WO2015135480A1 - 薄膜封装器件 - Google Patents

薄膜封装器件 Download PDF

Info

Publication number
WO2015135480A1
WO2015135480A1 PCT/CN2015/074026 CN2015074026W WO2015135480A1 WO 2015135480 A1 WO2015135480 A1 WO 2015135480A1 CN 2015074026 W CN2015074026 W CN 2015074026W WO 2015135480 A1 WO2015135480 A1 WO 2015135480A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier layer
thin film
desiccant
substrate
Prior art date
Application number
PCT/CN2015/074026
Other languages
English (en)
French (fr)
Inventor
苏文明
崔铮
费斐
张东煜
宋民顺
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Priority to US15/123,469 priority Critical patent/US20170077455A1/en
Publication of WO2015135480A1 publication Critical patent/WO2015135480A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of packaging technologies, and in particular, to a thin film package device.
  • OLED devices need to inject electrons from the cathode when working, which requires the cathode function to be as low as possible, but Common cathode materials such as aluminum metal, magnesium calcium, etc., are generally more active and easily react with infiltrated water vapor and oxygen.
  • water vapor will also react with the hole transport layer and the electron transport layer, or cause interface contact problems. These reactions will cause device failure.
  • the OLED is effectively packaged to make the functional layers of the device and the water vapor in the atmosphere.
  • the life of the device can be greatly extended.
  • organic optoelectronic devices such as OLEDs, organic photovoltaic devices and OTFTs
  • organic optoelectronic devices are sensitive to moisture and oxygen in the air
  • water vapor and oxygen directly affect the life and efficiency of the device, so to prevent
  • the excessive aging and instability of organic optoelectronic devices generally require packaging of the device.
  • the commonly used packaging technology is glass or metal cover encapsulation technology of glass substrate, single or multi-layer inorganic thin film encapsulation technology, and Barix thin film encapsulation technology with alternating organic and inorganic materials.
  • FIG. 1 is a base layer 40, an ITO layer 30, and an OLED from bottom to top.
  • 50 and the isolation layer 10 are encapsulated, and the package isolation layer 10 and the ITO layer 30 are bonded by a UV-treated epoxy resin 20.
  • the structure is provided with a desiccant 60 between the encapsulating separator 10 and the OLED 50.
  • the desiccant 60 absorbs moisture and oxygen to prevent the infiltrated water from acting on the OLED device and thereby increasing the lifetime of the device.
  • the structure is currently the main packaging method for optoelectronic device industrialization based on glass, but only for non-flexible, non-film packaged devices.
  • FIG. 2 is a flexible substrate 40, an ITO layer 30, and an OLED 10 from bottom to top, and the device is surrounded by the inorganic barrier film 20, so that the protection can be comprehensively, but
  • the structure is rigid and it is difficult to achieve the technical specifications of 1x10-6g/m2/d.
  • the third is a flexible packaging method, which is the most commonly used packaging method for flexible display.
  • the organic-inorganic laminated structure is used to protect the device, so that the laminated film package structure and flexibility are provided, which is a common method for the current flexible film packaging technology, but to achieve the technical index of 1x10-6g/m2/d, the flatness of the organic layer And the density of the inorganic layer and the defect-free pinhole and other quality requirements are very high, and it takes 3 to 5 times or more to achieve the corresponding effect.
  • the technical problem solved by the present invention is to provide a thin film encapsulation device, which solves the problem that the desiccant cannot be used in the film encapsulation, and further solves the problem that the desiccant expands and affects the structural stability of the isolation layer and the functional layer of the device.
  • the present invention provides a thin film package device comprising:
  • a drying layer at least one surface of which is provided with a grid-like groove, and the grid-shaped groove is filled with a desiccant.
  • At least one surface of the substrate is provided with a grid-like groove, and the grid-shaped groove is filled with a desiccant to constitute the dry layer.
  • the barrier layer further includes a first barrier layer and a second barrier layer respectively located on upper and lower sides of the functional layer, wherein the substrate, the functional layer and the second barrier layer are sequentially formed in the first On a barrier layer.
  • the method further includes a barrier layer, the barrier layer comprising a first barrier layer and a second barrier layer respectively located on upper and lower sides of the functional layer.
  • At least one surface of the at least one barrier layer is provided with a grid-like recess, and the grid-shaped recess is filled with a desiccant to form the dry layer.
