WO2015133211A1 - Connecting structure, manufacturing method for connecting structure, and circuit connecting material - Google Patents

Connecting structure, manufacturing method for connecting structure, and circuit connecting material Download PDF

Info

Publication number
WO2015133211A1
WO2015133211A1 PCT/JP2015/052637 JP2015052637W WO2015133211A1 WO 2015133211 A1 WO2015133211 A1 WO 2015133211A1 JP 2015052637 W JP2015052637 W JP 2015052637W WO 2015133211 A1 WO2015133211 A1 WO 2015133211A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
circuit member
connection structure
film
forming resin
Prior art date
Application number
PCT/JP2015/052637
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 伸一
祐治 田中
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020167025620A priority Critical patent/KR20160130399A/en
Publication of WO2015133211A1 publication Critical patent/WO2015133211A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/117Pads along the edge of rigid circuit boards, e.g. for pluggable connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present invention relates to a connection structure using a circuit connection material such as an anisotropic conductive film, a manufacturing method thereof, and a circuit connection material.
  • anisotropic conductive films are used for connection of fine wiring that is not suitable for solder connection (see, for example, Patent Document 1).
  • ACF Anisotropic Conductive Film
  • it has been used for connection of relatively rough wiring having a terminal width of 300 ⁇ m or more because of any advantage that enables low-temperature connection.
  • the anisotropic conductive film designed for general fine wiring is eliminated by flowing out of the terminal area against the force of the binder forming the adhesive layer crushing, and the thickness of the adhesive layer of the terminal portion is made of conductive particles. By being thinner than the diameter, the conductive particles are crushed, and the design is to obtain good conductivity.
  • a terminal area having a relatively large area is to be connected, it is difficult to appropriately remove the binder between the terminals, and when the removal is insufficient, the remaining binder prevents conduction.
  • the lack of binder removal was particularly noticeable when a circuit member in which the periphery of a terminal portion where a plurality of terminals are arranged is covered with a solder resist having a thickness larger than the height of the terminal is subjected to low-temperature pressure bonding.
  • the present invention solves the above-described problems in the prior art, and a connection structure that can obtain high connection reliability even when the periphery of the terminal portion is covered with a resist having a thickness larger than the terminal height, and The manufacturing method and circuit connection material are provided.
  • a manufacturing method of a connection structure includes a first terminal portion in which first terminals are arranged, and a periphery of the first terminal portion.
  • a second circuit portion including a first circuit member including a resist having a thickness larger than the height of the first terminal, and a second terminal portion in which a second terminal having a lower height than the first terminal is arranged.
  • a circuit member comprising a film-forming resin and a polymerizable compound, a first layer in contact with the first circuit member, the film-forming resin, the polymerizable compound, a polymerization initiator, and conductivity.
  • connection structure according to the present invention is obtained by the method for manufacturing the connection structure.
  • the circuit connection material according to the present invention is formed around the first terminal portion in which the first terminals are arranged and the first terminal portion, and has a thickness larger than the height of the first terminal.
  • a first circuit member having a resist and a second circuit member having a second terminal portion in which second terminals having a height lower than the terminals of the first circuit member are arranged.
  • a film-forming resin and a polymerizable compound In the circuit connection material to be thermocompression-bonded, a film-forming resin and a polymerizable compound, a first layer in contact with the first circuit member, the film-forming resin, the polymerizable compound, and a polymerization initiator And a second layer in contact with the second circuit member, wherein the glass transition temperature of the film-forming resin of the first layer is not less than ⁇ 50 ° C. of the predetermined temperature. And the glass transition temperature of the film-forming resin of the second layer is not less than + 35 ° C. That.
  • the glass transition temperature of the film-forming resin of the first layer of the circuit connecting material is not less than ⁇ 50 ° C. of the predetermined temperature at the time of pressure bonding and + 35 ° C. of the glass transition temperature of the film-forming resin of the second layer. Therefore, even when the periphery of the terminal portion is covered with a resist having a thickness larger than the terminal height, high connection reliability can be obtained.
  • FIG. 1 is a cross-sectional view showing an example of the arrangement of the first circuit member, the second circuit member, and the circuit connection material.
  • FIG. 2 is a plan view illustrating an example of a first circuit member including a resist formed around the terminal portion.
  • FIG. 3 is a cross-sectional view showing a part of the terminal portion at AA in FIG.
  • the manufacturing method of the connection structure according to the present embodiment includes at least an arrangement step and a crimping step, and further includes other steps as necessary.
  • the arrangement step the first circuit member and the second circuit member are arranged with a circuit connecting material interposed therebetween.
  • the crimping step the first circuit member and the second circuit member are thermocompression bonded at a predetermined temperature to obtain a connection structure.
  • the first circuit member includes a first terminal portion in which first terminals are arranged, a resist formed around the first terminal portion, and having a thickness larger than the height of the first terminal. Is provided.
  • the second circuit member includes a second terminal portion in which second terminals lower than the height of the first terminal are arranged.
  • the circuit connection material has a first layer in contact with the first circuit member and a second layer in contact with the second circuit member.
  • FIG. 1 is a cross-sectional view showing an arrangement of a first circuit member, a second circuit member, and a circuit connection material.
  • the first circuit member 10 and the second circuit member 20 have a first layer 31 in contact with the first circuit member 10 and a second layer 32 in contact with the second circuit member 20.
  • the connecting material 30 is interposed.
  • FIG. 2 is a plan view showing an example of a first circuit member provided with a resist formed around the terminal portion
  • FIG. 3 is a cross-sectional view showing a part of the terminal portion along AA in FIG. is there.
  • FIG. 1 is a cross-sectional view showing a part of the terminal portion at BB in FIG.
  • the first circuit member 10 includes a first base material 11, a first terminal portion 12, and a resist 13.
  • a first terminal 12 a is arranged in the first terminal portion 12.
  • the resist 13 is formed around the first terminal portion 12.
  • the resist 13 has a thickness t larger than the height h of the first terminal 12a.
  • the first base material 11 may be a base material used as an electronic circuit board material, such as a glass epoxy board or a glass board.
  • the first terminal portion 12 has a plurality of first terminals 12 a arranged on the first base material 11.
  • the height h of the first terminal 12a is, for example, 25 ⁇ m to 45 ⁇ m.
  • the width of the first terminal 12a is not particularly limited, but in this embodiment, high connection reliability can be obtained even with a wide terminal of 300 ⁇ m or more.
  • the resist 13 is a solder resist that covers the surface of the first substrate 11 and serves as an insulating film that protects the circuit pattern. As shown in FIG. 2, the resist 13 covers the periphery of the first terminal portion 12, and as shown in FIG. 3, the resist 13 has a thickness larger than the height h of the first terminal 12a. t.
  • a first circuit member 10 for example, a glass substrate for IC (Integrated Circuit) mounting, a glass substrate for LCD (Liquid Crystal Display) panel, a plastic substrate such as cycloolefin (COP) for touch panel, A glass substrate etc. are mentioned.
  • IC Integrated Circuit
  • LCD Liquid Crystal Display
  • COP cycloolefin
  • the 2nd circuit member 20 is provided with the 2nd base material 21 and the 2nd terminal part 22 in which the 2nd terminal 22a was arranged, as shown in FIG.
  • a base material used as an electronic circuit board material, such as polyimide can be used.
  • the second terminal portion 22 has a plurality of second terminals 22 a arranged on the second base material 21.
  • the height of the second terminal 22a is, for example, 5 ⁇ m to 20 ⁇ m.
  • the width of the second terminal 22a is not particularly limited, in the present embodiment, high connection reliability can be obtained even at 300 ⁇ m or more.
  • Examples of the second circuit member 20 include a flexible substrate (FPC: Flexible Printed Circuits) such as COF (Chip On Film) and TCP (Tape Carrier Package), an IC, and the like.
  • FPC Flexible Printed Circuits
  • COF Chip On Film
  • TCP Transmission Carrier Package
  • the circuit connection material 30 has a first layer 31 and a second layer 32.
  • the first layer 31 contains a film-forming resin and a polymerizable compound.
  • the first layer 31 is in contact with the first circuit member 10.
  • the second layer 32 contains a film-forming resin, a polymerizable compound, a polymerization initiator, and conductive particles.
  • the second layer 32 is in contact with the second circuit member 20.
  • the film-forming resin of the first layer 31 and the film-forming resin of the second layer 32 are such that the glass transition temperature of the film-forming resin of the first layer 31 is ⁇ 50 ° C. or higher of the pressure-bonding temperature in the pressure-bonding step.
  • the glass transition temperature of the film forming resin of the layer 32 is selected to be + 35 ° C. or higher.
  • the glass transition temperature of the film-forming resin of the first layer 31 is less than ⁇ 50 ° C., which is the pressure bonding temperature, the fluidity is excessive, and the binder removed between the terminals flows away to the outside of the terminals, Cannot fill between terminals. For this reason, floating occurs in the reliability test, and the conduction performance deteriorates. Further, when the glass transition temperature of the film-forming resin of the first layer 31 is higher than the pressure bonding temperature, the binder on the terminal may not be completely excluded. Therefore, the glass transition temperature of the film-forming resin of the first layer 31 is preferably equal to or lower than the pressure bonding temperature. Further, when the glass transition temperature of the film forming resin of the first layer 31 is less than + 35 ° C. of the glass transition temperature of the film forming resin of the second layer 32, the first layer 31 and the second layer 32 The binder will flow in the same manner and the conduction performance will be reduced.
  • the glass transition temperature of the film-forming resin can be calculated as a theoretical glass transition temperature represented by the following formula (1) (FOX formula).
  • 1 / Tg W1 / T1 + W2 / T2 +... Wn / Tn (1)
  • W1, W2,... Wn are mass fractions of each monomer
  • T1, T2,... Tn are glass transition temperatures (K) of the respective monomers.
  • thermoplastic elastomer such as phenoxy resin, epoxy resin, polyester resin, polyurethane resin, polyamide, EVA, or the like can be used.
  • phenoxy resin epoxy resin
  • polyester resin polyurethane resin
  • polyamide polyamide
  • EVA polyamide
  • the thickness of the first layer 31 is preferably 10% to 75% of the height of the first terminal 12a. Thereby, even when the periphery of the first terminal portion 12 is covered with the resist 13 having a thickness larger than the height of the first terminal 12a, high connection reliability can be obtained.
  • the polymerizable compound of the first layer 31 and the polymerizable compound of the second layer 32 are radical polymerizable compounds, and the polymerization initiator of the second layer 32 is an organic peroxide. preferable. Due to the incompatibility of the film-forming resin and the radically polymerizable compound, appropriate fluidity can be obtained.
  • radical polymerizable compound examples include urethane acrylate, polyethylene glycol diacrylate, phosphate ester acrylate, tricyclodecane dimethanol dimethacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, t-butyl acrylate, isooctyl acrylate, bisphenoxyethanol full orange acrylate, 2-acryloyloxyethyl succinic acid, lauryl acrylate, stearyl acrylate, isobornyl acrylate, cyclohexyl acrylate, tris (2-hydroxyethyl) isocyanurate triacrylate, Tetrahydrofurfuryl acrylate, diglycidyl ether o-phthalate Relate, ethoxylated bisphenol A dimethacrylate, bisphenol A type epoxy acrylate, epoxy acrylate, and corresponding to these (meth) acrylate.
  • organic peroxides examples include dilauroyl peroxide (1 minute half-life temperature 116.4 ° C.), dibenzoyl peroxide (1 minute half-life temperature 130.0 ° C.), di (4-methylbenzoyl) peroxide (1 Minute half-life temperature 128.2 ° C), di (3-methylbenzoyl) peroxide (1 minute half-life temperature 131.1 ° C), t-hexylperoxybenzoate (1 minute half-life temperature 160.3 ° C), t -Butyl peroxybenzoate (1 minute half-life temperature 166.8 ° C), 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (1 minute half-life temperature 124.3 ° C), di- (3,5,5-trimethylhexanoyl) peroxide (1 minute half-life temperature 112.6 ° C), t-butyl peroxypivalate (1 minute half-life temperature 10.3 °C), and the like.
  • the first layer 31 does not necessarily contain a polymerization initiator, but may be added in a small amount so as not to impair the effects of the invention.
  • conductive particles of the second layer 32 known conductive particles used in anisotropic conductive films (ACF) can be used. Examples thereof include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, and gold. Moreover, the thing which coat
  • the resin particle In the case where the surface of the resin particle is coated with a metal such as Ni or Au, examples of the resin particle include an epoxy resin, a phenol resin, an acrylic resin, an acrylonitrile / styrene (AS) resin, a benzoguanamine resin, and a divinylbenzene resin. Particles such as styrene resin can be used.
  • the first layer 31 is not necessarily required to contain conductive particles, but may be added in a small amount so as not to impair the effects of the invention.
  • the first layer 31 and the second layer 32 may be diluted with other additives such as an acrylic ester copolymer resin (acrylic rubber), a silane coupling agent, and various acrylic monomers as necessary. Monomers, fillers, softeners, colorants, flame retardants, thixotropic agents, and the like may be added.
  • circuit connection material 30 having such a configuration, even when the periphery of the first terminal portion 12 is covered with the resist 13 having a thickness larger than the height of the first terminal 12a, high connection reliability is obtained. be able to.
  • the first circuit member and the second circuit member are thermocompression bonded at a predetermined temperature to obtain a connection structure.
  • the second circuit member is pressed by using a crimping tool such as a heat tool.
  • the predetermined temperature refers to the temperature of the circuit connection material at the time of pressure bonding.
  • predetermined temperature is 100 degreeC or more and 180 degrees C or less.
  • the thickness of the first layer between adjacent terminals after thermocompression bonding is preferably 1 ⁇ m or more and less than 10 ⁇ m.
  • a buffer material may be interposed between the crimping tool and the second circuit member for crimping. By interposing the cushioning material, it is possible to reduce pressure variation and prevent the crimping tool from becoming dirty.
  • the glass transition temperature of the film-forming resin of the first layer of the circuit connection material is not less than ⁇ 50 ° C., which is a predetermined temperature during pressure bonding, and the film-forming resin of the second layer Therefore, even when the periphery of the terminal portion is covered with a resist having a thickness larger than the terminal height, high connection reliability can be obtained.
  • the first layer in contact with the first circuit member and the second layer in contact with the second circuit member have a glass transition temperature Tg of the film forming resin of the first layer at a predetermined value.
  • An anisotropic conductive film (ACF) was produced.
  • the first circuit member and the second circuit member are thermocompression bonded using ACF to produce a connection structure, and the connection structure has a conduction resistance, a peel strength, and a first between adjacent terminals after the compression bonding.
  • the thickness of the layer was measured and evaluated.
  • the present invention is not limited to these examples.
  • ACF The production of ACF, the production of the connection structure, the conduction resistance of the connection structure, the peel strength, and the thickness of the first layer between the adjacent terminals after crimping were measured and evaluated as follows.
  • Table 1 shows the composition of each layer.
  • the composition of each layer shown in Table 1 (parts by mass) and a mixed solution of ethyl acetate and toluene so as to have a solid content of 50% by mass are each uniformly mixed by a conventional method to form the first layer.
  • Compositions A1 to A6 and Composition B as the second layer were prepared.
  • the glass transition temperature of the film-forming resin was calculated as a theoretical glass transition temperature represented by the following formula (1) (FOX formula).
  • 1 / Tg W1 / T1 + W2 / T2 +... Wn / Tn (1)
  • W1, W2,... Wn are mass fractions of each monomer
  • T1, T2,... Tn are glass transition temperatures (K) of the respective monomers.
  • Composition A1 comprises 54 parts by mass of phenoxy resin (trade name: jER4256, Mitsubishi Chemical Corporation), 25 parts by mass of urethane acrylate (trade name: U-2PPA, Shin-Nakamura Chemical Co., Ltd.), bifunctional acrylate ( Product name: A-200, Shin-Nakamura Chemical Co., Ltd.) 20 parts by mass.
  • the glass transition temperature Tg of the film-forming resin is 65 ° C.
  • Composition A2 is composed of 54 parts by mass of phenoxy resin (trade name: jER1256, Mitsubishi Chemical Corporation), 25 parts by mass of urethane acrylate (trade name: U-2PPA, Shin-Nakamura Chemical Co., Ltd.), and bifunctional acrylate ( Product name: A-200, Shin-Nakamura Chemical Co., Ltd.) 20 parts by mass.
  • the glass transition temperature Tg of the film-forming resin is 98 ° C.
  • Composition A3 is composed of 54 parts by mass of phenoxy resin (trade name: YX8100, Mitsubishi Chemical Co., Ltd.), 25 parts by mass of urethane acrylate (trade name: U-2PPA, Shin-Nakamura Chemical Co., Ltd.), bifunctional acrylate ( Product name: A-200, Shin-Nakamura Chemical Co., Ltd.) 20 parts by mass.
  • the glass transition temperature Tg of the film forming resin is 150 ° C.
  • Composition A4 consists of 27 parts by mass of phenoxy resin (trade name: jER4256, Mitsubishi Chemical Corporation), 27 parts by mass of phenoxy resin (trade name: jER1256, Mitsubishi Chemical Corporation), and urethane acrylate (trade name: U -2PPA, 25 parts by mass of Shin-Nakamura Chemical Co., Ltd. and 20 parts by mass of bifunctional acrylate (trade name: A-200, Shin-Nakamura Chemical Co., Ltd.).
  • the glass transition temperature Tg of the film forming resin is 81 ° C.
  • Composition A5 is composed of 27 parts by mass of phenoxy resin (trade name: jER4256, Mitsubishi Chemical Corporation), 27 parts by mass of phenoxy resin (trade name: YX8100, Mitsubishi Chemical Corporation), and urethane acrylate (trade name: U -2PPA, 25 parts by mass of Shin-Nakamura Chemical Co., Ltd. and 20 parts by mass of bifunctional acrylate (trade name: A-200, Shin-Nakamura Chemical Co., Ltd.).
  • the glass transition temperature Tg of the film forming resin is 103 ° C.
  • Composition A6 is composed of 27 parts by mass of phenoxy resin (trade name: jER1256, Mitsubishi Chemical Corporation), 27 parts by mass of phenoxy resin (trade name: YX8100, Mitsubishi Chemical Corporation), and urethane acrylate (trade name: U -2PPA, 25 parts by mass of Shin-Nakamura Chemical Co., Ltd. and 20 parts by mass of bifunctional acrylate (trade name: A-200, Shin-Nakamura Chemical Co., Ltd.).
  • the glass transition temperature Tg of the film forming resin is 122 ° C.
  • Composition B consists of 46 parts by mass of phenoxy resin (trade name: jER4256, Mitsubishi Chemical Corporation), 25 parts by mass of urethane acrylate (trade name: U-2PPA, Shin-Nakamura Chemical Co., Ltd.), bifunctional acrylate (trade name: A-200, Shin-Nakamura Chemical Co., Ltd. 20 parts by mass, phosphate ester acrylate (trade name: PM-2, Nippon Kayaku Co., Ltd.) 1 part by mass, Ni particles (nickel powder, An average particle diameter of 3 ⁇ m, 2 parts by weight ofariaco Co., Ltd., 3 parts by weight of dilauroyl peroxide, and 3 parts by weight of dibenzoyl peroxide are contained.
  • the glass transition temperature Tg of the film-forming resin is 65 ° C.
  • compositions A1 to A6 and B shown in Table 1 were applied to the release polyester film layer by layer, and dried by blowing hot air at 70 ° C. for 5 minutes to produce an adhesive film for each layer.
  • a layer composed of the composition B and a layer composed of the composition B were laminated to produce an ACF having a two-layer structure.
  • connection structure The first circuit member and the second circuit member were joined via the ACF described above to produce a connection structure.
  • the resist was formed as follows. A solder resist (PSR-4000) manufactured by Taiyo Ink Manufacturing Co., Ltd. was applied on a printed wiring board (PWB) to a film thickness of 40 ⁇ m after drying by screen printing or spray coating, and temporarily applied at 80 ° C. for 30 min. Drying was performed.
  • the exposed portion was photocured through a photomask, and the unexposed portion was removed with a 1% sodium carbonate aqueous solution. Then, the exposed portion was heated and dried under the conditions of 150 ° C. and 60 min to be cured, and an evaluation base material having a resist with an opening range of the terminal portion of 2.0 mm ⁇ 40 mm was produced.
  • a COF substrate of 300 ⁇ m P (pitch) (line: space 1: 1) was also used.
  • connection between PWB and COF was performed under the following pressure bonding conditions.
  • -ACF width 2.0 mm ⁇
  • Tool width 2.0mm
  • -Buffer material Silicone rubber thickness 200 ⁇ m Heating and pressing: 140 ° C to 170 ° C / 2MPa / 3sec
  • the thickness of the first layer of ACF between adjacent terminals after crimping was measured by cross-sectional observation.
  • connection structure of 200 ⁇ mP and 300 ⁇ mP was subjected to a voltage when a constant current of 1 mA was applied using a tester by a four-terminal method with a conduction resistance [initial conduction resistance ( ⁇ ) and environmental test (85 ° C., 85% RH, 1000 h), the conduction resistance ( ⁇ )] was measured and evaluated according to the following criteria.
  • peel strength is 10 N / cm or more
  • peel strength is 8 N / cm or more and less than 10 N / cm x: Peel strength is less than 8 N / cm
  • Example 1 As shown in Table 2, ACFs were prepared in which the first layer was 20 ⁇ m thick composed of composition A3 and the second layer was 20 ⁇ m thick composed of composition B.
  • the glass transition temperature Tg of the film-forming resin of the first layer was 150 ° C.
  • 1st circuit member and 2nd circuit member were crimped
  • the thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as “good”.
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as “good”.
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ mP was ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was ⁇ .
  • the evaluation of the peel strength of the connection structure was ⁇ .
  • Example 2 As shown in Table 2, an ACF was produced in which the first layer was 20 ⁇ m thick composed of the composition A5 and the second layer was 20 ⁇ m thick composed of the composition B.
  • the glass transition temperature Tg of the film-forming resin of the first layer was 103 ° C.
  • 1st circuit member and 2nd circuit member were crimped
  • the thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as “good”.
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as “good”.
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ mP was ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was ⁇ .
  • the evaluation of the peel strength of the connection structure was “good”.
  • Example 3 As shown in Table 2, an ACF was produced in which the first layer was 20 ⁇ m thick composed of the composition A6 and the second layer was 20 ⁇ m thick composed of the composition B.
  • the glass transition temperature Tg of the film-forming resin of the first layer was 122 ° C.
  • 1st circuit member and 2nd circuit member were crimped
  • the thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as “good”.
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as “good”.
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ mP was ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was ⁇ .
  • the evaluation of the peel strength of the connection structure was “good”.
  • Example 4 As shown in Table 2, an ACF having a first layer of 10 ⁇ m thickness made of composition A5 and a second layer made of composition B having a thickness of 30 ⁇ m was prepared.
  • the glass transition temperature Tg of the film-forming resin of the first layer was 103 ° C.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as “good”.
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as “good”.
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ mP was ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was ⁇ .
  • the evaluation of the peel strength of the connection structure was “good”.
  • Example 5 As shown in Table 2, ACFs were prepared in which the first layer was 5 ⁇ m thick composed of composition A5 and the second layer was 35 ⁇ m thick composed of composition B.
  • the glass transition temperature Tg of the film-forming resin of the first layer was 103 ° C.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as “good”.
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as “good”.
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ mP was ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was ⁇ .
  • the evaluation of the peel strength of the connection structure was “good”.
  • Example 6 As shown in Table 2, an ACF having a first layer of 25 ⁇ m thickness made of the composition A5 and a second layer made of the composition B of 15 ⁇ m thickness was prepared.
  • the glass transition temperature Tg of the film-forming resin of the first layer was 103 ° C.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as “good”.
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as “good”.
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ mP was ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was ⁇ .
  • the evaluation of the peel strength of the connection structure was “good”.
  • the first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 1 to produce a connection structure.
  • the thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as “good”.
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as “good”.
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ mP was ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was x.
  • the evaluation of the peel strength of the connection structure was “good”.
  • the first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 2 to produce a connection structure.
  • the thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as “good”.
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as “good”.
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ mP was ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was x.
  • the evaluation of the peel strength of the connection structure was “good”.
  • the first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 3 to produce a connection structure.
  • the thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as “good”.
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as “good”.
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ mP was ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was x.
  • the evaluation of the peel strength of the connection structure was “good”.
  • the first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 4 to produce a connection structure.
  • the thickness of the first layer between adjacent terminals after the crimping was less than 3 ⁇ m.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as ⁇ .
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ m P was x.
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was x.
  • the peel strength of the connection structure was evaluated as x.
  • the first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 5 to produce a connection structure.
  • the thickness of the first layer between adjacent terminals after the crimping was less than 3 ⁇ m.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as ⁇ .
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ m P was x.
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was x.
  • the peel strength of the connection structure was evaluated as x.
  • the first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 6 to produce a connection structure.
  • the thickness of the first layer between adjacent terminals after the crimping was less than 3 ⁇ m.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as ⁇ .
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ m P was x.
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was x.
  • the peel strength of the connection structure was evaluated as x.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as “good”.
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as “good”.
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ m P was ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was x.
  • the evaluation of the peel strength of the connection structure was “good”.
  • the first circuit member and the second circuit member were crimped at 140 ° C. via the ACF of Comparative Example 8 to produce a connection structure.
  • the thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
  • the initial resistance of the 200 ⁇ mP connection structure was evaluated as “good”.
  • the initial resistance of the 300 ⁇ mP connection structure was evaluated as ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 200 ⁇ m P was ⁇ .
  • the evaluation of the resistance after the reliability test of the connection structure of 300 ⁇ m P was x.
  • the evaluation of the peel strength of the connection structure was “good”.
  • the glass transition temperature of the film forming resin of the first layer is not ⁇ 50 ° C. or higher of the pressure bonding temperature, and the film forming resin of the second layer Since the glass transition temperature is not higher than + 35 ° C., when trying to connect a circuit member with a relatively wide 300 ⁇ m pitch, the fluidity becomes excessive and the space between terminals cannot be sufficiently filled. As a result, high connection reliability could not be obtained.
  • the ACFs of Comparative Examples 4 to 6 were obtained by changing the composition of the first layer and the composition of the second layer of Examples 1 to 3 into the second layer and the first layer, respectively.
  • the capture rate of conductive particles was poor, and the initial conduction resistance was high.
  • the peel strength was also low.
  • Comparative Example 7 since the ACF of Comparative Example 7 has a single-layer structure composed of the composition B, the binder between terminals is not sufficiently removed, and high connection reliability cannot be obtained. Further, Comparative Example 8 has a low pressure bonding temperature, and the glass transition temperature of the first layer film-forming resin is not higher than the pressure bonding temperature of ⁇ 50 ° C. could not get.
  • the glass transition temperature of the film-forming resin of the first layer is not lower than ⁇ 50 ° C. of the pressure-bonding temperature and + 35 ° C. of the glass transition temperature of the film-forming resin of the second layer.
  • the binder between the terminals could be removed moderately and high connection reliability could be obtained.
  • the resist around the terminal portion has a thickness larger than the terminal height. It was found that high connection reliability can be obtained even when covered with

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Combinations Of Printed Boards (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention is a manufacturing method for a connecting structure having: a placement step which places a first circuit member (10), which is provided with a first terminal part (12) in which first terminals (12a) are arranged and a resist (13) which is formed around the first terminal part (12) and has a thickness greater than the height of the first terminals (12a), and a second circuit member (20), which is provided with a second terminal part (22) in which second terminals (22a), of a height lower than the first terminals (12a), are arranged, said first circuit member (10) and said second circuit member (20) being interposed by a circuit connecting material (30) having a first layer (31), which contains a film-forming resin and a polymerizable compound and is in contact with the first circuit member (10), and a second layer (32), which contains a film-forming resin, a polymerizable compound, a polymerization initiator, and conductive particles and is in contact with the second circuit member (20); and a compression step which performs thermocompression bonding on the first circuit member (10) and the second circuit member (20) at a predetermined temperature so as to acquire a connecting structure.

Description

接続構造体、接続構造体の製造方法、及び回路接続材料Connection structure, method for manufacturing connection structure, and circuit connection material
 本発明は、異方性導電フィルムなどの回路接続材料を用いる接続構造体、及びその製造方法、並びに回路接続材料に関する。 The present invention relates to a connection structure using a circuit connection material such as an anisotropic conductive film, a manufacturing method thereof, and a circuit connection material.
 従来、異方性導電フィルム(ACF:Anisortropic Conductive Film)は、ハンダ接続には不向きな微細配線の接続に使用されている(例えば、特許文献1参照)。しかし、低温接続が可能などの利点から、端子幅が300μm以上の比較的ラフな配線の接続にも使用されてきている。 Conventionally, anisotropic conductive films (ACF: Anisotropic Conductive Film) are used for connection of fine wiring that is not suitable for solder connection (see, for example, Patent Document 1). However, it has been used for connection of relatively rough wiring having a terminal width of 300 μm or more because of any advantage that enables low-temperature connection.
 一般の微細配線用に設計された異方性導電フィルムは、接着層を形成するバインダーが押し潰す力に対して端子域外に流動して排除され、端子部の接着層の厚みが導電性粒子の径よりも薄くなることで、導電性粒子が潰れ、良好な導電性を得る設計になっている。しかし、比較的広い面積の端子域を接続しようとした場合には、端子間のバインダーを適度に排除することが困難となり、排除が不足である場合、残ったバインダーが導通を妨げてしまう。バインダーの排除不足は、複数の端子が配列された端子部周辺が端子の高さよりも大きな厚みを有するソルダーレジスト等で覆われている回路部材を低温圧着する場合に特に顕著であった。 The anisotropic conductive film designed for general fine wiring is eliminated by flowing out of the terminal area against the force of the binder forming the adhesive layer crushing, and the thickness of the adhesive layer of the terminal portion is made of conductive particles. By being thinner than the diameter, the conductive particles are crushed, and the design is to obtain good conductivity. However, when a terminal area having a relatively large area is to be connected, it is difficult to appropriately remove the binder between the terminals, and when the removal is insufficient, the remaining binder prevents conduction. The lack of binder removal was particularly noticeable when a circuit member in which the periphery of a terminal portion where a plurality of terminals are arranged is covered with a solder resist having a thickness larger than the height of the terminal is subjected to low-temperature pressure bonding.
特開2011-32491号公報JP 2011-32491 A
 本発明は、前述した従来技術における課題を解決するものであり、端子部周辺が、端子高さより大きな厚みを有するレジストで覆われている場合でも、高い接続信頼性を得られる接続構造体、及びその製造方法、並びに回路接続材料を提供する。 The present invention solves the above-described problems in the prior art, and a connection structure that can obtain high connection reliability even when the periphery of the terminal portion is covered with a resist having a thickness larger than the terminal height, and The manufacturing method and circuit connection material are provided.
 前述した課題を解決するために、本発明に係る接続構造体の製造方法は、第1の端子が配列された第1の端子部と、前記第1の端子部の周辺に形成され、前記第1の端子の高さよりも大きな厚みを有するレジストとを備える第1の回路部材と、前記第1の端子よりも高さが低い第2の端子が配列された第2の端子部を備える第2の回路部材とを、膜形成樹脂と、重合性化合物とを含有し、前記第1の回路部材に接する第1の層と、膜形成樹脂と、重合性化合物と、重合開始剤と、導電性粒子とを含有し、前記第2の回路部材に接する第2の層とを有する回路接続材料を介在させて配置する配置工程と、前記第1の回路部材と前記第2の回路部材とを所定温度にて熱圧着し、接続構造体を得る圧着工程とを有し、前記第1の層の膜形成樹脂のガラス転移温度が、前記所定温度の-50℃以上及び前記第2の層の膜形成樹脂のガラス転移温度の+35℃以上であることを特徴とする。 In order to solve the above-described problem, a manufacturing method of a connection structure according to the present invention includes a first terminal portion in which first terminals are arranged, and a periphery of the first terminal portion. A second circuit portion including a first circuit member including a resist having a thickness larger than the height of the first terminal, and a second terminal portion in which a second terminal having a lower height than the first terminal is arranged. A circuit member comprising a film-forming resin and a polymerizable compound, a first layer in contact with the first circuit member, the film-forming resin, the polymerizable compound, a polymerization initiator, and conductivity. A disposing step of interposing a circuit connecting material containing particles and having a second layer in contact with the second circuit member, and the first circuit member and the second circuit member A thermocompression bonding at a temperature to obtain a connection structure, and the film forming resin of the first layer Glass transition temperature, wherein said the predetermined temperature of -50 in ° C. or higher and the second layer film formation of the resin having a glass transition temperature of + 35 ° C. or higher.
 また、本発明に係る接続構造体は、前記接続構造体の製造方法により得られることを特徴とする。 Further, the connection structure according to the present invention is obtained by the method for manufacturing the connection structure.
 また、本発明に係る回路接続材料は、第1の端子が配列された第1の端子部と、前記第1の端子部の周辺に形成され、前記第1の端子の高さよりも大きな厚みを有するレジストとを備える第1の回路部材と、前記第1の回路部材の端子よりも高さが低い第2の端子が配列された第2の端子部を備える第2の回路部材とを所定温度にて熱圧着させる回路接続材料において、膜形成樹脂と、重合性化合物とを含有し、前記第1の回路部材に接する第1の層と、膜形成樹脂と、重合性化合物と、重合開始剤と、導電性粒子とを含有し、前記第2の回路部材に接する第2の層とを有し、前記第1の層の膜形成樹脂のガラス転移温度が、前記所定温度の-50℃以上及び前記第2の層の膜形成樹脂のガラス転移温度の+35℃以上であることを特徴とする。 The circuit connection material according to the present invention is formed around the first terminal portion in which the first terminals are arranged and the first terminal portion, and has a thickness larger than the height of the first terminal. A first circuit member having a resist and a second circuit member having a second terminal portion in which second terminals having a height lower than the terminals of the first circuit member are arranged. In the circuit connection material to be thermocompression-bonded, a film-forming resin and a polymerizable compound, a first layer in contact with the first circuit member, the film-forming resin, the polymerizable compound, and a polymerization initiator And a second layer in contact with the second circuit member, wherein the glass transition temperature of the film-forming resin of the first layer is not less than −50 ° C. of the predetermined temperature. And the glass transition temperature of the film-forming resin of the second layer is not less than + 35 ° C. That.
 本発明は、回路接続材料の第1の層の膜形成樹脂のガラス転移温度が、圧着時の所定温度の-50℃以上及び第2の層の膜形成樹脂のガラス転移温度の+35℃以上であるため、端子部周辺が、端子高さより大きな厚みを有するレジストで覆われている場合でも、高い接続信頼性を得ることができる。 In the present invention, the glass transition temperature of the film-forming resin of the first layer of the circuit connecting material is not less than −50 ° C. of the predetermined temperature at the time of pressure bonding and + 35 ° C. of the glass transition temperature of the film-forming resin of the second layer. Therefore, even when the periphery of the terminal portion is covered with a resist having a thickness larger than the terminal height, high connection reliability can be obtained.
図1は、第1の回路部材、第2の回路部材、及び回路接続材料の配置の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the arrangement of the first circuit member, the second circuit member, and the circuit connection material. 図2は、端子部の周辺に形成されたレジストを備える第1の回路部材の一例を示す平面図である。FIG. 2 is a plan view illustrating an example of a first circuit member including a resist formed around the terminal portion. 図3は、図2中A-Aにおける端子部の一部を示す断面図である。FIG. 3 is a cross-sectional view showing a part of the terminal portion at AA in FIG.
 以下、本発明の実施の形態について、下記順序にて詳細に説明する。
1.接続構造体の製造方法
2.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order.
1. 1. Manufacturing method of connection structure Example
 <1.接続構造体の製造方法>
 本実施の形態に係る接続構造体の製造方法は、配置工程と、圧着工程とを少なくとも有し、更に必要に応じて、その他の工程を有する。
 前記配置工程においては、第1の回路部材と、第2の回路部材とを、回路接続材料を介在させて配置する。
 前記圧着工程においては、前記第1の回路部材と前記第2の回路部材とを所定温度にて熱圧着し、接続構造体を得る。
 前記第1の回路部材は、第1の端子が配列された第1の端子部と、前記第1の端子部の周辺に形成され、前記第1の端子の高さよりも大きな厚みを有するレジストとを備える。
 前記第2の回路部材は、前記第1の端子の高さよりも低い第2の端子が配列された第2の端子部を備える。
 前記回路接続材料は、前記第1の回路部材に接する第1の層と、前記第2の回路部材に接する第2の層とを有する。
<1. Manufacturing method of connection structure>
The manufacturing method of the connection structure according to the present embodiment includes at least an arrangement step and a crimping step, and further includes other steps as necessary.
In the arrangement step, the first circuit member and the second circuit member are arranged with a circuit connecting material interposed therebetween.
In the crimping step, the first circuit member and the second circuit member are thermocompression bonded at a predetermined temperature to obtain a connection structure.
The first circuit member includes a first terminal portion in which first terminals are arranged, a resist formed around the first terminal portion, and having a thickness larger than the height of the first terminal. Is provided.
The second circuit member includes a second terminal portion in which second terminals lower than the height of the first terminal are arranged.
The circuit connection material has a first layer in contact with the first circuit member and a second layer in contact with the second circuit member.
 以下、各工程について詳細に説明する。 Hereinafter, each process will be described in detail.
 [配置工程]
 図1は、第1の回路部材、第2の回路部材、及び回路接続材料の配置を示す断面図である。配置工程では、第1の回路部材10と第2の回路部材20とを第1の回路部材10に接する第1の層31と第2の回路部材20に接する第2の層32とを有する回路接続材料30を介在させて配置する。
[Arrangement process]
FIG. 1 is a cross-sectional view showing an arrangement of a first circuit member, a second circuit member, and a circuit connection material. In the disposing step, the first circuit member 10 and the second circuit member 20 have a first layer 31 in contact with the first circuit member 10 and a second layer 32 in contact with the second circuit member 20. The connecting material 30 is interposed.
 図2は、端子部の周辺に形成されたレジストを備える第1の回路部材の一例を示す平面図であり、図3は、図2中A-Aにおける端子部の一部を示す断面図である。なお、図1は、図2中B-Bにおける端子部の一部を示す断面図である。 FIG. 2 is a plan view showing an example of a first circuit member provided with a resist formed around the terminal portion, and FIG. 3 is a cross-sectional view showing a part of the terminal portion along AA in FIG. is there. FIG. 1 is a cross-sectional view showing a part of the terminal portion at BB in FIG.
 第1の回路部材10は、図1~図3に示すように、第1の基材11と、第1の端子部12と、レジスト13とを備える。
 第1の端子部12には、第1の端子12aが配列されている。
 レジスト13は、第1の端子部12の周辺に形成されている。レジスト13は、第1の端子12aの高さhよりも大きな厚みtを有する。
As shown in FIGS. 1 to 3, the first circuit member 10 includes a first base material 11, a first terminal portion 12, and a resist 13.
A first terminal 12 a is arranged in the first terminal portion 12.
The resist 13 is formed around the first terminal portion 12. The resist 13 has a thickness t larger than the height h of the first terminal 12a.
 第1の基材11は、電子回路基板材料として使用されている基材、例えば、ガラスエポキシ基板、ガラス基板などを用いることができる。第1の端子部12は、第1の基材11上に配列された複数の第1の端子12aを有する。第1の端子12aの高さhは、例えば25μm~45μmである。第1の端子12aの幅は、特に限定されないが、本実施の形態では、300μm以上の幅広い端子でも、高い接続信頼性を得ることができる。 The first base material 11 may be a base material used as an electronic circuit board material, such as a glass epoxy board or a glass board. The first terminal portion 12 has a plurality of first terminals 12 a arranged on the first base material 11. The height h of the first terminal 12a is, for example, 25 μm to 45 μm. The width of the first terminal 12a is not particularly limited, but in this embodiment, high connection reliability can be obtained even with a wide terminal of 300 μm or more.
 レジスト13は、第1の基材11の表面を覆い、回路パターンを保護する絶縁膜となるソルダーレジストである。図2に示すように、レジスト13は、第1の端子部12の周辺を覆っており、また、図3に示すように、レジスト13は、第1の端子12aの高さhよりも大きな厚みtを有する。 The resist 13 is a solder resist that covers the surface of the first substrate 11 and serves as an insulating film that protects the circuit pattern. As shown in FIG. 2, the resist 13 covers the periphery of the first terminal portion 12, and as shown in FIG. 3, the resist 13 has a thickness larger than the height h of the first terminal 12a. t.
 このような第1の回路部材10として、例えば、IC(Integrated Circuit)搭載用途のガラスエポキシ基板、LCD(Liquid Crystal Display)パネル用途のガラス基板、タッチパネル用途のシクロオレフィン(COP)などのプラスチック基板、ガラス基板などが挙げられる。 As such a first circuit member 10, for example, a glass substrate for IC (Integrated Circuit) mounting, a glass substrate for LCD (Liquid Crystal Display) panel, a plastic substrate such as cycloolefin (COP) for touch panel, A glass substrate etc. are mentioned.
 第2の回路部材20は、図1に示すように、第2の基材21と、第2の端子22aが配列された第2の端子部22とを備える。第2の基材21は、電子回路基板材料として使用されている基材、例えば、ポリイミドなどを用いることができる。第2の端子部22は、第2の基材21上に配列された複数の第2の端子22aを有する。第2の端子22aの高さは、例えば5μm~20μmである。第2の端子22aの幅は、特に限定されないが、本実施の形態では、300μm以上でも、高い接続信頼性を得ることができる。 The 2nd circuit member 20 is provided with the 2nd base material 21 and the 2nd terminal part 22 in which the 2nd terminal 22a was arranged, as shown in FIG. As the second base material 21, a base material used as an electronic circuit board material, such as polyimide, can be used. The second terminal portion 22 has a plurality of second terminals 22 a arranged on the second base material 21. The height of the second terminal 22a is, for example, 5 μm to 20 μm. Although the width of the second terminal 22a is not particularly limited, in the present embodiment, high connection reliability can be obtained even at 300 μm or more.
 このような第2の回路部材20として、例えば、COF(Chip On Film)、TCP(Tape Carrier Package)などのフレキシブル基板(FPC:Flexible Printed Circuits)、ICなどが挙げられる。 Examples of the second circuit member 20 include a flexible substrate (FPC: Flexible Printed Circuits) such as COF (Chip On Film) and TCP (Tape Carrier Package), an IC, and the like.
 回路接続材料30は、第1の層31と、第2の層32とを有する。
 第1の層31は、膜形成樹脂と、重合性化合物とを含有する。第1の層31は、第1の回路部材10に接する。
 第2の層32は、膜形成樹脂と、重合性化合物と、重合開始剤と、導電性粒子とを含有する。第2の層32は、第2の回路部材20に接する。
The circuit connection material 30 has a first layer 31 and a second layer 32.
The first layer 31 contains a film-forming resin and a polymerizable compound. The first layer 31 is in contact with the first circuit member 10.
The second layer 32 contains a film-forming resin, a polymerizable compound, a polymerization initiator, and conductive particles. The second layer 32 is in contact with the second circuit member 20.
 第1の層31の膜形成樹脂、及び第2の層32の膜形成樹脂は、第1の層31の膜形成樹脂のガラス転移温度が、圧着工程における圧着温度の-50℃以上及び第2の層32の膜形成樹脂のガラス転移温度の+35℃以上となるように選択される。これにより、第1の層31のバインダーが端子間に適度に排除された後、導電性粒子を含有する第2の層32が、左右の端子間にあまり排除されず、上下の端子間に残るため、適度な導通性能が得られる。 The film-forming resin of the first layer 31 and the film-forming resin of the second layer 32 are such that the glass transition temperature of the film-forming resin of the first layer 31 is −50 ° C. or higher of the pressure-bonding temperature in the pressure-bonding step. The glass transition temperature of the film forming resin of the layer 32 is selected to be + 35 ° C. or higher. Thus, after the binder of the first layer 31 is appropriately excluded between the terminals, the second layer 32 containing conductive particles is not so much excluded between the left and right terminals and remains between the upper and lower terminals. Therefore, moderate conduction performance can be obtained.
 第1の層31の膜形成樹脂のガラス転移温度が、圧着温度の-50℃未満である場合、流動性が過多となり、端子間に排除されたバインダーが端子部外にまで流失してしまい、端子間を充填することができない。このため、信頼性試験で浮きが発生して導通性能が低下してしまう。また、第1の層31の膜形成樹脂のガラス転移温度が、圧着温度より高い場合、端子上のバインダーを排除しきれないことがある。そのため、第1の層31の膜形成樹脂のガラス転移温度は、圧着温度以下であることが好ましい。また、第1の層31の膜形成樹脂のガラス転移温度が、第2の層32の膜形成樹脂のガラス転移温度の+35℃未満である場合、第1の層31及び第2の層32のバインダーが同様に流動してしまい、導通性能が低下してしまう。 When the glass transition temperature of the film-forming resin of the first layer 31 is less than −50 ° C., which is the pressure bonding temperature, the fluidity is excessive, and the binder removed between the terminals flows away to the outside of the terminals, Cannot fill between terminals. For this reason, floating occurs in the reliability test, and the conduction performance deteriorates. Further, when the glass transition temperature of the film-forming resin of the first layer 31 is higher than the pressure bonding temperature, the binder on the terminal may not be completely excluded. Therefore, the glass transition temperature of the film-forming resin of the first layer 31 is preferably equal to or lower than the pressure bonding temperature. Further, when the glass transition temperature of the film forming resin of the first layer 31 is less than + 35 ° C. of the glass transition temperature of the film forming resin of the second layer 32, the first layer 31 and the second layer 32 The binder will flow in the same manner and the conduction performance will be reduced.
 膜形成樹脂のガラス転移温度は、下記(1)式(FOX式)で示される理論ガラス転移温度として算出することができる。
1/Tg=W1/T1+W2/T2+・・・Wn/Tn ・・・(1)
(1)式中、W1、W2・・・Wnは各モノマーの質量分率であり、T1、T2・・・Tnは各モノマーのガラス転移温度(K)である。
The glass transition temperature of the film-forming resin can be calculated as a theoretical glass transition temperature represented by the following formula (1) (FOX formula).
1 / Tg = W1 / T1 + W2 / T2 +... Wn / Tn (1)
In the formula (1), W1, W2,... Wn are mass fractions of each monomer, and T1, T2,... Tn are glass transition temperatures (K) of the respective monomers.
 膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド、EVA等の熱可塑性エラストマー等を使用することができる。これらの中でも、耐熱性、接着性のために、ビスフェノールAとエピクロルヒドリンより合成されるビスフェノールA型フェノキシ樹脂を用いることが好ましい。 As the film-forming resin, a thermoplastic elastomer such as phenoxy resin, epoxy resin, polyester resin, polyurethane resin, polyamide, EVA, or the like can be used. Among these, it is preferable to use a bisphenol A type phenoxy resin synthesized from bisphenol A and epichlorohydrin for heat resistance and adhesiveness.
 また、第1の層31の厚みは、第1の端子12aの高さの10%~75%であることが好ましい。これにより、第1の端子部12周辺が、第1の端子12a高さより大きな厚みを有するレジスト13で覆われている場合でも、高い接続信頼性を得ることができる。 The thickness of the first layer 31 is preferably 10% to 75% of the height of the first terminal 12a. Thereby, even when the periphery of the first terminal portion 12 is covered with the resist 13 having a thickness larger than the height of the first terminal 12a, high connection reliability can be obtained.
 また、第1の層31の重合性化合物、及び第2の層32の重合性化合物は、ラジカル重合性化合物であり、第2の層32の重合開始剤は、有機過酸化物であることが好ましい。膜形成樹脂とラジカル重合性化合物とが非相溶であることにより、適度な流動性を得ることができる。 In addition, the polymerizable compound of the first layer 31 and the polymerizable compound of the second layer 32 are radical polymerizable compounds, and the polymerization initiator of the second layer 32 is an organic peroxide. preferable. Due to the incompatibility of the film-forming resin and the radically polymerizable compound, appropriate fluidity can be obtained.
 ラジカル重合性化合物としては、ウレタンアクリレート、ポリエチレングリコールジアクリレート、リン酸エステル型アクリレート、トリシクロデカンジメタノールジメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、イソオクチルアクリレート、ビスフェノキシエタノールフルオレンジアクリレート、2-アクリロイロキシエチルコハク酸、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、シクロヘキシルアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレート、テトラヒドロフルフリルアクリレート、o-フタル酸ジグリシジルエーテルアクリレート、エトキシ化ビスフェノールAジメタクリレート、ビスフェノールA型エポキシアクリレート、エポキシアクリレート、及びこれらに相当する(メタ)アクリレートなどが挙げられる。これらの中でも、導通信頼性の向上、接着性の向上などの観点から、ウレタンアクリレートとポリエチレングリコールジアクリレートとを併用することが好ましい。 Examples of the radical polymerizable compound include urethane acrylate, polyethylene glycol diacrylate, phosphate ester acrylate, tricyclodecane dimethanol dimethacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, t-butyl acrylate, isooctyl acrylate, bisphenoxyethanol full orange acrylate, 2-acryloyloxyethyl succinic acid, lauryl acrylate, stearyl acrylate, isobornyl acrylate, cyclohexyl acrylate, tris (2-hydroxyethyl) isocyanurate triacrylate, Tetrahydrofurfuryl acrylate, diglycidyl ether o-phthalate Relate, ethoxylated bisphenol A dimethacrylate, bisphenol A type epoxy acrylate, epoxy acrylate, and corresponding to these (meth) acrylate. Among these, it is preferable to use urethane acrylate and polyethylene glycol diacrylate in combination from the viewpoint of improving conduction reliability and improving adhesiveness.
 有機過酸化物としては、ジラウロイルパーオキサイド(1分間半減期温度116.4℃)、ジベンゾイルパーオキサイド(1分間半減期温度130.0℃)、ジ(4-メチルベンゾイル)パーオキサイド(1分間半減期温度128.2℃)、ジ(3-メチルベンゾイル)パーオキサイド(1分間半減期温度131.1℃)、t-ヘキシルパーオキシベンゾエート(1分間半減期温度160.3℃)、t-ブチルパーオキシベンゾエート(1分間半減期温度166.8℃)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(1分間半減期温度124.3℃)、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド(1分間半減期温度112.6℃)、t-ブチルパーオキシピバレート(1分間半減期温度110.3℃)等が挙げられる。これらの中でも、導通信頼性の向上、接着性の向上などの観点から、ジラウロイルパーオキサイドとジベンゾイルパーオキサイドとを併用することが好ましい。なお、第1の層31は、重合開始剤の配合が必須ではないが、発明の効果を損なわない程度に少量配合しても構わない。 Examples of organic peroxides include dilauroyl peroxide (1 minute half-life temperature 116.4 ° C.), dibenzoyl peroxide (1 minute half-life temperature 130.0 ° C.), di (4-methylbenzoyl) peroxide (1 Minute half-life temperature 128.2 ° C), di (3-methylbenzoyl) peroxide (1 minute half-life temperature 131.1 ° C), t-hexylperoxybenzoate (1 minute half-life temperature 160.3 ° C), t -Butyl peroxybenzoate (1 minute half-life temperature 166.8 ° C), 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (1 minute half-life temperature 124.3 ° C), di- (3,5,5-trimethylhexanoyl) peroxide (1 minute half-life temperature 112.6 ° C), t-butyl peroxypivalate (1 minute half-life temperature 10.3 ℃), and the like. Among these, it is preferable to use dilauroyl peroxide and dibenzoyl peroxide in combination from the viewpoint of improving conduction reliability and improving adhesiveness. The first layer 31 does not necessarily contain a polymerization initiator, but may be added in a small amount so as not to impair the effects of the invention.
 また、第2の層32の導電性粒子としては、異方性導電フィルム(ACF:Anisortropic Conductive Film)において使用されている公知の導電性粒子を用いることができる。例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の各種金属や金属合金の粒子を挙げることができる。また、金属酸化物、カーボン、グラファイト、ガラス、セラミック、プラスチック等の粒子の表面に金属をコートしたもの、これらの粒子の表面に更に絶縁薄膜をコートしたもの等が挙げられる。樹脂粒子の表面にNi、Au等の金属をコートしたものである場合、樹脂粒子としては、例えば、エポキシ樹脂、フェノール樹脂、アクリル樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂等の粒子を用いることができる。なお、第1の層31は、導電性粒子の配合が必須ではないが、発明の効果を損なわない程度に少量配合しても構わない。 Also, as the conductive particles of the second layer 32, known conductive particles used in anisotropic conductive films (ACF) can be used. Examples thereof include particles of various metals and metal alloys such as nickel, iron, copper, aluminum, tin, lead, chromium, cobalt, silver, and gold. Moreover, the thing which coat | covered the metal on the surface of particles, such as a metal oxide, carbon, a graphite, glass, a ceramic, a plastics, and what further coat | covered the insulating thin film on the surface of these particles etc. are mentioned. In the case where the surface of the resin particle is coated with a metal such as Ni or Au, examples of the resin particle include an epoxy resin, a phenol resin, an acrylic resin, an acrylonitrile / styrene (AS) resin, a benzoguanamine resin, and a divinylbenzene resin. Particles such as styrene resin can be used. The first layer 31 is not necessarily required to contain conductive particles, but may be added in a small amount so as not to impair the effects of the invention.
 また、第1の層31及び第2の層32には、他の添加物として、必要に応じて、アクリル酸エステル系共重合樹脂(アクリルゴム)、シランカップリング剤、各種アクリルモノマー等の希釈用モノマー、充填剤、軟化剤、着色剤、難燃化剤、チキソトロピック剤等を配合しても構わない。 The first layer 31 and the second layer 32 may be diluted with other additives such as an acrylic ester copolymer resin (acrylic rubber), a silane coupling agent, and various acrylic monomers as necessary. Monomers, fillers, softeners, colorants, flame retardants, thixotropic agents, and the like may be added.
 このような構成からなる回路接続材料30によれば、第1の端子部12周辺が、第1の端子12a高さより大きな厚みを有するレジスト13で覆われている場合でも、高い接続信頼性を得ることができる。 According to the circuit connection material 30 having such a configuration, even when the periphery of the first terminal portion 12 is covered with the resist 13 having a thickness larger than the height of the first terminal 12a, high connection reliability is obtained. be able to.
 [圧着工程]
 圧着工程では、第1の回路部材と第2の回路部材とを所定温度にて熱圧着し、接続構造体を得る。圧着工程では、例えばヒートツールなどの圧着ツールを用いて、第2の回路部材を押圧することにより行われる。ここで、所定温度は、圧着時における回路接続材料の温度をいう。また、所定温度は、100℃以上180℃以下であることが好ましい。
[Crimping process]
In the crimping step, the first circuit member and the second circuit member are thermocompression bonded at a predetermined temperature to obtain a connection structure. In the crimping step, for example, the second circuit member is pressed by using a crimping tool such as a heat tool. Here, the predetermined temperature refers to the temperature of the circuit connection material at the time of pressure bonding. Moreover, it is preferable that predetermined temperature is 100 degreeC or more and 180 degrees C or less.
 また、熱圧着後の隣接端子間における第1の層の厚みは、1μm以上10μm未満であることが好ましい。これにより、端子部領域がバインダーで適度に埋まり、信頼性試験での浮きの発生を抑制することができ、高い接続信頼性を得ることができる。 Further, the thickness of the first layer between adjacent terminals after thermocompression bonding is preferably 1 μm or more and less than 10 μm. Thereby, a terminal part area | region is filled with a binder moderately, generation | occurrence | production of the float in a reliability test can be suppressed, and high connection reliability can be acquired.
 また、圧着ツールと第2の回路部材との間に緩衝材を介装して圧着してもよい。緩衝材を介装することにより、押圧ばらつきを低減できると共に、圧着ツールが汚れるのを防止することができる。 Further, a buffer material may be interposed between the crimping tool and the second circuit member for crimping. By interposing the cushioning material, it is possible to reduce pressure variation and prevent the crimping tool from becoming dirty.
 圧着ツールとしては、特に制限はなく、目的に応じて適宜選択することができ、押圧対象よりも大面積である押圧部材を用いて押圧を1回で行ってもよく、また、押圧対象よりも小面積である押圧部材を用いて押圧を数回に分けて行ってもよい。 There is no restriction | limiting in particular as a crimping | compression-bonding tool, According to the objective, it can select suitably, You may perform a press once using the pressing member which is a larger area than a press target, The pressing may be performed in several times using a pressing member having a small area.
 圧着ツールの先端形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平面状、曲面状などが挙げられる。なお、先端形状が曲面状である場合、曲面状に沿って押圧することが好ましい。 There is no restriction | limiting in particular as a front-end | tip shape of a crimping | compression-bonding tool, According to the objective, it can select suitably, For example, planar shape, curved surface shape, etc. are mentioned. In addition, when the tip shape is a curved surface shape, it is preferable to press along the curved surface shape.
 このような接続構造体の製造方法によれば、回路接続材料の第1の層の膜形成樹脂のガラス転移温度が、圧着時の所定温度の-50℃以上及び第2の層の膜形成樹脂のガラス転移温度の+35℃以上であるため、端子部周辺が、端子高さより大きな厚みを有するレジストで覆われている場合でも、高い接続信頼性を得ることができる。 According to such a method for manufacturing a connection structure, the glass transition temperature of the film-forming resin of the first layer of the circuit connection material is not less than −50 ° C., which is a predetermined temperature during pressure bonding, and the film-forming resin of the second layer Therefore, even when the periphery of the terminal portion is covered with a resist having a thickness larger than the terminal height, high connection reliability can be obtained.
 <2.実施例>
 以下、本発明の実施例について説明する。本実施例では、第1の回路部材に接する第1の層と第2の回路部材に接する第2の層とを有し、第1の層の膜形成樹脂のガラス転移温度Tgが所定値である異方性導電フィルム(ACF)を作製した。そして、ACFを用いて第1の回路部材と第2の回路部材とを熱圧着して接続構造体を作製し、接続構造体の導通抵抗、ピール強度、及び圧着後の隣接端子間における第1の層の厚みについて測定、評価した。なお、本発明は、これらの実施例に限定されるものではない。
<2. Example>
Examples of the present invention will be described below. In the present embodiment, the first layer in contact with the first circuit member and the second layer in contact with the second circuit member have a glass transition temperature Tg of the film forming resin of the first layer at a predetermined value. An anisotropic conductive film (ACF) was produced. Then, the first circuit member and the second circuit member are thermocompression bonded using ACF to produce a connection structure, and the connection structure has a conduction resistance, a peel strength, and a first between adjacent terminals after the compression bonding. The thickness of the layer was measured and evaluated. The present invention is not limited to these examples.
 ACFの作製、接続構造体の作製、接続構造体の導通抵抗、ピール強度、及び圧着後の隣接端子間における第1の層の厚みは、次のように測定、評価を行った。 The production of ACF, the production of the connection structure, the conduction resistance of the connection structure, the peel strength, and the thickness of the first layer between the adjacent terminals after crimping were measured and evaluated as follows.
 <ACFの作製>
 表1に、各層の組成を示す。表1に示す各層の配合組成(質量部)と、固形分が50質量%になるように酢酸エチルとトルエンとの混合溶液とを、それぞれ常法により均一に混合し、第1の層として組成物A1~A6、及び第2の層として組成物Bを調整した。なお、膜形成樹脂のガラス転移温度は、下記(1)式(FOX式)で示される理論ガラス転移温度として算出した。
1/Tg=W1/T1+W2/T2+・・・Wn/Tn ・・・(1)
(1)式中、W1、W2・・・Wnは各モノマーの質量分率であり、T1、T2・・・Tnは各モノマーのガラス転移温度(K)である。
<Production of ACF>
Table 1 shows the composition of each layer. The composition of each layer shown in Table 1 (parts by mass) and a mixed solution of ethyl acetate and toluene so as to have a solid content of 50% by mass are each uniformly mixed by a conventional method to form the first layer. Compositions A1 to A6 and Composition B as the second layer were prepared. The glass transition temperature of the film-forming resin was calculated as a theoretical glass transition temperature represented by the following formula (1) (FOX formula).
1 / Tg = W1 / T1 + W2 / T2 +... Wn / Tn (1)
In the formula (1), W1, W2,... Wn are mass fractions of each monomer, and T1, T2,... Tn are glass transition temperatures (K) of the respective monomers.
 組成物A1は、フェノキシ樹脂(商品名:jER4256、三菱化学(株))54質量部と、ウレタンアクリレート(商品名:U-2PPA、新中村化学(株))25質量部と、2官能アクリレート(商品名:A-200、新中村化学(株))20質量部とを含有する。膜形成樹脂のガラス転移温度Tgは、65℃である。 Composition A1 comprises 54 parts by mass of phenoxy resin (trade name: jER4256, Mitsubishi Chemical Corporation), 25 parts by mass of urethane acrylate (trade name: U-2PPA, Shin-Nakamura Chemical Co., Ltd.), bifunctional acrylate ( Product name: A-200, Shin-Nakamura Chemical Co., Ltd.) 20 parts by mass. The glass transition temperature Tg of the film-forming resin is 65 ° C.
 組成物A2は、フェノキシ樹脂(商品名:jER1256、三菱化学(株))54質量部と、ウレタンアクリレート(商品名:U-2PPA、新中村化学(株))25質量部と、2官能アクリレート(商品名:A-200、新中村化学(株))20質量部とを含有する。膜形成樹脂のガラス転移温度Tgは、98℃である。 Composition A2 is composed of 54 parts by mass of phenoxy resin (trade name: jER1256, Mitsubishi Chemical Corporation), 25 parts by mass of urethane acrylate (trade name: U-2PPA, Shin-Nakamura Chemical Co., Ltd.), and bifunctional acrylate ( Product name: A-200, Shin-Nakamura Chemical Co., Ltd.) 20 parts by mass. The glass transition temperature Tg of the film-forming resin is 98 ° C.
 組成物A3は、フェノキシ樹脂(商品名:YX8100、三菱化学(株))54質量部と、ウレタンアクリレート(商品名:U-2PPA、新中村化学(株))25質量部と、2官能アクリレート(商品名:A-200、新中村化学(株))20質量部とを含有する。膜形成樹脂のガラス転移温度Tgは、150℃である。 Composition A3 is composed of 54 parts by mass of phenoxy resin (trade name: YX8100, Mitsubishi Chemical Co., Ltd.), 25 parts by mass of urethane acrylate (trade name: U-2PPA, Shin-Nakamura Chemical Co., Ltd.), bifunctional acrylate ( Product name: A-200, Shin-Nakamura Chemical Co., Ltd.) 20 parts by mass. The glass transition temperature Tg of the film forming resin is 150 ° C.
 組成物A4は、フェノキシ樹脂(商品名:jER4256、三菱化学(株))27質量部と、フェノキシ樹脂(商品名:jER1256、三菱化学(株))27質量部と、ウレタンアクリレート(商品名:U-2PPA、新中村化学(株))25質量部と、2官能アクリレート(商品名:A-200、新中村化学(株))20質量部とを含有する。膜形成樹脂のガラス転移温度Tgは、81℃である。 Composition A4 consists of 27 parts by mass of phenoxy resin (trade name: jER4256, Mitsubishi Chemical Corporation), 27 parts by mass of phenoxy resin (trade name: jER1256, Mitsubishi Chemical Corporation), and urethane acrylate (trade name: U -2PPA, 25 parts by mass of Shin-Nakamura Chemical Co., Ltd. and 20 parts by mass of bifunctional acrylate (trade name: A-200, Shin-Nakamura Chemical Co., Ltd.). The glass transition temperature Tg of the film forming resin is 81 ° C.
 組成物A5は、フェノキシ樹脂(商品名:jER4256、三菱化学(株))27質量部と、フェノキシ樹脂(商品名:YX8100、三菱化学(株))27質量部と、ウレタンアクリレート(商品名:U-2PPA、新中村化学(株))25質量部と、2官能アクリレート(商品名:A-200、新中村化学(株))20質量部とを含有する。膜形成樹脂のガラス転移温度Tgは、103℃である。 Composition A5 is composed of 27 parts by mass of phenoxy resin (trade name: jER4256, Mitsubishi Chemical Corporation), 27 parts by mass of phenoxy resin (trade name: YX8100, Mitsubishi Chemical Corporation), and urethane acrylate (trade name: U -2PPA, 25 parts by mass of Shin-Nakamura Chemical Co., Ltd. and 20 parts by mass of bifunctional acrylate (trade name: A-200, Shin-Nakamura Chemical Co., Ltd.). The glass transition temperature Tg of the film forming resin is 103 ° C.
 組成物A6は、フェノキシ樹脂(商品名:jER1256、三菱化学(株))27質量部と、フェノキシ樹脂(商品名:YX8100、三菱化学(株))27質量部と、ウレタンアクリレート(商品名:U-2PPA、新中村化学(株))25質量部と、2官能アクリレート(商品名:A-200、新中村化学(株))20質量部とを含有する。膜形成樹脂のガラス転移温度Tgは、122℃である。 Composition A6 is composed of 27 parts by mass of phenoxy resin (trade name: jER1256, Mitsubishi Chemical Corporation), 27 parts by mass of phenoxy resin (trade name: YX8100, Mitsubishi Chemical Corporation), and urethane acrylate (trade name: U -2PPA, 25 parts by mass of Shin-Nakamura Chemical Co., Ltd. and 20 parts by mass of bifunctional acrylate (trade name: A-200, Shin-Nakamura Chemical Co., Ltd.). The glass transition temperature Tg of the film forming resin is 122 ° C.
 組成物Bは、フェノキシ樹脂(商品名:jER4256、三菱化学(株))46質量部と、ウレタンアクリレート(商品名:U-2PPA、新中村化学(株))25質量部と、2官能アクリレート(商品名:A-200、新中村化学(株))20質量部と、リン酸エステル型アクリレート(商品名:PM-2、日本化薬(株))1質量部と、Ni粒子(ニッケルパウダー、平均粒径3μm、バーレインコ(株))2質量部と、ジラウロイルパーオキサイド3質量部と、ジベンゾイルパーオキサイド3質量部とを含有する。膜形成樹脂のガラス転移温度Tgは、65℃である。 Composition B consists of 46 parts by mass of phenoxy resin (trade name: jER4256, Mitsubishi Chemical Corporation), 25 parts by mass of urethane acrylate (trade name: U-2PPA, Shin-Nakamura Chemical Co., Ltd.), bifunctional acrylate ( Trade name: A-200, Shin-Nakamura Chemical Co., Ltd. 20 parts by mass, phosphate ester acrylate (trade name: PM-2, Nippon Kayaku Co., Ltd.) 1 part by mass, Ni particles (nickel powder, An average particle diameter of 3 μm, 2 parts by weight of Bahrainco Co., Ltd., 3 parts by weight of dilauroyl peroxide, and 3 parts by weight of dibenzoyl peroxide are contained. The glass transition temperature Tg of the film-forming resin is 65 ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した組成物A1~A6、Bを層毎に剥離ポリエステルフィルムに塗布し、70℃の熱風を5分間吹き掛けて乾燥することにより層毎に接着フィルムを作製し、組成物Aからなる層と組成物Bからなる層とを積層し、2層構造のACFを作製した。 Compositions A1 to A6 and B shown in Table 1 were applied to the release polyester film layer by layer, and dried by blowing hot air at 70 ° C. for 5 minutes to produce an adhesive film for each layer. A layer composed of the composition B and a layer composed of the composition B were laminated to produce an ACF having a two-layer structure.
 <接続構造体の作製>
 前述のACFを介して第1の回路部材と第2の回路部材との接合を行い、接続構造体を作製した。
 第1の回路部材として、端子部の周辺に端子の高さよりも大きな厚みを有するレジストが形成されたプリント配線板(ガラスエポキシ基板、Cu厚み35μm、200μmP(ピッチ)(ライン:スペース=1:1)、Auフラッシュめっき品)を用いた。レジストは、次のように形成した。太陽インキ製造株式会社製ソルダーレジスト(PSR-4000)をスクリーン印刷やスプレーコーティングによって乾燥後膜厚が40μmになるようにプリント配線板(PWB)上に塗布し、80℃、30minの条件にて仮乾燥を行った。乾燥後、フォトマスクを介して露光部分を光硬化し、1%炭酸ソーダ水溶液で未露光部分を除去した。そして、露光部分を150℃、60minの条件にて加熱乾燥を行い硬化させ、端子部の開口範囲が2.0mm×40mmのレジストを有する評価基材を作製した。また、300μmP(ピッチ)(ライン:スペース=1:1)の評価基材も同様に作製した。すなわち、評価基材は、図3に示す第1の回路部材10において、端子高さhが35μmであり、レジスト厚みtが40μmである。
<Production of connection structure>
The first circuit member and the second circuit member were joined via the ACF described above to produce a connection structure.
As a first circuit member, a printed wiring board (glass epoxy board, Cu thickness 35 μm, 200 μm P (pitch) (line: space = 1: 1) having a resist having a thickness larger than the height of the terminal around the terminal portion. ), Au flash plating product). The resist was formed as follows. A solder resist (PSR-4000) manufactured by Taiyo Ink Manufacturing Co., Ltd. was applied on a printed wiring board (PWB) to a film thickness of 40 μm after drying by screen printing or spray coating, and temporarily applied at 80 ° C. for 30 min. Drying was performed. After drying, the exposed portion was photocured through a photomask, and the unexposed portion was removed with a 1% sodium carbonate aqueous solution. Then, the exposed portion was heated and dried under the conditions of 150 ° C. and 60 min to be cured, and an evaluation base material having a resist with an opening range of the terminal portion of 2.0 mm × 40 mm was produced. An evaluation base material of 300 μm P (pitch) (line: space = 1: 1) was also produced in the same manner. That is, the evaluation base material has a terminal height h of 35 μm and a resist thickness t of 40 μm in the first circuit member 10 shown in FIG.
 また、第2の回路部材として、COF基板(ポリイミドフィルム厚み38μm、Cu厚み8μm、200μmP(ピッチ)(ライン:スペース=1:1)、Snめっき品)を使用した。また、300μmP(ピッチ)(ライン:スペース=1:1)のCOF基材も使用した。 Also, as the second circuit member, a COF substrate (polyimide film thickness 38 μm, Cu thickness 8 μm, 200 μm P (pitch) (line: space = 1: 1), Sn plated product) was used. A COF substrate of 300 μm P (pitch) (line: space = 1: 1) was also used.
 PWBとCOFとの接続は、以下の圧着条件により行った。
・ACF幅:2.0mm
・ツール幅:2.0mm
・緩衝材:シリコーンラバー厚み200μm
・加熱加圧:140℃~170℃/2MPa/3sec
The connection between PWB and COF was performed under the following pressure bonding conditions.
-ACF width: 2.0 mm
・ Tool width: 2.0mm
-Buffer material: Silicone rubber thickness 200μm
Heating and pressing: 140 ° C to 170 ° C / 2MPa / 3sec
 また、圧着後の隣接端子間におけるACFの第1の層の厚みを断面観察により測定した。 Also, the thickness of the first layer of ACF between adjacent terminals after crimping was measured by cross-sectional observation.
 <導通抵抗の測定、評価>
 200μmP及び300μmPの接続構造体を、テスターを用いて1mAの定電流を印加した際の電圧を4端子法で導通抵抗〔初期の導通抵抗(Ω)、及び環境試験(85℃、85%RH、1000h)後の導通抵抗(Ω)〕を測定し、下記基準で評価した。
〔初期の導通抵抗の評価基準〕
○:導通抵抗が0.070Ω未満
△:導通抵抗が0.070Ω以上0.100Ω未満
×:導通抵抗が0.100Ω以上
〔環境試験後の導通抵抗の評価基準〕
○:(初期の導通抵抗/環境試験後の導通抵抗)が5倍未満
△:(環境試験後の導通抵抗/初期の導通抵抗)が5倍以上11倍未満
×:(環境試験後の導通抵抗/初期の導通抵抗)が11倍以上
<Measurement and evaluation of conduction resistance>
The connection structure of 200 μmP and 300 μmP was subjected to a voltage when a constant current of 1 mA was applied using a tester by a four-terminal method with a conduction resistance [initial conduction resistance (Ω) and environmental test (85 ° C., 85% RH, 1000 h), the conduction resistance (Ω)] was measured and evaluated according to the following criteria.
[Evaluation criteria for initial conduction resistance]
○: Conduction resistance is less than 0.070Ω Δ: Conduction resistance is 0.070Ω or more and less than 0.100Ω ×: Conduction resistance is 0.100Ω or more [Evaluation criteria of conduction resistance after environmental test]
○: (initial conduction resistance / conduction resistance after environmental test) is less than 5 times Δ: (conduction resistance after environmental test / initial conduction resistance) is 5 times or more and less than 11 times ×: (conduction resistance after environmental test) / Initial conduction resistance) is more than 11 times
 <ピール強度の測定、評価>
 200μmPの接続構造体について、引っ張り速度50mm/minで90°Y軸方向ピール強度を測定し、下記基準で評価した。なお、結果はピール強度の最大値(N/cm)で示した。
〔評価基準〕
○:ピール強度が10N/cm以上
△:ピール強度が8N/cm以上10N/cm未満
×:ピール強度が8N/cm未満
<Measurement and evaluation of peel strength>
About the connection structure of 200 μm P, the 90 ° Y-axis direction peel strength was measured at a pulling speed of 50 mm / min, and evaluated according to the following criteria. The results are shown by the maximum peel strength (N / cm).
〔Evaluation criteria〕
○: Peel strength is 10 N / cm or more Δ: Peel strength is 8 N / cm or more and less than 10 N / cm x: Peel strength is less than 8 N / cm
 <実施例1>
 表2に示すように、第1の層を組成物A3からなる厚み20μm、第2の層を組成物Bからなる厚み20μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは150℃であった。
<Example 1>
As shown in Table 2, ACFs were prepared in which the first layer was 20 μm thick composed of composition A3 and the second layer was 20 μm thick composed of composition B. The glass transition temperature Tg of the film-forming resin of the first layer was 150 ° C.
 実施例1のACFを介して第1の回路部材と第2の回路部材とを170℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは10μm未満であった。 1st circuit member and 2nd circuit member were crimped | bonded at 170 degreeC via ACF of Example 1, and the connection structure was produced. The thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
 200μmPの接続構造体の初期抵抗の評価は○であった。
 300μmPの接続構造体の初期抵抗の評価は○であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 接続構造体のピール強度の評価は△であった。
The initial resistance of the 200 μmP connection structure was evaluated as “good”.
The initial resistance of the 300 μmP connection structure was evaluated as “good”.
The evaluation of the resistance after the reliability test of the connection structure of 200 μmP was ○.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was ○.
The evaluation of the peel strength of the connection structure was Δ.
 <実施例2>
 表2に示すように、第1の層を組成物A5からなる厚み20μm、第2の層を組成物Bからなる厚み20μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは103℃であった。
<Example 2>
As shown in Table 2, an ACF was produced in which the first layer was 20 μm thick composed of the composition A5 and the second layer was 20 μm thick composed of the composition B. The glass transition temperature Tg of the film-forming resin of the first layer was 103 ° C.
 実施例2のACFを介して第1の回路部材と第2の回路部材とを140℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは10μm未満であった。 1st circuit member and 2nd circuit member were crimped | bonded at 140 degreeC via ACF of Example 2, and the connection structure was produced. The thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
 200μmPの接続構造体の初期抵抗の評価は○であった。
 300μmPの接続構造体の初期抵抗の評価は○であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 接続構造体のピール強度の評価は○であった。
The initial resistance of the 200 μmP connection structure was evaluated as “good”.
The initial resistance of the 300 μmP connection structure was evaluated as “good”.
The evaluation of the resistance after the reliability test of the connection structure of 200 μmP was ○.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was ○.
The evaluation of the peel strength of the connection structure was “good”.
 <実施例3>
 表2に示すように、第1の層を組成物A6からなる厚み20μm、第2の層を組成物Bからなる厚み20μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは122℃であった。
<Example 3>
As shown in Table 2, an ACF was produced in which the first layer was 20 μm thick composed of the composition A6 and the second layer was 20 μm thick composed of the composition B. The glass transition temperature Tg of the film-forming resin of the first layer was 122 ° C.
 実施例3のACFを介して第1の回路部材と第2の回路部材とを150℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは10μm未満であった。 1st circuit member and 2nd circuit member were crimped | bonded at 150 degreeC via ACF of Example 3, and the connection structure was produced. The thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
 200μmPの接続構造体の初期抵抗の評価は○であった。
 300μmPの接続構造体の初期抵抗の評価は○であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 接続構造体のピール強度の評価は○であった。
The initial resistance of the 200 μmP connection structure was evaluated as “good”.
The initial resistance of the 300 μmP connection structure was evaluated as “good”.
The evaluation of the resistance after the reliability test of the connection structure of 200 μmP was ○.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was ○.
The evaluation of the peel strength of the connection structure was “good”.
 <実施例4>
 表2に示すように、第1の層を組成物A5からなる厚み10μm、第2の層を組成物Bからなる厚み30μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは103℃であった。
<Example 4>
As shown in Table 2, an ACF having a first layer of 10 μm thickness made of composition A5 and a second layer made of composition B having a thickness of 30 μm was prepared. The glass transition temperature Tg of the film-forming resin of the first layer was 103 ° C.
 実施例4のACFを介して第1の回路部材と第2の回路部材とを150℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは3μm未満であった。 1st circuit member and 2nd circuit member were crimped | bonded at 150 degreeC via ACF of Example 4, and the connection structure was produced. The thickness of the first layer between adjacent terminals after the crimping was less than 3 μm.
 200μmPの接続構造体の初期抵抗の評価は○であった。
 300μmPの接続構造体の初期抵抗の評価は○であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 接続構造体のピール強度の評価は○であった。
The initial resistance of the 200 μmP connection structure was evaluated as “good”.
The initial resistance of the 300 μmP connection structure was evaluated as “good”.
The evaluation of the resistance after the reliability test of the connection structure of 200 μmP was ○.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was ○.
The evaluation of the peel strength of the connection structure was “good”.
 <実施例5>
 表2に示すように、第1の層を組成物A5からなる厚み5μm、第2の層を組成物Bからなる厚み35μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは103℃であった。
<Example 5>
As shown in Table 2, ACFs were prepared in which the first layer was 5 μm thick composed of composition A5 and the second layer was 35 μm thick composed of composition B. The glass transition temperature Tg of the film-forming resin of the first layer was 103 ° C.
 実施例4のACFを介して第1の回路部材と第2の回路部材とを140℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは1μm未満であった。 1st circuit member and 2nd circuit member were crimped | bonded at 140 degreeC via ACF of Example 4, and the connection structure was produced. The thickness of the first layer between the adjacent terminals after the crimping was less than 1 μm.
 200μmPの接続構造体の初期抵抗の評価は○であった。
 300μmPの接続構造体の初期抵抗の評価は○であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は△であった。
 接続構造体のピール強度の評価は○であった。
The initial resistance of the 200 μmP connection structure was evaluated as “good”.
The initial resistance of the 300 μmP connection structure was evaluated as “good”.
The evaluation of the resistance after the reliability test of the connection structure of 200 μmP was ○.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was Δ.
The evaluation of the peel strength of the connection structure was “good”.
 <実施例6>
 表2に示すように、第1の層を組成物A5からなる厚み25μm、第2の層を組成物Bからなる厚み15μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは103℃であった。
<Example 6>
As shown in Table 2, an ACF having a first layer of 25 μm thickness made of the composition A5 and a second layer made of the composition B of 15 μm thickness was prepared. The glass transition temperature Tg of the film-forming resin of the first layer was 103 ° C.
 実施例4のACFを介して第1の回路部材と第2の回路部材とを140℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは15μm未満であった。 1st circuit member and 2nd circuit member were crimped | bonded at 140 degreeC via ACF of Example 4, and the connection structure was produced. The thickness of the first layer between the adjacent terminals after crimping was less than 15 μm.
 200μmPの接続構造体の初期抵抗の評価は○であった。
 300μmPの接続構造体の初期抵抗の評価は○であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は△であった。
 接続構造体のピール強度の評価は○であった。
The initial resistance of the 200 μmP connection structure was evaluated as “good”.
The initial resistance of the 300 μmP connection structure was evaluated as “good”.
The evaluation of the resistance after the reliability test of the connection structure of 200 μmP was ○.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was Δ.
The evaluation of the peel strength of the connection structure was “good”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <比較例1>
 表3に示すように、第1の層を組成物A1からなる厚み20μm、第2の層を組成物Bからなる厚み20μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは65℃であった。
<Comparative Example 1>
As shown in Table 3, an ACF was produced in which the first layer was 20 μm thick composed of the composition A1, and the second layer was 20 μm thick composed of the composition B. The glass transition temperature Tg of the film-forming resin of the first layer was 65 ° C.
 比較例1のACFを介して第1の回路部材と第2の回路部材とを170℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは10μm未満であった。 The first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 1 to produce a connection structure. The thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
 200μmPの接続構造体の初期抵抗の評価は○であった。
 300μmPの接続構造体の初期抵抗の評価は○であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は×であった。
 接続構造体のピール強度の評価は○であった。
The initial resistance of the 200 μmP connection structure was evaluated as “good”.
The initial resistance of the 300 μmP connection structure was evaluated as “good”.
The evaluation of the resistance after the reliability test of the connection structure of 200 μmP was ○.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was x.
The evaluation of the peel strength of the connection structure was “good”.
 <比較例2>
 表3に示すように、第1の層を組成物A2からなる厚み20μm、第2の層を組成物Bからなる厚み20μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは98℃であった。
<Comparative example 2>
As shown in Table 3, an ACF was produced in which the first layer was 20 μm thick composed of the composition A2, and the second layer was 20 μm thick composed of the composition B. The glass transition temperature Tg of the film forming resin of the first layer was 98 ° C.
 比較例2のACFを介して第1の回路部材と第2の回路部材とを170℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは10μm未満であった。 The first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 2 to produce a connection structure. The thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
 200μmPの接続構造体の初期抵抗の評価は○であった。
 300μmPの接続構造体の初期抵抗の評価は○であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は×であった。
 接続構造体のピール強度の評価は○であった。
The initial resistance of the 200 μmP connection structure was evaluated as “good”.
The initial resistance of the 300 μmP connection structure was evaluated as “good”.
The evaluation of the resistance after the reliability test of the connection structure of 200 μmP was ○.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was x.
The evaluation of the peel strength of the connection structure was “good”.
 <比較例3>
 表3に示すように、第1の層を組成物A4からなる厚み20μm、第2の層を組成物Bからなる厚み20μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは81℃であった。
<Comparative Example 3>
As shown in Table 3, an ACF was produced in which the first layer was 20 μm thick composed of the composition A4 and the second layer was 20 μm thick composed of the composition B. The glass transition temperature Tg of the first layer film-forming resin was 81 ° C.
 比較例3のACFを介して第1の回路部材と第2の回路部材とを170℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは10μm未満であった。 The first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 3 to produce a connection structure. The thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
 200μmPの接続構造体の初期抵抗の評価は○であった。
 300μmPの接続構造体の初期抵抗の評価は○であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は○であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は×であった。
 接続構造体のピール強度の評価は○であった。
The initial resistance of the 200 μmP connection structure was evaluated as “good”.
The initial resistance of the 300 μmP connection structure was evaluated as “good”.
The evaluation of the resistance after the reliability test of the connection structure of 200 μmP was ○.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was x.
The evaluation of the peel strength of the connection structure was “good”.
 <比較例4>
 表3に示すように、第1の層を組成物Bからなる厚み20μm、第2の層を組成物A3からなる厚み20μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは65℃であった。
<Comparative example 4>
As shown in Table 3, an ACF having a first layer having a thickness of 20 μm made of the composition B and a second layer having a thickness of 20 μm made of the composition A3 was produced. The glass transition temperature Tg of the film-forming resin of the first layer was 65 ° C.
 比較例4のACFを介して第1の回路部材と第2の回路部材とを170℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは3μm未満であった。 The first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 4 to produce a connection structure. The thickness of the first layer between adjacent terminals after the crimping was less than 3 μm.
 200μmPの接続構造体の初期抵抗の評価は△であった。
 300μmPの接続構造体の初期抵抗の評価は△であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は×であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は×であった。
 接続構造体のピール強度の評価は×であった。
The initial resistance of the 200 μmP connection structure was evaluated as Δ.
The initial resistance of the 300 μmP connection structure was evaluated as Δ.
The evaluation of the resistance after the reliability test of the connection structure of 200 μm P was x.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was x.
The peel strength of the connection structure was evaluated as x.
 <比較例5>
 表3に示すように、第1の層を組成物Bからなる厚み20μm、第2の層を組成物A5からなる厚み20μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは65℃であった。
<Comparative Example 5>
As shown in Table 3, an ACF having a thickness of 20 μm made of the composition B as the first layer and a thickness of 20 μm made of the composition A5 was prepared as the second layer. The glass transition temperature Tg of the film-forming resin of the first layer was 65 ° C.
 比較例5のACFを介して第1の回路部材と第2の回路部材とを170℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは3μm未満であった。 The first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 5 to produce a connection structure. The thickness of the first layer between adjacent terminals after the crimping was less than 3 μm.
 200μmPの接続構造体の初期抵抗の評価は△であった。
 300μmPの接続構造体の初期抵抗の評価は△であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は×であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は×であった。
 接続構造体のピール強度の評価は×であった。
The initial resistance of the 200 μmP connection structure was evaluated as Δ.
The initial resistance of the 300 μmP connection structure was evaluated as Δ.
The evaluation of the resistance after the reliability test of the connection structure of 200 μm P was x.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was x.
The peel strength of the connection structure was evaluated as x.
 <比較例6>
 表3に示すように、第1の層を組成物Bからなる厚み20μm、第2の層を組成物A6からなる厚み20μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは65℃であった。
<Comparative Example 6>
As shown in Table 3, an ACF having a first layer having a thickness of 20 μm made of the composition B and a second layer having a thickness of 20 μm made of the composition A6 was produced. The glass transition temperature Tg of the film-forming resin of the first layer was 65 ° C.
 比較例6のACFを介して第1の回路部材と第2の回路部材とを170℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは3μm未満であった。 The first circuit member and the second circuit member were crimped at 170 ° C. via the ACF of Comparative Example 6 to produce a connection structure. The thickness of the first layer between adjacent terminals after the crimping was less than 3 μm.
 200μmPの接続構造体の初期抵抗の評価は△であった。
 300μmPの接続構造体の初期抵抗の評価は△であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は×であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は×であった。
 接続構造体のピール強度の評価は×であった。
The initial resistance of the 200 μmP connection structure was evaluated as Δ.
The initial resistance of the 300 μmP connection structure was evaluated as Δ.
The evaluation of the resistance after the reliability test of the connection structure of 200 μm P was x.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was x.
The peel strength of the connection structure was evaluated as x.
 <比較例7>
 表3に示すように、組成物Bからなる厚み40μmとしたACFを作製した。比較例7のACFを介して第1の回路部材と第2の回路部材とを170℃にて圧着し、接続構造体を作製した。
<Comparative Example 7>
As shown in Table 3, an ACF composed of the composition B and having a thickness of 40 μm was produced. The first circuit member and the second circuit member were pressure-bonded at 170 ° C. via the ACF of Comparative Example 7 to produce a connection structure.
 200μmPの接続構造体の初期抵抗の評価は○であった。
 300μmPの接続構造体の初期抵抗の評価は○であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は△であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は×であった。
 接続構造体のピール強度の評価は○であった。
The initial resistance of the 200 μmP connection structure was evaluated as “good”.
The initial resistance of the 300 μmP connection structure was evaluated as “good”.
The evaluation of the resistance after the reliability test of the connection structure of 200 μm P was Δ.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was x.
The evaluation of the peel strength of the connection structure was “good”.
 <比較例8>
 表3に示すように、第1の層を組成物A3からなる厚み20μm、第2の層を組成物Bからなる厚み20μmとしたACFを作製した。第1の層の膜形成樹脂のガラス転移温度Tgは150℃であった。
<Comparative Example 8>
As shown in Table 3, an ACF having a thickness of 20 μm made of the composition A3 as the first layer and a thickness of 20 μm made of the composition B as the second layer was prepared. The glass transition temperature Tg of the film-forming resin of the first layer was 150 ° C.
 比較例8のACFを介して第1の回路部材と第2の回路部材とを140℃にて圧着し、接続構造体を作製した。圧着後の隣接端子間における第1の層の厚みは10μm未満であった。 The first circuit member and the second circuit member were crimped at 140 ° C. via the ACF of Comparative Example 8 to produce a connection structure. The thickness of the 1st layer between the adjacent terminals after crimping was less than 10 micrometers.
 200μmPの接続構造体の初期抵抗の評価は○であった。
 300μmPの接続構造体の初期抵抗の評価は△であった。
 200μmPの接続構造体の信頼性試験後の抵抗の評価は△であった。
 300μmPの接続構造体の信頼性試験後の抵抗の評価は×であった。
 接続構造体のピール強度の評価は○であった。
The initial resistance of the 200 μmP connection structure was evaluated as “good”.
The initial resistance of the 300 μmP connection structure was evaluated as Δ.
The evaluation of the resistance after the reliability test of the connection structure of 200 μm P was Δ.
The evaluation of the resistance after the reliability test of the connection structure of 300 μm P was x.
The evaluation of the peel strength of the connection structure was “good”.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、比較例1~3のACFは、第1の層の膜形成樹脂のガラス転移温度が、圧着温度の-50℃以上でなく、かつ、第2の層の膜形成樹脂のガラス転移温度の+35℃以上でないため、比較的広い300μmピッチの回路部材を接続しようとした場合、流動性が過多となり、端子間を十分に充填することができず、そのため信頼性試験で浮きが発生してしまい、高い接続信頼性を得ることができなかった。 As shown in Table 3, in the ACFs of Comparative Examples 1 to 3, the glass transition temperature of the film forming resin of the first layer is not −50 ° C. or higher of the pressure bonding temperature, and the film forming resin of the second layer Since the glass transition temperature is not higher than + 35 ° C., when trying to connect a circuit member with a relatively wide 300 μm pitch, the fluidity becomes excessive and the space between terminals cannot be sufficiently filled. As a result, high connection reliability could not be obtained.
 また、比較例4~6のACFは、実施例1~3の第1の層の組成物及び第2の層の組成物をそれぞれ第2の層及び第1の層にしたものであるが、導電性粒子の補足率が悪く、初期の導通抵抗が高かった。また、ピール強度も低かった。 The ACFs of Comparative Examples 4 to 6 were obtained by changing the composition of the first layer and the composition of the second layer of Examples 1 to 3 into the second layer and the first layer, respectively. The capture rate of conductive particles was poor, and the initial conduction resistance was high. The peel strength was also low.
 また、比較例7のACFは、組成物Bからなる1層構造であるため、端子間のバインダーの排除が不足し、高い接続信頼性を得ることができなかった。また、比較例8は、圧着温度が低く、第1の層の膜形成樹脂のガラス転移温度が、圧着温度の-50℃以上でないため、端子間のバインダーの排除が不足し、高い接続信頼性を得ることができなかった。 Further, since the ACF of Comparative Example 7 has a single-layer structure composed of the composition B, the binder between terminals is not sufficiently removed, and high connection reliability cannot be obtained. Further, Comparative Example 8 has a low pressure bonding temperature, and the glass transition temperature of the first layer film-forming resin is not higher than the pressure bonding temperature of −50 ° C. Could not get.
 一方。実施例1~6のACFは、第1の層の膜形成樹脂のガラス転移温度が、圧着温度の-50℃以上及び第2の層の膜形成樹脂のガラス転移温度の+35℃以上であるため、端子間のバインダーを適度に排除することができ、高い接続信頼性を得ることができた。 on the other hand. In the ACFs of Examples 1 to 6, the glass transition temperature of the film-forming resin of the first layer is not lower than −50 ° C. of the pressure-bonding temperature and + 35 ° C. of the glass transition temperature of the film-forming resin of the second layer. The binder between the terminals could be removed moderately and high connection reliability could be obtained.
 また、実施例5及び実施例6より、第1の層の厚みが第1の端子の高さの約10%~75%であることにより、端子部周辺が、端子高さより大きな厚みを有するレジストで覆われている場合でも、高い接続信頼性を得られることがわかった。 Further, from Examples 5 and 6, when the thickness of the first layer is about 10% to 75% of the height of the first terminal, the resist around the terminal portion has a thickness larger than the terminal height. It was found that high connection reliability can be obtained even when covered with
 また、実施例1~6より、圧着後の隣接端子間における第1の層の厚みが1μm以上10μm未満であることにより、端子部領域がバインダーで適度に埋まり、信頼性試験での浮きの発生を抑制することができ、高い接続信頼性を得られることがわかった。 Further, from Examples 1 to 6, when the thickness of the first layer between the adjacent terminals after crimping is 1 μm or more and less than 10 μm, the terminal area is appropriately filled with the binder, and the occurrence of floating in the reliability test is generated. It was found that high connection reliability can be obtained.
 10  第1の回路部材
 11  第1の基材
 12  第1の端子部
 12a 第1の端子
 13  レジスト
 20  第2の回路部材
 21  第2の基材
 22  第2の端子部
 22a 第2の端子
 30  回路接続材料
 31  第1の層
 32  第2の層
DESCRIPTION OF SYMBOLS 10 1st circuit member 11 1st base material 12 1st terminal part 12a 1st terminal 13 Resist 20 2nd circuit member 21 2nd base material 22 2nd terminal part 22a 2nd terminal 30 Circuit Connecting material 31 First layer 32 Second layer

Claims (7)

  1.  第1の端子が配列された第1の端子部と、前記第1の端子部の周辺に形成され、前記第1の端子の高さよりも大きな厚みを有するレジストとを備える第1の回路部材と、前記第1の端子よりも高さが低い第2の端子が配列された第2の端子部を備える第2の回路部材とを、膜形成樹脂と、重合性化合物とを含有し、前記第1の回路部材に接する第1の層と、膜形成樹脂と、重合性化合物と、重合開始剤と、導電性粒子とを含有し、前記第2の回路部材に接する第2の層とを有する回路接続材料を介在させて配置する配置工程と、
     前記第1の回路部材と前記第2の回路部材とを所定温度にて熱圧着し、接続構造体を得る圧着工程とを有し、
     前記第1の層の膜形成樹脂のガラス転移温度が、前記所定温度の-50℃以上及び前記第2の層の膜形成樹脂のガラス転移温度の+35℃以上である接続構造体の製造方法。
    A first circuit member comprising: a first terminal portion in which first terminals are arranged; and a resist formed around the first terminal portion and having a thickness larger than the height of the first terminal; A second circuit member including a second terminal portion in which second terminals having a height lower than that of the first terminal are arranged, containing a film-forming resin and a polymerizable compound, A first layer in contact with one circuit member, a film-forming resin, a polymerizable compound, a polymerization initiator, and conductive particles, and a second layer in contact with the second circuit member. A placement step of placing the circuit connection material in between;
    A thermocompression bonding of the first circuit member and the second circuit member at a predetermined temperature to obtain a connection structure,
    A method for manufacturing a connection structure, wherein the glass transition temperature of the film forming resin of the first layer is −50 ° C. or more of the predetermined temperature and + 35 ° C. or more of the glass transition temperature of the film forming resin of the second layer.
  2.  前記第1の層の厚みが、前記第1の端子の高さの10%~75%である請求項1記載の接続構造体の製造方法。 The method for manufacturing a connection structure according to claim 1, wherein the thickness of the first layer is 10% to 75% of the height of the first terminal.
  3.  前記第1の層の重合性化合物が、ラジカル重合性化合物であり、
     前記第2の層の重合性化合物が、ラジカル重合性化合物であり、
     前記第2の層の重合開始剤が、有機過酸化物である請求項1又は2記載の接続構造体の製造方法。
    The polymerizable compound of the first layer is a radically polymerizable compound;
    The polymerizable compound of the second layer is a radically polymerizable compound;
    The method for producing a connection structure according to claim 1 or 2, wherein the polymerization initiator of the second layer is an organic peroxide.
  4.  前記第1の端子の幅が300μm以上である請求項1乃至3のいずれか1項に記載の接続構造体の製造方法。 The method for manufacturing a connection structure according to any one of claims 1 to 3, wherein a width of the first terminal is 300 µm or more.
  5.  熱圧着後の隣接端子間における前記第1の層の厚みが、1μm以上10μm未満である請求項1乃至3のいずれか1項に記載の接続構造体の製造方法。 The method for manufacturing a connection structure according to any one of claims 1 to 3, wherein a thickness of the first layer between adjacent terminals after thermocompression bonding is 1 µm or more and less than 10 µm.
  6.  請求項1乃至5のいずれか1項に記載の接続構造体の製造方法により得られる接続構造体。 A connection structure obtained by the method for manufacturing a connection structure according to any one of claims 1 to 5.
  7.  第1の端子が配列された第1の端子部と、前記第1の端子部の周辺に形成され、前記第1の端子の高さよりも大きな厚みを有するレジストとを備える第1の回路部材と、前記第1の回路部材の端子よりも高さが低い第2の端子が配列された第2の端子部を備える第2の回路部材とを所定温度にて熱圧着させる回路接続材料において、
     膜形成樹脂と、重合性化合物とを含有し、前記第1の回路部材に接する第1の層と、
     膜形成樹脂と、重合性化合物と、重合開始剤と、導電性粒子とを含有し、前記第2の回路部材に接する第2の層とを有し、
     前記第1の層の膜形成樹脂のガラス転移温度が、前記所定温度の-50℃以上及び前記第2の層の膜形成樹脂のガラス転移温度の+35℃以上である回路接続材料。
    A first circuit member comprising: a first terminal portion in which first terminals are arranged; and a resist formed around the first terminal portion and having a thickness larger than the height of the first terminal; In the circuit connection material for thermocompression bonding at a predetermined temperature with the second circuit member provided with the second terminal portion in which the second terminals lower in height than the terminals of the first circuit member are arranged,
    A first layer containing a film-forming resin and a polymerizable compound and in contact with the first circuit member;
    A film-forming resin, a polymerizable compound, a polymerization initiator, a conductive particle, and a second layer in contact with the second circuit member;
    The circuit connecting material, wherein the glass transition temperature of the film forming resin of the first layer is not less than −50 ° C. of the predetermined temperature and + 35 ° C. of the glass transition temperature of the film forming resin of the second layer.
PCT/JP2015/052637 2014-03-06 2015-01-30 Connecting structure, manufacturing method for connecting structure, and circuit connecting material WO2015133211A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020167025620A KR20160130399A (en) 2014-03-06 2015-01-30 Connecting structure, manufacturing method for connecting structure, and circuit connecting material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-043867 2014-03-06
JP2014043867A JP6307308B2 (en) 2014-03-06 2014-03-06 Manufacturing method of connection structure and circuit connection material

Publications (1)

Publication Number Publication Date
WO2015133211A1 true WO2015133211A1 (en) 2015-09-11

Family

ID=54055021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052637 WO2015133211A1 (en) 2014-03-06 2015-01-30 Connecting structure, manufacturing method for connecting structure, and circuit connecting material

Country Status (3)

Country Link
JP (1) JP6307308B2 (en)
KR (1) KR20160130399A (en)
WO (1) WO2015133211A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076208A (en) * 2000-08-25 2002-03-15 Matsushita Electric Ind Co Ltd Packaging structure of semiconductor device and display of structure and its manufacturing method
JP2005197032A (en) * 2004-01-05 2005-07-21 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
JP2007150324A (en) * 2000-04-25 2007-06-14 Hitachi Chem Co Ltd Circuit connection adhesive, and circuit connection method and circuit connection structure using same
JP2009004767A (en) * 2007-05-24 2009-01-08 Sony Chemical & Information Device Corp Electric device, connecting method and adhesive film
JP2011071514A (en) * 2010-09-21 2011-04-07 Hitachi Chem Co Ltd Adhesive for connection of circuit members, circuit board, and method of manufacturing the same
WO2012063554A1 (en) * 2010-11-09 2012-05-18 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film
WO2012137754A1 (en) * 2011-04-06 2012-10-11 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film, method for producing connected body, and connected body
JP2013253152A (en) * 2012-06-06 2013-12-19 Hitachi Chemical Co Ltd Adhesive composition, film adhesive and circuit connecting material using the adhesive composition, connection structure for circuit member, and method for production of the connection structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645024A (en) * 1992-07-22 1994-02-18 Hitachi Chem Co Ltd Anisotropic conductive adhesive film
US6034331A (en) * 1996-07-23 2000-03-07 Hitachi Chemical Company, Ltd. Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
JP2000174066A (en) * 1998-12-07 2000-06-23 Matsushita Electric Ind Co Ltd Method of mounting semiconductor device
JP2000195584A (en) * 1998-12-25 2000-07-14 Sony Corp Electrical connection device and electrical connection method
JP3491595B2 (en) * 2000-02-25 2004-01-26 ソニーケミカル株式会社 Anisotropic conductive adhesive film
WO2001071854A1 (en) * 2000-03-23 2001-09-27 Sony Corporation Electrical connection material and electrical connection method
JP4293187B2 (en) * 2003-06-25 2009-07-08 日立化成工業株式会社 Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP5218725B2 (en) * 2006-08-16 2013-06-26 デクセリアルズ株式会社 Connection method
JP5311772B2 (en) * 2007-06-27 2013-10-09 デクセリアルズ株式会社 Adhesive film
CN101897245B (en) * 2007-12-17 2013-03-13 日立化成工业株式会社 Circuit connecting material and structure for connecting circuit member
JP5226562B2 (en) * 2008-03-27 2013-07-03 デクセリアルズ株式会社 Anisotropic conductive film, joined body and method for producing the same
JP4623224B2 (en) * 2008-06-26 2011-02-02 日立化成工業株式会社 Resin film sheet and electronic parts
DE112010005989B4 (en) * 2010-11-11 2016-10-13 Toyota Jidosha Kabushiki Kaisha Communication node, communication system and method for performing communication
JP5690637B2 (en) * 2011-04-12 2015-03-25 デクセリアルズ株式会社 Anisotropic conductive film, connection method and connection structure
JP2013221144A (en) * 2012-04-19 2013-10-28 Dexerials Corp Circuit connecting material and method for producing mounted body by using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150324A (en) * 2000-04-25 2007-06-14 Hitachi Chem Co Ltd Circuit connection adhesive, and circuit connection method and circuit connection structure using same
JP2002076208A (en) * 2000-08-25 2002-03-15 Matsushita Electric Ind Co Ltd Packaging structure of semiconductor device and display of structure and its manufacturing method
JP2005197032A (en) * 2004-01-05 2005-07-21 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
JP2009004767A (en) * 2007-05-24 2009-01-08 Sony Chemical & Information Device Corp Electric device, connecting method and adhesive film
JP2011071514A (en) * 2010-09-21 2011-04-07 Hitachi Chem Co Ltd Adhesive for connection of circuit members, circuit board, and method of manufacturing the same
WO2012063554A1 (en) * 2010-11-09 2012-05-18 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film
WO2012137754A1 (en) * 2011-04-06 2012-10-11 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film, method for producing connected body, and connected body
JP2013253152A (en) * 2012-06-06 2013-12-19 Hitachi Chemical Co Ltd Adhesive composition, film adhesive and circuit connecting material using the adhesive composition, connection structure for circuit member, and method for production of the connection structure

Also Published As

Publication number Publication date
JP6307308B2 (en) 2018-04-04
KR20160130399A (en) 2016-11-11
JP2015170694A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
JP5833809B2 (en) Anisotropic conductive film, joined body and connection method
JP5690648B2 (en) Anisotropic conductive film, connection method and connection structure
US8524032B2 (en) Connecting film, and joined structure and method for producing the same
US20120292082A1 (en) Anisotropic conductive film
JP6474620B2 (en) Anisotropic conductive film and connection method
JP5685473B2 (en) Anisotropic conductive film, method for manufacturing bonded body, and bonded body
WO2013146604A1 (en) Conductive material and connecting structure
JP6231257B2 (en) Conductive adhesive and electronic component connecting method
JP5972564B2 (en) Connection method, connection structure, anisotropic conductive film, and manufacturing method thereof
JPH10168413A (en) Anisotropically conductive adhesive
JP5315031B2 (en) Anisotropic conductive film, joined body and method for producing the same
JP6425382B2 (en) Connection method and joined body
KR101157599B1 (en) Conductive particle for anisotropic conductive film and anisotropic conductive film including the conductive particle
JP6307308B2 (en) Manufacturing method of connection structure and circuit connection material
JP6133069B2 (en) Heat curable adhesive film
JP2002285128A (en) Adhesive having anisotropic electric conductivity
JP5966069B2 (en) Anisotropic conductive film, joined body and connection method
WO2020241818A1 (en) Isotropically electroconductive pressure-sensitive adhesive sheet
JP6286473B2 (en) Zygote
JP5924896B2 (en) Manufacturing method of joined body
JP2015147822A (en) Circuit connection material, and manufacturing method of electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167025620

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15759303

Country of ref document: EP

Kind code of ref document: A1