WO2015135485A1 - 一种光纤复合架空地线雷击辨别与定位方法 - Google Patents

一种光纤复合架空地线雷击辨别与定位方法 Download PDF

Info

Publication number
WO2015135485A1
WO2015135485A1 PCT/CN2015/074095 CN2015074095W WO2015135485A1 WO 2015135485 A1 WO2015135485 A1 WO 2015135485A1 CN 2015074095 W CN2015074095 W CN 2015074095W WO 2015135485 A1 WO2015135485 A1 WO 2015135485A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
overhead ground
optical fiber
composite overhead
lightning strike
Prior art date
Application number
PCT/CN2015/074095
Other languages
English (en)
French (fr)
Inventor
吕立冬
钟成
周凤珍
缪巍巍
梁云
李炳林
郭经红
宋宁希
苏汉
Original Assignee
国家电网公司
中国电力科学研究院
国网河北省电力公司
国网河南省电力公司
江苏省电力公司信息通信分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 中国电力科学研究院, 国网河北省电力公司, 国网河南省电力公司, 江苏省电力公司信息通信分公司 filed Critical 国家电网公司
Priority to US15/124,488 priority Critical patent/US10203293B2/en
Publication of WO2015135485A1 publication Critical patent/WO2015135485A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0842Measurements related to lightning, e.g. measuring electric disturbances, warning systems

Definitions

  • the invention belongs to the field of electric power sensing, and particularly relates to a method for accurately identifying and locating a lightning strike event of an optical fiber composite overhead ground line.
  • Step 1 Connect the distributed fiber optic temperature sensor to the spare fiber of the fiber-optic composite overhead ground line, detect the temperature information along the line, and establish a temperature geographical distribution curve corresponding to the geographical information of the distributed temperature and the fiber-optic composite overhead ground line;
  • Step 2 At regular intervals, the distributed optical fiber temperature sensor feeds back the temperature data and compares it with the previous measurement data. Compares the temperature data at the same geographical location to determine whether there is a sudden change in the temperature data, determines the location of the abrupt region, and analyzes the corresponding The trend of temperature in several measurements before and after;
  • the distributed optical fiber temperature sensor adopts a Raman optical time domain reflectometer
  • the distributed optical fiber temperature sensor measures the time interval of the temperature of the optical fiber composite overhead ground line is less than 5 minutes;
  • the distributed temperature sensor can realize blind zone-free monitoring on the entire fiber line. Compared with the point sensor, it can save the number of sensors and reduce the cost, and its passive and anti-electromagnetic interference characteristics determine its more. Practical value.
  • the invention has important significance for improving the automation level of the power system and saving power operation and maintenance personnel, financial and material resources.
  • FIG. 2 is a flow chart of a method for distinguishing and locating an optical fiber composite overhead ground lightning strike according to the present invention
  • Figure 1 shows the temperature variation of the fiber-optic composite overhead ground line at the point of lightning strike. Since the optical fiber of the optical fiber composite overhead ground wire is encapsulated in the steel pipe, and the waterproof grease filled with the aluminum wire gap wrapped by the steel pipe has a certain heat resistance, the temperature of the optical fiber composite overhead ground wire is gradually increased at the lightning strike position. Finally, the temperature at the location of the lightning strike is gradually restored to the same temperature as the adjacent region due to heat dissipation.
  • FIG. 2 shows the flow of the method for distinguishing and locating the lightning strike of the optical fiber composite overhead ground line in the embodiment, and the specific steps are as follows:
  • Step 1 Connect the distributed fiber optic temperature sensor to the spare fiber of the fiber-optic composite overhead ground wire to detect The temperature information along the line establishes a temperature geographical distribution curve corresponding to the distributed temperature and the geographic information of the optical fiber composite overhead ground line;
  • Step 2 At regular intervals, the distributed fiber optic temperature sensor completes a measurement and feeds back the temperature data, and compares it with the previous measurement data; compares the temperature data at the same geographical location to determine whether there is a sudden change, determines the location of the abrupt region, and analyzes the The corresponding temperature changes in several measurements before and after;
  • Step 3 Select several locations adjacent to the temperature abrupt area, and compare whether the temperature at these positions is also abrupt in several measurements before and after several measurements. If there is no mutation, it can be judged that the previously mutated temperature is caused by external heat transfer. of;
  • Step 4 Analyze the temperature change trend of the optical fiber composite overhead ground line corresponding to the temperature abrupt region in several measurements before and after the measurement, if the temperature of the abrupt region is after several measurement time intervals and at several positions adjacent thereto If the temperature is consistent, it is confirmed that the temperature abrupt region is subjected to lightning strike, thereby determining the location of the lightning strike in the geographic information system of the optical fiber composite overhead ground line.
  • the distributed optical fiber temperature sensor includes a Raman optical time domain reflectometer, a Brillouin optical time domain reflectometer, and a Brillouin optical time domain analyzer; the distributed optical fiber temperature sensor measures the temperature interval of the optical fiber composite overhead ground line less than 5 minutes.
  • the spatial resolution is less than 2 meters.
  • the lightning strike count of the arrester is used as a reference for the lightning strike identification of the method; when the temperature rise value of a region along the optical composite overhead ground line is greater than the temperature measurement accuracy value of the distributed optical fiber temperature sensor used, it is determined that the temperature of the region is abrupt;
  • the positions adjacent to the temperature abrupt region are the positions of two points before and after the temperature abrupt change position.
  • the Brillouin optical time domain reflectometer is connected to the spare fiber of the optical fiber composite overhead ground line to detect the temperature information along the optical fiber composite overhead ground line; the data sampling rate of the Brillouin optical time domain reflectometer is 10 per second. One hundred million points, so that one temperature data point is captured every 0.1 meter along the fiber along the optical fiber composite overhead ground line.
  • the spatial resolution of the Brillouin optical time domain reflectometer is set to 1 meter. That is, the minimum distinguishable distance of the measured temperature is 1 meter; the minimum distinguishing unit and its returned temperature distribution are as shown in FIG. 3;
  • the temperature curve after the difference treatment will show the temperature rise region, as shown in Figure 1.
  • the sudden change in temperature is defined as the sudden increase in temperature at a certain location is greater than the measurement of the distributed temperature sensor.
  • the quantity accuracy value whether there is a sudden change in the temperature data at the same geographical position, determining the position of the mutation region and the change trend of the temperature in several measurements before and after the mutation;
  • the location of the lightning strike is determined in the geographic information system of the optical fiber composite overhead ground line, thereby marking the lightning strike position and alarming in the optical fiber composite overhead ground geographic information system containing the temperature information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Locating Faults (AREA)

