WO2015133471A1 - 化合物、該化合物を重合してなるポリマー、有機半導体材料およびその用途 - Google Patents

化合物、該化合物を重合してなるポリマー、有機半導体材料およびその用途 Download PDF

Info

Publication number
WO2015133471A1
WO2015133471A1 PCT/JP2015/056209 JP2015056209W WO2015133471A1 WO 2015133471 A1 WO2015133471 A1 WO 2015133471A1 JP 2015056209 W JP2015056209 W JP 2015056209W WO 2015133471 A1 WO2015133471 A1 WO 2015133471A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
compound
organic semiconductor
Prior art date
Application number
PCT/JP2015/056209
Other languages
English (en)
French (fr)
Inventor
太一 島田
太宇人 中西
松下 武司
鉄春 三輪
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to JP2016506499A priority Critical patent/JPWO2015133471A1/ja
Publication of WO2015133471A1 publication Critical patent/WO2015133471A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains three hetero rings
    • C07D513/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/22Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions

Definitions

  • the present invention relates to a novel compound, a polymer obtained by polymerizing the compound, an organic semiconductor material, and use thereof. More specifically, it has a novel compound and a method for producing the same, a polymer obtained by polymerizing the compound, an organic semiconductor material containing the compound and / or the polymer, an organic semiconductor film containing the organic semiconductor material, and the organic semiconductor film
  • the present invention relates to an organic field effect transistor (OFET).
  • organic compounds having semiconductor characteristics have attracted attention.
  • polyacene compounds such as pentacene and tetracene have long been known as organic semiconductor materials because of their high carrier mobility.
  • carrier mobility is used in a broad sense including electron mobility and hole mobility.
  • Patent Document 1 compounds in which various substituents are introduced into the acene skeleton have been studied (see, for example, Patent Document 1 and Non-Patent Document 1). Furthermore, compounds in which chalcogens such as sulfur and selenium are introduced into a part of the acene skeleton, such as dibenzothienothiophene (BTBT) and dinaphthothienothiophene (DNTT) have already been studied (for example, Patent Documents 2 to 3). reference).
  • BTBT dibenzothienothiophene
  • DNTT dinaphthothienothiophene
  • the compound has succeeded in improving chemical stability while maintaining high carrier mobility.
  • these have a linear and highly symmetric molecular structure, they have a problem that the solubility is not always sufficient even when a substituent such as an alkyl group is introduced.
  • the said compound can be finally synthesize
  • organic semiconductor materials having a non-linear structure as a basic skeleton with a bent portion introduced in the molecule have attracted attention.
  • the present applicant has already introduced a substituent such as an alkyl group at a specific position of a V-shaped or U-shaped molecule, such as dinaphthofuran, dinaphthothiophene, dianthrafuran, and dianthrathiophene.
  • An organic semiconductor material having excellent chemical stability, high solubility and high carrier mobility has been found (see Patent Document 4).
  • the above-mentioned organic semiconductor materials are all p-type organic semiconductor materials using holes as carriers.
  • CMOS complementary metal oxide semiconductor
  • CMOS complementary metal oxide semiconductor
  • the n-type organic semiconductor material has poorer stability against water and oxygen in the atmosphere, and it is more difficult than the p-type organic semiconductor material to achieve both stability, semiconductor characteristics, and dissolution coating property.
  • Patent Document 5 discloses a compound in which the skeleton is substituted with an aryl group or a ⁇ -deficient heterocyclic ring, and cyclic voltammetry (CV) measurement results, which suggest the possibility of exhibiting n-type semiconductor characteristics. The actual semiconductor properties of the compound are unknown.
  • Patent Document 6 discloses an n-type organic semiconductor material in which a thiophene ring and an electron withdrawing group are introduced into a benzobisthiadiazole skeleton. As the n-type material, the compound has both stability and solubility in the air and electron mobility. However, these patent documents do not disclose compounds other than benzobisthiadiazole derivatives.
  • Non-patent Document 2 a compound in which two thiadiazole rings are condensed on a naphthalene ring, a polymer compound using the compound as a monomer, and an organic thin film solar cell material thereof are disclosed.
  • Non-patent Document 3 a compound in which one thiadiazole ring is condensed to an anthracene ring having a longer conjugated system is disclosed.
  • Non-Patent Documents 2 and 3 do not disclose compounds other than these compounds.
  • the present invention has been made in view of such conventional techniques, and is a coating type organic material that is stable in the air, exhibits good solubility in an organic solvent, and has good carrier mobility.
  • the object is to provide a compound useful as a semiconductor material.
  • 1, 2, represented by the following formula (i) A group having a 5-thiadiazole ring is condensed; Hydrogen at the 1-10 position of the anthracene skeleton (excluding hydrogen bonded to carbon constituting the 1,2,5-thiadiazole ring) is independently halogen, substituted or unsubstituted carbon number 1-20 Alkyl, substituted or unsubstituted alkenyl having 2 to 20 carbon atoms, substituted or unsubstituted alkynyl having 2 to 20 carbon atoms, substituted or unsubstituted saturated or unsaturated cyclic hydrocarbon group having 3 to 20 carbon atoms, substituted Or an unsubstituted 3- to 20-membered saturated or unsaturated heterocyclic group, and at least one hydrogen in these groups is replaced by
  • R 1 is hydrogen, —OR A , —SR B , halogen, alkyl having 1 to 18 carbon atoms, substituted or unsubstituted aryl having 6 to 18 carbon atoms, substituted or unsubstituted 3
  • R A and R B are each independently hydrogen, substituted or unsubstituted Substituted alkyl having 1 to 18 carbon atoms, substituted or unsubstituted alkenyl having 2 to 18 carbon atoms, substituted or unsubstituted alkynyl having 2 to 18 carbon atoms, substituted or unsubstituted 3 to 18 carbon atoms saturated or unsubstituted A saturated cyclic hydrocarbon group or a substituted or unsubstituted 3- to 18-membered saturated or unsaturated heterocyclic group).
  • R 2 to R 6 are each independently hydrogen, substituted or unsubstituted alkyl having 1 to 18 carbons, substituted or unsubstituted alkenyl having 2 to 18 carbons, substituted Or an unsubstituted alkynyl group having 2 to 18 carbon atoms, a substituted or unsubstituted saturated or unsaturated cyclic hydrocarbon group having 3 to 18 carbon atoms, or a substituted or unsubstituted 3- to 18-membered saturated or unsaturated heterocyclic group A ring group is shown. (However, the maximum value of the total carbon number of R 2 and R 3 and the total carbon number of R 4 , R 5 and R 6 is 18.)
  • a substituted or unsubstituted 3- to 20-membered heterocyclic group in the substituent, or a substituted or unsubstituted 3- to 18-membered heterocyclic group in R 1 in the formula (ii) Is a group represented by the following formula (v), [5].
  • each R 7 is independently hydrogen, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted saturated or unsaturated cyclic A hydrocarbon group or a substituted or unsubstituted saturated or unsaturated heterocyclic group is shown. (However, the maximum value of the carbon number of R 7 is such that the maximum value of the carbon number of the substituent does not exceed 20.)
  • R 8 and R 9 are each independently hydrogen or halogen.
  • [8] A polymer obtained by polymerizing the compound according to any one of [1] to [6], which is a compound having a polymerizable group.
  • An organic semiconductor material comprising at least one selected from the group consisting of the compound according to any one of [1] to [7] and the polymer according to [8].
  • An organic field effect transistor comprising a substrate, a gate electrode, a gate insulating film, a source electrode, a drain electrode, and an organic semiconductor layer, wherein the organic semiconductor layer is composed of the organic semiconductor film according to [10].
  • the compound of the present invention is stable in the air, exhibits good solubility in an organic solvent, and has good carrier mobility.
  • the compound of the present invention is used as a coating-type organic semiconductor material, as a chemically stable n-type organic semiconductor material, and further as an organic semiconductor film, an organic electroluminescence (organic EL) element, and an organic semiconductor element. It is useful as a raw material for electronic materials such as solar cells. Further, according to the compound of the present invention, a film having good carrier mobility and a low defect density, in particular, an organic semiconductor film can be produced.
  • FIG. 1 shows an example of a schematic cross-sectional view of a field effect transistor.
  • the compound (I) is stable in the atmosphere. Moreover, the said compound (I) shows favorable solubility with respect to the organic solvent. Therefore, a film containing the compound (I) can be produced by a simple film formation method, for example, a coating method. For this reason, an organic semiconductor film, an organic semiconductor element, etc. can be manufactured, without impairing the outstanding property which compound (I) has.
  • the hetero atom is not particularly limited as long as aromaticity is not lost, and examples thereof include O, N, and S.
  • the position where the group having a 1,2,5-thiadiazole ring represented by the formula (i) is condensed to the anthracene skeleton is not particularly limited, but adjacent positions (for example, positions A and B or positions B and C) Other than the above, from the viewpoint of ease of synthesis, orientation due to molecular symmetry, crystallinity, solubility in a solvent, etc., in the formula (I), positions B and E, positions A and F, positions A and D, Positions A and E, positions A and C and D, positions A and C and E, or positions A, C, D and F are more preferable.
  • this compound can be represented by the following formulas (II) to (VIII).
  • compounds (II) and (III) are preferable from the viewpoints of ease of synthesis, orientation due to molecular symmetry, crystallinity, and the like.
  • hydrogens at the 1 to 10 positions of the anthracene skeleton are each independently replaced with the above substituents.
  • hydrogen at the 1 to 10 position of the anthracene skeleton (however, hydrogen bonded to carbon constituting the 1,2,5-thiadiazole ring is excluded). ) Is preferably substituted with the above substituents.
  • the compound in which the hydrogen atom of the anthracene skeleton in the formula (I) is replaced with the substituent is not particularly limited, but the compound in which the hydrogen atoms at the 9th and 10th positions of the anthracene skeleton are replaced with the substituent, It is preferable from the viewpoints of easiness of synthesis and molecular symmetry.
  • the substituent bonded to the 9th position and the substituent bonded to the 10th position of the anthracene skeleton may be the same group or different groups, but from the viewpoint of ease of synthesis, etc. Are preferably the same group.
  • the halogen in the substituent is not particularly limited, but fluorine is preferable.
  • alkyl having 1 to 20 carbon atoms in the substituent examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, isopentyl, neopentyl, t-pentyl, hexyl and heptyl. Octyl, nonyl, dodecyl, octadecyl.
  • alkenyl having 2 to 20 carbon atoms in the substituent examples include vinyl, allyl, propenyl, isopropenyl, 2-methyl-1-propenyl, 2-methylallyl and 2-butenyl.
  • alkynyl having 2 to 20 carbon atoms in the substituent examples include ethynyl, propynyl and butynyl.
  • Examples of the saturated or unsaturated cyclic hydrocarbon group having 3 to 20 carbon atoms in the substituent include, for example, cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl, and cyclopropyl such as cyclopropenyl, cyclobutenyl, cyclopentenyl, and cyclohexenyl.
  • aryl such as alkenyl, phenyl, 1-naphthyl, 2-naphthyl, indenyl, biphenylyl, anthryl, phenanthryl.
  • Examples of the 3- to 20-membered saturated or unsaturated heterocyclic group in the substituent include ethyleneimine, ethylene oxide, ethylene sulfide, azirine, acetylene oxide, acetylene sulfide, azacyclobutane, oxetane, thietane, azeto, pyrrolidine, Tetrahydrofuran, tetrahumandothiophene, pyrrole, furan, thiophene, piperidine, tetrahydropyran, tetrahydrothiopyran, pyridine, hexamethyleneimine, hexamethylene oxide, hexamethylene sulfide, azatropyridene, oxycycloheptatriene, tiotropyridene, imidazole, pyrazole, oxazole , Thiazole, imidazoline, pyrazine, morpholine, thiazine, ind
  • the substituent may be a group in which at least one hydrogen in these groups is substituted with halogen, preferably fluorine.
  • substituted alkyl having 1 to 20 carbon atoms is an arbitrary hydrogen atom in alkyl having 1 to 20 carbon atoms (hereinafter “additional”). Also referred to as a “group”. In this specification, the same description shows the same meaning.
  • the additional group is a group having a carbon number such that the carbon number of the substituent does not exceed 20.
  • the substituent is a group represented by the following formula (ii), or a substituted or unsubstituted 3- to 20-membered aromatic hydrocarbon group or heterocyclic group. It is preferable from the viewpoints of crystallinity and the like, because elongation makes it easy for electrons to overlap between molecules.
  • R 1 is hydrogen, —OR A , —SR B , halogen, alkyl having 1 to 18 carbon atoms, substituted or unsubstituted aryl having 6 to 18 carbon atoms, substituted or unsubstituted 3
  • R A and R B are each independently hydrogen, substituted or unsubstituted Substituted alkyl having 1 to 18 carbon atoms, substituted or unsubstituted alkenyl having 2 to 18 carbon atoms, substituted or unsubstituted alkynyl having 2 to 18 carbon atoms, substituted or unsubstituted 3 to 18 carbon atoms saturated or unsubstituted A saturated cyclic hydrocarbon group, or a substituted or unsubstituted 3- to 18-membered saturated or unsaturated heterocyclic group).
  • R 2 to R 6 are each independently hydrogen, substituted or unsubstituted alkyl having 1 to 18 carbon atoms, substituted or unsubstituted alkenyl having 2 to 18 carbon atoms, A substituted or unsubstituted alkynyl group having 2 to 18 carbon atoms, a substituted or unsubstituted saturated or unsaturated cyclic hydrocarbon group having 3 to 18 carbon atoms, or a substituted or unsubstituted 3- to 18-membered ring saturated or unsaturated group A heterocyclic group is shown. (However, the maximum value of the total carbon number of R 2 and R 3 and the total carbon number of R 4 , R 5 and R 6 is 18.)
  • halogen alkyl, aryl and heterocycle in R 1 , respectively, halogen, alkyl having 1 to 20 carbon atoms, aryl in saturated or unsaturated cyclic hydrocarbon group having 3 to 20 carbon atoms, And the groups exemplified for the saturated or unsaturated heterocyclic group having 3 to 20 members.
  • alkyl, alkenyl, alkynyl, saturated or unsaturated cyclic hydrocarbon group and saturated or unsaturated heterocyclic group in R A , R B and R 2 to R 6 are each independently in the above substituents.
  • a group represented by the following formula (v) is preferable from the viewpoint of electronic effect, solubility, crystallinity and the like.
  • each R 7 is independently hydrogen, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted saturated or unsaturated cyclic A hydrocarbon group or a substituted or unsubstituted saturated or unsaturated heterocyclic group is shown. (However, the maximum value of the carbon number of R 7 is such that the maximum value of the carbon number of the substituent does not exceed 20.)
  • R 8 and R 9 are each independently hydrogen or halogen.
