPR zu finden, sodass es keiner Deponierung mehr bedarf. Anwendung haben solche Chromerzrückstände bereits bei der Herstellung von Dachziegeln auf Basis von tonkeramischen Rohstoffen (JP 5992968 A) sowie als Farbstoff (Schwarz- und Braunpigmente) für Keramiken ebenfalls auf Basis tonkeramischer Rohstoffe (JP 58225158 A, JP 62036061 A) gefunden. Hintergrund der Beimischung des Chromerzrückstandes zu den tonkeramischen Rohstoffen, d.h. zu den Rohstoffen auf Basis von Silikaten und Alumosilikaten, in diesen drei Anmeldungen ist die Herstellung von Ziergegenständen, wobei ästhetische Aspekte sowohl der Dachziegel als auch der schokoladenfarbigen Keramiken im Vordergrund stehen. Bezüglich der Dachziegel wird zwar auch die Frostbeständigkeit als Aufgabe genannt, jedoch zielen diese Beimischungen keinesfalls auf den Erhalt von feuerfesten Materialien ab. Auch Eigenschaften wie Korrosionsbeständigkeit werden von diesen hier beschriebenen Materialien nicht verlangt. Die in diesen Anmeldungen verwendeten Tone sintern zudem bereits bei Temperaturen unterhalb von 1500 °C, bei grobkeramischen Ziegeltonen bereits bei unter 1000 °C, sodass diese Erzeugnisse nicht als feuerfeste Materialien anzusehen sind. Die Definition der feuerfesten Materialien im Rahmen der vorliegenden Erfindung findet sich weiter unten.
DE 692523 A beschreibt das Zumischen von Chromerzrückstand, wie er bei dem alkalischen Aufschluss von Chromerzen anfällt, zu Tonerdesolen für die Herstellung von selbsterhärtenden Mörtel, Stampf-, Flick- und Anstrichmassen. In Tonerdesolen liegt Aluminiumoxid nicht als Feststoff, sondern in feinster Verteilung im wässrigen Medium vor. Die Tonerdesolen mit dem zugemischten Chromerzrückstand sind selbsthärtend und liefern ohne Erhitzen der Mischung, sondern lediglich durch hydraulisches Abbinden, die gehärteten Massen, die eine Art Zement darstellen. Der Chromerzrückstand muss vor dem Mischen mit den Tonerdesolen erst einer Glühbehandlung und anschließend einer Mahlung unterzogen werden. Da der eingesetzte Chromerzrückstand keiner Reduktion unterzogen wird, bleibt Cr(VI), welches in Chromerzrückständen generell vorhanden ist, auch in den selbsthärtenden Mörtel, Stampf-, Flick- und Anstrichmassen enthalten. Diese zeichnen sich durch eine gute Wärmeleitfähigkeit und Temperaturwechselbeständigkeit aus, wobei Korrosionsbeständigkeit von den hier beschriebenen Materialien nicht verlangt wird. Die Aufgabe der vorliegenden Erfindung war es, feuerfeste Materialien auf Basis einer speziellen Mischung bereitzustellen, wobei die feuerfesten Materialien vorzugsweise eine hohe Festigkeit aufweisen sollten. Zudem sollten die feuerfesten Materialien vorzugsweise eine hohe Korrosionsbeständigkeit aufweisen. In der speziellen Mischung, aus der die feuerfesten Materialien erhalten werden sollten, sollte des Weiteren Si02 nicht die Hauptkomponente darstellen. Die feuerfesten Materialien sollten bevorzugt für den industriellen Einsatz für die Auskleidung von Anlagen für thermische Prozesse (Schmelz-, Brenn- und Wärmebehandlungsanlagen) sowie von Transportgefäßen, für den Bau von Konstruktionselementen wie verschleißfesten, technischen und/ oder mechanischen Bauteilen, für die Wärmerückgewinnung und für die Wärmedämmung geeignet sein. Überraschenderweise konnte gefunden werden, dass die Lösung der gestellten Aufgabe gelingt durch feuerfeste Materialien, erhalten durch Erhitzen einer Mischung Z auf „
-4- wenigstens 250 °C, bevorzugt auf wenigstens 350 °C, dadurch gekennzeichnet, dass die Mischung Z folgende Komponenten enthält:
• 65 bis 97 Gew.-%, bevorzugt 80 bis 97 Gew.-% einer Komponente A, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, die zu wenigstens
80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus einem oder mehreren der Oxide ausgewählt aus der Gruppe bestehend aus Al203, Zr02, BeO, MgO, Ti02, Fe203, Cr203, La203, Ta205 und Sn02 besteht, und · 2 bis 30 Gew.-%, bevorzugt 3 bis 15 Gew.-% einer Komponente B, wobei die
Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, und die Komponente B zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 85 Gew.-%, besonders bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente B bezogen sind, einen Mischkristall mit Spinell-Struktur enthält, der wenigstens die Oxide Fe203, Al203, MgO und Cr203 enthält, und
• 0 bis 25 Gew.-%, bevorzugt 0 bis 15 Gew.-% einer Komponente C, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, die zu wenigstens 86 Gew.-%, bevorzugt zu wenigstens 92 Gew.-%, wobei die Gew.-%-Angaben auf die
Komponente C bezogen sind, Kohlenstoff enthält.
„Feuerfeste Materialien" im Sinne dieser Erfindung sind Materialien, die einen Seger- Kegel-Fallpunkt von mindestens 1500 °C haben (Feuerfestigkeit gemäß DIN 51060 mit Verweis auf DIN EN 993-12 und DIN EN 993-13). Die„Mischung Z" im Rahmen dieser Erfindung enthält die Komponenten A und B und kann gegebenenfalls weitere Komponenten wie beispielsweise Komponente C und/ oder Komponente D enthalten, deren detaillierte Beschreibung weiter unten erfolgt. Die erfindungsgemäß einzusetzende Mischung Z enthält bevorzugt insgesamt weniger als 1 1 Gew.-% Si02, bevorzugt weniger als 5 Gew.-% Si02, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind. Komponente A
Die erfindungsgemäßen feuerfesten Materialien werden erhalten durch Erhitzen der erfindungsgemäß einzusetzenden Mischung Z, die folgende Komponente A enthält:
• 65 bis 97 Gew.-%, bevorzugt 80 bis 97 Gew.-% einer Komponente A, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, die zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus einem oder mehreren der Oxide ausgewählt aus der Gruppe bestehend aus Al203, Zr02, BeO, MgO, Ti02, Fe203, Cr203, La203, Ta205 und Sn02 besteht.
Bevorzugt besteht die Komponente A zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus einem oder mehreren der Oxide ausgewählt aus der Gruppe bestehend aus Al203, MgO, Fe203 und Cr203. Besonders bevorzugt besteht die Komponente A zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus einem oder mehreren der Oxide ausgewählt aus der Gruppe bestehend aus Al203 und MgO.
Die Komponente A kann bis zu 20 Gew.-%, bevorzugt bis zu 10 Gew.-% sonstige Komponenten enthalten, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind. Unter sonstige Komponenten werden insbesondere nicht die Hauptbestandteile der
Komponenten B, C und D verstanden, welche weiter unten beschrieben werden.
Beispielsweise können sonstige Komponenten andere Metalloxide als die unter
Komponente A beschriebenen Metalloxide oder Alkali- oder Erdalkalimetalloxide sein. Si02 ist bevorzugt nur bis zu 8 Gew.-%, besonders bevorzugt bis zu 5 Gew.-% in der
Komponente A zugegen, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind.
Das eine Oxid oder die mehreren Oxide der Komponente A können in beliebigen Teilchengrößen eingesetzt werden. Beispielsweise können das eine Oxid oder die mehreren Oxide der Komponente A mit einer Teilchengröße von 1 bis 6 mm vorliegen oder mit einer Teilchengröße von unter 1 mm. Bevorzugt wird eine Mischung von einem oder mehreren Oxiden der Komponente A mit einer Teilchengröße von 1 bis 6 mm, bevorzugt von 1 bis 4 mm, und von einem oder mehreren Oxiden der Komponente A mit einer Teilchengröße von unter 1 mm, bevorzugt von unter 0.5 mm, als Komponente A eingesetzt.