Abstract

一种光纤复合架空地线雷击辨别与定位方法,该方法根据雷击会导致光纤复合架空地线受雷击位置温度骤升的特性,充分利用光纤复合架空地线中的光纤资源和分布式光纤温度传感器的高灵敏度探测和高精度定位事件的能力,将分布式光纤温度传感器接入到光纤复合架空地线中的备用光纤,建立光纤复合架空地线地理位置与分布式温度曲线的对应关系,分别比较温度曲线中同一位置不同时刻的温度以提取出温度突变区域,再比较与温度曲线中突变区域相邻的几个位置的温度变化以排除温度测量中的干扰因素,从而确定温度的突变来自于瞬时外部因素加热即雷击,并结合避雷器的计数变化,最终辨别和定位雷击。

Description

一种光纤复合架空地线雷击辨别与定位方法 技术领域
本发明属于电力传感领域,具体涉及一种用于精确识别和定位光纤复合架空地线雷击事件的方法。
背景技术
光纤复合架空地线是电力系统通信的重要线路,承担着电力调度、继电保护等多种业务。目前对电力通信线路的事故隐患排查绝大多数依靠人力巡检来完成。这种巡检的针对性弱、周期长而且效率低。雷击、覆冰、台风等是引起光纤复合架空地线故障的主要原因,相对于覆冰、台风等,雷击引起的光纤复合架空地线故障更具隐秘性。这是因为如果雷击没有导致光纤复合架空地线直接断裂,雷击处的断股或局部脆性加大将难以通过人眼识别。若能及时辨别雷击并定位其位置,提升电力运维自动化水平,那么对线路的巡检就更具有针对性,从而节省人、财、物资源。
现有技术中,申请号为201110214109.1的发明专利申请公开了一种输电线路雷击与非雷击故障的辨别方法,通过判定故障行波电流,比较波尾时间与阈值,从而辨识雷击,但该方法无法精确定位雷击点。申请号为200610021239.2的发明专利申请公开了一种电力输电线路雷击点的确定方法,通过设置雷击传感器通过建立雷电流、雷电感应电压以及雷击点关系的专用数据库来辨别输电线路的雷击事件。然而上述方法均依靠电子式雷击传感器进行雷击辨别与定位,不能充分利用光纤复合架空地线的光纤资源,因此,本发明提供了一种基于分布式光纤温度传感的光纤复合架空地线雷击辨别与定位方法,充分利用光纤复合架空地线中的光纤资源和分布式光纤温度传感器的高灵敏度探测和高精度定位事件的能力,实时监测光纤复合架空地线沿线温度的突变区域,分析温度突变区域不同时刻的温度变化过程及突变区域相邻位置的温度变化特征,从而实现对雷击事件的精确辨别和定位。
发明内容
本发明提出一种光纤复合架空地线雷击辨别与定位方法,发明目的在于充分利用光纤复合架空地线中的光纤资源以及分布式温度传感器高灵敏温度感知与高精度事件定位等特性,通过筛选光纤复合架空地线沿线温度曲线上的突变区域,分析突变温度区域不同时刻的温度 变化过程及突变区域相邻位置的温度变化特征,从而实现对雷击事件的准确辨别和精确定位。
实现发明目的的发明内容包括以下步骤:
步骤1:将分布式光纤温度传感器接入光纤复合架空地线的备用光纤,探测其沿线的温度信息,建立分布式温度与光纤复合架空地线地理信息对应的温度地理分布曲线;
步骤2:每隔一定时间,分布式光纤温度传感器反馈一次温度数据,并与前几次测量数据进行比较;比较同一地理位置处的温度数据是否有突变,确定突变区域的位置,分析其对应的温度在前后几次测量中的变化趋势;
步骤3:选取与温度突变区域相邻的几个位置,比较前后几次测量中这些位置处的温度是否也有突变,若不存在突变,则可判断前面筛选出的温度突变区域是外界传热造成的;
步骤4:分析温度突变区域对应的光纤复合架空地线地理位置在前后几次测量中温度的变化趋势,若突变区域的温度在分布式光纤温度传感器的几个测量时间间隔之后和与之相邻的几个位置处的温度一致,则确认该区域的温度突变由雷击传热产生,从而在光纤复合架空地线的地理信息系统中确定出雷击的位置。
优选的,所述分布式光纤温度传感器采用拉曼光时域反射仪;
优选的,所述分布式光纤温度传感器采用布里渊光时域反射仪;
优选的,所述分布式光纤温度传感器采用布里渊光时域分析仪;
优选的,避雷器的雷击计数变化作为本方法雷击辨别的参考;
优选的,所述分布式光纤温度传感器测量光纤复合架空地线沿线温度的时间间隔小于5分钟;
优选的,所述分布式光纤温度传感器的空间分辨率小于2米;
优选的,当光纤复合架空地线沿线某区域的温度上升值大于所采用的分布式光纤温度传感器的温度测量精度值时,判定该区域有温度突变;
优选的,与温度突变区域相邻的几个位置为该温度突变位置处前后各两个点的位置。
与最接近的现有技术相比,本发明的有益效果是:
充分利用光纤复合架空地线中的光纤资源以及分布式温度传感器的高灵敏 温度感知、高精度事件定位等特性,实现对雷击的准确判断和定位。分布式温度传感器可以在整条光纤线路上实现无盲区的监测,相对于点式传感器,它能大大节省传感器的数量,从而降低成本,而且它无源、抗电磁干扰等特点决定了其更具实用价值。本发明对提升电力系统自动化水平、节省电力运维人、财、物资源具有重要意义。
附图说明
下面结合附图对本发明进一步说明。
图1为光纤复合架空地线受雷击位置处的温度变化过程图;
图2为本发明提供的一种光纤复合架空地线雷击辨别与定位方法的流程图;
图3为本发明实施例光纤复合架空地线中的光纤传感单元划分与温度曲线的对应关系图;
图4为本发明实施例中光纤复合架空地线沿线温度分布与地理信息系统的映射图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述。
图1显示了光纤复合架空地线受雷击位置处的温度变化过程。由于光纤复合架空地线的光纤封装在钢管内,而且,钢管外包裹的铝丝间隙填充的防水油膏具有一定的阻热作用,因此光纤复合架空地线遭受雷击位置处的温度会逐渐升高,最后,会因为散热使得遭受雷击位置处的温度逐渐恢复到与其相邻区域的温度相同。
本发明充分利用光纤复合架空地线中的光纤资源和分布式光纤温度传感器高灵敏度探测和高精度事件定位特性,根据获得的温度数据筛选光纤复合架空地线的温度突变区域,分析温度突变区域在不同时刻的温度变化趋势及与温度突变区域相邻的位置的温度变化趋势,从而实现对雷击事件的辨别和精确定位;
图2显示了本实施例中的光纤复合架空地线雷击辨别与定位方法的流程,其具体步骤分为:
步骤1:将分布式光纤温度传感器接入光纤复合架空地线的备用光纤,探测 其沿线的温度信息,建立分布式温度与光纤复合架空地线地理信息对应的温度地理分布曲线;
步骤2:每隔一定时间,分布式光纤温度传感器完成一次测量并反馈温度数据,与前几次测量数据进行比较;比较同一地理位置处的温度数据是否有突变,确定突变区域的位置,分析其对应的温度在前后几次测量中的变化趋势;
步骤3:选取与温度突变区域相邻的几个位置,比较前后几次测量中这些位置处的温度是否也有突变,若不存在突变,则可判断前面筛选出的温度突变区域是外界传热造成的;
步骤4:分析温度突变区域对应的光纤复合架空地线地理位置在前后几次测量中温度的变化趋势,若突变区域的温度在几个测量时间间隔之后和与之相邻的几个位置处的温度一致,则确认该温度突变区域遭受雷击,从而在光纤复合架空地线的地理信息系统中确定出雷击的位置。
分布式光纤温度传感器包括拉曼光时域反射仪、布里渊光时域反射仪和布里渊光时域分析仪;分布式光纤温度传感器测量光纤复合架空地线沿线温度的时间间隔小于5分钟,空间分辨率小于2米。
避雷器的雷击计数变化作为本方法雷击辨别的参考;当光纤复合架空地线沿线某区域的温度上升值大于所采用的分布式光纤温度传感器的温度测量精度值时,判定该区域有温度突变;与温度突变区域相邻的几个位置为该温度突变位置处前后各两个点的位置。
本实施例将布里渊光时域反射仪接入光纤复合架空地线的备用光纤,探测光纤复合架空地线沿线的温度信息;布里渊光时域反射仪的数据采样率为每秒10亿个点,这样,光纤沿线也即光纤复合架空地线沿线每隔0.1米就有1个温度数据点被捕获,同时,布里渊光时域反射仪的空间分辨率设置为1米,也即测量的温度的最小可区分距离为1米;最小区分单元及其返回的温度分布如图3所示;
建立如图4所示的与光纤复合架空地线地理信息系统对应的温度分布曲线,从而便于从温度数据点中精确地找到其对应的地理位置;布里渊光时域反射仪每隔3分钟反馈一次温度数据,并与前几次测量获得的温度数据进行做差;
若存在温度突变,做差处理后的温度曲线将显示出温度上升区域,如图1所示;将温度突变定义为某位置处温度突然升高的值大于分布式温度传感器的测 量精度值,比较同一地理位置处的温度数据是否有突变,确定突变区域的位置及温度在突变前后几次测量中的变化趋势;
选取与温度突变区域相邻的几个位置,比较前后几次测量各个位置处的温度是否有突变,若不存在突变,如图1中温度突变区域附近位置温度无明显变化,则可判断前面筛选出的温度突变区域是由外界传热造成的;
分析温度突变区域所处的光纤复合架空地线位置在前后几次测量中温度的变化趋势,若发现突变区域的温度在几个测量时间间隔之后和与之相邻的几个位置处的温度一致,如图1所示的温度突变区域及其邻近区域不同时刻的温度变化规律,结合避雷器的计数变化,则确认该区域的温度突变由雷击传热产生;
在光纤复合架空地线的地理信息系统中确定雷击的位置,从而在含有温度信息的光纤复合架空地线地理信息系统中标注雷击位置并报警。
最后应当说明的是:所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