  • the drying layer is located between the first barrier layer and the second barrier layer.
  • the groove has a width of 2-15 um and a depth of 2-20 um.
  • the substrate is a glass, a stainless steel sheet, or a flexible substrate
  • the material of the flexible substrate is selected from one or more of PET, PEN, PI, PC, PMMA.
  • the desiccant is a water-absorbing active material, and the desiccant is an active metal, a metal oxide, a P 2 O 5 or a water-absorbing salt having a particle size of 1 to 200 nm.
  • the barrier layer is a dense inorganic film or an organic inorganic laminate film.
  • the present invention provides a thin film encapsulation device, particularly a dry layer that does not affect substrate transmittance and stability in a package structure of a thin film barrier layer.
  • the dry layer is a filled groove structure, has a strong moisture absorption effect and does not affect the transmission of light, and can prevent the damage of the barrier layer and the functional layer of the device from being damaged due to moisture absorption expansion.
  • the introduction of the dry layer can improve the water-proof and oxygen-permeable effect of the barrier layer by one to two orders of magnitude, thereby playing an important role in improving the life of the flexible device, and can also be used in an organic/inorganic multilayer alternating flexible packaging film structure.
  • the water-oxygen barrier effect reduces the number of organic/inorganic alternating layers and reduces packaging costs.
  • FIG. 1 is a schematic view showing a first structure in the prior art
  • FIG. 2 is a schematic view of a second structure in the prior art
  • FIG. 3 is a schematic structural view of a thin film package device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view of a drying layer according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural view of a groove-like mesh of the dry layer of FIG. 4;
  • FIG. 6 is another schematic structural view of a thin film package device according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural view of a thin film package device according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural view of a thin film package device according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic structural view of a thin film package device according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic view showing the combination of a dry layer and a functional layer in Embodiment 4 of the present invention.
  • the present invention provides a thin film encapsulation device comprising a substrate, a functional layer, and a dried layer. At least one surface of the dried layer is provided with a grid-like groove filled with a desiccant.
  • the purpose of the drying layer is to prevent infiltration of moisture and oxygen from damaging the device, to absorb moisture and to deplete oxygen and to extend the life of the device.
  • the thin film encapsulating device further includes a barrier layer for protecting the functional layer, and the dry layer may be disposed in the barrier layer or separately.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the thin film encapsulation device includes a substrate 11, a barrier layer 12, a functional layer 13, and a dry layer 14.
  • the functional layer 13 includes a first surface and a second surface opposite to the first surface;
  • the barrier layer 12 is disposed on the first surface and the second surface of the functional layer 13, and at least one of the barrier layers 12
  • At least a part or all of the dry layer 14 includes a substrate 141 and a groove-like mesh 142, and a groove-like mesh 142 is disposed on the surface of the substrate 141, the groove-shaped mesh The 142 is filled with a desiccant.
  • the substrate 141 may be a structure similar to the barrier layer 12 or a structure supporting the groove-like mesh 142.
  • the functional layer 13 is sandwiched between the two barrier layers 12 to protect the functional layer 13 from the upper and lower directions.
  • the functional layer 13 may be an OLED structure, a display, or a photovoltaic device. , diodes, MEMS sensor devices and other devices.
  • the barrier layer 12 is a glass, metal or dense pinhole-free inorganic film, which adopts a structure with a small inter-molecular gap to ensure that the general water vapor molecules and oxygen molecules cannot enter, thereby ensuring the life of the device. Can be extended.
  • the substrate 11 may be a flexible material such as glass, stainless steel sheet, PET, PEN, PI, PC, PMMA or the like.
  • FIG. 4 is a cross-sectional view of the dry layer 14 .
  • the dry layer 14 is provided with a groove-like mesh 142 on the surface of the substrate 141 .
  • the groove-shaped mesh 142 may be FIG. 5 .
  • the different shapes in the shape, as shown in FIG. 5a, are squares at an angle to the horizontal direction, and may also be a square structure as shown in FIG. 5b, or a parallelogram structure as shown in FIG. 5c, or may be as shown in FIG. 5d.
  • the triangular structure may also be a regular hexagon as shown in Fig. 5e or an irregular mesh as shown in Fig. 5f, Fig. 5g, and Fig. 5h.