Besonders bevorzugt enthält die Komponente A eine Mischung A bestehend aus 40 bis 80 Gew.-%, bevorzugt 50 bis 70 Gew.-%, wobei die Gew.-% auf die Mischung A bezogen sind, von einem oder mehreren Oxiden der Komponente A mit einer Teilchengröße von 1 bis 6 mm, bevorzugt von 1 bis 4 mm, und 20 bis 60 Gew.-%, bevorzugt 30 bis 50 Gew.-%, wobei die Gew.-% auf die Mischung A bezogen sind, von einem oder mehreren Oxiden der Komponente A mit einer Teilchengröße von unter 1 mm, bevorzugt von unter 0.5 mm.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung besteht die Komponente A zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus Al203.
Bevorzugte erfindungsgemäße feuerfeste Materialien werden erhalten durch Erhitzen einer Mischung Z enthaltend Komponente A, die zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus Al203 besteht, auf bevorzugt wenigstens 800 °C, besonders bevorzugt auf wenigstens 1200 °C, ganz besonders bevorzugt auf wenigstens 1450 °C.
Besonders bevorzugt wird eine Mischung A bestehend aus 40 bis 80 Gew.-%, bevorzugt 50 bis 70 Gew.-%, wobei die Gew.-% auf die Mischung A bezogen sind, Al203 mit einer Teilchengröße von 1 bis 6 mm, bevorzugt von 1 bis 4 mm, und 20 bis 60 Gew.-%, bevorzugt 30 bis 50 Gew.-%, wobei die Gew.-% auf die Mischung A bezogen sind, Al203 mit einer Teilchengröße von unter 1 mm, bevorzugt von unter 0.5 mm, als Komponente A eingesetzt.
Die so erhaltenen erfindungsgemäßen feuerfesten Materialien besitzen eine hervorragende chemische Beständigkeit. Bei Raumtemperatur sind sie durch Säuren und Laugen nahezu unangreifbar. Diese Eigenschaft bleibt auch im Hochtemperaturbereich bei Kontakt mit korrosiven Schmelzen erhalten.
MgO
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung besteht die Komponente A zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus MgO. Bevorzugte erfindungsgemäße feuerfeste Materialien werden erhalten durch Erhitzen einer Mischung Z enthaltend Komponente A, die zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus MgO besteht, auf wenigstens 800 °C, besonders bevorzugt auf wenigstens 1200 °C, ganz besonders bevorzugt auf wenigstens 1450 °C.
Die erfindungsgemäß einzusetzende Mischung Z enthält bevorzugt Komponente A, die zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%- Angaben auf die Komponente A bezogen sind, aus MgO besteht, und bevorzugt Komponente C und/ oder Komponente D, die weiter unten näher beschrieben werden. Besonders bevorzugt wird eine Mischung A bestehend aus 40 bis 80 Gew.-%, bevorzugt 50 bis 70 Gew.-%, wobei die Gew.-% auf die Mischung A bezogen sind, MgO mit einer Teilchengröße von 1 bis 6 mm, bevorzugt von 1 bis 4 mm, und 20 bis 60 Gew.-%, bevorzugt 30 bis 50 Gew.-%, wobei die Gew.-% auf die Mischung A bezogen sind, MgO mit einer Teilchengröße von unter 1 mm, bevorzugt von unter 0.5 mm, als Komponente A eingesetzt.
Komponente B
Die erfindungsgemäßen feuerfesten Materialien werden erhalten durch Erhitzen der erfindungsgemäß einzusetzenden Mischung Z, die folgende Komponente B enthält:
• 2 bis 30 Gew.-%, bevorzugt 3 bis 15 Gew.-% einer Komponente B, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, und die Komponente B zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 85 Gew.-%, besonders bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente B bezogen sind, einen Mischkristall mit Spinell-Struktur enthält, der wenigstens die Oxide Fe203, Al203, MgO und Cr203 enthält.
Unter„Mischkristall mit Spinell-Struktur" wird im Sinne dieser Erfindung ein Oxid mit sich dreidimensional wiederholender Anordnung der Oxidionen verstanden, bei dem die Oxidionen eine kubisch-dichteste Packung bilden (Spinell-Anordnung) und die Metallkationen geordnet oder ungeordnet einen Teil der Oktaederlücken und Tetraederlücken besetzen. In dem Mischkristall mit Spinell-Struktur besetzen die Metallkationen bevorzugt ungeordnet einen Teil der Oktaederlücken und Tetraederlücken. Da der Mischkristall mit Spinell-Struktur ein einheitlicher homogener Festkörper ist, kann bei einer ungeordneten Besetzung eines Teils der Oktaederlücken und Tetraederlücken der Mischkristall mit Spinell-Struktur auch als feste Lösung angesehen werden.
In dem Mischkristall mit Spinell-Struktur der vorliegenden Erfindung bilden wenigstens die Oxide Fe203, Al203, MgO und Cr203 die oben beschriebene Struktur des Mischkristalls mit Spinell-Struktur aus. Die wenigstens in dem Mischkristall mit Spinell-Struktur vorliegenden Metallkationen sind Fe(ll), Fe(lll), Al(lll), Mg(ll) und Cr(lll).
Bevorzugt enthält der Mischkristall mit Spinell-Struktur der Komponente B
• 30 bis 80 Gew.-%, besonders bevorzugt 40 bis 68 Gew.-%, Fe203, · 10 bis 60 Gew.-%, besonders bevorzugt 15 bis 43 Gew.-%, Al203,
• 5 bis 55 Gew.-%, besonders bevorzugt 10 bis 38 Gew.-%, MgO und
• 5 bis 55 Gew.-%, besonders bevorzugt 7 bis 35 Gew.-%, Cr203, wobei die Gew.-% bezogen sind auf die Masse des Mischkristalls mit Spinell-Struktur.
Neben dem Mischkristall mit Spinell-Struktur kann Komponente B noch bis zu 20 Gew.-%, bevorzugt bis zu 15 Gew.-%, besonders bevorzugt bis zu 10 Gew.-% sonstige Komponenten enthalten. Unter sonstige Komponenten werden insbesondere nicht die Hauptbestandteile der Komponenten A, C und D verstanden. Beispiele für solche sonstigen Komponenten sind CaO, Ti02 und Si02, wobei Si02 bevorzugt nur bis zu 8 Gew.-%, besonders bevorzugt bis zu 5 Gew.-%, in der Komponente B zugegen ist, wobei die Gew.-%-Angaben auf die Komponente B bezogen sind.
Der Mischkristall mit Spinell-Struktur kann auch anhand seines kubischen Gitterparameters charakterisiert werden. Der Mischkristall mit Spinell-Struktur weist bevorzugt einen Gitterparameter von 822 pm bis 835 pm auf. Die Bezeichnung Gitterparameter (englisch lattice parameter) wird im Sinne dieser Erfindung als Synonym für Gitterkonstante benutzt.
Herstellung von Komponente B
Als Komponente B können Chromerzrückstände, die beim oxidativen alkalischen Aufschluss von Chromerzen anfallen, eingesetzt werden. Diese enthalten in der Regel noch Reste von sechswertigem Chrom. Grundsätzlich ist es nicht erfindungswesentlich, ob die Komponente B sechswertiges Chrom enthält oder nicht. Aus diesem Grunde können die beim oxidativen alkalischen Aufschluss von Chromerzen anfallenden Chromerzrückstände direkt als Komponente B der erfindungsgemäß einzusetzenden Mischung Z eingesetzt werden.
Bevorzugt wird jedoch eine Komponente B mit einem Cr(VI)-Gehalt von weniger als 640 ppb Cr(VI), besonders bevorzugt mit einem Cr(VI)-Gehalt von weniger als 107 ppb Cr(VI), in der erfindungsgemäß einzusetzenden Mischung Z eingesetzt.