  • the alkyl, alkenyl, alkynyl, saturated or unsaturated cyclic hydrocarbon group and saturated or unsaturated heterocyclic group in R 7 are each an alkyl having 1 to 20 carbon atoms and a carbon number of 2 in the substituent.
  • R 7 is preferably a linear alkyl group, a linear fluoroalkyl group, a fluorine atom, or the like from the viewpoints of electronic effects, solubility, and crystallinity.
  • R 8 and R 9 are each independently hydrogen or halogen, preferably hydrogen or fluorine.
  • the substituent may be a polymerizable group, and examples of the polymerizable group include alkenyl, alkynyl, and unsaturated cyclic hydrocarbon group (excluding aryl).
  • the substituent is preferably a group selected from the following groups (a) and (a ′) from the viewpoints of electronic effect, solubility, crystallinity and the like.
  • Preferred examples of the compound (I) include compounds described in the following groups (b) to (g). (However, “i-Pr” in the following groups represents an isopropyl group.)
  • the carrier mobility of the compound (I) varies depending on the desired application, but the carrier mobility when the compound (I) is used in an organic semiconductor element is preferably 0.1 cm 2 / V ⁇ s. More preferably, it is 0.2 cm 2 / V ⁇ s or more.
  • the carrier mobility of compound (I) can be measured, for example, by the method described in the following examples.
  • the melting point of the compound (I) varies depending on the desired application, but is preferably 150 to 300 ° C, more preferably 200 to 250 ° C.
  • a film containing the compound (I) can be produced by a melting method (for example, melt molding), which is a simple film forming method. For this reason, an organic semiconductor film, an organic semiconductor element, etc. can be manufactured, without impairing the outstanding property which compound (I) has.
  • a melting method for example, melt molding
  • an organic semiconductor film, an organic semiconductor element, etc. can be manufactured, without impairing the outstanding property which compound (I) has.
  • the melting point of the compound (I) is in the above range, in the heating process that can be included in the process of manufacturing the organic semiconductor element or the like using a film or the like including the compound (I).
  • the melting point of compound (I) can be measured using, for example, a melting point measuring device (MP-J3) manufactured by Yanaco Instrument Development Laboratory.
  • the compound of the present invention is, for example, a method comprising a step A in which a compound represented by the following formula (1) is reacted with thionyl chloride or the like; a compound represented by the following formula (2) is reacted with thionyl chloride or the like Reacting step B and the product obtained in step B with the above-mentioned substituent compound (for example, a compound having an ethynyl group such as ethynyltriisopropylsilane or 2-ethynyl-5-octylthiophene) And a method comprising a step D of reacting a compound represented by the following formula (3) with a compound represented by the following formula (4).
  • a substituent compound for example, a compound having an ethynyl group such as ethynyltriisopropylsilane or 2-ethynyl-5-octylthiophene
  • R independently represents hydrogen or the substituent, and at least one position selected from the group consisting of D, E and F is 1, 2 represented by the formula (i) , A group having a 5-thiadiazole ring is condensed.
  • the compounds (1) to (4) may be synthesized by a conventionally known method or may be commercially available products.
  • the steps A to D may be performed in the presence of an additive such as a catalyst or a solvent.
  • an additive such as a catalyst or a solvent.
  • the reaction conditions such as the reaction temperature and reaction time.
  • the same types of additives as those described in Patent Documents 5 and 6 can be used.
  • the amount used and reaction conditions are mentioned.
  • the polymer of the present invention can be obtained by polymerizing the compound.
  • the compound (I) having a polymerizable group hydrogen at the 1-10th position of the anthracene skeleton (excluding hydrogen bonded to carbon constituting the 1,2,5-thiadiazole ring) is replaced with the above substituent.
  • a compound in which the substituent is the polymerizable group. Since the polymer of the present invention is synthesized from the above compound, it has organic semiconductor characteristics and the like. For this reason, the polymer of this invention can be used suitably for an organic-semiconductor material.
  • the weight average molecular weight of the polymer of the present invention measured by gel permeation chromatography is not particularly limited, but is preferably 1,000 to 1,000,000, more preferably 10,000 to 50,000.
  • the polymerization method is not particularly limited, and a conventionally known polymerization method may be employed depending on the type of the polymerizable group.
  • the organic semiconductor material of the present invention is not particularly limited as long as it includes the compound (I) and / or the polymer.
  • the organic semiconductor material is a material such as the following organic semiconductor film or transistor.
  • Such an organic semiconductor material can be suitably used for an organic semiconductor film, an organic EL element, an organic semiconductor element, a solar cell, and the like.
  • examples thereof include a material (B) containing (I) and an organic solvent.
  • the organic solvent is preferably a polar solvent, specifically t-butyl methyl ether, tetrahydrofuran, isopropanol, ethyl acetate, ethyl lactate, dioxane, dichloromethane, chloroform, 1,2-dichloroethane, acetonitrile, acetone, cyclopentanone.
  • a polar solvent specifically t-butyl methyl ether, tetrahydrofuran, isopropanol, ethyl acetate, ethyl lactate, dioxane, dichloromethane, chloroform, 1,2-dichloroethane, acetonitrile, acetone, cyclopentanone.
  • the concentration of the compound (I) in the material (B) is not particularly limited, but is preferably 0.01 to 10% by weight.
  • Compound (I) exhibits good solubility in organic solvents, so that solutions with various concentrations can be prepared. For this reason, the crystallinity degree of the film
  • the organic semiconductor material of the present invention contains an optional component such as the polymer compound
  • the content of the compound (I) and the polymer in the material is preferably 1 to 99% by weight, more preferably 10 to 99% by weight. %, More preferably 50 to 99% by weight.
  • polymer compound examples include thermoplastic polymers and thermosetting polymers. Specifically, polyester, polyamide, polystyrene, polymethacrylic acid, polyacrylic acid, polyethylene, polypropylene, polycycloolefin, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polycarbonate, phenol resin, polyurethane resin, epoxy resin, Examples thereof include melamine resin, polytetrafluoroethylene, polyacetylene, polypyrrole, and polyarylene vinylene.
  • Organic semiconductor film of the present invention contains the organic semiconductor material. For this reason, the organic semiconductor film of the present invention can obtain a film having good carrier mobility and low defect density.
  • Examples of the method of forming the organic semiconductor film include a method of applying or printing the material (B) on a substrate, a method of melting the material (A), and the like.
  • various substrates can be mentioned. Specifically, glass substrates, metal substrates such as gold, copper and silver, crystalline silicon substrates, amorphous silicon substrates, triacetyl cellulose substrates, polynorbornene substrates, polyester substrates such as polyethylene terephthalate substrates, polypropylene substrates, polyethylene substrates, Examples thereof include vinyl polymer substrates such as polystyrene substrates and polymethyl methacrylate substrates, organic silicon substrates such as polysiloxane substrates and polysilsesquioxane substrates.
  • the method for applying the material (B) various methods may be mentioned. Specific examples include spin coating, dip coating, and blade method. Specific examples of the printing method include screen printing, ink jet printing, planographic printing, intaglio printing, and relief printing. In particular, inkjet printing performed by a printer using the solution of compound (I) as an ink as it is is a simple method and is preferable.
  • the organic semiconductor film As an electronic material (for example, a part of an organic semiconductor element) as it is, patterning is preferably performed by printing, and the printing contains a high concentration of the compound (I).
  • the material (B) (hereinafter also referred to as “high concentration solution”) is preferably used, and inkjet printing, mask printing, screen printing, offset printing, and the like can be used.
  • the production of organic semiconductor elements by printing contributes to circuit simplification, improvement in production efficiency, and reduction in the cost and weight of the elements.
  • the production of a film by printing, in particular, an organic semiconductor film can be produced by a flow operation without the need for heating or a vacuum process, which contributes to cost reduction and increased compatibility with process changes. From such a viewpoint, the compound (I) showing good solubility in an organic solvent is excellent.
  • the high concentration solution of compound (I) refers to a solution in which the concentration of compound (I) in the solution is about 1.0 to 10.0% by weight.
  • the thickness of the organic semiconductor film of the present invention can be appropriately selected according to a desired application, and is preferably 10 to 1,000 nm.
  • the organic semiconductor film can be formed into an organic semiconductor element by combining another semiconductor element and a plurality of electrodes.
  • the semiconductor element include a rectifying element, a thyristor that performs a switching operation, a triac, and a diac.
  • the organic semiconductor element can also be used as a display element, and a display element in which all members are composed of organic compounds is particularly useful.
  • Examples of the display element include flexible sheet-like display devices such as electronic paper and IC card tags, and liquid crystal display elements. These display elements are manufactured by forming the organic semiconductor film and one or more layers including components that function the film on an insulating substrate formed of a flexible polymer. can do. Since the display element manufactured by such a method has flexibility, it can be carried in a pocket or a wallet of clothes.
  • a unique identification code response device can be cited.
  • the unique identification code response device is a device that responds to an electromagnetic wave having a specific frequency or a specific code and returns an electromagnetic wave including the unique identification code.
  • the unique ID code response device identifies a document or individual in a reusable ticket or membership card, payment method, package or product identification seal, tag or stamp role, and company or administrative service. It is used as a means to do.
  • the unique identification code response device is an antenna for receiving a signal in synchronization with a signal on a glass substrate or a flexible polymer substrate, and the organic semiconductor element that operates with received power and returns an identification signal. Consists of.
  • the organic field effect transistor of the present invention has a substrate, a gate electrode, a gate insulating film, a source electrode, a drain electrode, and the organic semiconductor film (layer).
  • This FET can also be used as a liquid crystal display element or an electroluminescence (EL) element.
  • a source electrode (1) is formed on a substrate (6) such as a glass substrate or a polymer substrate by metal mask vapor deposition or conductive ink printing. And a drain electrode (2).
  • An insulating layer (dielectric layer) may be laminated as necessary.
  • a semiconductor layer (5) is formed thereon by printing, applying or dripping the solution of the compound (I), or melting the compound (I) and / or polymer, and further an insulating film (dielectric)
  • the body layer (4) may be formed, and the gate electrode (3) may be formed thereon.
  • ⁇ Second step> In a 200 mL three-necked flask, 4.55 g (25 mmol) of triisopropylsilylacetylene and 25 mL of THF (tetrahydrofuran) were taken and stirred at 0 ° C. in a nitrogen atmosphere. To this was added dropwise 12.5 mL (20 mmol) of n-butyllithium (1.6 M, hexane solution), and the mixture was stirred at room temperature for 1 hour. Subsequently, 1.62 g (5 mmol) of the compound (22) synthesized in the first step was added and stirred overnight at room temperature.
  • THF tetrahydrofuran
  • the carrier mobility of the organic semiconductor material includes carrier mobility ( ⁇ TOF : unit cm 2 / V ⁇ s) by the TOF (Time of Flight) method, and carrier mobility ( ⁇ FET : unit cm) required by the organic FET element. 2 / V ⁇ s) There is, mu TOF is higher material, mu is expected that FET increases.
  • the TOF measurement cell was prepared by bonding two glass substrates having ITO (Indium Tin Oxide) electrodes so that the ITO electrodes face each other and the gap between the two glass substrates was 20 ⁇ m.
  • the compound (11) obtained in Example 1 was placed in the vicinity of the gap between the ITO electrodes on the side of the TOF measurement cell, and the cell was heated on a hot plate to melt the compound (11). It was introduced into the cell (the gap between the ITO electrodes) by capillary action. Thereafter, by slowly cooling, the compound (11) was crystallized inside the cell.
  • the electrode material of the cell for TOF measurement can be appropriately selected depending on the work function of the layer (film) formed from the compound used with the carrier type (electron or hole).
  • the photocurrent is converted with an oscilloscope.
  • Nitrogen laser (wavelength: 337 nm, pulse width: 5 ns) was used for the pulsed light.
  • the propagation time T tr of the optical carrier until the optical carrier generated at the cell edge reaches the other cell edge is observed as an inflection point of the photocurrent waveform of the oscilloscope.
  • the mobility of electrons from the transient photocurrent waveform indicates that the positive electric field is applied to the cell electrode on the opposite side to the light incident side.
  • Hole mobility can be obtained.
  • the carrier mobility ( ⁇ TOF ) measured from the TOF method is obtained by the following equation using the voltage between electrodes of the TOF measurement cell as V, the distance between electrodes as d, and the carrier propagation time T tr calculated from the photocurrent waveform. It is done.
  • ⁇ TOF d 2 / (V ⁇ T tr )
  • Electron mobility mu e TOF determined from TOF measurement of the compound (11) is 0.37cm 2 / V ⁇ s, the hole mobility mu h TOF was 0.6cm 2 / V ⁇ s. From this result, it is considered that the compound (11) has both p-type and n-type properties.
  • the 1 H-NMR value of the obtained compound (12) is as follows.
  • the carrier mobility of compound (12) was determined by TOF measurement.
  • the electron mobility ⁇ e TOF was 1.32 cm 2 / V ⁇ s
  • the hole mobility ⁇ h TOF was 0.3 cm 2 / V ⁇ s.
  • the compound of the present invention is stable in the air, exhibits good solubility in an organic solvent, and has good carrier mobility. Therefore, the compound of the present invention is considered to be a useful compound as a coating type organic semiconductor material.
  • the compound of the present invention has high carrier mobility and is useful as an organic semiconductor material.
  • the compound of the present invention since the compound of the present invention has good solubility in a solvent, it is industrially useful as a material suitable for producing an organic semiconductor element by a simple and inexpensive coating method.
  • Source electrode 2 Drain electrode 3: Gate electrode 4: Insulating film (dielectric layer) 5: Semiconductor layer 6: Substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