Claims (9)

  1. 一种光纤复合架空地线雷击辨别与定位方法,其特征在于,所述方法包括下述步骤:
    步骤1:将分布式光纤温度传感器接入光纤复合架空地线的备用光纤,探测其沿线的温度信息,建立分布式温度与光纤复合架空地线地理信息对应的温度地理分布曲线;
    步骤2:每隔一定时间,分布式光纤温度传感器反馈一次温度数据,并与前几次测量数据进行比较;比较同一地理位置处的温度数据是否有突变,确定突变区域的位置,分析其对应的温度在前后几次测量中的变化趋势;
    步骤3:选取与温度突变区域相邻的几个位置,比较前后几次测量中这些位置处的温度是否也有突变,若不存在突变,则确定前面筛选出的温度突变区域是外界传热造成的;
    步骤4:分析温度突变区域对应的光纤复合架空地线地理位置在前后几次测量中温度的变化趋势,若突变区域的温度在分布式光纤温度传感器的几个测量时间间隔之后和与之相邻的几个位置处的温度一致,则确认该区域的温度突变由雷击传热产生,从而在光纤复合架空地线的地理信息系统中确定出雷击的位置。
  2. 如权利要求1所述的一种光纤复合架空地线雷击辨别与定位方法,其特征在于,所述分布式光纤温度传感器采用拉曼光时域反射仪。
  3. 如权利要求1所述的一种光纤复合架空地线雷击辨别与定位方法,其特征在于,所述分布式光纤温度传感器采用布里渊光时域反射仪。
  4. 如权利要求1所述的一种光纤复合架空地线雷击辨别与定位方法,其特征在于,所述分布式光纤温度传感器采用布里渊光时域分析仪。
  5. 如权利要求1所述的一种光纤复合架空地线雷击辨别与定位方法,其特征在于,避雷器的雷击计数变化作为本方法雷击辨别的参考。
  6. 如权利要求1所述的一种光纤复合架空地线雷击辨别与定位方法,其特征在于,所述分布式光纤温度传感器测量光纤复合架空地线沿线温度的时间间隔小于5分钟。
  7. 如权利要求1所述的一种光纤复合架空地线雷击辨别与定位方法,其特征在于,所述分布式光纤温度传感器的空间分辨率小于2米。
  8. 如权利要求1所述的一种光纤复合架空地线雷击辨别与定位方法,其特征在于,当光纤复合架空地线沿线某区域的温度上升值大于所采用的分布式光纤温度传感器的温度测量精度值时,判定所述区域为温度突变区域。
  9. 如权利要求1所述的一种光纤复合架空地线雷击辨别与定位方法,其特征在于,与温度突变区域相邻的几个位置为该温度突变位置处前后各两个点的位置。
PCT/CN2015/074095 2014-03-12 2015-03-12 一种光纤复合架空地线雷击辨别与定位方法 WO2015135485A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/124,488 US10203293B2 (en) 2014-03-12 2015-03-12 Method for lightning stroke identification and location on optical fiber composite overhead ground wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410090506.6 2014-03-12
CN201410090506.6A CN103837797B (zh) 2014-03-12 2014-03-12 一种光纤复合架空地线雷击辨别与定位方法

Publications (1)

Publication Number Publication Date
WO2015135485A1 true WO2015135485A1 (zh) 2015-09-17

Family

ID=50801501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074095 WO2015135485A1 (zh) 2014-03-12 2015-03-12 一种光纤复合架空地线雷击辨别与定位方法

Country Status (3)

Country Link
US (1) US10203293B2 (zh)
CN (1) CN103837797B (zh)
WO (1) WO2015135485A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2558295A (en) * 2016-12-23 2018-07-11 Aiq Dienstleistungen Ug Haftungsbeschrankt A distributed lightning stroke detection system operating in a monitoring mode