In einer bevorzugten Ausführungsform wird Komponente B der vorliegenden Erfindung nach einem Reduktionsverfahren enthalten. Besonders bevorzugt wird Komponente B der vorliegenden Erfindung nach einem Reduktionverfahren erhalten, enthaltend die Schritte i) Mischen eines oxidischen Feststoffes, enthaltend die Oxide Fe203, Al203, MgO und Cr203 und enthaltend Cr(VI), bevorzugt bis zu 80000 ppm Cr(VI), besonders bevorzugt bis zu 50000 ppm Cr(VI), mit einer kohlenstoffhaltigen, im Bereich von 20 bis 100 °C flüssigen Verbindung, ii) Behandeln der nach i) erhaltenen Mischung unter Schutzatmosphäre in einem indirekt beheizten Reaktor bei einer Temperatur von 700 °C bis 1 100 °C, besonders bevorzugt bei einer Temperatur von 800 °C bis 1000 °C, iii) Abkühlen des nach ii) erhaltenen Reaktionsproduktes unter Schutzatmosphäre auf wenigstens 300 °C, vorzugsweise auf wenigstens 150 °C.
Bevorzugt ist der oxidische Feststoff aus Schritt i) ein Chromerzrückstand, bevorzugt ein Chromerzrückstand angefallen beim Aufschluss von Chromerzen, beispielsweise von Chromit (Chromeisenstein) mit Natriumcarbonat für die Herstellung von Natriummonochromat als Ausgangsmaterial zur Gewinnung weiterer Chromchemikalien.
Bei dem Herstellungsverfahren von Natriummonochromat als Ausgangsmaterial für die Gewinnung weiterer Chromchemikalien kann ein Teil des Natriumcarbonats, das für den oxidativen alkalischen Aufschluss nötig ist, durch Calciumcarbonat CaC03 oder Dolomit (CaMg(C03)2) oder Calciumoxid CaO (lime) ersetzt werden. Solche Verfahren bezeichnet man - je nach Anteil an zugesetztem Calciumoxid - als High Lime-, No Lime- oder Low Lime-Verfahren.
Der Chromerzrückstand kann, je nachdem ob er für den oxidativen alkalischen Aufschluss von Chromerz das High Lime-, No Lime- oder Low Lime-Verfahren, verwendet wurde, in 1 seiner Zusammensetzung, insbesondere dem CaO-Gehalt, schwanken. Chromerzrückstände aus dem High Lime-Verfahren weisen bis zu 35 Gew.-% CaO auf, solche aus dem No Lime-Verfahren gewöhnlich weniger als 5 Gew.-% CaO, während die aus dem Low Lime-Verfahren von 5 bis 35 Gew.-% CaO liegen. Bevorzugt beträgt der CaO-Gehalt des oxidischen Feststoffs aus Schritt i) weniger als 10 Gew.-% CaO, besonders bevorzugt weniger als 5 Gew.-% CaO.
Bevorzugt werden in Schritt i) oxidische Feststoffe eingesetzt, bei denen mindestens 90 % der Partikel kleiner als 500 μηι, besonders bevorzugt kleiner als 300 μηι sind. Dies kann - falls erforderlich - durch eine dem Schritt i) vorgeschaltete Siebung und/oder Mahlung erreicht werden.
Bevorzugt wird als kohlenstoffhaltige Verbindung in Schritt i) eine Polyhydroxyverbindung, besonders bevorzugt Glycerin oder ein flüssiges Polyethylenglykol, ganz besonders bevorzugt Polyethylenglykol mit einer Molmasse von bis zu 600, eingesetzt.
Die thermische Reduktion im Schritt ii) kann in einem kontinuierlich arbeitenden oder diskontinuierlich arbeitenden indirekt beheizten Reaktor erfolgen, wobei kontinuierlich arbeitende indirekt beheizte Reaktoren besonders bevorzugt sind. Ein Beispiel dafür sind gas- oder elektrisch indirekt beheizte Drehrohröfen.
Das nach dem Schritt iii) erhaltene abgekühlte Reaktionsprodukt kann gegebenenfalls noch einer Siebung und/oder Mahlung unterzogen werden. Das nach dem Schritt iii) erhaltene abgekühlte Reaktionsprodukt kann nach dem in WO 2014006196 A1 beschriebenen alkalischen Aufschlussverfahren I aufgearbeitet und der Cr(VI)-Gehalt im alkalischen Extrakt mittels UV/Vis-Spektroskopie bestimmt werden. Das nach dem Schritt iii) erhaltene abgekühlte Reaktionsprodukt kann auch gemäß dem in WO 2014006196 A1 beschriebenen modifizierten alkalischen Aufschlussverfahren II aufgearbeitet werden.
Bevorzugt beträgt der Cr(VI)-Gehalt der Komponente B, hergestellt nach dem oben beschriebenen Reduktionsverfahren, weniger als 640 ppb Cr(VI), besonders bevorzugt von weniger als 107 ppb Cr(VI).
Der Mischkristall mit Spinell-Struktur der Komponente B kann auch aus den entsprechenden Hydroxiden beziehungsweise Oxyhydraten, beispielsweise FeOOH, AIOOH, CrOOH, Mg(OH)2, erhalten werden. Aus diesen Hydroxiden beziehungsweise Oxyhydraten muss jedoch zunächst die einheitliche homogene Phase des Mischkristalls 1 ^ mit Spinell-Struktur hergestellt werden. Eine solche einheitliche homogene Phase des Mischkristalls mit Spinell-Struktur kann aus den entsprechenden Hydroxiden beispielsweise durch eine Festkörperreaktion, beispielsweise durch Zusammenmischen der Hydroxide, gegebenenfalls Pressen, Erhitzen und gegebenenfalls Glühen der Hydroxidmischung erhalten werden.
Komponente C
Bevorzugte erfindungsgemäße feuerfeste Materialien werden erhalten durch Erhitzen der erfindungsgemäß einzusetzenden Mischung Z, die neben Komponente A und Komponente B noch folgende Komponente C enthält: » 0.5 bis 25 Gew.-%, bevorzugt 1 bis 15 Gew.-% einer Komponente C, wobei die
Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und C in der Mischung Z bezogen sind, die zu wenigstens 86 Gew.-%, bevorzugt zu wenigstens 92 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente C bezogen sind, Kohlenstoff enthält. Als Komponente C wird bevorzugt Graphit oder Ruß oder Mischungen davon eingesetzt. Bevorzugt wird Graphit als Komponente C eingesetzt.
Als Ruß der Komponente C werden bevorzugt Thermal- und Furnace-Ruße auf Erdgas- und/ oder -ölbasis eingesetzt.
Bevorzugte erfindungsgemäße feuerfeste Materialien werden dadurch erhalten, dass das Erhitzen einer Mischung Z enthaltend Komponente A und Komponente B und Komponente C unter Luftausschluss durchgeführt wird.
In einer bevorzugten Ausführungsform enthält die erfindungsgemäß einzusetzende Mischung Z 80 bis 97 Gew.-% der Komponente A, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und C in der Mischung Z bezogen sind, wobei Komponente A zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus MgO besteht, und 3 bis 15 Gew.-% der Komponente B, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und C in der Mischung Z bezogen sind, und 0.5 bis 25 Gew.-%, bevorzugt 1 bis 15 Gew.-%, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und C in der Mischung Z bezogen sind, der Komponente C.
Eine solche bevorzugte erfindungsgemäß einzusetzende Mischung Z wird bevorzugt unter Luftausschluss erhitzt, wobei das Erhitzen bevorzugt auf wenigstens 350 °C erfolgt. Weitere bevorzugte erfindungsgemäße feuerfeste Materialien werden erhalten durch Erhitzen einer Mischung Z enthaltend Komponente A, die zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus MgO besteht, und enthaltend Komponente B und Komponente C, auf wenigstens 800 °C, bevorzugt auf wenigstens 1200 °C, besonders bevorzugt auf wenigstens 1450 °C.
In Komponente C können noch bis zu 14 Gew.-%, bevorzugt bis zu 8 Gew.-%, sonstige Komponenten enthalten sein. Unter sonstige Komponenten werden insbesondere nicht die Hauptbestandteile der Komponenten A, B und D verstanden. Beispiele für solche sonstigen Komponenten sind ölige Komponenten, Pyrolyseprodukte und polyzyklische Aromaten.
Die Bedeutung der Komponente C liegt in der Verschleißverminderung durch Verringern der Infiltrationstiefe sowie in der Bindung der bevorzugten feuerfesten Materialien. Des Weiteren führt die Komponente C zu einer Verbesserung der Temperaturwechselbeständigkeit durch Erhöhung der Wärmeleitfähigkeit und Erniedrigung der Wärmedehnung der bevorzugten feuerfesten Materialien.
Weitere Komponenten
In einer bevorzugten erfindungsgemäß einzusetzenden Mischung Z beträgt die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C wenigstens 50 Gew.-%, bevorzugt wenigstens 65 Gew.-%, besonders bevorzugt wenigstens 75 Gew.-% der Gesamtmasse der Mischung Z.