  • the groove-like mesh 142 is filled with a desiccant selected from the group consisting of water-absorbing active materials, and may be an active metal having a particle size of 1 to 200 nm, a metal oxide, P 2 O 5 or a water-absorbing salt.
  • a desiccant selected from the group consisting of water-absorbing active materials, and may be an active metal having a particle size of 1 to 200 nm, a metal oxide, P 2 O 5 or a water-absorbing salt.
  • the structure of the dry layer 14 shown in Figure 4 can adsorb water vapor and oxygen very well.
  • the desiccant is embedded, so that the desiccant is restricted by the groove-like mesh 142, does not fall off, and does not affect or destroy the structure and functional layer of the barrier layer 12, thereby ensuring the normal operation of the device.
  • the groove-like mesh 142 has a width of 2 to 15 ⁇ m and a depth of 2 to 20 ⁇ m.
  • the groove-like mesh 142 has a width of
  • FIG. 6 is a preferred thin film encapsulation structure of the present embodiment.
  • both sides of the structural functional layer contain a dry layer, and such a structure can better utilize the desiccant absorption and absorption in the upper and lower layers of the functional layer. Water vapor and oxygen to prevent functional devices from being damaged by moisture and oxygen.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the thin film encapsulation device is a second barrier layer 21 , a functional layer 22 , a first dry layer 23 , a first barrier layer 24 , and a substrate 25 from top to bottom. It can better prevent the infiltration of water vapor and oxygen, and achieve double-layer protection. It can also add a barrier layer around the device, which can effectively prevent the infiltration of water vapor and oxygen at the edge.
  • the structure of the first drying layer 23 is also a groove-like mesh (not labeled), and the desiccant is filled in the groove-like mesh, and the drying agent is restrained by the groove-like mesh, and the drying is well achieved. At the same time, it can also prevent the detachment of the desiccant without affecting the light transmittance.
  • the first barrier layer (50nm SiO2/500nm silicon polymer) was deposited by ICP-PECVD on a flexible transparent substrate PEN, and then coated with a liquid UV-curable embossed adhesive, which was cured by embossing with a stamping stencil and cured under 365 nm ultraviolet light. Forming a transparent colloid layer.
  • the imprint stencil was peeled off to form a hexagonal grid groove on the transparent colloid layer with a groove depth of 4.5 um and a width of 2.8 um.
  • the desiccant slurry was filled in the groove, and the desiccant of the surface layer was scraped off with a doctor blade, and baked at 130 degrees for 2 hours to complete the preparation of the desiccant layer. Further, an electrode, a device functional layer and a second barrier layer are sequentially deposited over the desiccant layer to complete the thin film encapsulation device described in this embodiment.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 7 and FIG. 8 is another thin film device package structure.
  • the substrate 25 and the first barrier layer 24 are interchanged.
  • the structure is also good.
  • the flexible substrate may also include a barrier layer.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the structure adds a second drying layer 26 on the basis of the second embodiment, that is, two drying layers 26 and 23 are respectively disposed on the functional layer 22 .
  • the manner in which the drying layers 26, 23 are attached is that the groove-like mesh 27 faces away from the surface of the functional layer 22, so that the problem of the desiccant falling off and the life of the device can be completely ignored.
  • this structure can also be provided with a barrier layer at the edge of the device to provide full protection of the device.
  • the first drying layer 23 may also be disposed between the substrate 25 and the first barrier layer 24 to provide the same protection.
  • the present invention provides a thin film encapsulation device, particularly a dry layer that does not affect substrate transmittance and stability in a package structure of a thin film barrier layer.
  • the dry layer is a filled groove structure, has a strong moisture absorption effect and does not affect the transmission of light, and can prevent the damage of the barrier layer and the functional layer of the device from being damaged due to moisture absorption expansion.
  • the introduction of the dry layer can improve the water-proof and oxygen-permeable effect of the barrier layer by one to two orders of magnitude, thereby playing an important role in improving the life of the flexible device, and can also be used in an organic/inorganic multilayer alternating flexible packaging film structure.
  • the water-oxygen barrier effect reduces the number of organic/inorganic alternating layers and reduces packaging costs.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Packages (AREA)
  • Packaging Frangible Articles (AREA)