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103837797B (zh) * 2014-03-12 2016-04-20 国家电网公司 一种光纤复合架空地线雷击辨别与定位方法
CN104483591A (zh) * 2014-10-20 2015-04-01 国家电网公司 一种输电线路行波故障定位的监测装置
CN105911427A (zh) * 2016-04-26 2016-08-31 武汉新电电气技术有限责任公司 一种基于光纤复合架空地线温度分布的输电线路故障定位方法
US11230622B2 (en) 2016-11-09 2022-01-25 Bridgestone Corporation High cis-1,4 block copolymers of polybutadiene and polyisoprene
CN107061187B (zh) * 2017-06-12 2023-11-14 国电联合动力技术有限公司 一种风电机组雷击次数监测方法和装置
CN108020755B (zh) * 2017-12-06 2020-05-22 国网山东省电力公司电力科学研究院 基于故障录波与雷电定位系统的电网故障定位方法
US10931366B2 (en) * 2019-03-26 2021-02-23 Nec Corporation Distributed sensing over optical fiber carrying live, high-speed data
CN111474509A (zh) * 2020-04-25 2020-07-31 江苏亨通电力电缆有限公司 电缆预警监控试验平台
CN113092879B (zh) * 2021-03-31 2022-07-29 广东电网有限责任公司清远供电局 输电线路雷击监测方法、装置、设备及存储介质
CN113776777B (zh) * 2021-09-16 2024-03-01 安徽工业大学 一种光纤复合架空地线雷击告警装置及雷击事件识别方法
CN113933675B (zh) * 2021-10-11 2024-03-26 广东富信科技股份有限公司 一种半导体制冷产品检测方法、系统
CN115308537B (zh) * 2022-10-10 2023-01-24 广东电网有限责任公司中山供电局 一种架空地线雷击定位与线股损伤监测方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1743861A (zh) * 2005-10-08 2006-03-08 中国电力科学研究院 光纤复合架空地线“c”电流雷击试验系统
CN101713668A (zh) * 2008-10-03 2010-05-26 江苏通光光缆有限公司 电力线路覆冰短路和雷击故障的实时检测装置及检测法
CN201688927U (zh) * 2009-12-29 2010-12-29 聚光科技(杭州)股份有限公司 一种分布式光纤传感测量装置
CN201788252U (zh) * 2010-07-21 2011-04-06 深圳市深泰明科技有限公司 输电线路雷击故障定位装置
CN103323139A (zh) * 2013-05-27 2013-09-25 云南电力试验研究院(集团)有限公司电力研究院 一种对opgw运行状态进行监测的分布式光纤监测方法
JP2013195321A (ja) * 2012-03-22 2013-09-30 Mitsubishi Aircraft Corp 雷撃評価システム
CN103837797A (zh) * 2014-03-12 2014-06-04 国家电网公司 一种光纤复合架空地线雷击辨别与定位方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727788Y2 (ja) * 1986-05-23 1995-06-21 住友電気工業株式会社 架空送配電設備の監視装置
US4801937A (en) * 1986-06-16 1989-01-31 Fernandes Roosevelt A Line mounted apparatus for remote measurement of power system or environmental parameters beyond line-of-site distanc
US4904996A (en) * 1988-01-19 1990-02-27 Fernandes Roosevelt A Line-mounted, movable, power line monitoring system
US5138265A (en) * 1988-11-30 1992-08-11 Sumitomo Electric Industries, Ltd. Apparatus and system for locating thunderstruck point and faulty point of transmission line
US5125738A (en) * 1988-12-13 1992-06-30 Sumitomo Electric Industries, Ltd. Apparatus and system for locating a point or a faulty point in a transmission line