In der erfindungsgemäß einzusetzenden Mischung Z können noch weitere Komponenten wie beispielsweise Wasser zugegen sein.
Sofern Wasser in der erfindungsgemäß einzusetzenden Mischung Z enthalten ist, ist dieses Wasser bevorzugt bis 20 Gew.-%, besonders bevorzugt bis 10 Gew.-%, ganz besonders bevorzugt bis 5 Gew.-%, wobei die Gew.-%-Angaben auf die Gesamtmasse der Mischung Z bezogen sind, enthalten.
Komponente D
Bevorzugte erfindungsgemäße feuerfeste Materialien werden erhalten durch Erhitzen der erfindungsgemäß einzusetzenden Mischung Z, die neben Komponente A und Komponente B und gegebenenfalls Komponente C als weitere Komponente die Komponente D enthält, wobei Komponente D ein oder mehrere Bindemittel ist. Die erfindungsgemäß einzusetzende Mischung Z kann bis zu 25 Gew.-%, bevorzugt bis zu 10 Gew.-%, wobei die Gew.-%-Angaben auf die Gesamtmasse der Mischung Z bezogen sind, der Komponente D enthalten.
Bevorzugt wird ein oder mehrere Bindemittel der Komponente D ausgewählt aus der Gruppe der Tone, Tonerdezemente, der anorganischen Phosphate, Alkalisilikate, Ethylsilikate, anorganischen Sulfate, Boroxide, verkokende Bindemittel, bevorzugt Pech oder Kunstharze oder Mischungen davon, Stärke und Ligninsulfonate.
Als verkokende Bindemittel der Komponente D werden bevorzugt Pech oder Kunstharz oder Mischungen davon verwendet. Pech ist ein schmelzbares Gemisch aus polyzyklischen aromatischen Kohlenwasserstoffen, die durch fraktionierte Destillation von Rohteer, der bei der Verkokung von Steinkohle anfällt, gewonnen wird.
Als Kunstharze der Komponente D können Phenolharze (synthetische Polykondensationsprodukte aus Phenol und Formaldehyd) verwendet werden. Es können flüssige Phenolharze, feste Phenolharze oder Mischungen davon verwendet werden. Bevorzugt wird eine Mischung aus flüssigen und festen Phenolharzen als Komponente D verwendet. Besonders bevorzugt wird eine Mischung aus einem flüssigen Phenolharz und einem festen Phenolharz im Verhältnis 1 .1 : 1 bis 3 : 1 , bevorzugt 1 .5 : 1 bis 2.5 : 1 , Gew.- % : Gew.%, verwendet. Die Pyrolyse der Kunstharze erfolgt im Gegensatz zu Pech im festen Zustand. Die verkokenden Bindemittel bringen zudem Kohlenstoff in die Mischung Z mit ein.
Der Kohlenstoff, der in einer erfindungsgemäß einzusetzenden Mischung Z enthalten ist, kann dabei nicht nur durch Komponente C in die Mischung Z eingebracht werden, sondern auch durch Komponente D, beispielsweise durch verkokende Bindemittel der Komponente D.
Bevorzugt enthält die erfindungsgemäß einzusetzende Mischung Z Komponente A, die zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%- Angaben auf die Komponente A bezogen sind, aus MgO besteht, und Graphit als Komponente C und Phenolharz als Komponente D.
Herstellung der erfindungsgemäß einzusetzenden Mischung Z
Um eine erfindungsgemäß einzusetzende Mischung Z im Sinne der vorliegenden Erfindung zu erhalten, können übliche Vorstufen wie Aufbereitung und Formgebung zum „„
-14-
Erhalt dieser Mischung Z aus den Komponenten A und B und gegebenenfalls weiteren Komponenten wie Komponente C und/ oder Komponente D durchlaufen werden.
Die Aufbereitung kann beispielsweise aus der Zerkleinerung der Rohstoffe durch Brechen oder Mahlen, dem Fraktionieren des Brechgutes durch Sieben oder Sichten und dem Herstellen des formbaren Gemenges nach vorgegebenem Rohstoff- und Körnungskonzept durch homogenes Mischen zumeist mit Wasser und gegebenenfalls einem Bindemittel der Komponente D bestehen.
Die gegebenenfalls aufbereiteten Rohstoffe der Komponenten A und B und gegebenenfalls weiterer Komponenten wie Komponente C und/ oder Komponente D können vor dem Erhitzen in eine bestimmte Form gebracht werden.
Die Wahl des Formgebungsverfahrens richtet sich nach der Verformbarkeit des Gemenges, abhängig von Wassergehalt und Plastizität, den gewünschten Eigenschaften des Fertigerzeugnisses, aber auch nach der Stückzahl und der Komplexizität der Form des Erzeugnisses. Beispiele für Formgebungsverfahren sind Strang- beziehungsweise Extrusionsverfahren plastischer Gemenge, hydraulisches Pressen und Schlagpressen von Gemengen mit 2 bis 6% Feuchte mit Pressdrücken von normalerweise 40 bis 120 N/mm2, manuelles oder mechanisches Stampfen beziehungsweise Rammen für komplexe Formen oder kleinere Anzahl zu fertigender Teile, isostatisches Pressen für meist feinkörnige hochwertige Produkte mit Pressdrücken von wenigstens 300 N/mm2 sowie Schlickergießen für zumeist feinkörnige Komponenten und spezielle Teile, auch für größere Blöcke.
Die erfindungsgemäß einzusetzende Mischung Z kann im Sinne der vorliegenden Erfindung auch ein Formkörper sein, sofern sie durch Formgebungsverfahren, bevorzugt durch eines der zuvor beschriebenen Formgebungsverfahren, in eine Form gebracht wurde.
Die Formkörper, die nach einem Pressverfahren als Formgebungsverfahren erhalten werden, werden im Sinne der vorliegenden Erfindung als Presslinge verstanden.
Bevorzugte erfindungsgemäße feuerfeste Materialien werden erhalten durch Erhitzen der erfindungsgemäß einzusetzenden Mischung Z, wobei die Mischung Z als Formkörper eingesetzt wird.
Bevorzugte erfindungsgemäße feuerfeste Materialien werden erhalten durch Erhitzen der erfindungsgemäß einzusetzenden Mischung Z, wobei die Mischung Z als Pressling eingesetzt wird. „ ,_
-15-
Die erfindungsgemäß einzusetzende Mischung Z, bevorzugt Formkörper, besonders bevorzugt Pressling, wird bevorzugt vor dem Erhitzen getrocknet, bevorzugt auf wenigstens 150 °C, um Trockenrisse oder Fehler nach dem Erhitzen zu vermeiden. Die Trockenzeit kann - je nach Größe und Trocknungsverhalten des Formkörpers - mehrere Tage bis zu Wochen betragen.
Herstellung der erfindungsgemäßen feuerfesten Materialien
Unter „Erhitzen" wird im Rahmen dieser Erfindung die thermische Behandlung der Mischung Z verstanden. Das Erhitzen kann - abhängig von der gewählten Temperatur und der Menge der zu erhitzenden Mischung Z beziehungsweise der Stückzahl und Größe der als Mischung Z eingesetzten Formkörper - in kontinuierlich arbeitenden Kanalöfen beziehungsweise Tunnelöfen oder auch in diskontinuierlich arbeitenden Kammeröfen erfolgen. Derartige Öfen sind in der Regel öl- oder gasbeheizt.
Das Erhitzen wird in der Regel an Luft durchgeführt. Wenn die erfindungsgemäß einzusetzende Mischung Z oxidationsempfindliche Bestandteile, wie beispielsweise Komponente C und/ oder Bindemittel der Komponente D, bevorzugt verkokende Bindemittel der Komponente D, enthält, wird das Erhitzen bevorzugt unter Luftausschluss durchgeführt.
Bevorzugt erfolgt das Erhitzen der erfindungsgemäß einzusetzenden Mischung Z auf wenigstens 800 °C, besonders bevorzugt auf wenigstens 1200 °C, ganz besonders bevorzugt auf wenigstens 1450 °C.
Die Dauer des Erhitzens beträgt im Rahmen der vorliegenden Erfindung bevorzugt mehrere Stunden, besonders bevorzugt 1 bis 4 Stunden.
Nachbehandlung
Die erfindungsgemäßen feuerfesten Materialien können nach ihrem Erhalt noch nachbehandelt werden.