 本発明は、新規化合物、該化合物を重合してなるポリマー、有機半導体材料およびその用途に関し、前記新規化合物は、下記式(I)で表される化合物である。[式(I)中、 A、BおよびCからなる群より選択される少なくとも1つの位置と、D、EおよびFからなる群より選択される少なくとも1つの位置とにおいて、1,2,5-チアジアゾール環を有する基が縮合しており、アントラセン骨格の1~10位の水素はそれぞれ独立に、置換基で置き換えられていてもよく、アントラセン骨格の1~10位の炭素はそれぞれ独立に、ヘテロ原子で置き換えられていてもよい。]

Description

化合物、該化合物を重合してなるポリマー、有機半導体材料およびその用途
 本発明は、新規化合物、該化合物を重合してなるポリマー、有機半導体材料およびその用途に関する。さらに詳しくは、新規化合物およびその製造方法、該化合物を重合してなるポリマー、該化合物および/または該ポリマーを含む有機半導体材料、前記有機半導体材料を含む有機半導体膜、ならびに前記有機半導体膜を有する有機電界効果トランジスタ(OFET)に関する。
 近年、半導体特性を有する有機化合物が注目されている。その中でも、ペンタセンおよびテトラセン等のポリアセン化合物は、その高いキャリア移動度から、有機半導体材料として古くから知られている。なお、本明細書において、「キャリア移動度」は、電子移動度および正孔移動度を含む広義の意味で用いる。
 しかしながら、公知のポリアセン化合物は、溶媒に対する溶解性が低いため、塗布法または印刷法等による膜形成が困難である。したがって、製造コストのかかる蒸着プロセスで半導体特性を有する素子(以下「素子」ともいう。)を作製せざるを得ない。さらに、公知のポリアセン化合物は、耐酸化性等の化学的安定性にも問題があり、産業上の実用性という観点では難しい材料である。
 そこで、溶解性や化学的安定性を改善するために、アセン骨格に種々の置換基を導入した化合物が検討されている(例えば、特許文献1および非特許文献1参照)。さらに、アセン骨格の一部に硫黄やセレン等のカルコゲンを導入した化合物、例えば、ジベンゾチエノチオフェン(BTBT)やジナフトチエノチオフェン(DNTT)等も既に検討されている(例えば、特許文献2~3参照)。
 前記特許文献によると、前記化合物において、高いキャリア移動度を維持しつつ、化学的安定性を改善することに成功している。しかしながら、これらは直線型でかつ対称性が高い分子構造を有するため、アルキル基等の置換基を導入しても溶解性が必ずしも充分ではない等の問題を抱えている。また、前記化合物は、分子構造の複雑化に伴い、高価な原料や環境への負荷が高い反応剤を用い、かつ多段階の合成を経て、ようやく合成することができる。
 このように、これまでに半導体特性を有する有機化合物が種々開発されている。しかしながら、合成が容易であり、熱的・化学的安定性に優れ、溶媒に対する高い溶解性を有し、かつ高いキャリア移動度を有する有機化合物(例えば、溶液の状態で塗布または印刷することが可能であり、トランジスタ作製等の広範な用途に適用可能な化合物)の開発は、未だ充分になされていない。
 そこで、分子内に屈曲部位を導入した、非直線型構造を基本骨格とする有機半導体材料が近年注目されている。本出願人は既に、ジナフトフラン、ジナフトチオフェン、ジアントラフランおよびジアントラチオフェン等の、V字型またはU字型分子の特定位置に、アルキル基等の置換基を導入することで、熱的・化学的安定性に優れ、高い溶解性および高いキャリア移動度を有する有機半導体材料を見出している(特許文献4参照)。
 前述の有機半導体材料は全て正孔をキャリアとする、p型有機半導体材料である。現在、シリコン半導体の領域では、正孔を輸送するp型半導体と、電子を輸送するn型半導体とを組み合わせた、いわゆるCMOS(相補型金属酸化膜半導体)素子で低消費電力と高速駆動を実現している。従って、有機半導体で同様のCMOS素子を構成するためには、実用に耐えうるn型有機半導体材料が不可欠である。
 しかしながら、n型有機半導体材料は、大気中の水や酸素に対する安定性が一層乏しく、安定性、半導体特性、溶解塗布性の両立が、p型有機半導体材料以上に困難であった。
 近年、ベンゾビスチアジアゾール骨格を有する、n型有機半導体材料が数件開示されている。特許文献5では、当該骨格にアリール基もしくはπ欠如複素環を置換した化合物、およびサイクリックボルタンメトリー(CV)測定結果が開示されており、n型半導体特性を示す可能性が示唆されているが、前記化合物の実際の半導体特性は不明である。また、特許文献6では、ベンゾビスチアジアゾール骨格にチオフェン環と電子吸引基を導入した、n型有機半導体材料が開示されている。当該化合物は、n型材料としては大気中での安定性と溶解性、および電子移動度を兼ね備えている。しかしながら、これらの特許文献には、ベンゾビスチアジアゾール誘導体以外の化合物は開示されていない。
 また、ナフタレン環に、チアジアゾール環が2つ縮合した化合物、それをモノマーとする高分子化合物、およびその有機薄膜太陽電池材料が開示されている(非特許文献2)。さらに、より共役系が長いアントラセン環に、チアジアゾール環が1つ縮合した化合物が開示されている(非特許文献3)。しかしながら、非特許文献2および3には、これらの化合物以外の化合物は開示されていない。
国際公開第2005/80304号パンフレット 国際公開第2006/77888号パンフレット 国際公開第2008/50726号パンフレット 国際公開第2013/125599号パンフレット 特開2013-124231号公報 国際公開第2013/141182号パンフレット
Journal of the American Chemical Society,2001年,123巻,9482頁 Journal of the American Chemical Society,2011年,133巻,9638頁 Organic Letters,2009年,11巻,5222-5225頁
 本発明は、このような従来技術に鑑みてなされたものであり、大気中で安定であり、有機溶媒に対して良好な溶解性を示し、さらに、良好なキャリア移動度を有する、塗布型有機半導体材料として有用な化合物を提供することをその目的とする。
 前述の通り、ベンゾビスチアジアゾール骨格が、n型有機半導体材料に有用な可能性は示唆されているが、この骨格はπ共役系が短く分子間の電子軌道の重なりが小さい。そこで、より共役系の長いアントラセンに、少なくとも2つのチアジアゾール環を有する基を縮合させた骨格を有する化合物が、ベンゾビスチアジアゾール骨格を有する化合物に比べてLUMO(Lowest Unoccupied Molecular Orbital)が低いことを見出し、また、より化学的に安定なn型有機半導体の材料として好適に用いることができると考えられるため、本発明に到達した。
 [1] 下記式(I)で表される化合物。
Figure JPOXMLDOC01-appb-C000008
[式(I)中、
 A、BおよびCからなる群より選択される少なくとも1つの位置と、D、EおよびFからなる群より選択される少なくとも1つの位置とにおいて、下記式(i)で表される1,2,5-チアジアゾール環を有する基が縮合しており、
 アントラセン骨格の1~10位の水素(但し、1,2,5-チアジアゾール環を構成する炭素に結合した水素を除く。)は、それぞれ独立に、ハロゲン、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の炭素数2~20のアルケニル、置換もしくは無置換の炭素数2~20のアルキニル、置換もしくは無置換の炭素数3~20の飽和または不飽和環状炭化水素基、置換もしくは無置換の3~20員環の飽和または不飽和複素環基、および、これらの基中の少なくとも1つの水素がハロゲンで置換された基からなる群より選ばれる1種の置換基で置き換えられていてもよく、
 アントラセン骨格の1~10位の炭素(但し、1,2,5-チアジアゾール環を構成する炭素を除く。)は、それぞれ独立に、ヘテロ原子で置き換えられていてもよい。]
Figure JPOXMLDOC01-appb-C000009
 [2] 下記式(II)~(VIII)のいずれかで表される、[1]に記載の化合物。
[式(II)~(VIII)における、
 アントラセン骨格の1~10位の水素(但し、1,2,5-チアジアゾール環を構成する炭素に結合した水素を除く。)は、それぞれ独立に、前記置換基で置き換えられていてもよく、
 アントラセン骨格の1~10位の炭素(但し、1,2,5-チアジアゾール環を構成する炭素を除く。)は、それぞれ独立に、ヘテロ原子で置き換えられていてもよい。]
 [3] 前記式(II)または(III)で表される化合物である、[2]に記載の化合物。
 [4] アントラセン骨格の9位および10位の水素が、それぞれ独立に、前記置換基で置き換えられている、[1]~[3]のいずれかに記載の化合物。
 [5] 前記置換基が下記式(ii)で表される基、または、置換もしくは無置換の3~20員環の芳香族炭化水素基もしくは複素環基である、[1]~[4]のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000011
[式(ii)中、R1は、水素、-ORA、-SRB、ハロゲン、炭素数1~18のアルキル、置換もしくは無置換の炭素数6~18のアリール、置換もしくは無置換の3~18員環の複素環、下記式(iii)で表される基、または、下記式(iv)で表される基を示し(RAおよびRBは、それぞれ独立に、水素、置換もしくは無置換の炭素数1~18のアルキル、置換もしくは無置換の炭素数2~18のアルケニル、置換もしくは無置換の炭素数2~18のアルキニル、置換もしくは無置換の炭素数3~18の飽和もしくは不飽和環状炭化水素基、または、置換もしくは無置換の3~18員環の飽和もしくは不飽和複素環基を示す。)、
Figure JPOXMLDOC01-appb-C000012
式(iii)および(iv)中、R2~R6は、それぞれ独立に、水素、置換もしくは無置換の炭素数1~18のアルキル、置換もしくは無置換の炭素数2~18のアルケニル、置換もしくは無置換の炭素数2~18のアルキニル、置換もしくは無置換の炭素数3~18の飽和もしくは不飽和環状炭化水素基、または、置換もしくは無置換の3~18員環の飽和もしくは不飽和複素環基を示す。(但し、R2およびR3の合計炭素数、ならびに、R4、R5およびR6の合計炭素数の最大値は18である。)]
 [6] 前記置換基における、置換もしくは無置換の3~20員環の複素環基、または、前記式(ii)中のR1における、置換もしくは無置換の3~18員環の複素環基が、下記式(v)で表される基である、[5]に記載の化合物。
Figure JPOXMLDOC01-appb-C000013
[式(v)中、R7は、それぞれ独立に、水素、ハロゲン、置換もしくは無置換のアルキル、置換もしくは無置換のアルケニル、置換もしくは無置換のアルキニル、置換もしくは無置換の飽和もしくは不飽和環状炭化水素基、または、置換もしくは無置換の飽和もしくは不飽和複素環基を示す。(但し、R7の炭素数の最大値は、前記置換基の炭素数の最大値が20を超えない値である。)