Abstract

一种薄膜封装器件,其在薄膜阻隔层的封装结构中引入了不影响衬底透过率及稳定性的干燥层。所述干燥层为填充凹槽结构,具有较强的吸湿效果并同时不影响光的透过,并且可以防止因吸湿膨胀而破坏影响阻隔层及器件功能层的稳定性。所述干燥层的引入可以提高阻隔层的抗水氧渗透效果1至2个数量级,从而对改善柔性器件寿命有重要作用,也可以用于有机/无机多层交替柔性封装薄膜结构中,在保障水氧阻隔效果的基础上减少有机/无机交替层的数目。

Description

薄膜封装器件 技术领域
本发明涉及封装技术领域,尤其涉及一种薄膜封装器件。
背景技术
对于大多数器件,例如显示器、二极管、微机电传感器件等均需要完全密封的物理封装来保护。研究表明,空气中的水汽和氧气等成分对OLED的寿命影响很大,其原因主要从以下方面进行考虑:OLED器件工作时要从阴极注入电子,这就要求阴极功函数越低越好,但常用阴极材料如金属铝、镁钙等,一般比较活泼,易与渗进来的水汽、氧气发生反应。另外,水汽还会与空穴传输层以及电子传输层发生化学反应,或引发界面接触问题,这些反应都会引起器件失效,因此对OLED进行有效的封装,使器件的各个功能层与大气中的水汽、氧气等成分隔开,就可以大大延长器件寿命。比如对于有机光电器件来说,例如OLED、有机光生伏特器件和OTFT等,因为有机光电器件对空气中的水汽、氧气比较敏感,水汽和氧气都会直接影响器件分寿命、效率等性能,所以为了防止有机光电器件的过快老化和不稳定,一般都要对器件进行封装。
要提高OLED器件的性能并延长其寿命,除了要优选功能材料与器件结构优化;提高衬底材料的表面平整度,防止由于表面不平坦而使器件的发光层受到损坏;防止ITO薄膜上的有机功能层剥离以外,更重要的是防止水蒸气和氧气通过衬底和封装盖板以及封装粘结界面渗透进入器件内部,而导致器件失效。当通过优选功能材料与器件结构优化;改善衬底材料表面提高OLED器件性能及稳定性这种方法遇到发展瓶颈时,从封装材料和封装技术入手不失为一种良策。所以,要提高器件寿命,研究出对水蒸气和氧气具有良好的阻隔性能的封装材料和技术显得格外重要的。
目前常用的封装技术是以玻璃衬底的玻璃或者金属盖板封装技术、单层或者多层无机薄膜封装技术、以有机物和无机物交替的Barix薄膜封装技术。
对于第一种封装技术来说,请参考图1,由下向上分别为基底层40、ITO层30、OLED 50以及封装隔离层10,且所述封装隔离层10与ITO层30之间采用UV处理的环氧树脂20粘接。所述该种结构在封装隔离层10和OLED 50之间设有干燥剂60,干燥剂60吸收水汽和氧,防止渗透的水氧作用于OLED器件进而提高了器件寿命。所述结构是当前以玻璃为基底的光电器件产业化主要封装方法,但仅用于非柔性、非薄膜的封装器件。
对于第二种封装技术来说,请参考图2,由下向上分别为柔性基底40、ITO层30以及OLED10,并通过无机阻隔层薄膜20将器件包围在内部,这样可以全方位的保护,但结构是刚性的,而且较难达到1x10―6g/m2/d的技术指标。
第三种属于柔性封装方法,是实现柔性显示最常用的封装方法。采用有机无机层叠结构来保护器件,这样所设置的层叠薄膜封装结构且有柔性,是当前柔性薄膜封装技术常用方法,但要达到1x10―6g/m2/d的技术指标,对有机层的平整度、及无机层的致密性与无缺陷针孔等质量要求非常高,且需要3至5次或更多次的层叠才能达到相应效果。
发明内容
本发明解决的技术问题在于提供一种薄膜封装器件,解决了薄膜封装不能使用干燥剂的问题,并进一步解决了干燥剂膨胀后影响隔离层及器件功能层结构稳定性的问题。
为了解决以上技术问题,本发明提供了一种薄膜封装器件,其包括:
基底;
功能层;
干燥层,所述干燥层的至少一表面上开设有网格状凹槽,所述网格状凹槽中填充有干燥剂。