Der Gehalt an Kohlenstoff in den erfindungsgemäßen feuerfesten Materialien kann erhöht werden, indem zunächst erfindungsgemäße feuerfeste Materialien erhalten werden und diese, bevorzugt nach einer Trocknung, erneut mit Komponente C und/ oder verkokenden Bindemitteln der Komponente D gemischt und auf wenigstens 250 °C, bevorzugt auf wenigstens 350 °C, erhitzt werden.
Die Erfindung betrifft demnach bevorzugte feuerfeste Materialien, erhalten durch Erhitzen der erfindungsgemäß einzusetzenden Mischung Z und anschließendem Mischen der „„
-16- erhaltenen feuerfesten Materialien mit Komponente C und/ oder verkokenden Bindemitteln der Komponente D und Erhitzen dieser Mischung auf wenigstens 250 °C, bevorzugt auf wenigstens 350 °C.
Durch das Mischen der erhaltenen feuerfesten Materialien mit Komponente C und/ oder verkokenden Bindemitteln der Komponente D, bevorzugt mit Pech als Komponente D, und Erhitzen dieser Mischung auf wenigstens 250 °C, bevorzugt auf wenigstens 350 °C, wird durch Vernetzung ein hochmolekulares und unschmelzbares Resitgitter um die feuerfesten Materialien gebildet.
Auch das Mischen, bevorzugt Tränken, von erfindungsgemäßen feuerfesten Materialien mit Pech der Komponente D unter Vakuum bei Temperaturen von 150 bis 200 °C sei an dieser Stelle als Nachbehandlung erwähnt.
Die Erfindung betrifft demnach bevorzugte feuerfeste Materialien, erhalten durch Erhitzen der erfindungsgemäß einzusetzenden Mischung Z und anschließendem Mischen der erhaltenen feuerfesten Materialien mit Pech der Komponente D und Erhitzen dieser Mischung auf 150 bis 200 °C unter Vakuum.
Außerdem kann die Nachbehandlung der erfindungsgemäßen feuerfesten Materialien auch in einem Schneiden und/ oder Schleifen der erfindungsgemäßen feuerfesten Materialien bestehen. Diese Nachbehandlung kann beispielsweise bei mörtelfreier, das heißt fugenfreier, Verlegung der erfindungsgemäßen feuerfesten Materialien als Steine oder Blöcke erforderlich sein, sofern die Maßgenauigkeit der erfindungsgemäßen feuerfesten Materialien nicht ausreicht. Für die Auskleidung von Anlagen wird häufig die zuvor beschriebene Ausmauerung, bei der die zuvor in Form gegebenen feuerfesten Materialien eingesetzt werden, verwendet.
Die Erfindung betrifft demnach bevorzugte feuerfeste Materialien, erhalten durch Erhitzen der erfindungsgemäß einzusetzenden Mischung Z und anschließendem Schneiden und/ oder Schleifen der erhaltenen feuerfesten Materialien.
Bevorzugte erfindungsgemäße feuerfeste Materialien, erhalten durch Erhitzen einer Mischung Z enthaltend Komponente A, die zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus MgO besteht, und enthaltend Komponente C, können bei einer Temperatur von wenigstens 150 °C getrocknet beziehungsweise wärmebehandelt (getempert) werden, um die Festigkeit durch zusätzliche chemische Reaktionen zu erhöhen und/ oder leichtflüchtige Bestandteile oder Hydratwasser auszutreiben. 1
Die Erfindung betrifft demnach bevorzugte feuerfeste Materialien, erhalten durch Erhitzen der erfindungsgemäß einzusetzenden Mischung Z, enthaltend Komponente A, die zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%- Angaben auf die Komponente A bezogen sind, aus MgO besteht, und enthaltend Komponente C, und anschließendem Erhitzen der erhaltenen feuerfesten Materialien bei wenigstens 150 °C.
Des Weiteren können ein oder mehrere Bindemittel der Komponente D den erfindungsgemäßen feuerfesten Materialien auch in einer Nachbehandlung zugefügt werden, um deren Handhabung in dem jeweiligen Anwendungsgebiet, beispielsweise bei der Auskleidung von Anlagen, zu erleichtern.
Verwendung
Die Erfindung betrifft weiterhin die Verwendung der erfindungsgemäßen feuerfesten Materialien als Auskleidung von Anlagen für thermische Prozesse (Schmelz-, Brenn- und Wärmebehandlungsanlagen) sowie als Auskleidung von Transportgefäßen, für den Bau von Konstruktionselementen wie verschleißfesten, technischen und/ oder mechanischen Bauteilen, für die Wärmerückgewinnung und für die Wärmedämmung.
Bevorzugt werden für die zuvor beschriebene Verwendung erfindungsgemäße feuerfeste Materialien eingesetzt, die aus der erfindungsgemäß einzusetzenden Mischung Z erhalten wurden, wobei die erfindungsgemäß einzusetzende Mischung Z als Formkörper eingesetzt wurde.
Die erfindungsgemäßen feuerfesten Materialien, erhalten durch Erhitzen einer erfindungsgemäß einzusetzenden Mischung Z, enthaltend Komponente A, die zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%- Angaben auf die Komponente A bezogen sind, aus MgO besteht, und enthaltend Komponente C, werden bevorzugt in der Stahlindustrie, besonders als Verschleißfutter in Sauerstoffblaskonvertern, aber auch in Elektrolichtbogenöfen sowie in Stahlgieß- und Nachbehandlungspfannen und Konstruktionselementen verwendet. Bevorzugt werden sie dort, wo eine hohe Heißerosionsfestigkeit verlangt wird, verwendet. Beispiele für solche Anwendungsgebiete sind die Schrottaufschlag- und Zapfenbereiche sowie die Mündung von Konvertern.
Die erfindungsgemäßen feuerfesten Materialien sind unabhängig von ihrem späteren Einsatz, d.h. beispielsweise davon, ob sie bei gleichzeitiger mechanischer und korrosiver Belastung bei Dauertemperaturen von über 1300 °C industriell eingesetzt werden, bei tieferen Temperaturen oder bei Raumtemperatur. Zahlreiche Konstruktionselemente wie verschleißfeste, technische und/ oder mechanische Bauteile, die aus feuerfesten Materialien hergestellt werden, können auch bei deutlich tieferen Temperaturen oder sogar bei Raumtemperatur eingesetzt werden.
Beispiele
Anhand der nachfolgenden Beispiele wird die Erfindung näher erläutert, ohne dass dadurch eine Einschränkung der Erfindung bewirkt werden soll.
Allgemeine Durchführung 1. Herstellung der Komponente B
Als Ausgangsstoff für die Herstellung von Komponente B dient in den nachfolgenden erfindungsgemäßen Beispielen Chromerzrückstand, wie er aus dem industriellen Herstellungsprozess von Natriummonochromat ausgehend von Chromit (Chromeisenstein) über einen oxidativen alkalischen Aufschluss mit Natriumcarbonat (sogenanntes No Lime-Verfahren) anfällt.
Der im Produktionsprozess von Natriummonochromat nach Fest-Flüssig-Separation in Form eines feuchten Filterkuchens angefallene Chromerzrückstand wurde lediglich getrocknet, aber nicht gesiebt oder gemahlen. Die Zusammensetzung des getrockneten Chromerzrückstandes kann der nachfolgenden Tabelle 1 entnommen werden. Er wies einen Cr(VI)-Gehalt von 856 ppm auf.
Die Bestimmung des Cr(VI)-Gehaltes erfolgte gemäß dem in WO 2014006196 A1 offenbarten modifizierten alkalischen Aufschlussverfahren I in Kombination mit der dort ebenfalls offenbarten UV/Vis-spektroskopischen Methode zur Ermittlung des Chrom(VI)- Gehaltes. Tabelle 1
Figure imgf000021_0001
Tabelle 1 zeigt die Zusammensetzung von COPR, welches als Ausgangsstoff für die Herstellung des reduzierten COPRs, welches in den erfindungsgemäßen Beispielen als Komponente B eingesetzt wurde, verwendet wurde. Alle Angaben in Gew.-% bezogen auf die Gesamtmasse des COPRs.