JPH0758310B2 (ja) * 1989-04-07 1995-06-21 東京電力株式会社 架空送電線の故障点検知方法
JP2771625B2 (ja) * 1989-09-11 1998-07-02 株式会社フジクラ 光ファイバ複合架空地線と架空送電線の事故点検出方法
JPH03257381A (ja) * 1990-03-08 1991-11-15 Ngk Insulators Ltd 高圧送電線故障点標定方法及び装置
JPH045580A (ja) * 1990-04-23 1992-01-09 Sumitomo Electric Ind Ltd 異常発生点検出方式
JPH05126895A (ja) * 1991-11-06 1993-05-21 Tokyo Electric Power Co Inc:The 架空送電線の故障点検知方法
JPH09178799A (ja) * 1995-12-28 1997-07-11 Fuji Electric Co Ltd 電気設備の事故点標定装置
JP3455656B2 (ja) * 1997-08-26 2003-10-14 中部電力株式会社 事故鉄塔位置標定システム
DK200300882A (da) * 2003-06-12 2004-12-13 Lm Glasfiber As Registrering af lynnedslag, herunder i vindenergianlæg
GB2458152B (en) * 2008-03-07 2010-09-29 Insensys Ltd Lightning detection
KR101030593B1 (ko) * 2009-09-29 2011-04-21 한국전력공사 거리 계전 장치, 거리 계전 처리 시스템 및 거리 계전 처리 방법
US20140107926A1 (en) * 2009-09-29 2014-04-17 Korea Electric Power Corporation Distance relay using real time lightning data
CN102147832A (zh) * 2011-04-29 2011-08-10 山西省电力公司电力科学研究院 一种输电线路的导线及架空地线空间位置的确定方法
US20130054162A1 (en) * 2011-08-31 2013-02-28 Tollgrade Communications, Inc. Methods and apparatus for determining conditions of power lines
CN203164333U (zh) * 2013-03-27 2013-08-28 国家电网公司 一种输电线路防雷性能时空差异化测试系统
CN105531612A (zh) * 2013-09-16 2016-04-27 3M创新有限公司 光学耦合器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1743861A (zh) * 2005-10-08 2006-03-08 中国电力科学研究院 光纤复合架空地线“c”电流雷击试验系统
CN101713668A (zh) * 2008-10-03 2010-05-26 江苏通光光缆有限公司 电力线路覆冰短路和雷击故障的实时检测装置及检测法
CN201688927U (zh) * 2009-12-29 2010-12-29 聚光科技(杭州)股份有限公司 一种分布式光纤传感测量装置
CN201788252U (zh) * 2010-07-21 2011-04-06 深圳市深泰明科技有限公司 输电线路雷击故障定位装置
JP2013195321A (ja) * 2012-03-22 2013-09-30 Mitsubishi Aircraft Corp 雷撃評価システム
CN103323139A (zh) * 2013-05-27 2013-09-25 云南电力试验研究院(集团)有限公司电力研究院 一种对opgw运行状态进行监测的分布式光纤监测方法
CN103837797A (zh) * 2014-03-12 2014-06-04 国家电网公司 一种光纤复合架空地线雷击辨别与定位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2558295A (en) * 2016-12-23 2018-07-11 Aiq Dienstleistungen Ug Haftungsbeschrankt A distributed lightning stroke detection system operating in a monitoring mode
GB2558295B (en) * 2016-12-23 2020-04-08 Aiq Dienstleistungen Ug Haftungsbeschraenkt A distributed lightning stroke detection system operating in a monitoring mode

Also Published As

Publication number Publication date
US20170023504A1 (en) 2017-01-26
CN103837797A (zh) 2014-06-04
US10203293B2 (en) 2019-02-12
CN103837797B (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2015135485A1 (zh) 一种光纤复合架空地线雷击辨别与定位方法
CN110927524B (zh) 一种基于botdr技术的opgw光缆断芯原因分析与精确定位方法
CN109765459B (zh) 一种基于就地研判的单相接地故障定位方法和系统
CN108229371B (zh) 基于冰形建模的输电导线横截面覆冰形状识别方法
CN104155568B (zh) 一种雷击输电线路避雷线精确定位方法
CN104316729A (zh) 机车车辆转向架检测用加速度传感器的自诊断方法
CN104574771B (zh) 一种复合式线型感温火灾探测器及其报警方法
CN103983881B (zh) 核探测器的故障诊断方法及装置
CN115566804B (zh) 一种基于分布式光纤传感技术的电力监测系统
CN111007365A (zh) 一种基于神经网络的超声波局部放电识别方法及系统
CN115528810A (zh) 一种基于电力设备的测温数据运检分析管理系统
CN108008237A (zh) 一种输电线路绝缘子污闪自动可视化观测系统及方法
CN103606240B (zh) 采用分布式光纤温度传感器系统进行火灾报警的方法
CN104019923A (zh) 电伴热系统在线监测管理方案
CN104538112B (zh) 光纤复合架空地线和测量其温度分布的方法
CN204287267U (zh) 一种矫正器及阻性电流测试仪
CN203858320U (zh) 一种基于阀值比较的接地网腐蚀断点检测系统
CN109358271A (zh) 一种基于mems光纤微电流传感技术的绝缘子劣化及污秽检测方法
CN106646670A (zh) 一种输电线路分布式微气象监测方法
CN105448014A (zh) 基于围墙周界安防系统的综合布线方法及入侵预警方法
CN104568193B (zh) 电力系统高低压发热部位自动指示器
CN109633375A (zh) 一种配电网安全距离识别方法及装置
CN109682457A (zh) 基于角度检测的光纤事件识别方法
CN204288419U (zh) 一种高灵敏复合线型感温火灾探测器
CN204406593U (zh) 一种复合式线型感温火灾探测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760925

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15124488

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15760925

Country of ref document: EP

Kind code of ref document: A1