 式(v)中、R8およびR9は、それぞれ独立に、水素またはハロゲンである。]
 [7] 下記式(IX)または(X)で表される化合物である、[1]~[6]のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000014
[式(IX)中、「TIPS」は、トリイソプロピルシリル基を示す。]
 [8] [1]~[6]のいずれかに記載の化合物が重合性基を有する化合物であり、該化合物を重合してなるポリマー。
 [9] [1]~[7]のいずれかに記載の化合物および[8]に記載のポリマーからなる群より選ばれる少なくとも1種を含む有機半導体材料。
 [10] [9]に記載の有機半導体材料を含む有機半導体膜。
 [11] 基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極および有機半導体層を有し、前記有機半導体層が[10]に記載の有機半導体膜で構成される有機電界効果トランジスタ。
 本発明の化合物は、大気中で安定であり、有機溶媒に対して良好な溶解性を示し、さらに、良好なキャリア移動度を有する。このため、本発明の化合物は、塗布型有機半導体材料として、また、化学的に安定なn型有機半導体の材料として、さらには、有機半導体膜、有機エレクトロルミネッセンス(有機EL)素子、有機半導体素子および太陽電池などの電子材料の原料として、有用である。
 また、本発明の化合物によれば、良好なキャリア移動度を有し、欠陥密度が低い膜、特に、有機半導体膜を作製することができる。
図1は、電界効果トランジスタの断面概略図の一例を示す。
 ≪化合物≫
 本発明の化合物は、下記式(I)で表される。以下、式(I)で表される本発明の化合物を「化合物(I)」ともいう。本明細書において、他の式で表される化合物も同様に表記する場合がある。
 前記化合物(I)は、大気中で安定である。また、前記化合物(I)は、有機溶媒に対して良好な溶解性を示す。このため、簡便な成膜方法、例えば、塗布法により化合物(I)を含む膜などを製造することができる。このため、化合物(I)の有する優れた性質を損なうことなく、有機半導体膜および有機半導体素子などを製造することができる。
 従来の有機半導体材料は、有機溶媒への溶解性が低く、塗布プロセスに不適な材料が多い。そこで、有機溶媒に対して良好な溶解性を示し、塗布型有機半導体材料として用いることができる前記化合物(I)は、今後さらなる応用が期待される。
Figure JPOXMLDOC01-appb-C000015
[式(I)中、
 A、BおよびCからなる群より選択される少なくとも1つの位置と、D、EおよびFからなる群より選択される少なくとも1つの位置とにおいて、下記式(i)で表される1,2,5-チアジアゾール環を有する基が縮合しており、
 アントラセン骨格の1~10位の水素(但し、1,2,5-チアジアゾール環を構成する炭素に結合した水素を除く。)は、それぞれ独立に、ハロゲン、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の炭素数2~20のアルケニル、置換もしくは無置換の炭素数2~20のアルキニル、置換もしくは無置換の炭素数3~20の飽和または不飽和環状炭化水素基、置換もしくは無置換の3~20員環の飽和または不飽和複素環基、および、これらの基中の少なくとも1つの水素がハロゲンで置換された基からなる群より選ばれる1種の置換基で置き換えられていてもよく、
 アントラセン骨格の1~10位の炭素(但し、1,2,5-チアジアゾール環を構成する炭素を除く。)は、それぞれ独立に、ヘテロ原子で置き換えられていてもよい。]
Figure JPOXMLDOC01-appb-C000016
 前記ヘテロ原子としては、芳香族性が失われなければ特に制限されないが、例えば、O、N、Sが挙げられる。
 前記式(i)で表される1,2,5-チアジアゾール環を有する基がアントラセン骨格に縮合する位置は、特に制限されないが、隣り合う位置(例えば位置AとBや、位置BとC)以外が好ましく、合成容易性、分子対称性による配向性、結晶性、溶媒への溶解性などの点から、前記式(I)における、位置BとE、位置AとF、位置AとD、位置AとE、位置AとCとD、位置AとCとE、または、位置AとCとDとFがより好ましい。
 この化合物を具体的に示すと、下記式(II)~(VIII)で表すことができる。下記化合物の中でも、化合物(II)および(III)が合成の容易さ、分子対称性による配向性、結晶性などの点から好ましい。
Figure JPOXMLDOC01-appb-C000017
[式(II)~(VIII)における、
 アントラセン骨格の1~10位の水素(但し、1,2,5-チアジアゾール環を構成する炭素に結合した水素を除く。)は、それぞれ独立に、前記置換基で置き換えられていてもよく、
 アントラセン骨格の1~10位の炭素(但し、1,2,5-チアジアゾール環を構成する炭素を除く。)は、それぞれ独立に、ヘテロ原子で置き換えられていてもよい。]
 前記式(I)における、アントラセン骨格の1~10位の水素(但し、1,2,5-チアジアゾール環を構成する炭素に結合した水素を除く。)は、それぞれ独立に、前記置換基で置き換えられていてもよく、合成の容易さ、分子対称性などの点から、アントラセン骨格の1~10位の水素(但し、1,2,5-チアジアゾール環を構成する炭素に結合した水素を除く。)が前記置換基で置き換えられていることが好ましい。
 前記式(I)におけるアントラセン骨格の水素原子が前記置換基で置き換えられた化合物としては、特に制限されないが、アントラセン骨格の9位および10位の水素原子が前記置換基で置き換えられた化合物が、合成の容易さ、分子対称性などの点から好ましい。
 なお、この場合、アントラセン骨格の9位に結合する置換基と10位に結合する置換基は、同じ基であってもよいし、異なる基であってもよいが、合成容易性などの点から、同じ基であることが好ましい。
 前記置換基におけるハロゲンとしては、特に限定されないが、フッ素が好ましい。
 前記置換基における、炭素数1~20のアルキルとしては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ペンチル、イソペンチル、ネオペンチル、t-ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、ドデシル、オクタデシルが挙げられる。
 前記置換基における、炭素数2~20のアルケニルとしては、例えば、ビニル、アリル、プロペニル、イソプロペニル、2-メチル-1-プロペニル、2-メチルアリル、2-ブテニルが挙げられる。
 前記置換基における、炭素数2~20のアルキニルとしては、例えば、エチニル、プロピニル、ブチニルが挙げられる。
 前記置換基における、炭素数3~20の飽和もしくは不飽和環状炭化水素基としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどのシクロアルキル、シクロプロペニル、シクロブテニル、シクロペンテニル、シクロヘキセニルなどのシクロアルケニル、フェニル、1-ナフチル、2-ナフチル、インデニル、ビフェニリル、アントリル、フェナントリルなどのアリールが挙げられる。
 前記置換基における、3~20員環の飽和もしくは不飽和複素環基としては、例えば、エチレンイミン、エチレンオキシド、エチレンスルフィド、アジリン、アセチレンオキシド、アセチレンスルフィド、アザシクロブタン、オキセタン、チエタン、アゼト、ピロリジン、テトラヒドロフラン、テトラヒトドチオフェン、ピロール、フラン、チオフェン、ピペリジン、テトラヒドロピラン、テトラヒドロチオピラン、ピリジン、ヘキサメチレンイミン、ヘキサメチレンオキシド、ヘキサメチレンスルフィド、アザトロピリデン、オキシシクロヘプタトリエン、チオトロピリデン、イミダゾール、ピラゾール、オキサゾール、チアゾール、イミダゾリン、ピラジン、モルホリン、チアジン、インドール、イソインドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、キノキサリン、シンノリン、プテリジン、クロメン、イソクロメン、アクリジン、キサンテン、カルバゾール、ベンゾ[C]-シンノリン、を有する基が挙げられる。
 なお、前記置換基は、これらの基中の少なくとも1つの水素が、ハロゲン、好ましくはフッ素で置換された基であってもよい。
 前記、「置換もしくは無置換の炭素数1~20のアルキル」における、置換の炭素数1~20のアルキルとは、炭素数1~20のアルキルにおける任意の水素原子が、ある基(以下「追加基」ともいう。)で置換された基のことをいう。
 本明細書において、同様の記載は、同様の意味を示す。
 前記追加基としては、例えば、下記R1と同様の基が挙げられる。
 但し、前記追加基は、前記置換基の炭素数が20を超えないような炭素数を有する基である。
 前記置換基としては、下記式(ii)で表される基、または、置換もしくは無置換の3~20員環の芳香族炭化水素基もしくは複素環基であることが電子的効果(共役系が伸びることにより、分子間の電子の重なり合いが起きやすい)、結晶性などの点から好ましい。
Figure JPOXMLDOC01-appb-C000018
[式(ii)中、R1は、水素、-ORA、-SRB、ハロゲン、炭素数1~18のアルキル、置換もしくは無置換の炭素数6~18のアリール、置換もしくは無置換の3~18員環の複素環、下記式(iii)で表される基、または、下記式(iv)で表される基を示す(RAおよびRBは、それぞれ独立に、水素、置換もしくは無置換の炭素数1~18のアルキル、置換もしくは無置換の炭素数2~18のアルケニル、置換もしくは無置換の炭素数2~18のアルキニル、置換もしくは無置換の炭素数3~18の飽和もしくは不飽和環状炭化水素基、または、置換もしくは無置換の3~18員環の飽和もしくは不飽和複素環基を示す。)。]
Figure JPOXMLDOC01-appb-C000019
[式(iii)および(iv)中、R2~R6は、それぞれ独立に、水素、置換もしくは無置換の炭素数1~18のアルキル、置換もしくは無置換の炭素数2~18のアルケニル、置換もしくは無置換の炭素数2~18のアルキニル、置換もしくは無置換の炭素数3~18の飽和もしくは不飽和環状炭化水素基、または、置換もしくは無置換の3~18員環の飽和もしくは不飽和複素環基を示す。(但し、R2およびR3の合計炭素数、ならびに、R4、R5およびR6の合計炭素数の最大値は18である。)]
 前記R1における、ハロゲン、アルキル、アリールおよび複素環としては、それぞれ、前記置換基における、ハロゲン、炭素数1~20のアルキル、炭素数3~20の飽和もしくは不飽和環状炭化水素基におけるアリール、および、3~20員環の飽和もしくは不飽和複素環基で例示した基などが挙げられる。