Der oben beschriebene getrocknete Chromerzrückstand wurde gemäß dem in WO 2014006196 A1 offenbarten Verfahren zur Reduktion von sechswertigem Chrom in oxidischen Feststoffen reduziert. Dazu wurde der getrocknete Chromerzrückstand mit 2Q einer kohlenstoffhaltigen, im Bereich von 20 bis 100 °C flüssigen Verbindung (1 .5 Gew.-% Polyethylenglycol, PEG, mit einer Molmasse von 380 bis 420) gemischt, um benetzte Chromerzrückstands-Partikel zu erhalten. Diese Mischung wurde in einen elektrisch indirekt beheizten Drehrohrofen mit 22.5 kg/h eingetragen. Das Ofenrohr hatte eine Gesamtlänge von 1 .5 m, wovon 1 .1 m beheizt waren. Der Rohrdurchmesser betrug 0.3 m und der Ofen wurde mit 3 U/min bei 900 °C betrieben. Im Ofen herrschte eine Schutzatmosphäre aus Kohlendioxid. Das erhaltene Produkt wurde unter Kohlendioxid- Atmosphäre auf wenigstens 150 °C abgekühlt.
Nach Abkühlung wurde das schwarze reduzierte Chromerzrückstands-Reaktionsprodukt entnommen, über ein 300 μΓΤΐ-Sieb abgesiebt und ca. 10 g des Feinanteiles gemäß dem in WO 2014006196 A1 beschriebenen alkalischen Aufschlussverfahren I aufgearbeitet und der Cr(VI)-Gehalt im alkalischen Extrakt mittels UV/Vis-Spektroskopie bestimmt. Er lag unterhalb der Bestimmungsgrenze von 640 ppb. Der Cr(VI)-Gehalt lag selbst dann noch unter der Bestimmungsgrenze, wenn das reduzierte Chromerzrückstands- Reaktionsprodukt gemäß dem in WO 2014006196 A1 beschriebenen modifizierten alkalischen Aufschlussverfahren II aufgearbeitet wurde. Der Cr(VI)-Gehalt im reduzierten Chromerzrückstands-Reaktionsprodukt lag also bei unter 107 ppb Cr(VI). Der erhaltene reduzierte Chromerzrückstand enthielt also kein auf diese Weise nachweisbares Cr(VI) mehr. Der Gitterparameter des reduzierten Chromerzrückstandes wurde an Pulverproben mittels Röntgendiffraktometrie bestimmt und lag in dem Bereich von 822 pm bis 835 pm.
Dieser Cr(VI)-freie Chromerzrückstand wurde als Komponente B zur Herstellung der erfindungsgemäßen feuerfesten Materialien in den nachfolgenden Beispielen eingesetzt.
2. Feuerfeste Materialien 2. 1 Feuerfeste Materialien mit Al203 in der Komponente A
Es wurden Mischungen 2 und 3, die erfindungsgemäß einzusetzenden Mischungen Z entsprechen, hergestellt mit Aluminiumoxid als Komponente A und Cr(VI)-freiem Chromerzrückstand als Komponente B, dessen Herstellung weiter oben beschrieben ist. Als Aluminiumoxid diente Sinterkorund T 60 der Firma Almatis GmbH, Deutschland. Das eingesetzte Aluminiumoxid lag als Mischung aus Aluminiumoxid mit einer Teilchengröße von 1 bis 3 mm, in Tabelle 2 als„Al203 grob" bezeichnet, und Aluminiumoxid mit einer Teilchengröße von kleiner als 0.5 mm, in Tabelle 2 als„AI2O3 fein" bezeichnet, vor. Als Referenz diente eine Mischung 1 aus„Al203 grob" und„Al203 fein" als Komponente A, wobei Mischung 1 keine Komponente B enthielt. Die Mischungen 1 bis 3 wurden jeweils mit 4 Gew.-% Wasser, bezogen auf die Gesamtmasse der jeweiligen Mischung, angefeuchtet, jeweils homogen gemischt und unter einem Pressdruck von 100 MPa (=100 N/mm2) in Stahlformen zu zylinderförmigen Presslingen (Durchmesser=Höhe=36 mm) uniaxial verpresst. Nach dem Trocknen bei 1 10 °C für 24 Stunden wurden die Presslinge bei 1600 °C und bei 1650 °C in Luftatmosphäre erhitzt. Danach erfolgte an den erhaltenen feuerfesten Materialien die Bestimmung der Kaltdruckfestigkeit (KDF) bzw. der Heißdruckfestigkeit bei 1450 °C (HDF1450) an ausgewählten feuerfesten Materialien.
Die Zusammensetzung der untersuchten Mischungen 1 bis 3 und die an den feuerfesten Materialien erzielten Ergebnisse sind in Tabelle 2 (Mischungen erhitzt auf 1600 °C) und Tabelle 3 (Mischungen erhitzt auf 1650 °C) angeführt.
Tabelle 2
Figure imgf000023_0001
Tabelle 2 zeigt die Zusammensetzungen der Mischungen 1 bis 3 mit 0 Gew.-%, 5 Gew.-% und 10 Gew.-% Cr(VI)-freiem Chromerzrückstand als Komponente B, wobei die Gew.-%- Angaben auf die Gesamtmasse der Komponenten A und B in der Mischung bezogen sind, und Eigenschaften der feuerfesten Materialien erhalten nach Erhitzen auf 1600 °C. Tabelle 3 zeigt die Zusammensetzung der Mischungen 1 bis 3 mit 0 Gew.-%, 5 Gew.-% und 10 Gew.-% Cr(VI)-freiem Chromerzrückstand als Komponente B, wobei die Gew.-%- Angaben auf die Gesamtmasse der Komponenten A und B in der Mischung bezogen sind, und Eigenschaften der feuerfesten Materialien erhalten nach Erhitzen auf 1650 °C. Die erfindungsgemäßen feuerfesten Materialien zeichnen sich durch eine hohe Kaltdruckfestigkeit sowie hohe Heißdruckfestigkeit aus.
2.2 Feuerfeste Materialien mit MgO in der Komponente A
Es wurden Mischungen 5 und 6, die erfindungsgemäß einzusetzenden Mischungen Z entsprechen, hergestellt mit Magnesiumoxid als Komponente A und Cr(VI)-freiem Chromerzrückstand als Komponente B, dessen Herstellung weiter oben beschrieben ist, und feinkristallinem Graphit als Komponente C. Als Magnesiumoxid diente Sintermagnesia der Firma NEDMAG, Niederlande. Das eingesetzte Magnesiumoxid lag als Mischung aus Magnesiumoxid mit einer Teilchengröße von 1 bis 2 mm, in Tabelle 3 als„MgO grob" bezeichnet, und Magnesiumoxid mit einer Teilchengröße von kleiner als 0.1 mm, in Tabelle 3 als„MgO fein" bezeichnet, vor. Als Referenz diente eine Mischung 4 aus „MgO grob" und „MgO fein" als Komponente A und feinkristallinem Graphit als Komponente C, wobei Mischung 4 keine Komponente B enthielt.
Als Bindemittel der Komponente D diente eine Mischung aus 4 Gew.-% eines flüssigen Phenolharzes und 2 Gew.-% eines festen Phenolharzes, wobei die Gew.-%-Angaben auf die Gesamtmasse der Mischung bezogen sind. Die jeweils homogen gemischten Versätze wurden unter einem Pressdruck von 100 MPa (=100 N/mm2) in Stahlform zu zylinderförmigen Presslingen (Durchmesser=Höhe=36 mm) uniaxial verpresst. Die Presslinge wurden bei 400 °C unter Luftausschluss 2 Stunden lang getempert.
Die getemperten Presslinge wurden in einem Graphitbett bei 1500 °C 2 Stunden lang in Luft erhitzt. Dabei war eine Stirnseite der Presslinge der Ofenatmosphäre ausgesetzt.
Zur Auswertung der Oxidationsbeständigkeit wurde ein Pressling nach dem Erhitzen bei 1500 °C für 2 Stunden der Höhe nach halbiert. Die Schnittfläche wurde ausgewertet und die Fläche des sogenannten Schwarzkerns (SK) bestimmt. Der Schwarzkern ist der unausgebrannte Kohlenstoff. Seine Größe, bezogen auf die gesamte Schnittfläche in % ausgedrückt, dient als Maß für die Oxidationsbeständigkeit.
Die Zusammensetzung der untersuchten Mischungen und die erzielten Ergebnisse sind in Tabelle 4 angeführt. Dabei wurde neben der KDF auch die offene Porosität (OP) sowie die Rohdichte (RD) bestimmt. Tabelle 4
Figure imgf000025_0001
Tabelle 4 zeigt die Zusammensetzung der Mischungen 4 bis 6 mit 0 Gew.-%, 5 Gew.-% und 10 Gew.-% Cr(VI)-freiem Chromerzrückstand als Komponente B, wobei die Gew.-%- Angaben auf die Gesamtmasse der Komponenten A, B und C in der Mischung bezogen sind und die Gew.-%-Angabe von Komponente D auf die Gesamtmasse der jeweiligen Mischung bezogen ist, und die Eigenschaften der feuerfesten Materialien erhalten nach Erhitzen auf 1500 °C.
Die erfindungsgemäßen feuerfesten Materialien zeichnen sich durch eine hohe Kaltdruckfestigkeit, eine geringe Porosität, eine hohe Rohdichte aus sowie eine hohe Oxidationsbeständigkeit aus.
Es konnten keine Anzeichen für eine Reoxidation des COPR-Materials gefunden werden, weder in dem entkohlten Bereich (ausgebrannter Graphit) noch im Schwarzkernbereich (intaktes Material) konnten signifikante Mengen Cr(VI) nachgewiesen werden.

