JP6474620B2 - Anisotropic conductive film and connection method - Google Patents

Anisotropic conductive film and connection method Download PDF

Info

Publication number
JP6474620B2
JP6474620B2 JP2015010310A JP2015010310A JP6474620B2 JP 6474620 B2 JP6474620 B2 JP 6474620B2 JP 2015010310 A JP2015010310 A JP 2015010310A JP 2015010310 A JP2015010310 A JP 2015010310A JP 6474620 B2 JP6474620 B2 JP 6474620B2
Authority
JP
Japan
Prior art keywords
circuit member
anisotropic conductive
conductive film
layer
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015010310A
Other languages
Japanese (ja)
Other versions
JP2016134366A5 (en
JP2016134366A (en
Inventor
裕樹 大関
裕樹 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2015010310A priority Critical patent/JP6474620B2/en
Priority to KR1020177015870A priority patent/KR102006090B1/en
Priority to CN201680005263.9A priority patent/CN107112658B/en
Priority to PCT/JP2016/050191 priority patent/WO2016117350A1/en
Priority to TW105100817A priority patent/TWI681694B/en
Publication of JP2016134366A publication Critical patent/JP2016134366A/en
Publication of JP2016134366A5 publication Critical patent/JP2016134366A5/ja
Application granted granted Critical
Publication of JP6474620B2 publication Critical patent/JP6474620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Description

本発明は、異方性導電フィルム、及び接続方法に関する。   The present invention relates to an anisotropic conductive film and a connection method.

従来より、電子部品を基板と接続する手段として、導電性粒子が分散された熱硬化性樹脂を剥離フィルムに塗布したテープ状の接続材料(例えば、異方性導電フィルム(ACF;Anisotropic Conductive Film))が用いられている。   Conventionally, as a means for connecting an electronic component to a substrate, a tape-like connection material in which a thermosetting resin in which conductive particles are dispersed is applied to a release film (for example, anisotropic conductive film (ACF)) ) Is used.

この異方性導電フィルムは、例えば、COF(Chip on Film)とリジッド基板(例えば、PWB(Printed Wiring Board))との接続(FOB:Flex on Board)に用いられている。   This anisotropic conductive film is used, for example, for connection (FOB: Flex on Board) between a COF (Chip on Film) and a rigid substrate (for example, PWB (Printed Wiring Board)).

前記リジッド基板には、搭載されるICチップ、コンデンサ等の部品の半田付け性を向上させるために、プリフラックス(OSP:Organic Solderability Preservative)と呼ばれる防錆剤による防錆処理が施されることがある。前記プリフラックスとしては、例えば、イミダゾール系プリフラックスなどが知られている。
しかし、前記防錆処理がされた基板は、異方性導電フィルムの接着性が低下するという問題がある。
In order to improve the solderability of components such as an IC chip and a capacitor to be mounted on the rigid substrate, a rust prevention treatment using a rust preventive agent called a preflux (OSP: Organic Solderability Preservative) may be performed. is there. As the preflux, for example, imidazole preflux is known.
However, the substrate subjected to the rust prevention treatment has a problem that the adhesiveness of the anisotropic conductive film is lowered.

そこで、前記防錆処理がされた基板の接続に安定した接続信頼性を与えるために、遊離ラジカルを発生する硬化剤と、ラジカル重合性物質と、リン酸エステルと、導電粒子を含有し、導電粒子を除く、回路接続材料全体を100重量部とした場合、それに占めるリン酸エステルの割合が0.5重量部から2.5重量部の範囲である、回路接続材料が提案されている(例えば、特許文献1参照)。
しかし、この提案の技術では、隣接端子間の絶縁性は優れるものの、接続端子間の長期の導電性については十分とはいえない。
Therefore, in order to give stable connection reliability to the connection of the substrate subjected to the rust prevention treatment, it contains a curing agent that generates free radicals, a radical polymerizable substance, a phosphate ester, and conductive particles. When the entire circuit connecting material excluding particles is 100 parts by weight, a circuit connecting material is proposed in which the proportion of the phosphate ester is 0.5 to 2.5 parts by weight (for example, , See Patent Document 1).
However, although the proposed technique has excellent insulation between adjacent terminals, it cannot be said that long-term conductivity between connection terminals is sufficient.

特開2009−277769号公報JP 2009-277769 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、防錆処理がされた基板を接続する場合でも、隣接端子間の絶縁性、及び、接続端子間の長期の導電性に優れる異方性導電フィルム、及びそれを用いた接合体を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention provides an anisotropic conductive film excellent in insulation between adjacent terminals and long-term conductivity between connection terminals even when connecting rust-proof substrates, and bonding using the same. The purpose is to provide a body.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 導電性粒子、熱硬化性樹脂、及び硬化剤を含有する導電性粒子含有層と、
酸成分を含有する熱可塑性層と、
を有することを特徴とする異方性導電フィルムである。
<2> 前記酸成分が、リン酸エステル化合物である前記<1>に記載の異方性導電フィルムである。
<3> 前記導電性粒子含有層の溶融粘度が、前記熱可塑性層の溶融粘度よりも大きい前記<1>から<2>のいずれかに記載の異方性導電フィルムである。
<4> 第1の回路部材の端子と第2の回路部材の端子とを接続させる接続方法であって、
前記第1の回路部材の端子上に、前記<1>から<3>のいずれかに記載の異方性導電フィルムを、熱可塑性層が、前記第1の回路部材の端子と接するように配置する第1の配置工程と、
前記異方性導電フィルム上に、前記第2の回路部材を配置する第2の配置工程と、
前記第2の回路部材を加熱押圧部材により加熱及び押圧する工程とを含み、
前記第1の回路部材の端子に、防錆剤による防錆処理がされていることを特徴とする接続方法である。
Means for solving the problems are as follows. That is,
<1> a conductive particle-containing layer containing conductive particles, a thermosetting resin, and a curing agent;
A thermoplastic layer containing an acid component;
It is an anisotropic conductive film characterized by having.
<2> The anisotropic conductive film according to <1>, wherein the acid component is a phosphate ester compound.
<3> The anisotropic conductive film according to any one of <1> to <2>, wherein a melt viscosity of the conductive particle-containing layer is larger than a melt viscosity of the thermoplastic layer.
<4> A connection method for connecting the terminal of the first circuit member and the terminal of the second circuit member,
The anisotropic conductive film according to any one of <1> to <3> is disposed on the terminal of the first circuit member so that the thermoplastic layer is in contact with the terminal of the first circuit member. A first placement step to
A second arrangement step of arranging the second circuit member on the anisotropic conductive film;
Heating and pressing the second circuit member with a heating pressing member,
In the connection method, the terminal of the first circuit member is subjected to a rust prevention treatment with a rust inhibitor.

本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、防錆処理がされた基板を接続する場合でも、隣接端子間の絶縁性、及び、接続端子間の長期の導電性に優れる異方性導電フィルム、及びそれを用いた接合体を提供することができる。   According to the present invention, the conventional problems can be solved, the object can be achieved, and even when connecting a rust-proof substrate, insulation between adjacent terminals, and between connection terminals An anisotropic conductive film excellent in long-term conductivity and a joined body using the same can be provided.

図1Aは、本発明の接続方法の一例を説明するための概略断面図である(その1)。FIG. 1A is a schematic cross-sectional view for explaining an example of a connection method of the present invention (part 1). 図1Bは、本発明の接続方法の一例を説明するための概略断面図である(その2)。FIG. 1B is a schematic cross-sectional view for explaining an example of the connection method of the present invention (part 2). 図1Cは、本発明の接続方法の一例を説明するための概略断面図である(その3)。FIG. 1C is a schematic cross-sectional view for explaining an example of the connection method of the present invention (part 3). 図1Dは、本発明の接続方法の一例を説明するための概略断面図である(その4)。FIG. 1D is a schematic cross-sectional view for explaining an example of the connection method of the present invention (part 4). 図1Eは、本発明の接続方法の一例を説明するための概略断面図である(その5)。FIG. 1E is a schematic cross-sectional view for explaining an example of the connection method of the present invention (No. 5).

(異方性導電フィルム)
本発明の異方性導電フィルムは、導電性粒子含有層と、熱可塑性層とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
(Anisotropic conductive film)
The anisotropic conductive film of the present invention contains at least a conductive particle-containing layer and a thermoplastic layer, and further contains other components as necessary.

<導電性粒子含有層>
前記導電性粒子含有層は、導電性粒子と、熱硬化性樹脂と、硬化剤とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
<Conductive particle-containing layer>
The conductive particle-containing layer contains at least conductive particles, a thermosetting resin, and a curing agent, and further contains other components as necessary.

<<導電性粒子>>
前記導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属粒子、金属被覆樹脂粒子などが挙げられる。
<< Conductive particles >>
There is no restriction | limiting in particular as said electroconductive particle, According to the objective, it can select suitably, For example, a metal particle, a metal covering resin particle, etc. are mentioned.

前記金属粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ニッケル、コバルト、銀、銅、金、パラジウム、半田などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、ニッケル、銀、銅が好ましい。これらの金属粒子は、表面酸化を防ぐ目的で、その表面に金、パラジウムを施していてもよい。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。
There is no restriction | limiting in particular as said metal particle, According to the objective, it can select suitably, For example, nickel, cobalt, silver, copper, gold | metal | money, palladium, solder etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.
Among these, nickel, silver, and copper are preferable. These metal particles may be provided with gold or palladium on the surface for the purpose of preventing surface oxidation. Furthermore, you may use what gave the insulating film with the metal protrusion and organic substance on the surface.

前記金属被覆樹脂粒子としては、樹脂粒子の表面を金属で被覆した粒子であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂粒子の表面をニッケル、銀、半田、銅、金、及びパラジウムの少なくともいずれかの金属で被覆した粒子などが挙げられる。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。低抵抗を考慮した接続の場合、樹脂粒子の表面を銀で被覆した粒子が好ましい。
前記樹脂粒子への金属の被覆方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無電解めっき法、スパッタリング法などが挙げられる。
前記樹脂粒子の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン−ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂、スチレン−シリカ複合樹脂などが挙げられる。
The metal-coated resin particles are not particularly limited as long as the surfaces of the resin particles are coated with metal, and can be appropriately selected according to the purpose. For example, the surface of the resin particles is nickel, silver, solder , Particles coated with at least one of copper, gold, and palladium. Furthermore, you may use what gave the insulating film with the metal protrusion and organic substance on the surface. In the case of connection considering low resistance, particles in which the surface of resin particles is coated with silver are preferable.
There is no restriction | limiting in particular as the coating method of the metal to the said resin particle, According to the objective, it can select suitably, For example, an electroless-plating method, sputtering method, etc. are mentioned.
There is no restriction | limiting in particular as a material of the said resin particle, According to the objective, it can select suitably, For example, a styrene- divinylbenzene copolymer, a benzoguanamine resin, a crosslinked polystyrene resin, an acrylic resin, a styrene-silica composite resin etc. Is mentioned.

前記導電性粒子は、異方性導電接続の際に導電性を有していればよい。例えば、金属粒子の表面に絶縁皮膜を施した粒子であっても、異方性導電接続の際に前記粒子が変形し、前記金属粒子が露出するものであれば、前記導電性粒子である。   The conductive particles only need to have conductivity in anisotropic conductive connection. For example, even if the surface of the metal particle is an insulating film, the conductive particle may be used as long as the particle is deformed during the anisotropic conductive connection and the metal particle is exposed.

前記導電性粒子の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、1μm〜50μmが好ましく、2μm〜25μmがより好ましく、2μm〜10μmが特に好ましい。
前記平均粒子径は、任意に10個の導電性粒子について測定した粒子径の平均値である。
前記粒子径は、例えば、走査型電子顕微鏡観察により測定できる。
There is no restriction | limiting in particular as an average particle diameter of the said electroconductive particle, Although it can select suitably according to the objective, 1 micrometer-50 micrometers are preferable, 2 micrometers-25 micrometers are more preferable, and 2 micrometers-10 micrometers are especially preferable.
The average particle diameter is an average value of particle diameters measured for 10 conductive particles arbitrarily.
The particle diameter can be measured, for example, by observation with a scanning electron microscope.

前記導電性粒子含有層における前記導電性粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5質量%〜10質量%が好ましく、1質量%〜5質量%がより好ましい。   There is no restriction | limiting in particular as content of the said electroconductive particle in the said electroconductive particle content layer, Although it can select suitably according to the objective, 0.5 mass%-10 mass% are preferable, and 1 mass%- 5 mass% is more preferable.

<<熱硬化性樹脂>>
前記熱硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、重合性アクリル化合物などが挙げられる。
<< Thermosetting resin >>
There is no restriction | limiting in particular as said thermosetting resin, According to the objective, it can select suitably, For example, an epoxy resin, a polymeric acrylic compound, etc. are mentioned.

−エポキシ樹脂−
前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Epoxy resin-
There is no restriction | limiting in particular as said epoxy resin, According to the objective, it can select suitably, For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, those modified epoxy resins, alicyclic type An epoxy resin etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.

−重合性アクリル化合物−
前記重合性アクリル化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールジアクリレート、リン酸エステル型アクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート、イソブチルアクリレート、t−ブチルアクリレート、イソオクチルアクリレート、ビスフェノキシエタノールフルオレンジアクリレート、2−アクリロイロキシエチルコハク酸、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、トリシクロデカンジメタノールジメタクリレート、シクロヘキシルアクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートトリアクリレート、テトラヒドロフルフリルアクリレート、o−フタル酸ジグリシジルエーテルアクリレート、エトキシ化ビスフェノールAジメタクリレート、ビスフェノールA型エポキシアクリレート、ウレタンアクリレート、エポキシアクリレートなど、及びこれらに相当するメタクリレートを挙げることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Polymerizable acrylic compound-
There is no restriction | limiting in particular as said polymeric acrylic compound, According to the objective, it can select suitably, For example, polyethyleneglycol diacrylate, phosphate ester type acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4 -Hydroxybutyl acrylate, isobutyl acrylate, t-butyl acrylate, isooctyl acrylate, bisphenoxyethanol full orange acrylate, 2-acryloyloxyethyl succinic acid, lauryl acrylate, stearyl acrylate, isobornyl acrylate, tricyclodecane dimethanol dimethacrylate , Cyclohexyl acrylate, tris (2-hydroxyethyl) isocyanurate triacrylate, tetrahydrofurfuryl acrylate DOO, o- phthalic acid diglycidyl ether acrylate, ethoxylated bisphenol A dimethacrylate, bisphenol A type epoxy acrylate, urethane acrylate, epoxy acrylate, and can be exemplified methacrylate corresponding thereto. These may be used individually by 1 type and may use 2 or more types together.

前記導電性粒子含有層における前記熱硬化性樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、20質量%〜60質量%が好ましく、30質量%〜50質量%がより好ましい。   There is no restriction | limiting in particular as content of the said thermosetting resin in the said electroconductive particle content layer, Although it can select suitably according to the objective, 20 mass%-60 mass% are preferable, and 30 mass%-50 mass. The mass% is more preferable.

<<硬化剤>>
前記硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イミダゾール類、有機過酸化物、アニオン系硬化剤、カチオン系硬化剤などが挙げられる。
<< Curing agent >>
There is no restriction | limiting in particular as said hardening | curing agent, According to the objective, it can select suitably, For example, imidazoles, an organic peroxide, an anionic hardening | curing agent, a cationic hardening | curing agent etc. are mentioned.

前記イミダゾール類としては、例えば、2−エチル4−メチルイミダゾールなどが挙げられる。
前記有機過酸化物としては、例えば、ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイド、ジラウロイルパーオキサイド、ジブチルパーオキサイド、パーオキシジカーボネート、ベンゾイルパーオキサイドなどが挙げられる。
前記アニオン系硬化剤としては、例えば、有機アミン類などが挙げられる。
前記カチオン系硬化剤としては、例えば、スルホニウム塩、オニウム塩、アルミニウムキレート剤などが挙げられる。
これらの中でも、保存安定性に優れる点で、有機過酸化物が好ましく、ジラウロイルパーオキサイドがより好ましい。
Examples of the imidazoles include 2-ethyl 4-methylimidazole.
Examples of the organic peroxide include lauroyl peroxide, butyl peroxide, benzyl peroxide, dilauroyl peroxide, dibutyl peroxide, peroxydicarbonate, and benzoyl peroxide.
Examples of the anionic curing agent include organic amines.
Examples of the cationic curing agent include a sulfonium salt, an onium salt, and an aluminum chelating agent.
Among these, an organic peroxide is preferable and dilauroyl peroxide is more preferable in terms of excellent storage stability.

前記熱硬化性樹脂と前記硬化剤との組合せとしては、特に制限はなく、目的に応じて適宜選択することができるが、前記エポキシ樹脂と前記カチオン系硬化剤との組合せ、前記重合性アクリル化合物と前記有機過酸化物との組合せが好ましい。   The combination of the thermosetting resin and the curing agent is not particularly limited and may be appropriately selected according to the purpose. The combination of the epoxy resin and the cationic curing agent, the polymerizable acrylic compound And a combination of said organic peroxides.

前記導電性粒子含有層における前記硬化剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%〜15質量%が好ましく、2質量%〜10質量%がより好ましい。   There is no restriction | limiting in particular as content of the said hardening | curing agent in the said electroconductive particle content layer, Although it can select suitably according to the objective, 1 mass%-15 mass% are preferable, and 2 mass%-10 mass% are preferable. Is more preferable.

<<その他の成分>>
前記導電性粒子含有層が含有する前記その他の成分としては、例えば、膜形成樹脂、フィラーなどが挙げられる。
<< Other ingredients >>
As said other component which the said electroconductive particle content layer contains, film forming resin, a filler, etc. are mentioned, for example.

−膜形成樹脂−
前記膜形成樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などが挙げられる。前記膜形成樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、製膜性、加工性、接続信頼性の点からフェノキシ樹脂が好ましい。
前記フェノキシ樹脂としては、例えば、ビスフェノールAとエピクロルヒドリンより合成される樹脂などが挙げられる。
前記フェノキシ樹脂は、適宜合成したものを使用してもよいし、市販品を使用してもよい。
-Film forming resin-
There is no restriction | limiting in particular as said film formation resin, According to the objective, it can select suitably, For example, phenoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin Resin etc. are mentioned. The film forming resin may be used alone or in combination of two or more. Among these, phenoxy resin is preferable from the viewpoint of film forming property, processability, and connection reliability.
Examples of the phenoxy resin include a resin synthesized from bisphenol A and epichlorohydrin.
As the phenoxy resin, an appropriately synthesized product or a commercially available product may be used.

前記導電性粒子含有層における前記膜形成樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、20質量%〜60質量%が好ましく、30質量%〜50質量%がより好ましい。   There is no restriction | limiting in particular as content of the said film formation resin in the said electroconductive particle content layer, Although it can select suitably according to the objective, 20 mass%-60 mass% are preferable, 30 mass%-50 mass% % Is more preferable.

−フィラー−
前記フィラーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、例えば、アルミナ、シリカ、タルク、マイカ、カオリン、ゼオライト、硫酸バリウム、炭酸カルシウムなどが挙げられる。
-Filler-
The filler is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include alumina, silica, talc, mica, kaolin, zeolite, barium sulfate, and calcium carbonate.

前記導電性粒子含有層における前記フィラーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5質量%〜15質量%が好ましく、1質量%〜10質量%がより好ましい。   There is no restriction | limiting in particular as content of the said filler in the said electroconductive particle content layer, Although it can select suitably according to the objective, 0.5 mass%-15 mass% are preferable, and 1 mass%-10 mass. % Is more preferable.

前記導電性粒子含有層は、酸成分を含有しないことが好ましい。前記酸成分としては、後述する酸成分が挙げられる。   The conductive particle-containing layer preferably does not contain an acid component. Examples of the acid component include the acid components described below.

前記導電性粒子含有層の平均厚みとしては、特に制限はなく、適宜選択することができるが、10μm〜50μmが好ましく、20μm〜40μmがより好ましい。
ここで、前記平均厚みは、任意に前記導電性粒子含有層の5箇所の厚みを測定した際の平均値である。
There is no restriction | limiting in particular as average thickness of the said electroconductive particle content layer, Although it can select suitably, 10 micrometers-50 micrometers are preferable, and 20 micrometers-40 micrometers are more preferable.
Here, the said average thickness is an average value at the time of measuring the thickness of five places of the said electroconductive particle content layer arbitrarily.

<熱可塑性層>
前記熱可塑性層は、酸成分を少なくとも含有し、更に必要に応じて、その他の成分を含有する。
前記熱可塑性層は、熱により可塑性を示す層である。
前記熱可塑性層は、エポキシ樹脂、重合性アクリル化合物などの反応性官能基を有する化合物を含有していてもよいが、その際は、それらを硬化させる硬化剤を含有しない。
<Thermoplastic layer>
The thermoplastic layer contains at least an acid component, and further contains other components as necessary.
The thermoplastic layer is a layer that exhibits plasticity by heat.
The thermoplastic layer may contain a compound having a reactive functional group such as an epoxy resin or a polymerizable acrylic compound, but in that case, it does not contain a curing agent for curing them.

<<酸成分>>
前記酸成分としては、酸性の成分であれば、特に制限はなく、目的に応じて適宜選択することができる。前記酸成分における酸性基としては、例えば、リン酸エステル基、カルボキシル基、スルホン基などが挙げられる。酸性基を有する化合物としては、例えば、酸性基を有する(メタ)アクリレートなどが挙げられる。
前記酸成分は、ロジン(アビエチン酸)であってもよい。前記ロジンは、溶融することで酸を発生する。
これらの中でも、酸性度が強く、防錆剤を除去しやすい点で、リン酸エステル化合物が好ましい。前記リン酸エステル化合物としては、例えば、リン酸エステル型アクリレートなどが挙げられる。
<< acid component >>
The acid component is not particularly limited as long as it is an acidic component, and can be appropriately selected according to the purpose. Examples of the acidic group in the acid component include a phosphate group, a carboxyl group, and a sulfone group. Examples of the compound having an acidic group include (meth) acrylate having an acidic group.
The acid component may be rosin (abietic acid). The rosin generates an acid by melting.
Among these, a phosphoric acid ester compound is preferable in terms of strong acidity and easy removal of the rust inhibitor. Examples of the phosphate ester compound include phosphate ester acrylates.

前記熱可塑性層における前記酸成分の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%〜10質量%が好ましく、2質量%〜6質量%がより好ましい。前記含有量が、1質量%未満であると、防錆剤の除去が不十分になることがあり、10質量%を超えると、前記熱可塑性層の他の成分との配合のバランスが取りにくくなることがある。   There is no restriction | limiting in particular as content of the said acid component in the said thermoplastic layer, Although it can select suitably according to the objective, 1 mass%-10 mass% are preferable, and 2 mass%-6 mass% are more. preferable. When the content is less than 1% by mass, the removal of the rust inhibitor may be insufficient. When the content exceeds 10% by mass, it is difficult to balance the blending with the other components of the thermoplastic layer. May be.

<<その他の成分>>
前記熱可塑性層における前記その他の成分としては、例えば、膜形成樹脂、その他の樹脂などが挙げられる。
<< Other ingredients >>
Examples of the other components in the thermoplastic layer include a film-forming resin and other resins.

−膜形成樹脂−
前記膜形成樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記導電性粒子含有層の説明において例示した前記膜形成樹脂などが挙げられる。好ましい態様も同様である。
-Film forming resin-
There is no restriction | limiting in particular as said film formation resin, According to the objective, it can select suitably, For example, the said film formation resin etc. which were illustrated in description of the said electroconductive particle content layer are mentioned. The preferred embodiment is also the same.

前記熱可塑性層における前記膜形成樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0質量%〜20質量%が好ましく、0質量%〜10質量%がより好ましい。   There is no restriction | limiting in particular as content of the said film formation resin in the said thermoplastic layer, Although it can select suitably according to the objective, 0 mass%-20 mass% are preferable, 0 mass%-10 mass% are More preferred.

−その他の樹脂−
前記その他の樹脂としては、前記膜形成樹脂以外の樹脂であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、重合性アクリル化合物などが挙げられる。これらは、異方性導電フィルムに一般的に用いられている成分であるため、本発明の異方性導電フィルムにおける前記熱可塑性層の材料としても用いることができる。ただし、前記熱可塑性層がこれらの反応性官能基を有する化合物を含有する場合には、通常、前記熱可塑性層は、これらを硬化させる硬化剤を含有しない。
-Other resins-
The other resin is not particularly limited as long as it is a resin other than the film-forming resin, and can be appropriately selected according to the purpose. Examples thereof include an epoxy resin and a polymerizable acrylic compound. Since these are components generally used in anisotropic conductive films, they can also be used as the material for the thermoplastic layer in the anisotropic conductive film of the present invention. However, when the thermoplastic layer contains a compound having these reactive functional groups, the thermoplastic layer usually does not contain a curing agent for curing them.

前記熱可塑性層における前記その他の樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、60質量%〜99質量が好ましく、80質量%〜97質量%がより好ましい。   There is no restriction | limiting in particular as content of the said other resin in the said thermoplastic layer, Although it can select suitably according to the objective, 60 mass%-99 mass are preferable, and 80 mass%-97 mass% are more. preferable.

前記熱可塑性層の平均厚みとしては、特に制限はなく、適宜選択することができるが、1μm〜10μmが好ましく、2μm〜7μmがより好ましい。前記平均厚みが、前記より好ましい範囲内であると、流動性のコントロールがし易く、圧着後に接続部に残りにくい点で、有利である。
ここで、前記平均厚みは、任意に前記熱可塑性層の5箇所の厚みを測定した際の平均値である。
There is no restriction | limiting in particular as average thickness of the said thermoplastic layer, Although it can select suitably, 1 micrometer-10 micrometers are preferable, and 2 micrometers-7 micrometers are more preferable. When the average thickness is within the more preferable range, it is advantageous in that the fluidity can be easily controlled and it is difficult to remain in the connection portion after the pressure bonding.
Here, the said average thickness is an average value at the time of measuring the thickness of five places of the said thermoplastic layer arbitrarily.

前記導電性粒子含有層の溶融粘度としては、前記熱可塑性層が、接続端子間から排除されやすい点で、前記熱可塑性層の溶融粘度よりも大きいことが好ましい。前記溶融粘度の比率としては、前記熱可塑性層が、接続端子間からより排除されやすい点で、前記導電性粒子含有層の溶融粘度が、前記熱可塑性層の溶融粘度の10倍以上が好ましく、15倍〜70倍がより好ましく、20倍〜70倍が特に好ましい。
ここで、前記溶融粘度は、例えば、レオメーター(HAAKE社製)を用いて測定される。測定は、例えば、それぞれの層を用いて行う。流動領域での温度で測定を行い、粘度測定時の設定温度が85℃での結果を溶融粘度とする。
The melt viscosity of the conductive particle-containing layer is preferably larger than the melt viscosity of the thermoplastic layer in that the thermoplastic layer is easily excluded from between connection terminals. As the ratio of the melt viscosity, the melt viscosity of the conductive particle-containing layer is preferably at least 10 times the melt viscosity of the thermoplastic layer, in that the thermoplastic layer is more easily excluded from between connection terminals. It is more preferably 15 times to 70 times, and particularly preferably 20 times to 70 times.
Here, the melt viscosity is measured using, for example, a rheometer (manufactured by HAAKE). The measurement is performed using each layer, for example. Measurement is performed at the temperature in the flow region, and the result when the set temperature at the time of viscosity measurement is 85 ° C. is defined as melt viscosity.

(接続方法)
本発明に関する接続方法は、第1の配置工程と、第2の配置工程と、加熱押圧工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
前記接続方法は、第1の回路部材の端子と第2の回路部材の端子とを接続させる方法である。
(Connection method)
The connection method according to the present invention includes at least a first arrangement step, a second arrangement step, and a heating and pressing step, and further includes other steps as necessary.
The connection method is a method of connecting the terminal of the first circuit member and the terminal of the second circuit member.

<第1の回路部材、及び第2の回路部材>
前記第1の回路部材、及び前記第2の回路部材としては、端子を有し、前記異方性導電フィルムを用いた異方性導電接続の対象となる回路部材であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、端子を有するプラスチック基板、Flex−on−Board(フレックスオンボード、FOB)、Flex−on−Flex(フレックスオンフレックス、FOF)などが挙げられる。
<First circuit member and second circuit member>
The first circuit member and the second circuit member are not particularly limited as long as they are terminals that have terminals and are subjected to anisotropic conductive connection using the anisotropic conductive film. Depending on the purpose, it can be selected as appropriate. Examples thereof include a plastic substrate having terminals, Flex-on-Board (Flex-on-Board, FOB), Flex-on-Flex (Flex-On-Flex, FOF) and the like.

前記端子の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Cu、Auにてめっきを施したCu、Ni及びAuにてめっきを施したCu、Snにてめっきを施したCuなどが挙げられる。   The material of the terminal is not particularly limited and can be appropriately selected depending on the purpose. For example, Cu, Ni plated with Cu, Au, and Cu, Sn plated with Au are used. Examples thereof include plated Cu.

前記端子を有するプラスチック基板の材質、構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、端子を有するリジット基板、端子を有するフレキシブル基板などが挙げられる。前記端子を有するリジット基板としては、例えば、銅配線を有するガラスエポキシ基板などが挙げられる。前記端子を有するフレキシブル基板としては、例えば、銅配線を有するポリイミド基板などが挙げられる。   There is no restriction | limiting in particular as a material and structure of the plastic substrate which has the said terminal, According to the objective, it can select suitably, For example, the rigid board | substrate which has a terminal, the flexible substrate which has a terminal, etc. are mentioned. As a rigid board | substrate which has the said terminal, the glass epoxy board | substrate etc. which have a copper wiring are mentioned, for example. Examples of the flexible substrate having the terminal include a polyimide substrate having a copper wiring.

前記第1の回路部材、及び前記第2の回路部材の形状、大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。
前記第1の回路部材、及び前記第2の回路部材は、同じ回路部材であってもよいし、異なる回路部材であってもよい。
There is no restriction | limiting in particular as a shape and a magnitude | size of a said 1st circuit member and a said 2nd circuit member, According to the objective, it can select suitably.
The first circuit member and the second circuit member may be the same circuit member or different circuit members.

前記第1の回路部材の端子には、防錆剤による防錆処理がされている。
前記第2の回路部材の端子には、防錆剤による防錆処理がされていないことが好ましい。
The terminals of the first circuit member are subjected to rust prevention treatment with a rust inhibitor.
It is preferable that the terminal of the second circuit member is not subjected to rust prevention treatment with a rust inhibitor.

前記防錆剤としては、特に制限はなく、目的に応じて適宜選択することができる。前記防錆剤は、一般的に、プリフラックス又はOSP(Organic Solderability Preservative)と称されている。
前記防錆剤は、例えば、イミダゾール化合物と、銅イオンと、有機酸とを少なくとも含有する。前記イミダゾール化合物としては、例えば、ベンゾイミダゾールなどが挙げられる。前記ベンゾイミダゾールは置換基を有していてもよい。
前記防錆剤は、水溶性であることが好ましい。
There is no restriction | limiting in particular as said rust preventive agent, According to the objective, it can select suitably. The rust preventive is generally referred to as preflux or OSP (Organic Solderability Preservative).
The said rust preventive agent contains an imidazole compound, a copper ion, and an organic acid at least, for example. Examples of the imidazole compound include benzimidazole. The benzimidazole may have a substituent.
The rust inhibitor is preferably water-soluble.

前記防錆処理の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、処理される回路部材を、前記防錆剤、又は前記防錆剤を希釈して得られる水溶液に浸漬する方法などが挙げられる。
前記防錆処理を行うことで、回路部材上の端子、及び回路部分が保護される。
There is no restriction | limiting in particular as the method of the said rust prevention process, According to the objective, it can select suitably, For example, the circuit member processed is obtained by diluting the said rust inhibitor or the said rust inhibitor. Examples include a method of immersing in an aqueous solution.
By performing the antirust treatment, the terminals on the circuit member and the circuit portion are protected.

<第1の配置工程>
前記第1の配置工程としては、前記第1の回路部材の端子上に、本発明の異方性導電フィルムを、前記熱可塑性層が、前記第1の回路部材の端子と接するように配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<First arrangement step>
As said 1st arrangement | positioning process, the anisotropic conductive film of this invention is arrange | positioned so that the said thermoplastic layer may contact the terminal of said 1st circuit member on the terminal of said 1st circuit member. If it is a process, there will be no restriction | limiting in particular, According to the objective, it can select suitably.

<第2の配置工程>
前記第2の配置工程としては、前記異方性導電フィルム上に、前記第2の回路部材を配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<Second arrangement step>
The second disposing step is not particularly limited as long as it is a step of disposing the second circuit member on the anisotropic conductive film, and can be appropriately selected according to the purpose.

<加熱押圧工程>
前記加熱押圧工程としては、前記第2の回路部材を加熱押圧部材により加熱及び押圧する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、加熱押圧部材により加熱及び押圧することができる。
前記加熱押圧部材としては、例えば、加熱機構を有する押圧部材などが挙げられる。前記加熱機構を有する押圧部材としては、例えば、ヒートツールなどが挙げられる。
前記加熱の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、140℃〜200℃が好ましい。
前記押圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1MPa〜80MPaが好ましい。
前記加熱及び押圧の時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.5秒間〜120秒間などが挙げられる。
<Heat pressing process>
The heating and pressing step is not particularly limited as long as it is a step of heating and pressing the second circuit member with a heating and pressing member, and can be appropriately selected according to the purpose. And can be pressed.
Examples of the heating and pressing member include a pressing member having a heating mechanism. Examples of the pressing member having the heating mechanism include a heat tool.
There is no restriction | limiting in particular as temperature of the said heating, Although it can select suitably according to the objective, 140 to 200 degreeC is preferable.
There is no restriction | limiting in particular as the pressure of the said press, Although it can select suitably according to the objective, 0.1 MPa-80 MPa are preferable.
There is no restriction | limiting in particular as the time of the said heating and press, According to the objective, it can select suitably, For example, 0.5 second-120 second etc. are mentioned.

ここで、図を用いて、本発明の接続方法の一例を説明する。
図1A〜図1Eは、本発明の接続方法の一例を説明するための概略断面図である。
まず、図1Aに示すように、第1の回路部材1を用意する。第1の回路部材1は、基材1Aと、基材1A上に端子1Bとを有する。更に、端子1Bは、防錆剤1Cによる防錆処理がされている。
続いて、図1Bに示すように、第1の回路部材1上に、異方性導電フィルム2を配置する。異方性導電フィルム2は、熱可塑性層2Aと、導電性粒子含有層2Bとを積層してなる。なお、異方性導電フィルム2は、第1の回路部材1上に、熱可塑性層2Aが、第1の回路部材1の端子1Bと接するように配置される。なお、導電性粒子含有層2Bは、導電性粒子2Cを含有している。その際、図1Cに示すように、熱可塑性層2A中の酸成分が、端子1B上から防錆剤1Cを除去する。
続いて、図1Dに示すように、異方性導電フィルム2の導電性粒子含有層2B上に、第2の回路部材3を配置する。第2の回路部材3は、基材3Aと、基材3A上に端子3Bとを有する。第2の回路部材3は、異方性導電フィルム2の導電性粒子含有層2B上に、端子3Bが、導電性粒子含有層2Bと接するように配置される。
続いて、図1Eに示すように、第2の回路部材3を加熱及び押圧することにより、第1の回路部材1と、第2の回路部材3とが接続される。その際、端子1B上には、防錆剤1Cが存在しないため、良好な接続性が得られる。また、熱可塑性層2Aは、加熱及び押圧の際に、少なくとも端子1B及び端子3B間から押し出されるため、熱可塑性層2A中の酸成分が、端子1Bや端子3Bを劣化(例えば、腐食、溶解、マイグレーションなど)させることもない。
したがって、本発明の接続方法により、防錆処理がされた基板を接続する場合でも、隣接端子間の絶縁性、及び、接続端子間の長期の導電性に優れる接続を行うことができる。
Here, an example of the connection method of the present invention will be described with reference to the drawings.
1A to 1E are schematic cross-sectional views for explaining an example of the connection method of the present invention.
First, as shown in FIG. 1A, a first circuit member 1 is prepared. The first circuit member 1 has a base material 1A and a terminal 1B on the base material 1A. Further, the terminal 1B is subjected to a rust prevention treatment with a rust inhibitor 1C.
Subsequently, as shown in FIG. 1B, the anisotropic conductive film 2 is disposed on the first circuit member 1. The anisotropic conductive film 2 is formed by laminating a thermoplastic layer 2A and a conductive particle-containing layer 2B. The anisotropic conductive film 2 is disposed on the first circuit member 1 so that the thermoplastic layer 2 </ b> A is in contact with the terminal 1 </ b> B of the first circuit member 1. The conductive particle-containing layer 2B contains conductive particles 2C. At that time, as shown in FIG. 1C, the acid component in the thermoplastic layer 2A removes the rust inhibitor 1C from the terminal 1B.
Subsequently, as illustrated in FIG. 1D, the second circuit member 3 is disposed on the conductive particle-containing layer 2 </ b> B of the anisotropic conductive film 2. The second circuit member 3 includes a base material 3A and a terminal 3B on the base material 3A. The second circuit member 3 is disposed on the conductive particle-containing layer 2B of the anisotropic conductive film 2 so that the terminals 3B are in contact with the conductive particle-containing layer 2B.
Subsequently, as shown in FIG. 1E, the first circuit member 1 and the second circuit member 3 are connected by heating and pressing the second circuit member 3. In that case, since the rust preventive agent 1C does not exist on the terminal 1B, good connectivity is obtained. Further, since the thermoplastic layer 2A is extruded from at least between the terminal 1B and the terminal 3B during heating and pressing, the acid component in the thermoplastic layer 2A deteriorates the terminal 1B and the terminal 3B (for example, corrosion and dissolution). , Migration etc.).
Therefore, the connection method of the present invention makes it possible to make a connection with excellent insulation between adjacent terminals and long-term conductivity between connection terminals even when connecting a rust-proof substrate.

なお、図1A〜図1Eによる上記説明では、図1Cにおいて、防錆剤1Cが除去される態様を示したが、本発明の接続方法はこの態様に限定されない。例えば、第1の配置工程の際には、防錆剤が端子上から除去されていなくても、加熱押圧工程において、防錆剤が端子上から除去されていればよい。そのような態様も本発明の接続方法に含まれる。   In addition, in the said description by FIG. 1A-FIG. 1E, although the aspect from which the rust preventive agent 1C was removed was shown in FIG. 1C, the connection method of this invention is not limited to this aspect. For example, even if the rust preventive agent is not removed from the terminal during the first arrangement step, the rust preventive agent only needs to be removed from the terminal in the heating and pressing step. Such an aspect is also included in the connection method of the present invention.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
<異方性導電フィルムの作製>
<<第1層の作製>>
ビスフェノールF型エポキシ樹脂(三菱化学社製、商品名:jER−4004P)を55質量部、2官能アクリルモノマー(新中村化学社製、商品名:A−200)を25質量部、ウレタンアクリレート(新中村化学社製、商品名:U−2PPA)を20質量部、及びリン酸エステル型アクリレート(日本化薬社製、商品名:PM−2)を4質量部を、常法により均一に混合することにより第1層用組成物を調製した。得られた組成物を剥離ポリエステルフィルムに塗布し、70℃の熱風を3分間吹き掛けて乾燥することにより、平均厚み5μmの第1層を作製した。
Example 1
<Preparation of anisotropic conductive film>
<< Preparation of the first layer >>
55 parts by mass of bisphenol F-type epoxy resin (Mitsubishi Chemical Corporation, trade name: jER-4004P), 25 parts by weight of bifunctional acrylic monomer (Shin Nakamura Chemical Co., trade name: A-200), urethane acrylate (new 20 parts by mass of Nakamura Chemical Co., Ltd., trade name: U-2PPA) and 4 parts by mass of phosphate ester acrylate (trade name: PM-2, manufactured by Nippon Kayaku Co., Ltd.) are uniformly mixed by a conventional method. Thus, a composition for the first layer was prepared. The obtained composition was applied to a release polyester film and dried by blowing hot air at 70 ° C. for 3 minutes to produce a first layer having an average thickness of 5 μm.

<<第2層の作製>>
フェノキシ樹脂(新日鐵化学社製、商品名:YP−50)を45質量部、2官能アクリルモノマー(新中村化学社製、商品名:A−200)を20質量部、ウレタンアクリレート(新中村化学社製、商品名:U−2PPA)を20質量部、シリカフィラー(平均粒径5μm、日本アエロジル社製、商品名:アエロジルRY200)を5質量部、ジラウロイルパーオキサイド(日油社製社製、商品名:パーロイルL)を5質量部、及び平均粒子径10μmのニッケルめっき樹脂粒子3質量部を、常法により均一に混合することにより第2層用組成物を調製した。得られた組成物を剥離ポリエステルフィルムに塗布し、70℃の熱風を5分間吹き掛けて乾燥することにより、平均厚み30μmの第2層を作製した。
<< Production of Second Layer >>
45 parts by mass of phenoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., trade name: YP-50), 20 parts by mass of bifunctional acrylic monomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-200), urethane acrylate (Shin Nakamura) 20 parts by mass of chemical product, product name: U-2PPA, 5 parts by mass of silica filler (average particle size 5 μm, manufactured by Nippon Aerosil Co., Ltd., product name: Aerosil RY200), dilauroyl peroxide (manufactured by NOF Corporation) The composition for the second layer was prepared by uniformly mixing 5 parts by mass of manufactured product name: Parroyl L) and 3 parts by mass of nickel-plated resin particles having an average particle diameter of 10 μm by a conventional method. The obtained composition was applied to a release polyester film and dried by blowing hot air at 70 ° C. for 5 minutes to produce a second layer having an average thickness of 30 μm.

第1層及び第2層をラミネーターを用いて貼り合わせ、2層構造の異方性導電フィルムを得た。   The first layer and the second layer were bonded using a laminator to obtain an anisotropic conductive film having a two-layer structure.

(実施例2)
実施例1において、第1層の平均厚みを、3μmにし、第2層の平均厚みを、32μmにした以外は、実施例1と同様にして、異方性導電フィルムを作製した。
(Example 2)
In Example 1, an anisotropic conductive film was produced in the same manner as in Example 1 except that the average thickness of the first layer was 3 μm and the average thickness of the second layer was 32 μm.

(実施例3)
実施例1において、第1層の組成を、表1に示す組成に変更した以外は、実施例1と同様にして、異方性導電フィルムを作製した。
(Example 3)
An anisotropic conductive film was produced in the same manner as in Example 1 except that the composition of the first layer was changed to the composition shown in Table 1 in Example 1.

(実施例4)
実施例1において、第1層の組成、並びに第1層の平均厚み、及び第2層の平均厚みを、表1に示すように変更した以外は、実施例1と同様にして、異方性導電フィルムを作製した。
Example 4
In Example 1, the composition of the first layer, the average thickness of the first layer, and the average thickness of the second layer were changed in the same manner as in Example 1 except that the average thickness was changed as shown in Table 1. A conductive film was produced.

(実施例5)
実施例1において、第1層の組成を、表1に示すように変更した以外は、実施例1と同様にして、異方性導電フィルムを作製した。
(Example 5)
An anisotropic conductive film was produced in the same manner as in Example 1 except that the composition of the first layer was changed as shown in Table 1 in Example 1.

(実施例6)
実施例1において、第1層の組成を、表1に示すように変更した以外は、実施例1と同様にして、異方性導電フィルムを作製した。
(Example 6)
An anisotropic conductive film was produced in the same manner as in Example 1 except that the composition of the first layer was changed as shown in Table 1 in Example 1.

(比較例1)
実施例1において、第1層の組成を、表1に示すように変更した以外は、実施例1と同様にして、異方性導電フィルムを作製した。
(Comparative Example 1)
An anisotropic conductive film was produced in the same manner as in Example 1 except that the composition of the first layer was changed as shown in Table 1 in Example 1.

(比較例2)
実施例1において、第1層の組成、並びに第1層の平均厚み、及び第2層の平均厚みを、表1に示すように変更した以外は、実施例1と同様にして、異方性導電フィルムを作製した。
(Comparative Example 2)
In Example 1, the composition of the first layer, the average thickness of the first layer, and the average thickness of the second layer were changed in the same manner as in Example 1 except that the average thickness was changed as shown in Table 1. A conductive film was produced.

(比較例3)
フェノキシ樹脂(新日鐵化学社製、商品名:YP−50)を45質量部、2官能アクリルモノマー(新中村化学社製、商品名:A−200)を20質量部、ウレタンアクリレート(新中村化学社製、商品名:U−2PPA)を20質量部、リン酸エステル型アクリレート(日本化薬社製、商品名:PM−2)を4質量部、シリカフィラー(平均粒径5μm、日本アエロジル社製、商品名:アエロジルRY200)を5質量部、ジラウロイルパーオキサイド(日油社製、商品名:パーロイルL)を5質量部、及び平均粒子径10μmのニッケルめっき樹脂粒子3質量部を、常法により均一に混合することにより第2層用組成物を調製した。得られた組成物を剥離ポリエステルフィルムに塗布し、70℃の熱風を5分間吹き掛けて乾燥することにより、平均厚み35μmの異方性導電フィルムを作製した。
(Comparative Example 3)
45 parts by mass of phenoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., trade name: YP-50), 20 parts by mass of bifunctional acrylic monomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-200), urethane acrylate (Shin Nakamura) 20 parts by mass made by Kagaku Co., Ltd., trade name: U-2PPA), 4 parts by mass of phosphate ester acrylate (made by Nippon Kayaku Co., Ltd., trade name: PM-2), silica filler (average particle size 5 μm, Nippon Aerosil) 5 parts by mass, trade name: Aerosil RY200), 5 parts by mass of dilauroyl peroxide (manufactured by NOF Corporation, trade name: Parroyl L), and 3 parts by mass of nickel-plated resin particles having an average particle diameter of 10 μm, The composition for 2nd layers was prepared by mixing uniformly by a conventional method. The obtained composition was applied to a release polyester film and dried by blowing hot air at 70 ° C. for 5 minutes to produce an anisotropic conductive film having an average thickness of 35 μm.

<接合体の作製>
第1の回路部材として、PWB(デクセリアルズ社製評価用基材、200μmP、Cu 35μmt−防錆処理有り、FR−4基材)
第2の回路部材として、COF(デクセリアルズ社製評価用基材、200μmP、Cu 8μmt−Snメッキ、38μmt−S’perflex基材)を用いた。
作製した異方性導電フィルムを用いて、第1の回路部材と、第2の回路部材との接続を行った。
なお、第1の回路部材は、Top温度250℃のリフロー炉を3回通したものを使用した。
まず、2.0mm幅にスリットされた異方性導電フィルムを、第1層が第1の回路部材の端子に接するように、第1の回路部材に貼り付け、その上に第2の回路部材を位置合わせした後、加熱押圧ツール(緩衝材250μmtシリコンラバー、2.0mm幅)を用いて、圧着条件170℃−3MPa−5secで圧着を行い、接合体を完成させた。
<Preparation of joined body>
As the first circuit member, PWB (Dexerials evaluation base material, 200 μm P, Cu 35 μmt—with antirust treatment, FR-4 base material)
As the second circuit member, COF (base material for evaluation manufactured by Dexerials, 200 μmP, Cu 8 μmt-Sn plating, 38 μmt-S′perflex base material) was used.
Using the produced anisotropic conductive film, the first circuit member and the second circuit member were connected.
In addition, the 1st circuit member used what passed the reflow furnace of Top temperature 250 degreeC 3 times.
First, the anisotropic conductive film slit to a width of 2.0 mm is attached to the first circuit member so that the first layer is in contact with the terminal of the first circuit member, and the second circuit member is formed thereon. After the alignment, using a heating and pressing tool (buffer material 250 μmt silicon rubber, 2.0 mm width), pressure bonding was performed under pressure bonding conditions of 170 ° C.-3 MPa-5 sec to complete a joined body.

<溶融粘度の測定>
実施例、比較例における第1層、及び第2層の溶融粘度を、レオメーター(HAAKE社製)を用いて測定した。測定は、第1層及び第2層をラミネーターを用いて貼り合わせる前に、それぞれの層を用いて行った。流動領域での温度で測定を行い、粘度測定時の設定温度が85℃での結果として、結果を表1に示した。
<Measurement of melt viscosity>
The melt viscosity of the 1st layer and the 2nd layer in an Example and a comparative example was measured using the rheometer (made by HAAKE). The measurement was performed using each layer before bonding the first layer and the second layer using a laminator. The measurement was performed at the temperature in the flow region, and the results are shown in Table 1 as the results when the set temperature at the time of viscosity measurement was 85 ° C.

<THB評価>
作製した接合体を用いて、THB評価を行った。接合体を、60℃−95%RHの環境中にて暴露し、50Vの直流電圧を250時間印加した。試験終了後、腐食及びマイグレーション等による絶縁低下の発生の有無を確認し、以下の評価基準で評価した。結果を表1に示した。
〔評価基準〕
○:絶縁抵抗値が1.0×10Ω以上
△:絶縁抵抗値が1.0×10Ω以上1.0×10Ω未満
×:絶縁抵抗値が1.0×10Ω未満
<THB evaluation>
THB evaluation was performed using the produced joined body. The joined body was exposed in an environment of 60 ° C.-95% RH, and a DC voltage of 50 V was applied for 250 hours. After completion of the test, it was confirmed whether or not there was a decrease in insulation due to corrosion, migration, etc., and evaluated according to the following evaluation criteria. The results are shown in Table 1.
〔Evaluation criteria〕
○: Insulation resistance value is 1.0 × 10 9 Ω or more △: Insulation resistance value is 1.0 × 10 8 Ω or more and less than 1.0 × 10 9 Ω ×: Insulation resistance value is less than 1.0 × 10 8 Ω

<導通抵抗の測定>
作成した接合体について、4端子法を用いて電流1mAを流したときの接続抵抗を、初期、及び85℃、85%RH、500h経過後の両方で測定し、以下の評価基準で評価した。結果を表1に示した。
〔評価基準〕
○:0.3Ω未満
△:0.3Ω以上0.6Ω未満
×:0.6Ω以上
<Measurement of conduction resistance>
About the created joined body, the connection resistance when a current of 1 mA was passed using the four-terminal method was measured both at the initial stage and after 85 ° C., 85% RH and 500 hours, and evaluated according to the following evaluation criteria. The results are shown in Table 1.
〔Evaluation criteria〕
○: Less than 0.3Ω △: 0.3Ω or more and less than 0.6Ω ×: 0.6Ω or more

表1中に示す配合量の単位は、質量部である。
jER−4004P:ビスフェノールF型エポキシ樹脂、三菱化学社製
YP−70:ビスフェノールA/F型エポキシタイプフェノキシ樹脂、新日鐵化学社製
YP−50:ビスフェノールA型エポキシタイプフェノキシ樹脂、新日鐵化学社製
A−200:2官能アクリルモノマー、新中村化学社製
U−2PPA:ウレタンアクリレート、新中村化学社製
PM−2:リン酸エステル型アクリレート、日本化薬社製
KE−604:ロジン、荒川化学工業社製
パーロイルL:ジラウロイルパーオキサイド、日油社製
アエロジルRY200:シリカフィラー、日本アエロジル社製
The unit of the compounding amount shown in Table 1 is part by mass.
jER-4004P: bisphenol F type epoxy resin, manufactured by Mitsubishi Chemical Corporation YP-70: bisphenol A / F type epoxy type phenoxy resin, manufactured by Nippon Steel Chemical Co., Ltd. YP-50: bisphenol A type epoxy type phenoxy resin, Nippon Steel Chemical Co., Ltd. A-200: Bifunctional acrylic monomer, Shin-Nakamura Chemical Co., Ltd. U-2PPA: Urethane acrylate, Shin-Nakamura Chemical Co., Ltd. PM-2: Phosphate ester acrylate, Nippon Kayaku Co., Ltd. KE-604: Rosin, Arakawa Parroyl L: Dilauroyl peroxide, manufactured by NOF Corporation Aerosil RY200: Silica filler, manufactured by Nippon Aerosil Co., Ltd.

実施例1〜6では、隣接端子間の絶縁性、及び、接続端子間の長期の導電性に優れていた。
比較例1では、第1層が、酸成分を含有するが、硬化成分と硬化剤とを含有することから熱可塑性層ではないために、絶縁抵抗が不十分であった。これは、接合体作製後に、第1層が端子上から押し出されなかったために、第1層中の酸成分が端子にダメージを与え、端子にマイグレーションを発生させたためと考えられる。
比較例2では、導通抵抗が不十分であった。これは、第1層が熱可塑性層ではあるが、酸成分を含有しないため、端子上の防錆剤を除去できず、結果、防錆剤が端子間の接続性を低下させたためと考えられる。
比較例3では、絶縁抵抗が不十分であった。これは、接合体作製後に、酸成分が端子にダメージを与え、端子にマイグレーションを発生させたためと考えられる。
In Examples 1-6, it was excellent in the insulation between adjacent terminals, and the long-term electroconductivity between connection terminals.
In Comparative Example 1, the first layer contained an acid component, but since it contained a curing component and a curing agent, it was not a thermoplastic layer, so that the insulation resistance was insufficient. This is presumably because the first layer was not extruded from above the terminal after fabrication of the joined body, so that the acid component in the first layer damaged the terminal and caused migration at the terminal.
In Comparative Example 2, the conduction resistance was insufficient. This is probably because the first layer is a thermoplastic layer but does not contain an acid component, so the rust preventive agent on the terminals could not be removed, and as a result, the rust preventive agent reduced the connectivity between the terminals. .
In Comparative Example 3, the insulation resistance was insufficient. This is considered to be because the acid component damaged the terminal after the bonded body was produced, and the terminal was migrated.

本発明の異方性導電フィルムは、防錆処理がされた基板を接続する場合でも、隣接端子間の絶縁性、及び、接続端子間の長期の導電性に優れるため、防錆処理がされた基板と、他の基板との接続に好適に用いることができる。   The anisotropic conductive film of the present invention is excellent in insulation between adjacent terminals and long-term conductivity between connection terminals even when connecting a substrate that has been subjected to rust prevention treatment, and thus has been subjected to rust prevention treatment. It can be suitably used for connection between a substrate and another substrate.

1 第1の回路部材
1A 基材
1B 端子
1C 防錆剤
2 異方性導電フィルム
2A 熱可塑性層
2B 導電性粒子含有層
2C 導電性粒子
3 第2の回路部材
3A 基材
3B 端子
DESCRIPTION OF SYMBOLS 1 1st circuit member 1A base material 1B terminal 1C Rust preventive agent 2 Anisotropic conductive film 2A Thermoplastic layer 2B Conductive particle content layer 2C Conductive particle 3 2nd circuit member 3A Base material 3B terminal

Claims (4)

導電性粒子、熱硬化性樹脂、及び硬化剤を含有する導電性粒子含有層と、
酸成分を含有する熱可塑性層と、
を有し、
前記導電性粒子含有層の溶融粘度が、前記熱可塑性層の溶融粘度よりも大きいことを特徴とする異方性導電フィルム。
A conductive particle-containing layer containing conductive particles, a thermosetting resin, and a curing agent;
A thermoplastic layer containing an acid component;
I have a,
An anisotropic conductive film , wherein the melt viscosity of the conductive particle-containing layer is larger than the melt viscosity of the thermoplastic layer .
前記酸成分が、リン酸エステル化合物である請求項1に記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1, wherein the acid component is a phosphate ester compound. 第1の回路部材の端子と第2の回路部材の端子とを接続させる接続方法であって、A connection method for connecting a terminal of a first circuit member and a terminal of a second circuit member,
前記第1の回路部材の端子上に、請求項1又は2に記載の異方性導電フィルムを、熱可塑性層が、前記第1の回路部材の端子と接するように配置する第1の配置工程と、The 1st arrangement | positioning process which arrange | positions the anisotropic conductive film of Claim 1 or 2 on the terminal of a said 1st circuit member so that a thermoplastic layer may contact the terminal of a said 1st circuit member. When,
前記異方性導電フィルム上に、前記第2の回路部材を配置する第2の配置工程と、A second arrangement step of arranging the second circuit member on the anisotropic conductive film;
前記第2の回路部材を加熱押圧部材により加熱及び押圧する工程とを含み、Heating and pressing the second circuit member with a heating pressing member,
前記第1の回路部材の端子に、防錆剤による防錆処理がされていることを特徴とする接続方法。A connection method, wherein the terminal of the first circuit member is subjected to a rust prevention treatment with a rust inhibitor.
第1の回路部材と第2の回路部材とを、請求項1又は2に記載の異方性導電フィルムの硬化物を介して異方性導電接続させた、接合体。The joined body which made the 1st circuit member and the 2nd circuit member make anisotropic conductive connection through the hardened | cured material of the anisotropic conductive film of Claim 1 or 2.
JP2015010310A 2015-01-22 2015-01-22 Anisotropic conductive film and connection method Active JP6474620B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015010310A JP6474620B2 (en) 2015-01-22 2015-01-22 Anisotropic conductive film and connection method
KR1020177015870A KR102006090B1 (en) 2015-01-22 2016-01-06 Anisotropic conductive film and connection method
CN201680005263.9A CN107112658B (en) 2015-01-22 2016-01-06 Anisotropic conductive film and connection method
PCT/JP2016/050191 WO2016117350A1 (en) 2015-01-22 2016-01-06 Anisotropic conductive film and connection method
TW105100817A TWI681694B (en) 2015-01-22 2016-01-12 Anisotropic conductive film and connecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015010310A JP6474620B2 (en) 2015-01-22 2015-01-22 Anisotropic conductive film and connection method

Publications (3)

Publication Number Publication Date
JP2016134366A JP2016134366A (en) 2016-07-25
JP2016134366A5 JP2016134366A5 (en) 2017-12-21
JP6474620B2 true JP6474620B2 (en) 2019-02-27

Family

ID=56416899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015010310A Active JP6474620B2 (en) 2015-01-22 2015-01-22 Anisotropic conductive film and connection method

Country Status (5)

Country Link
JP (1) JP6474620B2 (en)
KR (1) KR102006090B1 (en)
CN (1) CN107112658B (en)
TW (1) TWI681694B (en)
WO (1) WO2016117350A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798165B2 (en) 2016-07-06 2020-12-09 スズキ株式会社 Vehicle exhaust pipe mounting device
KR102351843B1 (en) * 2017-06-07 2022-01-18 쇼와덴코머티리얼즈가부시끼가이샤 Film adhesive for semiconductor, semiconductor device manufacturing method and semiconductor device
KR102569980B1 (en) * 2017-09-11 2023-08-24 가부시끼가이샤 레조낙 Adhesive film for circuit connection and manufacturing method thereof, manufacturing method for circuit connection structure, and adhesive film accommodating set
JP6939542B2 (en) 2017-12-28 2021-09-22 株式会社オートネットワーク技術研究所 Electrical connection device
CN112210321A (en) * 2019-07-12 2021-01-12 臻鼎科技股份有限公司 Conductive adhesive, and electromagnetic wave shielding film and circuit board using the same
JPWO2023276792A1 (en) * 2021-07-01 2023-01-05

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103819A (en) * 1992-09-21 1994-04-15 Hitachi Chem Co Ltd Anisotropic conductive adhesive film
JP3622792B2 (en) * 1994-11-25 2005-02-23 日立化成工業株式会社 Connection member and electrode connection structure and connection method using the connection member
US8138268B2 (en) * 2004-06-09 2012-03-20 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material, connecting structure for circuit member, and semiconductor device
JP4844003B2 (en) * 2005-05-10 2011-12-21 日立化成工業株式会社 Circuit connection material, circuit member connection structure, and circuit member connection method.
KR101100524B1 (en) * 2006-08-22 2011-12-29 히다치 가세고교 가부시끼가이샤 Circuit connecting material, connection structure of circuit member, and method for manufacturing connection structure of circuit member
CN101822131B (en) * 2007-10-15 2012-01-11 日立化成工业株式会社 Circuit connecting adhesive film and circuit connecting structure
JP2009277769A (en) 2008-05-13 2009-11-26 Hitachi Chem Co Ltd Circuits connecting material and connection structure of circuit member using the same
JP5690648B2 (en) * 2011-04-28 2015-03-25 デクセリアルズ株式会社 Anisotropic conductive film, connection method and connection structure
JP5650611B2 (en) * 2011-08-23 2015-01-07 デクセリアルズ株式会社 Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection method, and joined body
JP2014192486A (en) * 2013-03-28 2014-10-06 Dexerials Corp Method for connecting circuit member and assembly

Also Published As

Publication number Publication date
CN107112658A (en) 2017-08-29
CN107112658B (en) 2019-07-12
KR20170083113A (en) 2017-07-17
TWI681694B (en) 2020-01-01
KR102006090B1 (en) 2019-07-31
JP2016134366A (en) 2016-07-25
WO2016117350A1 (en) 2016-07-28
TW201633863A (en) 2016-09-16

Similar Documents

Publication Publication Date Title
JP6474620B2 (en) Anisotropic conductive film and connection method
JP5320523B1 (en) Conductive particle, method for producing conductive particle, conductive material, and connection structure
JPWO2013146604A1 (en) Conductive material and connection structure
TWI655267B (en) Conductive adhesive and connection method of electronic parts
JP2013152867A (en) Conductive particle, anisotropic conductive material, and connection structure
JP7351393B2 (en) Film adhesive for semiconductors, method for manufacturing semiconductor devices, and semiconductor devices
JP5613220B2 (en) Electronic component connection material and connection structure
JP5956362B2 (en) Anisotropic conductive film, connection method, and joined body
JP6328996B2 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP6133069B2 (en) Heat curable adhesive film
WO2014156930A1 (en) Connection method for circuit member, and assembly
JP6307308B2 (en) Manufacturing method of connection structure and circuit connection material
JP6794592B1 (en) Isotropic conductive adhesive sheet
JP7384171B2 (en) Film adhesive for semiconductors, semiconductor devices and manufacturing methods thereof
WO2020241818A1 (en) Isotropically electroconductive pressure-sensitive adhesive sheet
JP2014067998A (en) Conductive connection sheet, inter-terminal connection method, method of forming connection and electronic apparatus
JP2015185490A (en) Method for manufacturing connection structure and connection structure
JP2016139827A (en) Bonded body
JP2015147822A (en) Circuit connection material, and manufacturing method of electronic component
JP2012054568A (en) Method of producing joint

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190130

R150 Certificate of patent or registration of utility model

Ref document number: 6474620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250