 前記RA、RBおよびR2~R6における、アルキル、アルケニル、アルキニル、飽和もしくは不飽和環状炭化水素基、および、飽和もしくは不飽和複素環基としては、それぞれ独立に、前記置換基における、炭素数1~20のアルキル、炭素数2~20のアルケニル、炭素数2~20のアルキニル、炭素数3~20の飽和もしくは不飽和環状炭化水素基、および、3~20員環の飽和もしくは不飽和複素環基で例示した基などが挙げられる。
 前記置換基における、置換もしくは無置換の3~20員環の複素環基、および、前記式(ii)中のR1における、置換もしくは無置換の3~18員環の複素環基としては、下記式(v)で表される基であることが電子的効果、溶解性、結晶性などの点から好ましい。
Figure JPOXMLDOC01-appb-C000020
[式(v)中、R7は、それぞれ独立に、水素、ハロゲン、置換もしくは無置換のアルキル、置換もしくは無置換のアルケニル、置換もしくは無置換のアルキニル、置換もしくは無置換の飽和もしくは不飽和環状炭化水素基、または、置換もしくは無置換の飽和もしくは不飽和複素環基を示す。(但し、R7の炭素数の最大値は、前記置換基の炭素数の最大値が20を超えない値である。)
 式(v)中、R8およびR9は、それぞれ独立に、水素またはハロゲンである。]
 前記R7における、アルキル、アルケニル、アルキニル、飽和もしくは不飽和環状炭化水素基、および、飽和もしくは不飽和複素環基としては、それぞれ、前記置換基における、炭素数1~20のアルキル、炭素数2~20のアルケニル、炭素数2~20のアルキニル、炭素数3~20の飽和もしくは不飽和環状炭化水素基、および、3~20員環の飽和もしくは不飽和複素環基で例示した基などが挙げられる。
 前記R7としては、電子的効果、溶解性、結晶性などの点から直鎖アルキル基、直鎖フルオロアルキル基、フッ素原子などが好ましい。
 R8およびR9は、それぞれ独立に、水素またはハロゲンであり、好ましくは水素またはフッ素である。
 前記置換基は、重合性基であってもよく、該重合性基としては、例えば、アルケニル、アルキニル、不飽和環状炭化水素基(但し、アリールを除く)が挙げられる。
 前記置換基としては、電子的効果、溶解性、結晶性などの点から、下記群(a)および(a')から選ばれる基が好ましい。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 前記化合物(I)として、好ましくは下記群(b)~(g)に記載の化合物が挙げられる。(但し、下記群における「i-Pr」は、イソプロピル基を示す。)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 前記化合物(I)のキャリア移動度は、所望の用途によって最適値は異なるが、該化合物(I)を有機半導体素子に使用する場合のキャリア移動度は、好ましくは0.1cm2/V・s以上、より好ましくは0.2cm2/V・s以上である。
 化合物(I)のキャリア移動度は、例えば、下記実施例に記載の方法で測定することができる。
 前記化合物(I)の融点は、所望の用途によって最適値は異なるが、好ましくは150~300℃、より好ましくは200~250℃である。
 前記化合物(I)の融点が前記範囲にあると、簡便な成膜方法である、溶融法(例えば、溶融成形)により化合物(I)を含む膜などを製造することができる。このため、化合物(I)の有する優れた性質を損なうことなく、有機半導体膜および有機半導体素子などを製造することができる。
 また、前記化合物(I)の融点が前記範囲にあると、該化合物(I)を含む膜等を用いて、有機半導体素子などを作製する際に、該素子の作製過程で含み得る加熱プロセスにおいて、溶けにくく、様々な方法で有機半導体素子を作製できるため、電気特性などに優れる有機半導体素子を得ることができる。
 化合物(I)の融点は、例えば、ヤナコ機器開発研究所製の融点測定器(MP-J3)などを用いて測定することができる。
 ≪化合物の合成方法≫
 本発明の化合物は、例えば、下記式(1)で表される化合物と塩化チオニル等とを反応させる工程Aを含む方法;下記式(2)で表される化合物と塩化チオニル等とを反応させる工程Bおよび該工程Bで得られた生成物と前記置換基となる化合物(例えば、エチニルトリイソプロピルシランや2-エチニル-5-オクチルチオフェン等のエチニル基を有する化合物)とを反応させる工程Cを含む方法;ならびに、下記式(3)で表される化合物と下記式(4)で表される化合物とを反応させる工程Dを含む方法;が挙げられる。
Figure JPOXMLDOC01-appb-C000029
[但し、式(1)および(2)中、1つのベンゼン環に結合する2つのアミノ基の結合位置は、オルト位である。]
Figure JPOXMLDOC01-appb-C000030
[式(3)中、A、BおよびCからなる群より選択される少なくとも1つの位置には、前記式(i)で表わされる1,2,5-チアジアゾール環を有する基が縮合している。]
Figure JPOXMLDOC01-appb-C000031
[式(4)中、Rは独立に、水素または前記置換基を示し、D、EおよびFからなる群より選択される少なくとも1つの位置には、前記式(i)で表わされる1,2,5-チアジアゾール環を有する基が縮合している。]
 前記化合物(1)~(4)は、従来公知の方法で合成して得てもよく、市販品でもよい。
 前記工程A~Dは、触媒、溶媒などの添加剤の存在下で行ってもよい。該添加剤の種類やその使用量、また、反応温度や反応時間などの反応条件は、特に制限されず、例えば、前記特許文献5や6などに記載の従来と同様の、添加剤の種類やその使用量、反応条件が挙げられる。
 ≪ポリマー≫
 本発明のポリマーは、前記化合物(I)が重合性基を有する場合、該化合物を重合することで得られる。重合性基を有する化合物(I)としては、アントラセン骨格の1~10位の水素(但し、1,2,5-チアジアゾール環を構成する炭素に結合した水素を除く。)が前記置換基で置き換えられた化合物であり、該置換基が、前記重合性基である化合物が挙げられる。
 本発明のポリマーは、前記化合物から合成されるため、有機半導体特性などを有する。このため、本発明のポリマーは、有機半導体材料に好適に用いることができる。
 本発明のポリマーの、ゲルパーミネーションクロマトグラフ(GPC)で測定した、重量平均分子量は、特に制限されないが、好ましくは1000~1000000であり、より好ましくは10000~50000である。
 前記重合方法としては、特に制限されず、重合性基の種類に応じて、従来公知の重合方法を採用すればよい。
 ≪有機半導体材料≫
 本発明の有機半導体材料は、前記化合物(I)および/または前記ポリマーを含めば特に制限されず、具体的には、下記有機半導体膜やトランジスタ等の材料となる。
 このような有機半導体材料は、有機半導体膜、有機EL素子、有機半導体素子、太陽電池等に好適に用いることができる。
 本発明の有機半導体材料としては、実質的に前記化合物(I)および/または前記ポリマーのみからなる材料(A)、または、化合物(I)が有機溶媒に対して高い溶解性を示すため、化合物(I)と有機溶媒とを含む材料(B)などが挙げられる。
 前記有機溶媒としては、極性溶媒が好ましく、具体的にはt-ブチルメチルエーテル、テトラヒドロフラン、イソプロパノール、酢酸エチル、乳酸エチル、ジオキサン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、アセトニトリル、アセトン、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、ブチルセロソルブ、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ニトロメタン、トルエン、キシレン、1,2-ジクロロベンゼン、1,2,4-トリクロロベンゼンなどの有機溶媒、またはこれらの混合物などが挙げられる。
 前記材料(B)中の化合物(I)の濃度は、特に制限されないが、0.01~10重量%であることが好ましい。
 化合物(I)は、有機溶媒に対して良好な溶解性を示すため、種々の濃度の溶液を調製することができる。このため、得られる膜の結晶化度を変化させることができる。結晶化度が変化すると、結晶化度に影響されるキャリア移動度も変化する。よって、結晶から非晶質までの広い範囲での結晶性を容易に調整でき、有機半導体膜の厚みおよびキャリア移動度といった、必要な素子特性を安定して再現できる。
 また、前記有機半導体材料には、高分子化合物などの任意成分を更に配合してもよい。
 本発明の有機半導体材料が前記高分子化合物等の任意成分を含む場合、該材料中における前記化合物(I)およびポリマーの含有量は、好ましくは1~99重量%、より好ましくは10~99重量%、さらに好ましくは50~99重量%である。
 前記高分子化合物としては、熱可塑性高分子、熱硬化性高分子等が挙げられる。具体的には、ポリエステル、ポリアミド、ポリスチレン、ポリメタクリル酸、ポリアクリル酸、ポリエチレン、ポリプロピレン、ポリシクロオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリカーボネート、フェノール樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、ポリテトラフルオロエチレン、ポリアセチレン、ポリピロール、ポリアリーレンビニレンなどが挙げられる。
 ≪有機半導体膜≫
 本発明の有機半導体膜は、前記有機半導体材料を含む。このため、本発明の有機半導体膜は、良好なキャリア移動度を有し、欠陥密度の低い膜を得ることができる。
 前記有機半導体膜を形成する方法としては、前記材料(B)を基板上に塗布または印刷する方法、前記材料(A)を溶融させる方法などが挙げられる。
 前記材料(B)を塗布または印刷できる基板としては、種々の基板が挙げられる。具体的には、ガラス基板、金、銅や銀等の金属基板、結晶性シリコン基板、アモルファスシリコン基板、トリアセチルセルロース基板、ポリノルボルネン基板、ポリエチレンテレフタレート基板等のポリエステル基板、ポリプロピレン基板、ポリエチレン基板、ポリスチレン基板、ポリメチルメタクリレート基板等のビニルポリマー系基板、ポリシロキサン基板、ポリシルセスキオキサン基板等の有機シリコン基板などが挙げられる。
 前記材料(B)を塗布する方法としては、種々の方法が挙げられる。具体的にはスピンコート法、ディップコート法、ブレード法などが挙げられる。また、印刷する方法として具体的には、スクリーン印刷、インクジェット印刷、平版印刷、凹版印刷、凸版印刷などが挙げられる。なかでも、化合物(I)の溶液をそのままインクとして用いたプリンタにより行うインクジェット印刷は、簡易な方法であり好ましい。
 前記有機半導体膜を電子材料(例えば、有機半導体素子の一部)としてそのまま使用する際には、印刷によりパターニングを行うことが好ましく、さらに印刷には、化合物(I)が高濃度で含まれた材料(B)(以下「高濃度溶液」ともいう。)を用いることが好ましく、インクジェット印刷、マスク印刷、スクリーン印刷およびオフセット印刷等を活用できる。また、印刷による有機半導体素子の製造は、回路の単純化、製造効率の向上および素子の低廉化・軽量化に寄与する。また、印刷による膜、特に、有機半導体膜の製造は、加熱や真空プロセスの必要性がなく流れ作業によって製造できるので、低コスト化および工程変更への対応性を増すことに寄与する。こういった観点などから、有機溶媒に対して良好な溶解性を示す化合物(I)は優れている。