Claims

Patentansprüche:
1 . Feuerfeste Materialien, erhalten durch Erhitzen einer Mischung Z auf wenigstens 250 °C, bevorzugt auf wenigstens 350 °C, dadurch gekennzeichnet, dass die Mischung Z folgende Komponenten enthält:
• 80 bis 97 Gew.-% einer Komponente A, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, die zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus einem oder mehreren der Oxide ausgewählt aus der Gruppe bestehend aus Al203, Zr02, BeO, MgO, Ti02, Fe203, Cr203, La203, Ta205 und Sn02 besteht, und
• 3 bis 15 Gew.-% einer Komponente B, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, und die Komponente B zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 85 Gew.-%, besonders bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente B bezogen sind, einen Mischkristall mit Spinell-Struktur enthält, der wenigstens die Oxide Fe203, Al203, MgO und Cr203 enthält, wobei der Mischkristall mit Spinell- Struktur der Komponente B
• 30 bis 80 Gew. %, bevorzugt 40 bis 68 Gew. %, Fe203,
• 10 bis 60 Gew. %, bevorzugt 15 bis 43 Gew. %, Al203,
• 5 bis 55 Gew. %, bevorzugt 10 bis 38 Gew. %, MgO und
• 5 bis 55 Gew. %, bevorzugt 7 bis 35 Gew. %, Cr203, enthält, wobei die Gew.-% bezogen sind auf die Masse des Mischkristalls mit Spinell-Struktur, und
• 0 bis 15 Gew.-% einer Komponente C, wobei die Gew.-%-Angaben die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, die zu wenigstens 86 Gew.-%, bevorzugt zu wenigstens 92 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente C bezogen sind, Kohlenstoff enthält.
2. Feuerfeste Materialien gemäß Anspruch 1 , dadurch gekennzeichnet, dass der Mischkristall mit Spinell-Struktur der Komponente B einen Gitterparameter von 822 pm bis 835 pm aufweist.
3. Feuerfeste Materialien gemäß einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Komponente B nach einem Reduktionverfahren erhalten wurde, bevorzugt nach einem Verfahren enthaltend die Schritte i) Mischen eines oxidischen Feststoffes, enthaltend die Oxide Fe203, Al203, MgO und Cr203 und enthaltend Cr(VI), bevorzugt bis zu 80000 ppm Cr(VI), besonders bevorzugt bis zu 50000 ppm Cr(VI), mit einer kohlenstoffhaltigen, im Bereich von 20 bis 100 °C flüssigen Verbindung, ii) Behandeln der nach i) erhaltenen Mischung unter Schutzatmosphäre in einem indirekt beheizten Reaktor bei einer Temperatur von 700 °C bis 1 100 °C, besonders bevorzugt bei einer Temperatur von 800 °C bis 1000 °C, iii) Abkühlen des nach ii) erhaltenen Reaktionsproduktes unter Schutzatmosphäre auf wenigstens 300 °C, vorzugsweise auf wenigstens 150 °C.
4. Feuerfeste Materialien gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Komponente B weniger als 640 ppb Cr(VI), bevorzugt weniger als 107 ppb Cr(VI) enthält.
5. Feuerfeste Materialien gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C wenigstens 50 Gew.-%, bevorzugt wenigstens 65 Gew.-%, besonders bevorzugt wenigstens 75 Gew.% der Gesamtmasse der Mischung Z beträgt.
6. Feuerfeste Materialien gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Komponente A zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus Al203 besteht.
7. Feuerfeste Materialien gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Komponente A zu wenigstens 80 Gew.-%, bevorzugt zu wenigstens 90 Gew.-%, wobei die Gew.-%-Angaben auf die Komponente A bezogen sind, aus MgO besteht.
8. Feuerfeste Materialien gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Mischung Z 0.5 bis 25 Gew.-%, bevorzugt 1 bis 15 Gew.-%, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten
A, B und C in der Mischung Z bezogen sind, der Komponente C enthält.
9. Feuerfeste Materialien gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als Komponente C Graphit oder Ruß oder Mischungen davon, bevorzugt Graphit, eingesetzt wird.
10. Feuerfeste Materialien gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Mischung Z als Formkörper eingesetzt wird.
1 1 . Feuerfeste Materialien gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Mischung Z weniger als 1 1 Gew.-% Si02, bevorzugt weniger als 5 Gew.-% Si02, wobei die Gew.-%-Angaben auf die Gesamtmasse der Komponenten A, B und, sofern vorhanden, C in der Mischung Z bezogen sind, enthält.
12. Feuerfeste Materialien gemäß einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass die Mischung Z bis zu 25 Gew.-%, bevorzugt bis zu 10 Gew.-%, wobei die Gew.-% auf die Gesamtmasse der Mischung Z bezogen sind, einer weiteren Komponente D enthält, wobei Komponente D ein oder mehrere Bindemittel ist, bevorzugt ausgewählt aus der Gruppe der Tone, Tonerdezemente, der anorganischen Phosphate, Alkalisilikate, Ethylsilikate, anorganischen Sulfate, Boroxide, verkokende Bindemittel, bevorzugt Pech oder Kunstharze oder Mischungen davon, Stärke und Ligninsulfonate.
13. Feuerfeste Materialien gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Mischung Z auf wenigstens 800 °C, bevorzugt auf wenigstens 1200 °C, besonders bevorzugt auf wenigstens 1450 °C erhitzt wird.
14. Verwendung der feuerfesten Materialien gemäß nach einem der Ansprüche 1 bis 13 für die Auskleidung von Anlagen für thermische Prozesse sowie von Transportgefäßen, für den Bau von Konstruktionselementen wie verschleißfesten, technischen und/ oder mechanischen Bauteilen, für die Wärmerückgewinnung und für die Wärmedämmung.
PCT/EP2015/055193 2014-03-13 2015-03-12 Feuerfeste materialien enthaltend einen mischkristall mit spinell-struktur WO2015136041A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15709207.3A EP3116843A1 (de) 2014-03-13 2015-03-12 Feuerfeste materialien enthaltend einen mischkristall mit spinell-struktur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14159478.8 2014-03-13
EP14159478.8A EP2918564A1 (de) 2014-03-13 2014-03-13 Feuerfeste Materialien enthaltend einen Mischkristall mit Spinell-Struktur

Publications (1)

Publication Number Publication Date
WO2015136041A1 true WO2015136041A1 (de) 2015-09-17

Family

ID=50277007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/055193 WO2015136041A1 (de) 2014-03-13 2015-03-12 Feuerfeste materialien enthaltend einen mischkristall mit spinell-struktur

Country Status (2)

Country Link
EP (2) EP2918564A1 (de)
WO (1) WO2015136041A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786739A (zh) * 2022-11-23 2023-03-14 北京科技大学 一种提高铬矿合金化率的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016109258B4 (de) * 2016-05-19 2018-08-16 Refratechnik Holding Gmbh Zur Elastifizierung von grobkeramischen Feuerfesterzeugnissen geeignetes feuerfestes Spinellgranulat, Verfahren zu dessen Herstellung, Feuerfesterzeugnis mit dem Spinellgranulat, Verwendung des Feuerfesterzeugnisses, Auskleidung eines Industrieofens mit dem Feuerfesterzeugnis
CN107935609A (zh) * 2017-12-02 2018-04-20 芜湖乾凯材料科技有限公司 高化学稳定性水泥窑烧成带用耐火砖及其制备方法
CN107759214A (zh) * 2017-12-02 2018-03-06 芜湖乾凯材料科技有限公司 一种高热震稳定性镁尖晶石砖及其制备方法
CN107915492A (zh) * 2017-12-02 2018-04-17 芜湖乾凯材料科技有限公司 水泥窑烧成带用氧化锆复合镁铝尖晶石砖及其制备方法
CN111704444A (zh) * 2020-06-28 2020-09-25 无锡市强亚耐火材料有限公司 一种耐腐蚀抗冲刷耐火材料及其制备工艺
CN112679201B (zh) * 2020-12-24 2022-08-19 南京联合荣大工程材料有限责任公司 一种以铝铬渣为主要原料的无水泥铝镁铬浇注料及其制备方法与应用
CN113999044B (zh) * 2021-11-12 2022-08-26 郑州磨料磨具磨削研究所有限公司 一种多孔陶瓷板及其制备方法
CN114671673A (zh) * 2022-03-31 2022-06-28 安徽瑞泰新材料科技有限公司 一种耐侵蚀轻量耐火材料及其制备方法
CN116177998A (zh) * 2023-03-03 2023-05-30 河南竹林庆州耐火材料有限公司 一种再生型低碳刚玉尖晶石质冲击板及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE692523C (de) 1938-05-01 1940-06-21 I G Farbenindustrie Akt Ges Hochfeuerfeste Kittmehle und daraus bereitete Moertel, Stampf-, Flick- und Anstrichmassen
GB1282206A (en) * 1969-04-03 1972-07-19 Oesterr Amerikan Magnesit Process of manufacturing refractory magnesia-chrome and chrome-magnesia bricks
GB1302567A (de) * 1969-05-15 1973-01-10
JPS58225158A (ja) 1982-06-25 1983-12-27 Nippon Chem Ind Co Ltd:The セラミツク用着色剤
JPS5992968A (ja) 1982-11-18 1984-05-29 日本化学工業株式会社 耐凍害性燻瓦の製造方法
JPS6236061A (ja) 1985-08-09 1987-02-17 日本化学工業株式会社 セラミツクス用着色剤
JPH03205347A (ja) * 1989-12-30 1991-09-06 Kawasaki Refract Co Ltd マグネシア・カーボンれんが
WO2014006196A1 (de) 2012-07-06 2014-01-09 Lanxess Deutschland Gmbh Verfahren zur reduktion von sechswertigem chrom in oxidischen feststoffen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258353A (en) * 1963-01-25 1966-06-28 Gen Refractories Co Magnesia refractory product and process
AT257448B (de) * 1966-01-26 1967-10-10 Oesterr Amerikan Magnesit Verfahren zur Herstellung von ungebrannten, feuerfesten Steinen aus Magnesitchrom und Chrommagnesit
US3443974A (en) * 1967-04-21 1969-05-13 Kaiser Aluminium Chem Corp Refractory composition
US3522063A (en) * 1967-07-26 1970-07-28 Gen Refractories Co Phosphate-bonded basic refractory composition
GB1478160A (en) * 1974-11-14 1977-06-29 Taylors Sons Co C Alumina refractory
US4071370A (en) * 1977-03-31 1978-01-31 Dresser Industries, Inc. Magnesite-chrome refractory
CA1128554A (en) * 1979-04-23 1982-07-27 Thomas A. Geisler Method of lining a rotary cement kiln