优选的,所述基底的至少一表面上开设有网格状凹槽,所述网格状凹槽中填充有干燥剂,构成所述干燥层。
优选的,还包括阻隔层,所述阻隔层包括分别位于所述功能层上下两侧的第一阻隔层和第二阻隔层,所述基底、功能层和第二阻隔层依次形成于所述第一阻隔层上。
优选的,还包括阻隔层,所述阻隔层包括分别位于所述功能层上下两侧的第一阻隔层和第二阻隔层。
优选的,所述至少一阻隔层的至少一表面上开设有网格状凹槽,所述网格状凹槽中填充有干燥剂,构成所述干燥层。
优选的,所述干燥层位于所述第一阻隔层和第二阻隔层之间。
优选的,所述凹槽的宽度为2~15um,深度为2~20um。
优选的,所述基底为玻璃、不锈钢薄片,或含柔性基底,所述柔性基底的材质选自PET、PEN、PI、PC、PMMA中的一种或几种。
优选的,所述干燥剂为吸水活性材料,所述干燥剂为颗粒度大小为1~200nm的活性金属、金属氧化物、P2O5或吸水的盐类。
优选的,所述阻隔层为致密无机薄膜或有机无机层叠薄膜。
本发明提供了一种薄膜封装器件,特别是在薄膜阻隔层的封装结构中引入不影响衬底透过率及稳定性的干燥层。所述干燥层为填充凹槽结构,具有较强的吸湿效果并同时不影响光的透过,并且可以防止因吸湿膨胀而破坏影响阻隔层及器件功能层的稳定性。所述干燥层的引入可以提高阻隔层的抗水氧渗透效果1至2个数量级,从而对改善柔性器件寿命有重要作用,也可以用于有机/无机多层交替柔性封装薄膜结构中,在保障水氧阻隔效果的基础上减少有机/无机交替层的数目,降低封装成本。
附图说明
图1为现有技术中第一种结构的示意图;
图2为现有技术中第二种结构的示意图;
图3为本发明实施例一的薄膜封装器件的结构示意图;
图4为本发明实施例一的干燥层的结构示意图;
图5为图4中干燥层的凹槽状网格的结构示意图;
图6为本发明实施例一的薄膜封装器件的另一结构示意图;
图7为本发明实施例二的薄膜封装器件的结构示意图;
图8为本发明实施例三的薄膜封装器件的结构示意图;
图9为本发明实施例四的薄膜封装器件的结构示意图;
图10为本发明实施例四中干燥层与功能层的结合示意图。
具体实施方式
本发明提供了一种薄膜封装器件,其包括基底、功能层以及干燥层。所述干燥层的至少一表面上开设有网格状凹槽,所述网格状凹槽中填充有干燥剂。所述干燥层的设置目的是防止渗入的水汽和氧气损坏器件,起到吸湿除氧和延长器件寿命的作用。
更进一步的,所述薄膜封装器件中还包括有阻隔层,所述阻隔层用于保护功能层,而所述干燥层可设置在阻隔层内也可以单独设置。
下面将结合附图以及具体实施例来对本发明作进一步详细说明。
实施例一:
请参考图3,所述薄膜封装器件包括基底11、阻隔层12、功能层13以及干燥层14。其中,所述功能层13包括第一表面以及与第一表面相对的第二表面;所述阻隔层12设于所述功能层13的第一表面与第二表面,且其中至少一个阻隔层12中的至少一部分或全部为干燥层14,所述干燥层14包括基片141和凹槽状网格142,凹槽状网格142设于所述基片141表面,所述凹槽状网格142中填充有干燥剂。所述基片141可以为类似阻隔层12结构也可以是支撑凹槽状网格142的结构。
在本实施例中,所述功能层13被两层阻隔层12包夹在中间,以从上下两个方向对功能层13进行了保护,其中,功能层13可以是OLED结构、显示器、光伏器件、二极管、微机电传感器件等器件。在本实施例中,所述阻隔层12为玻璃、金属或者致密无针孔无机薄膜,其采用分子间间隙很小的结构来保证一般的水汽分子和氧分子不能进入,以此保证器件的寿命可以延长。本实施例中,所述基底11可以为玻璃、不锈钢薄片、PET、PEN、PI、PC、PMMA等柔性材料。
请参考图4,为干燥层14的截面图,所述干燥层14在其基片141的表面设有凹槽状网格142,结合图5所示,凹槽状网格142可以为图5中的不同形状,如图5a所示的与水平方向有一定角度的正方形,同样可以是图5b所示的正方形结构,也可以是图5c所示的平行四边形结构,也可以是图5d所示的三角形结构,也可以是图5e所示的正六边形,或者是图5f、图5g、图5h所示的不规则网格。所述凹槽状网格142内填充有干燥剂,所述干燥剂选自吸水活性材料,可以是颗粒度大小为1~200nm的活性金属、金属氧化物、P2O5或吸水的盐类。图4所示的干燥层14结构可以很好的吸附水汽和氧气, 而且干燥剂是埋入式的,这样,干燥剂受到凹槽状网格142的限制,不会脱落,不会膨胀影响或破坏阻隔层12的结构及功能层,以此保证器件的正常运行,也不会影响器件光的透过;所述凹槽状网格142的宽度为2~15um,深度2~20um,优选凹槽状网格142的宽度为3~10um,深度2~10um。
请参考图6所示,为本实施例的一种优选薄膜封装结构,此时的结构功能层两侧均含干燥层,这样的结构在功能层上下能更好的利用干燥剂吸附吸收进入的水汽和氧气的,防止功能器件因水汽和氧气而损坏。
实施例二:
请参考图7,为另一种优选实施例,该薄膜封装器件自上而下分别为第二阻隔层21、功能层22、第一干燥层23、第一阻隔层24以及基底25,该结构可以更好的阻止水汽和氧气的渗入,达到的双层保护,同样还可以在器件的周围也加上阻隔层,可以有效的防止边缘处水汽和氧气的渗入。所述第一干燥层23的结构同样是凹槽状网格(未标示),干燥剂填充于凹槽状网格内,通过凹槽状网格对干燥剂增加束缚能力,在很好达到干燥的功能同时,也能很好的防止干燥剂的脱离,且不会影响光的透过率。
下面以本实施例为例,说明本实施例的制备方法:
在柔性透明基底PEN上用ICP-PECVD沉积第一阻隔层(50nm SiO2/500nm硅聚合物),然后涂布液态UV固化压印胶,用压印模版贴合加压后在365nm紫外光下固化,形成透明胶质层。剥离压印模版,在透明胶质层上形成六边形网格凹槽,凹槽深度为4.5um,宽度为2.8um。
在凹槽中填充干燥剂浆料,并用刮刀把表层的干燥剂刮净,真空130度烘烤2小时,完成干燥剂层的制备。再在干燥剂层上方依次沉积电极,器件功能层,第二阻隔层,以完成本实施例所述的薄膜封装器件。
实施例三:
请参考图7和图8,为另一种薄膜器件封装结构,该种结构在实施例二的基础上,将基底25和第一阻隔层24进行位置互换,该种结构也同样可以很好的对器件进行保护。本实施例中,也可以是柔性基底含有阻隔层。
实施例四:
请参考图7和图9,为另一优选的实施例,该种结构在实施例二的基础上增加第二干燥层26,即有两层干燥层26、23分别设于功能层22的两侧,请同时参考图10,所述干燥层26、23的贴合方式是凹槽状网格27面远离功能层22的表面,这样可以完全不需要考虑干燥剂的脱落问题,对器件的寿命可以有绝对的保障。同样,该种结构在器件的边缘处同样可以设有阻隔层,对器件进行全方位的保护。此外,所述第一干燥层23也可以设于基底25和第一阻隔层24之间,起到同样的保护作用。
本发明提供了一种薄膜封装器件,特别是在薄膜阻隔层的封装结构中引入不影响衬底透过率及稳定性的干燥层。所述干燥层为填充凹槽结构,具有较强的吸湿效果并同时不影响光的透过,并且可以防止因吸湿膨胀而破坏影响阻隔层及器件功能层的稳定性。所述干燥层的引入可以提高阻隔层的抗水氧渗透效果1至2个数量级,从而对改善柔性器件寿命有重要作用,也可以用于有机/无机多层交替柔性封装薄膜结构中,在保障水氧阻隔效果的基础上减少有机/无机交替层的数目,降低封装成本。
应当理解的是,对于本领域的普通技术人员来说,可以根据本发明的技术构思做出其他各种相应的改变与变形,而所有这些改变与变形都应属于本发明权利要求的保护范围。

Claims (12)

  1. 一种薄膜封装器件,其特征在于包括:
    基底和功能层;
    以及,干燥层,所述干燥层的至少一表面上开设有网格状凹槽,所述网格状凹槽中填充有干燥剂。
  2. 根据权利要求1所述的薄膜封装器件,其特征在于所述基底的至少一表面上开设有网格状凹槽,所述网格状凹槽中填充有干燥剂,构成所述干燥层。
  3. 根据权利要求2所述的薄膜封装器件,其特征在于还包括阻隔层,所述阻隔层包括分别位于所述功能层上下两侧的第一阻隔层和第二阻隔层,所述基底、功能层和第二阻隔层依次形成于所述第一阻隔层上。
  4. 根据权利要求1所述的薄膜封装器件,其特征在于还包括阻隔层,所述阻隔层包括分别位于所述功能层上下两侧的第一阻隔层和第二阻隔层。
  5. 根据权利要求4所述的薄膜封装器件,其特征在于所述至少一阻隔层的至少一表面上开设有网格状凹槽,所述网格状凹槽中填充有干燥剂,构成所述干燥层。
  6. 根据权利要求4所述的薄膜封装器件,其特征在于所述干燥层位于所述第一阻隔层和第二阻隔层之间。
  7. 根据权利要求1至6任一所述的薄膜封装器件,其特征在于所述凹槽的宽度为2~15um,深度为2~20um。
  8. 根据权利要求1至6任一所述的薄膜封装器件,其特征在于所述基底至少选自玻璃、不锈钢薄片和含柔性基底。
  9. 根据权利要求8所述的薄膜封装器件,所述柔性基底的材质至少选自PET、PEN、PI、PC、PMMA。
  10. 根据权利要求1至6任一所述的薄膜封装器件,其特征在于:所述干燥剂为吸水活性材料,所述干燥剂至少选自活性金属、金属氧化物、P2O5或吸水的盐类。
  11. 根据权利要求10所述的薄膜封装器件,其特征在于所述干燥剂的颗粒度大小为1~200nm。
  12. 根据权利要求1至6任一所述的薄膜封装器件,其特征在于所述阻隔层为致密无机薄膜或有机无机层叠薄膜。
PCT/CN2015/074026 2014-03-13 2015-03-11 薄膜封装器件 WO2015135480A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/123,469 US20170077455A1 (en) 2014-03-13 2015-03-11 Film packaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410093342.2 2014-03-13
CN201410093342.2A CN104916786B (zh) 2014-03-13 2014-03-13 薄膜封装器件

Publications (1)

Publication Number Publication Date
WO2015135480A1 true WO2015135480A1 (zh) 2015-09-17

Family

ID=54070950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074026 WO2015135480A1 (zh) 2014-03-13 2015-03-11 薄膜封装器件

Country Status (3)

Country Link
US (1) US20170077455A1 (zh)
CN (1) CN104916786B (zh)
WO (1) WO2015135480A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113611809A (zh) * 2020-08-05 2021-11-05 广东聚华印刷显示技术有限公司 发光器件及其制备方法和发光装置
CN114420860A (zh) * 2022-01-04 2022-04-29 深圳市华星光电半导体显示技术有限公司 柔性显示面板、柔性显示装置及制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702624A (zh) * 2016-03-30 2016-06-22 武汉华星光电技术有限公司 叠层柔性基板及制作方法
CN108962023B (zh) * 2017-11-30 2021-04-16 Tcl科技集团股份有限公司 柔性显示器件及其制备方法
CN109994642A (zh) * 2017-12-29 2019-07-09 昆山维信诺科技有限公司 封装结构及其制备方法与有机电致发光装置
CN108807688A (zh) * 2018-06-14 2018-11-13 中国科学院苏州纳米技术与纳米仿生研究所 一种长寿命的宽带倍增型有机光电探测器及制备方法
CN109065644A (zh) * 2018-08-15 2018-12-21 汉能新材料科技有限公司 一种太阳能电池
CN109461826B (zh) * 2018-08-29 2020-08-14 云谷(固安)科技有限公司 一种显示面板和显示装置
CN109540344B (zh) * 2018-11-23 2024-02-13 佛山市铂彩光电有限公司 一种不易开裂的oled显示器
CN111224009B (zh) * 2019-11-01 2022-10-04 武汉华星光电半导体显示技术有限公司 一种柔性显示面板、显示装置及制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484474A (zh) * 2002-09-20 2004-03-24 友达光电股份有限公司 有机电致发光显示元件的封装结构及其封装方法
US20050140275A1 (en) * 2003-12-29 2005-06-30 L.G.Philips Lcd Co. Ltd. Organic electroluminescence device
CN101093852A (zh) * 2006-06-19 2007-12-26 株式会社日立显示器 有机el显示装置
US7662501B2 (en) * 2008-06-30 2010-02-16 Intel Corporation Transpiration cooling and fuel cell for ultra mobile applications

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4090253B2 (ja) * 2002-03-08 2008-05-28 三洋電機株式会社 表示装置
US6770502B2 (en) * 2002-04-04 2004-08-03 Eastman Kodak Company Method of manufacturing a top-emitting OLED display device with desiccant structures
JP2003347040A (ja) * 2002-05-22 2003-12-05 Dainippon Printing Co Ltd 封止有機el素子および有機el素子の封止方法
FR2846148A1 (fr) * 2002-10-17 2004-04-23 Thomson Licensing Sa Encapsulation des panneaux oled a emission vers le haut
KR100544127B1 (ko) * 2003-08-27 2006-01-23 삼성에스디아이 주식회사 수분 흡수층을 구비한 유기 전계 발광 표시 장치
TWI282700B (en) * 2005-03-29 2007-06-11 Au Optronics Corp Organic electroluminescence display
CN100377385C (zh) * 2005-04-28 2008-03-26 友达光电股份有限公司 有机电致发光显示器及其封装方法
KR101372914B1 (ko) * 2013-03-15 2014-03-12 한국기술교육대학교 산학협력단 Oled 조명장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484474A (zh) * 2002-09-20 2004-03-24 友达光电股份有限公司 有机电致发光显示元件的封装结构及其封装方法
US20050140275A1 (en) * 2003-12-29 2005-06-30 L.G.Philips Lcd Co. Ltd. Organic electroluminescence device
CN101093852A (zh) * 2006-06-19 2007-12-26 株式会社日立显示器 有机el显示装置
US7662501B2 (en) * 2008-06-30 2010-02-16 Intel Corporation Transpiration cooling and fuel cell for ultra mobile applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113611809A (zh) * 2020-08-05 2021-11-05 广东聚华印刷显示技术有限公司 发光器件及其制备方法和发光装置
CN114420860A (zh) * 2022-01-04 2022-04-29 深圳市华星光电半导体显示技术有限公司 柔性显示面板、柔性显示装置及制备方法
CN114420860B (zh) * 2022-01-04 2024-06-07 深圳市华星光电半导体显示技术有限公司 柔性显示面板、柔性显示装置及制备方法

Also Published As

Publication number Publication date
CN104916786B (zh) 2017-02-15
CN104916786A (zh) 2015-09-16
US20170077455A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015135480A1 (zh) 薄膜封装器件
TWI404448B (zh) 有機電激發光裝置
CN107425134B (zh) 一种有机电致发光显示面板、其制作方法及显示装置
CN102057750B (zh) 用于封装对氧气和/或湿气敏感的电子器件的多层膜
ES2935269T3 (es) Pila de barrera de encapsulación de nanopartículas
WO2016045250A1 (zh) Oled显示面板及其封装方法和oled显示装置
EP3086381A1 (en) Thin-film encapsulation structure for oled, oled device and display device
CN104143609A (zh) 阻隔膜及其制作方法
JP5706972B2 (ja) 面状発光素子
WO2019205342A1 (zh) Oled封装结构及oled显示面板
WO2016026182A1 (zh) Oled的封装方法及结构
TWI610431B (zh) 柔性封裝襯底及其製造方法和使用該襯底的oled封裝方法
WO2016011709A1 (zh) 有机发光二极管显示面板及其制造方法
TWI694006B (zh) 阻障薄膜層合物及包含此層合物之電子元件
JP2007042616A (ja) 発光素子及び表示デバイス並びにそれらの製造方法
CN208271950U (zh) 薄膜封装结构及显示装置
US20170104178A1 (en) Light emitting device and method of manufacturing a light emitting device
JP2007265987A5 (zh)
TWI514565B (zh) 有機發光裝置及其製作方法
WO2018223815A1 (zh) 薄膜封装结构和显示装置
JP2013533587A (ja) 分離フォイルを有する有機エレクトロルミネセンスデバイス
WO2019223504A1 (zh) 显示基板及其制作方法、显示器件及其制作方法
US9401491B2 (en) Direct/laminate hybrid encapsulation and method of hybrid encapsulation
CN106784376A (zh) 一种薄膜封装结构、包含其的oled屏体及其封装方法
CN108428807A (zh) 薄膜封装结构及显示屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15123469

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761176

Country of ref document: EP

Kind code of ref document: A1