 化合物(I)は、前記溶媒に溶解するので、化合物(I)の高濃度溶液を調製することができる。したがって、この溶液を基板上に塗布または印刷することにより、容易に膜を作製することができる。ここで、化合物(I)の高濃度溶液とは、溶液中の化合物(I)の濃度が1.0~10.0重量%程度である溶液をいう。
 本発明の有機半導体膜の厚みは、所望の用途に応じて適宜選択することができ、10~1,000nmであることが好ましい。
 例えば、前記有機半導体膜は、他の半導体性を有する素子と、複数の電極とを組み合わせることによって、有機半導体素子とすることができる。半導体素子としては、整流素子、スイッチング動作を行うサイリスタ、トライアックおよびダイアックなどを挙げることができる。さらに、前記有機半導体素子は、表示素子としても用いることができ、特にすべての部材を有機化合物で構成した表示素子が有用である。
 前記表示素子としては、例えば、電子ペーパーやICカードタグなどのフレキシブルなシート状表示装置、および液晶表示素子が挙げられる。これらの表示素子は、可撓性を示す高分子から形成される絶縁基板上に、前記有機半導体膜と、この膜を機能させる構成要素を含む1つ以上の層などとを形成することで作製することができる。このような方法で作製された表示素子は、可撓性を有しているため、衣類のポケットや財布などに入れて持ち運ぶことができる。
 また、前記表示素子としては、固有識別符号応答装置を挙げることもできる。固有識別符号応答装置は、特定周波数または特定符号を持つ電磁波に反応し、固有識別符号を含む電磁波を返答する装置である。固有識別符号応答装置は、再利用可能な乗車券または会員証、代金の決済手段、荷物または商品の識別用シール、荷札または切手の役割、および、会社または行政サービスなどにおいて、書類または個人を識別する手段として用いられる。
 固有識別符号応答装置は、ガラス基板または可撓性のある高分子基板の上に、信号に同調して受信するための空中線、および、受信電力で動作し、識別信号を返信する前記有機半導体素子などによって構成される。
 ≪有機電界効果トランジスタ≫
 本発明の有機電界効果トランジスタは、基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極および前記有機半導体膜(層)を有する。
 このFETは、液晶表示素子やエレクトロルミネッセンス(EL)素子としても用いることができる。
 このようなトランジスタを作製するには、例えば、まず図1において、ガラス基板や高分子基板等の基板(6)の上に、金属のマスク蒸着または導電性インクの印刷により、ソース電極(1)およびドレイン電極(2)を形成する。必要に応じて絶縁層(誘電体層)を積層してもよい。その上に、前記化合物(I)の溶液を印刷、塗布もしくは滴下すること、または、前記化合物(I)および/またはポリマーを溶融することによって半導体層(5)を形成し、さらに絶縁膜(誘電体層)(4)を形成し、その上にゲート電極(3)を形成すればよい。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 [1H-NMR分析]
 実施例1または2で得られた化合物(11)または化合物(12)を、CDCl3に溶解させた溶液を用い、これらの化合物の1H-NMR分析を、室温にて核磁気共鳴装置(アジレント・テクノロジー(株)製)を用いて行った。なお、δ値のゼロ点の基準物質にはテトラメチルシラン(TMS)を用いた。
 [実施例1]
 化合物(11)の合成
Figure JPOXMLDOC01-appb-C000032
[前記スキーム中、「TIPS」は、トリイソプロピルシリル基を示す。]
 <第1工程>
 J.Polym.Sci.,PartA,3177(1970)に準拠して合成した、1,2,5,6-テトラアミノアントラキノン(21)(2.68g,10mmol)を、冷却管付の200mLナスフラスコに取り、塩化チオニル50mLおよびトリエチルアミン10mLを加え、4時間加熱還流させた。反応後冷却し、過剰の塩化チオニルを減圧下留去した。得られた固体をろ別し、ろ物を2回水洗した後、減圧乾燥させ、2.85g(8.7mmol)の化合物(22)を得た。収率87%。
 <第2工程>
 200mL三ツ口フラスコに、トリイソプロピルシリルアセチレン4.55g(25mmol)とTHF(テトラヒドロフラン)25mLを取り、窒素雰囲気下0℃で撹拌した。ここに、n-ブチルリチウム(1.6M、ヘキサン溶液)12.5mL(20mmol)を滴下し、室温で1時間撹拌した。続いて、第1工程で合成した化合物(22)を1.62g(5mmol)加え、室温で一晩撹拌した。含水ジエチルエーテルを加えて反応を停止し、析出した固体をろ別後、少量のTHFで洗浄し、次いで水で洗浄し、固体を減圧乾燥させることで化合物(23)0.95gを得た。この化合物はこれ以上精製せず、直ちに次の反応に用いた。
 <第3工程>
 前工程で合成した化合物(23)の粗精製物0.95gを、還流管を付けた50mL三ツ口フラスコに取り、ヨウ化カリウム3.32g(20mmol)、酢酸50mL、NaH2PO22.12g(20mmol)を加え、1時間加熱還流させた。反応液を水中に投入し、クロロホルムで3回抽出した。得られた有機相を重曹水と純水で順次洗浄した後、溶媒を減圧濃縮した。得られた残渣に酢酸エチルを加え、室温で撹拌し、不溶の赤色固体をろ別後再度減圧濃縮した。残渣をシリカゲルカラム(クロロホルム/ヘキサン=1/4)で精製し、化合物(11)を黄色結晶として0.60g得た。収率約20%。
 得られた化合物(11)の1H-NMRの値は以下のとおりである。
 1H-NMR(CDCl3):δ(ppm);8.19(s,4H)、3.19(t,4H)、1.89(quint,4H)、1.48(quint,4H)、1.41-1.27(m、16H)、0.91(t、6H).
 <キャリア移動度について>
 有機半導体材料のキャリア移動度には、TOF(Time of Flight)法によるキャリア移動度(μTOF:単位cm2/V・s)、および有機FET素子により求められるキャリア移動度(μFET:単位cm2/V・s)があり、μTOFが高い材料ほど、μFETが高くなることが予想される。
 <TOF法によるキャリア移動度の測定>
 TOF測定用セルは、ITO(Indium Tin Oxide)電極を有するガラス基板2枚を、ITO電極が対向し、2枚のガラス基板の間隙が20μmとなるように貼り合わせて作製した。実施例1で得られた化合物(11)を、このTOF測定用セルの側方のITO電極の間隙付近に置き、ホットプレート上でセルを加熱することで、該化合物(11)を融解させ、毛細管現象によりセル内部(ITO電極の間隙)に導入した。その後、徐冷することによって、セル内部で化合物(11)を結晶化させた。
 なお、TOF測定用セルの電極材料は、キャリア種(電子または正孔)と用いる化合物から形成される層(膜)の仕事関数によって適宜選択することができる。
 このTOF測定用セルの電極間に、電圧Vを印加した状態でパルス光を照射し、光キャリアを生成し、キャリア輸送によって生じる電流値の変化を電圧に変換することによって、光電流をオシロスコープで計測した。パルス光には窒素レーザー(波長が337nm、パルス幅が5ns)を用いた。
 ここで、セル端で発生した光キャリアがもう片方のセル端に到達するまでの光キャリアの伝播時間Ttrが、オシロスコープの光電流波形の変曲点として観測される。
 なお、光を入射した側のセル電極に正電場を印加すれば、過渡光電流波形からは電子の移動度が、光を入射した側と反対側のセル電極に正電場を印加した場合には、正孔の移動度が得られる。
 TOF法から測定されるキャリア移動度(μTOF)は、TOF測定用セルの電極間の電圧をV、電極間距離をd、光電流波形から算出したキャリア伝播時間Ttrとして、下記式により求められる。
              μTOF=d2/(V・Ttr)
 化合物(11)のTOF測定より求めた電子移動度μe TOFは0.37cm2/V・sであり、正孔移動度μh TOFは0.6cm2/V・sであった。
 この結果からすると、化合物(11)は、p型およびn型の両方の特性を有すると考えられる。
 [実施例2]
 化合物(12)の合成
Figure JPOXMLDOC01-appb-C000033
 <第1工程>
 200mL三ツ口フラスコに、2-エチニル-5-オクチルチオフェン2.2g(10mmol)とTHF90mLを取り、窒素雰囲気下0℃で撹拌した。ここに、n-ブチルリチウム(2.6M、ヘキサン溶液)3.5mL(9.1mmol)を滴下し、室温で1時間撹拌した。続いて、実施例1の第1工程で合成した化合物(22)を0.486g(1.5mmol)加え、室温で一晩撹拌した。含水ジエチルエーテルを加えて反応を停止し、析出した固体をろ別後、少量のTHFで洗浄し、次いで水で洗浄し、固体を減圧乾燥させることで化合物(24)0.70gを得た。この化合物はこれ以上精製せず、直ちに次の反応に用いた。
 <第2工程>
 前工程で合成した化合物(24)の粗精製物0.70gを、還流管を付けた200mL三ツ口フラスコに取り、ヨウ化カリウム6.60g(40mmol)、酢酸100mL、NaH2PO24.40g(40mmol)を加え、1時間加熱還流させた。反応液を水中に投入し、クロロホルムで3回抽出した。得られた有機相を重曹水と純水で順次洗浄した後、溶媒を減圧濃縮した。得られた残渣に酢酸エチルを加え、室温で撹拌し、不溶の赤色固体をろ別後再度減圧濃縮した。残渣をシリカゲルカラム(クロロホルム/ヘキサン=1/4)で精製し、化合物(12)を燈色結晶として0.58g(0.8mmol)得た。収率約52%。
 得られた化合物(12)の1H-NMRの値は以下のとおりである。
 1H-NMR(CDCl3):δ(ppm);8.19(s,4H)、3.19(t,4H)、1.89(quint,4H)、1.48(quint,4H)、1.41-1.27(m、16H)、0.91(t、6H).
 実施例1と同様の方法で、化合物(12)のキャリア移動度をTOF測定より求めた。電子移動度μe TOFは1.32cm2/V・sであり、正孔移動度μh TOFは0.3cm2/V・sであった。
 以上の実施例の結果から、本発明の化合物は、大気中で安定であり、有機溶媒に対して良好な溶解性を示し、さらに、良好なキャリア移動度を有することが分かった。従って、本発明の化合物は、塗布型有機半導体材料として有用な化合物であると考えられる。
 本発明の化合物は、高いキャリア移動度を有し、有機半導体材料として有用である。また、本発明の化合物は溶媒に対して良好な溶解性を有するため、簡便安価な塗布法による有機半導体素子の作製に適した材料として産業上も有用である。
1: ソース電極
2: ドレイン電極
3: ゲート電極
4: 絶縁膜(誘電体層)
5: 半導体層
6: 基板

Claims (11)

  1.  下記式(I)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、
     A、BおよびCからなる群より選択される少なくとも1つの位置と、D、EおよびFからなる群より選択される少なくとも1つの位置とにおいて、下記式(i)で表される1,2,5-チアジアゾール環を有する基が縮合しており、
     アントラセン骨格の1~10位の水素(但し、1,2,5-チアジアゾール環を構成する炭素に結合した水素を除く。)は、それぞれ独立に、ハロゲン、置換もしくは無置換の炭素数1~20のアルキル、置換もしくは無置換の炭素数2~20のアルケニル、置換もしくは無置換の炭素数2~20のアルキニル、置換もしくは無置換の炭素数3~20の飽和または不飽和環状炭化水素基、置換もしくは無置換の3~20員環の飽和または不飽和複素環基、および、これらの基中の少なくとも1つの水素がハロゲンで置換された基からなる群より選ばれる1種の置換基で置き換えられていてもよく、
     アントラセン骨格の1~10位の炭素(但し、1,2,5-チアジアゾール環を構成する炭素を除く。)は、それぞれ独立に、ヘテロ原子で置き換えられていてもよい。]
    Figure JPOXMLDOC01-appb-C000002
  2.  下記式(II)~(VIII)のいずれかで表される、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    [式(II)~(VIII)における、
     アントラセン骨格の1~10位の水素(但し、1,2,5-チアジアゾール環を構成する炭素に結合した水素を除く。)は、それぞれ独立に、前記置換基で置き換えられていてもよく、
     アントラセン骨格の1~10位の炭素(但し、1,2,5-チアジアゾール環を構成する炭素を除く。)は、それぞれ独立に、ヘテロ原子で置き換えられていてもよい。]
  3.  前記式(II)または(III)で表される化合物である、請求項2に記載の化合物。
  4.  アントラセン骨格の9位および10位の水素が、それぞれ独立に、前記置換基で置き換えられている、請求項1~3のいずれか1項に記載の化合物。
  5.  前記置換基が下記式(ii)で表される基、または、置換もしくは無置換の3~20員環の芳香族炭化水素基もしくは複素環基である、請求項1~4のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式(ii)中、R1は、水素、-ORA、-SRB、ハロゲン、炭素数1~18のアルキル、置換もしくは無置換の炭素数6~18のアリール、置換もしくは無置換の3~18員環の複素環、下記式(iii)で表される基、または、下記式(iv)で表される基を示し(RAおよびRBは、それぞれ独立に、水素、置換もしくは無置換の炭素数1~18のアルキル、置換もしくは無置換の炭素数2~18のアルケニル、置換もしくは無置換の炭素数2~18のアルキニル、置換もしくは無置換の炭素数3~18の飽和もしくは不飽和環状炭化水素基、または、置換もしくは無置換の3~18員環の飽和もしくは不飽和複素環基を示す。)、
    Figure JPOXMLDOC01-appb-C000005
    式(iii)および(iv)中、R2~R6は、それぞれ独立に、水素、置換もしくは無置換の炭素数1~18のアルキル、置換もしくは無置換の炭素数2~18のアルケニル、置換もしくは無置換の炭素数2~18のアルキニル、置換もしくは無置換の炭素数3~18の飽和もしくは不飽和環状炭化水素基、または、置換もしくは無置換の3~18員環の飽和もしくは不飽和複素環基を示す。(但し、R2およびR3の合計炭素数、ならびに、R4、R5およびR6の合計炭素数の最大値は18である。)]
  6.  前記置換基における、置換もしくは無置換の3~20員環の複素環基、または、前記式(ii)中のR1における、置換もしくは無置換の3~18員環の複素環基が、下記式(v)で表される基である、請求項5に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    [式(v)中、R7は、それぞれ独立に、水素、ハロゲン、置換もしくは無置換のアルキル、置換もしくは無置換のアルケニル、置換もしくは無置換のアルキニル、置換もしくは無置換の飽和もしくは不飽和環状炭化水素基、または、置換もしくは無置換の飽和もしくは不飽和複素環基を示す。(但し、R7の炭素数の最大値は、前記置換基の炭素数の最大値が20を超えない値である。)
     式(v)中、R8およびR9は、それぞれ独立に、水素またはハロゲンである。]
  7.  下記式(IX)または(X)で表される化合物である、請求項1~6のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    [式(IX)中、「TIPS」は、トリイソプロピルシリル基を示す。]
  8.  請求項1~6のいずれか1項に記載の化合物が重合性基を有する化合物であり、該化合物を重合してなるポリマー。
  9.  請求項1~7のいずれか1項に記載の化合物および請求項8に記載のポリマーからなる群より選ばれる少なくとも1種を含む有機半導体材料。
  10.  請求項9に記載の有機半導体材料を含む有機半導体膜。
  11.  基板、ゲート電極、ゲート絶縁膜、ソース電極、ドレイン電極および有機半導体層を有し、前記有機半導体層が請求項10に記載の有機半導体膜で構成される有機電界効果トランジスタ。
PCT/JP2015/056209 2014-03-03 2015-03-03 化合物、該化合物を重合してなるポリマー、有機半導体材料およびその用途 WO2015133471A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016506499A JPWO2015133471A1 (ja) 2014-03-03 2015-03-03 化合物、該化合物を重合してなるポリマー、有機半導体材料およびその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014040879 2014-03-03
JP2014-040879 2014-03-03

Publications (1)

Publication Number Publication Date
WO2015133471A1 true WO2015133471A1 (ja) 2015-09-11

Family

ID=54055277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056209 WO2015133471A1 (ja) 2014-03-03 2015-03-03 化合物、該化合物を重合してなるポリマー、有機半導体材料およびその用途

Country Status (2)

Country Link
JP (1) JPWO2015133471A1 (ja)
WO (1) WO2015133471A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160150A (ja) * 2016-03-08 2017-09-14 国立大学法人 岡山大学 アントラビスチアジアゾール誘導体及びこれを用いて得られるπ共役系重合体
CN110854268A (zh) * 2019-11-13 2020-02-28 中国科学院化学研究所 一种消除有机场效应晶体管光响应的方法
WO2020090636A1 (ja) * 2018-10-30 2020-05-07 国立大学法人大阪大学 化合物及びその製造方法並びにその化合物を用いた有機半導体材料
WO2023210569A1 (ja) * 2022-04-26 2023-11-02 東ソー株式会社 新規化合物、共役系高分子及びその製造方法、製膜用組成物、有機薄膜、並びに有機半導体素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282024A (ja) * 1992-02-14 2000-10-10 Mitsubishi Chemicals Corp 有機電界発光素子
JP2013124231A (ja) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd ベンゾビスチアジアゾール化合物
WO2013141182A1 (ja) * 2012-03-23 2013-09-26 宇部興産株式会社 ベンゾビス(チアジアゾール)誘導体、およびそれを用いた有機エレクトロニクスデバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282024A (ja) * 1992-02-14 2000-10-10 Mitsubishi Chemicals Corp 有機電界発光素子
JP2013124231A (ja) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd ベンゾビスチアジアゾール化合物
WO2013141182A1 (ja) * 2012-03-23 2013-09-26 宇部興産株式会社 ベンゾビス(チアジアゾール)誘導体、およびそれを用いた有機エレクトロニクスデバイス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 133, 2011, pages 9638 - 9641 *
ORGANIC LETTERS, vol. 11, no. 22, 2009, pages 5222 - 5225 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017160150A (ja) * 2016-03-08 2017-09-14 国立大学法人 岡山大学 アントラビスチアジアゾール誘導体及びこれを用いて得られるπ共役系重合体
WO2020090636A1 (ja) * 2018-10-30 2020-05-07 国立大学法人大阪大学 化合物及びその製造方法並びにその化合物を用いた有機半導体材料
CN112930351A (zh) * 2018-10-30 2021-06-08 国立大学法人大阪大学 化合物及其制造方法以及使用了该化合物的有机半导体材料
JPWO2020090636A1 (ja) * 2018-10-30 2021-10-14 国立大学法人大阪大学 化合物及びその製造方法並びにその化合物を用いた有機半導体材料
EP3882251A4 (en) * 2018-10-30 2022-08-24 Osaka University COMPOUND, METHOD OF MANUFACTURE THEREOF AND ORGANIC SEMICONDUCTOR MATERIAL MANUFACTURED USING SAID COMPOUND
JP7365025B2 (ja) 2018-10-30 2023-10-19 国立大学法人大阪大学 化合物及びその製造方法並びにその化合物を用いた有機半導体材料
TWI821439B (zh) * 2018-10-30 2023-11-11 日本國立大學法人大阪大學 化合物及其製造方法以及使用該化合物的有機半導體材料
CN112930351B (zh) * 2018-10-30 2024-04-26 国立大学法人大阪大学 化合物及其制造方法以及使用了该化合物的有机半导体材料
CN110854268A (zh) * 2019-11-13 2020-02-28 中国科学院化学研究所 一种消除有机场效应晶体管光响应的方法
CN110854268B (zh) * 2019-11-13 2021-06-22 中国科学院化学研究所 一种消除有机场效应晶体管光响应的方法
WO2023210569A1 (ja) * 2022-04-26 2023-11-02 東ソー株式会社 新規化合物、共役系高分子及びその製造方法、製膜用組成物、有機薄膜、並びに有機半導体素子

Also Published As

Publication number Publication date
JPWO2015133471A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
EP2966077B1 (en) Chalcogen-containing organic compound and use therefor
JP6170488B2 (ja) 新規縮合多環芳香族化合物及びその用途
KR101928284B1 (ko) 유기 화합물, 유기 반도체 재료, 유기 박막 및 그의 제조 방법, 유기 반도체 조성물, 그리고 유기 반도체 디바이스
WO2015133471A1 (ja) 化合物、該化合物を重合してなるポリマー、有機半導体材料およびその用途
JP6592758B2 (ja) 新規な縮合多環芳香族化合物及びその用途
JP6425646B2 (ja) 新規縮合多環芳香族化合物及びその用途
JP2010209026A (ja) 分岐型化合物、並びにこれを用いた有機薄膜及び有機薄膜素子
JP2009541307A (ja) ポリ複素環化合物、それを用いた有機電子素子およびその有機電子素子を含む電子装置
JP5600267B2 (ja) 新規な化合物及びその利用
KR101879524B1 (ko) 반도체 소자 및 절연층 형성용 조성물
JP6917106B2 (ja) 縮合多環芳香族化合物及びその用途
JP6497560B2 (ja) 新規縮合多環芳香族化合物及びその用途
WO2021117622A1 (ja) 縮合多環芳香族化合物
JP2011236143A (ja) 液晶性ピレン誘導体、有機半導体および有機半導体素子
WO2011066392A1 (en) A new class of soluble, photooxidatively resistant acene derivatives
JP5578414B2 (ja) テトラチアフルバレン誘導体を用いた有機トランジスタ及びその製造方法
WO2021054161A1 (ja) 縮合多環芳香族化合物
JP7317301B2 (ja) 有機半導体化合物及びその用途
JP4972950B2 (ja) 有機半導体素子に適したテトラセン化合物
JP5252508B2 (ja) 有機半導体材料およびその製造方法、並びに有機半導体材料の利用
JP2012056907A (ja) テトラセン化合物
JP2011155180A (ja) 有機半導体薄膜形成材料、該材料から形成される有機半導体薄膜および該有機半導体薄膜を有する有機半導体素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15757781

Country of ref document: EP

Kind code of ref document: A1