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE692523C (de) 1938-05-01 1940-06-21 I G Farbenindustrie Akt Ges Hochfeuerfeste Kittmehle und daraus bereitete Moertel, Stampf-, Flick- und Anstrichmassen
GB1282206A (en) * 1969-04-03 1972-07-19 Oesterr Amerikan Magnesit Process of manufacturing refractory magnesia-chrome and chrome-magnesia bricks
GB1302567A (de) * 1969-05-15 1973-01-10
JPS58225158A (ja) 1982-06-25 1983-12-27 Nippon Chem Ind Co Ltd:The セラミツク用着色剤
JPS5992968A (ja) 1982-11-18 1984-05-29 日本化学工業株式会社 耐凍害性燻瓦の製造方法
JPS6236061A (ja) 1985-08-09 1987-02-17 日本化学工業株式会社 セラミツクス用着色剤
JPH03205347A (ja) * 1989-12-30 1991-09-06 Kawasaki Refract Co Ltd マグネシア・カーボンれんが
WO2014006196A1 (de) 2012-07-06 2014-01-09 Lanxess Deutschland Gmbh Verfahren zur reduktion von sechswertigem chrom in oxidischen feststoffen

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DING ET AL.: "Testing and Evaluation of Inorganic Materials", KEY ENGINEERING MATERIALS, vol. 544, 2013, pages 316 - 320
G. I. ANTONOV ET AL: "Unfired chemically bonded reinforced magnesite-chromite refractories", REFRACTORIES., vol. 14, no. 3-4, 1 March 1973 (1973-03-01), US, pages 138 - 142, XP055126108, ISSN: 0034-3102, DOI: 10.1007/BF01286420 *
GERALD ROUTSCHKA, HARTMUT WUTHNOW: "Praxisbuch Feuerfeste Werkstoffe, 5. Auflage", 14 October 2011, VULKAN VERLAG, Essen (DE), ISBN: 978-3-8027-3161-7, XP002721904 *
KALPAKLI, REFRACTORIES AND INDUSTRIAL CERAMICS, vol. 49, no. 4, 2008, pages 314 - 319
LEE Y ET AL: "Minimization of Hexavalent chromium in magnesite-chrome refractory", METALLURGICAL AND MATERIALS TRANSACTIONS B, SPRINGER-VERLAG, NEW YORK, vol. 28, no. 5, 1 October 1997 (1997-10-01), pages 855 - 859, XP019696689, ISSN: 1543-1916 *
ZAWRAH ET AL., ADVANCES IN APPLIED CERAMICS, vol. 104, no. 6, 2005, pages 312 - 317

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786739A (zh) * 2022-11-23 2023-03-14 北京科技大学 一种提高铬矿合金化率的方法
CN115786739B (zh) * 2022-11-23 2024-01-23 北京科技大学 一种提高铬矿合金化率的方法

Also Published As

Publication number Publication date
EP3116843A1 (de) 2017-01-18
EP2918564A1 (de) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2015136041A1 (de) Feuerfeste materialien enthaltend einen mischkristall mit spinell-struktur
EP3523264B1 (de) Verfahren zur herstellung einer porösen sintermagnesia, versatz zur herstellung eines grobkeramischen feuerfesten erzeugnisses mit einer körnung aus der sintermagnesia, derartiges erzeugnis sowie verfahren zu seiner herstellung, zustellung eines industrieofens und industrieofen
DE69110000T2 (de) Feuerfest Erzeugnisse durch eine Sialon-Matrix gebunden und Verfahren zu ihrer Herstellung.
DE102012023318A1 (de) Verwendung von ungebrannten feuerfesten Erzeugnissen als Zustellung von großvolumigen Industrieöfen sowie Industrieofen ausgekleidet mit den ungebrannten feuerfesten Erzeugnissen
WO2015086204A1 (de) Grobkeramisches feuerfestes erzeugnis und verfahren zu seiner herstellung sowie seine verwendung
DE102007011133B4 (de) Feuerfester kohlenstoffgebundener Magnesiastein sowie Verfahren zu seiner Herstellung
EP0611740B1 (de) Titanhaltiger Zuschlagstoff und dessen Verwendung zur Erhöhung der Haltbarkeit der feuerfesten Ausmauerung eines Ofens
EP3002265B1 (de) Versatz zur Herstellung eines feuerfesten Magnesiakohlenstofferzeugnisses oder eines feuerfesten Alumina-Magnesia-Kohlenstofferzeugnisses, ein Verfahren zur Herstellung eines solchen Erzeugnisses, ein solches Erzeugnis sowie die Verwendung eines solchen Erzeugnisses
AT395846B (de) Magnesia-aluminiumoxid-spinellklinker sowie verfahren zur herstellung von feuerfestem produkt mittels verwendung desselben
EP1074529B2 (de) Feuerfester Formkörper sowie feuerfester Versatz und Verfahren zur Herstellung eines Formkörpers für metallurgische Prozesse
DE3715178C2 (de) Verfahren zur Herstellung eines feuerfesten, eisen- und schlackenresistenten Oxid-Kohlenstoff-Steins
EP1247785B1 (de) Resistorkörner für feuerfeste Formkörper und Verfahren zu ihrer Herstellung
EP3466904B1 (de) Versatz zur herstellung eines feuerfesten kohlenstoffgebundenen steines, ein verfahren zur herstellung eines feuerfesten kohlenstoffgebundenen steines sowie eine verwendung von ti2alc
EP1575879B1 (de) Versatz zur herstellung eines feuerfesten keramischen formk rpers, daraus gebildeter formk rper und eine verwendung
DE202017007171U1 (de) Poröse Sintermagnesia, Versatz zur Herstellung eines grobkeramischen feuerfesten Erzeugnisses mit einer Körnung aus der Sintermagnesia, derartiges Erzeugnis sowie Zustellung eines Industrieofens und Industrieofen
EP3511307B1 (de) Schmelzrohstoff zur herstellung eines feuerfesten erzeugnisses, ein verfahren zur herstellung des schmelzrohstoffs sowie eine verwendung des schmelzrohstoffs
EP2129635B1 (de) Keramisches erzeugnis für hochtemperaturanwendungen
DE700416C (de) Keramischer Baustoff
AT393832B (de) Geformte oder ungeformte feuerfestzusammensetzungen auf magnesitbasis und ihre verwendung zum ausmauern von oefen
EP3919461B1 (de) Trockener versatz und versatzfrischmasse zur herstellung eines grobkeramischen, gebrannten feuerfesten erzeugnisses, insbesondere einer rohrschutzplatte, aus nitridgebundenem siliciumcarbid, derartiges erzeugnis sowie verfahren zu seiner herstellung und müllverbrennungsanlage, rauchgasentschwefelungsanlage und schmelzwanne mit einem derartigen erzeugnis
DE102017124358B4 (de) Verwendung eines Versatzes und/oder eines geformten oder ungeformten feuerfesten Erzeugnisses für eine feuerfeste Zustellung einer Kohlevergasungsanlage, derartige Zustellung sowie Kohlevergasungsanlage mit einer derartigen Zustellung
DE102016109258A1 (de) Zur Elastifizierung von grobkeramischen Feuerfesterzeugnissen geeignete feuerfeste Spinellgranulate, Verfahren zu ihrer Herstellung und ihre Verwendung
AT158871B (de) Keramischer Baustoff.
DE102019220085A9 (de) Versatz zur Herstellung eines grobkeramischen feuerfesten basischen Erzeugnisses, derartiges Erzeugnis sowie Verfahren zu seiner Herstellung, Zustellung eines Industrieofens und Industrieofen
AT345144B (de) Verfahren zur herstellung eines vorreagierten magnesia-chromerz-kornes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15709207

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015709207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015709207

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE