JP2012054568A - Method of producing joint - Google Patents

Method of producing joint Download PDF

Info

Publication number
JP2012054568A
JP2012054568A JP2011215091A JP2011215091A JP2012054568A JP 2012054568 A JP2012054568 A JP 2012054568A JP 2011215091 A JP2011215091 A JP 2011215091A JP 2011215091 A JP2011215091 A JP 2011215091A JP 2012054568 A JP2012054568 A JP 2012054568A
Authority
JP
Japan
Prior art keywords
electronic component
joined body
connection terminals
evaluation
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011215091A
Other languages
Japanese (ja)
Other versions
JP5924896B2 (en
Inventor
Shigeki Sakurai
茂喜 櫻井
Takeshi Tamaki
剛志 田巻
Tomoyuki Ishimatsu
朋之 石松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2011215091A priority Critical patent/JP5924896B2/en
Publication of JP2012054568A publication Critical patent/JP2012054568A/en
Application granted granted Critical
Publication of JP5924896B2 publication Critical patent/JP5924896B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a joint which enhances adhesion of an anisotropic conductive film by preventing oxidation of a connection terminal.SOLUTION: An anisotropic conductive film 4 is arranged on a connection surface where an insulating film 3 covers above and between the connection terminals 2 of a first electronic component 1 flatly, and conductive particles penetrate the insulating film 3 above the connection terminals 2 thus attaining conduction. Consequently, oxidation of the connection terminals 2 can be prevented, adhesion of the anisotropic conductive film is enhanced and the temperature capable of temporary pasting can be lowered. Furthermore, short circuit between adjoining connection terminals can be prevented.

Description

本発明は、導電性粒子が分散された異方性導電フィルムを介して、電子部品が接合される接合体の製造方法に関する。   The present invention relates to a method for manufacturing a joined body in which an electronic component is joined through an anisotropic conductive film in which conductive particles are dispersed.

従来、LCD(Liquid Crystal Display)パネル、PD(Plasma Display)パネル等の基板と、FPC(Flexible Printed Circuits)、COF(Chip On Film)、TCP(Tape Carrier Package)等の配線材とを、異方性導電フィルム(ACF:Anisotropic Conductive Film)により接続する方法が用いられている。   Conventionally, substrates such as LCD (Liquid Crystal Display) panels and PD (Plasma Display) panels and wiring materials such as FPC (Flexible Printed Circuits), COF (Chip On Film), and TCP (Tape Carrier Package) are anisotropic. The method of connecting by an electroconductive film (ACF: Anisotropic Conductive Film) is used.

例えば、特許文献1には、配線材上の一部にレジスト層を被覆し、圧着時に流動するACFをレジスト層に到達させることによって、高い耐久性を得ることが記載されている。また、特許文献2には、接続端子の周辺部に樹脂製の絶縁膜を塗布し、接着強度を向上させることが記載されている。   For example, Patent Document 1 describes that high durability is obtained by covering a part of a wiring material with a resist layer and allowing ACF that flows during pressure bonding to reach the resist layer. Patent Document 2 describes that a resin insulating film is applied to the periphery of the connection terminal to improve the adhesive strength.

特開2010−199527号公報JP 2010-199527 A 特開2003−243821号公報JP 2003-243821 A

特許文献1、2に記載された技術は、接続端子が剥き出しの状態であるため、例えば、接続端子の表面に金めっきを施すことにより、接続端子の酸化を防いでいる。しかしながら、金めっきとACFとの密着性は良好ではないため、ACFの仮貼りに高い温度を必要としていた。   In the techniques described in Patent Documents 1 and 2, since the connection terminal is exposed, for example, the surface of the connection terminal is plated with gold to prevent oxidation of the connection terminal. However, since the adhesion between the gold plating and the ACF is not good, a high temperature is required for temporarily attaching the ACF.

本発明は、従来の実情に鑑みて提案されたものであり、接続端子の酸化を防止し、異方性導電フィルムの密着性を向上させる接合体の製造方法を提供する。   This invention is proposed in view of the conventional situation, and provides the manufacturing method of the joined body which prevents the oxidation of a connection terminal and improves the adhesiveness of an anisotropic conductive film.

上述した課題を解決するために、本発明に係る接合体の製造方法は、第1の電子部品の接続端子上及び接続端子間上に絶縁膜が平坦に被覆された接続面に異方性導電フィルムを仮貼りする仮貼工程と、前記異方性導電フィルム上に第2の電子部品の接続端子を配置させ、前記第1の電子部品と前記第2の電子部品とを本圧着させ、前記接続端子上の絶縁膜を導電性粒子によって貫通させる本圧着工程とを有することを特徴としている。   In order to solve the above-described problems, a method for manufacturing a joined body according to the present invention includes an anisotropic conductive material on a connection surface in which an insulating film is flatly coated on the connection terminals and between the connection terminals of the first electronic component. Temporary pasting step of temporarily pasting the film, placing a connection terminal of the second electronic component on the anisotropic conductive film, causing the first electronic component and the second electronic component to be finally crimped, And a main pressure bonding step of penetrating an insulating film on the connection terminal with conductive particles.

また、本発明に係る接合体は、接続端子上及び接続端子間上に絶縁膜が平坦に被覆された第1の電子部品と、前記第1の電子部品の接続端子と電気的に接続された第2の電子部品を備え、前記接続端子上の絶縁膜は、導電性粒子によって貫通していることを特徴としている。   In addition, the bonded body according to the present invention is electrically connected to the first electronic component in which the insulating film is flatly coated on the connection terminals and between the connection terminals, and the connection terminal of the first electronic component. A second electronic component is provided, and the insulating film on the connection terminal is penetrated by conductive particles.

本発明によれば、接続端子上及び接続端子間上に絶縁膜が平坦に被覆されているため、接続端子の酸化を防止することができる。また、異方性導電フィルムの密着性が向上し、仮貼り可能温度を低下させることができる。さらに、本圧着の際、接続端子上の絶縁膜を導電性粒子によって貫通させるため、隣接接続端子間でショートが発生するのを防ぐことができる。   According to the present invention, since the insulating film is flatly coated on the connection terminals and between the connection terminals, it is possible to prevent the connection terminals from being oxidized. Moreover, the adhesiveness of an anisotropic conductive film improves and the temperature which can be temporarily stuck can be reduced. Furthermore, since the insulating film on the connection terminal is penetrated by the conductive particles during the main pressure bonding, it is possible to prevent a short circuit from occurring between the adjacent connection terminals.

第1の電子部品の接続面に異方性導電フィルムを仮貼りした状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which temporarily bonded the anisotropic conductive film to the connection surface of the 1st electronic component. 接続端子上及び接続端子間上にレジストが平坦に被覆されたPCBを用いて作製された層構造Iの接合体を模式的に示す断面図である。It is sectional drawing which shows typically the joined body of the layer structure I produced using PCB by which the resist was coat | covered flatly on the connecting terminal and between connecting terminals. 接続端子上及び接続端子間上にレジストが平坦に被覆されたPCB及びFPCを用いて作製された層構造IIの接合体を模式的に示す断面図である。It is sectional drawing which shows typically the joined body of the layer structure II produced using PCB and FPC by which the resist was coat | covered flatly on the connection terminal and between connection terminals. 従来のPCB及びFPCを用いて作製された層構造IIIの接合体を模式的に示す断面図である。It is sectional drawing which shows typically the joined body of the layer structure III produced using conventional PCB and FPC. 接続端子間にレジストが塗布されたPCBを用いて作製された層構造IVの接合体を模式的に示す断面図である。It is sectional drawing which shows typically the joined body of the layer structure IV produced using PCB by which the resist was apply | coated between the connection terminals. 熱ツールを用いてPCB上に異方性導電フィルムを仮貼りする工程を示す模式図である。It is a schematic diagram which shows the process of temporarily sticking an anisotropic conductive film on PCB using a thermal tool. 剥離ツールを用いて剥離シートを引き剥がす工程を示す模式図である。It is a schematic diagram which shows the process of peeling off a peeling sheet using a peeling tool.

以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.接合体及びその製造方法
2.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 1. Bonded body and manufacturing method thereof Example

<1.接合体及びその製造方法>
本実施の形態における接合体の製造方法は、第1の電子部品の接続端子上及び接続端子間上に絶縁膜が平坦に被覆された接続面に異方性導電フィルムを仮貼りする仮貼工程と、異方性導電フィルム上に第2の電子部品の接続端子を配置させ、第1の電子部品と第2の電子部品とを本圧着させ、接続端子上の絶縁膜を導電性粒子によって貫通させる本圧着工程とを有する。
<1. Bonded body and manufacturing method thereof>
The manufacturing method of the joined body in the present embodiment is a temporary pasting step in which an anisotropic conductive film is temporarily pasted on a connection surface in which an insulating film is flatly coated on the connection terminals and between the connection terminals of the first electronic component. Then, the connection terminal of the second electronic component is disposed on the anisotropic conductive film, the first electronic component and the second electronic component are finally bonded, and the insulating film on the connection terminal is penetrated by the conductive particles. And a final press bonding step.

第1の電子部品は、例えば、LCD(Liquid Crystal Display)パネル、PD(Plasma Display)パネルなどの基板であり、第2の電子部品と接続するための接続端子を有する。また、第2の電子部品は、例えば、FPC(Flexible Printed Circuits)、COF(Chip On Film)、TCP(Tape Carrier Package)などの配線材であり、第1の電子部品と接続するための接続端子が形成されている。   The first electronic component is, for example, a substrate such as an LCD (Liquid Crystal Display) panel or a PD (Plasma Display) panel, and has a connection terminal for connecting to the second electronic component. The second electronic component is, for example, a wiring material such as FPC (Flexible Printed Circuits), COF (Chip On Film), or TCP (Tape Carrier Package), and a connection terminal for connecting to the first electronic component. Is formed.

図1は、第1の電子部品の接続面に異方性導電フィルムを仮貼りした状態を模式的に示す断面図である。第1の電子部品1は、接続端子2上及び接続端子2間上に絶縁膜3が平坦に被覆された接続面を有する。これにより、接続端子2の酸化を防止することができる。また、異方性導電フィルム4の密着性が向上し、仮貼り可能温度を低下させることができる。   FIG. 1 is a cross-sectional view schematically illustrating a state in which an anisotropic conductive film is temporarily attached to a connection surface of a first electronic component. The first electronic component 1 has a connection surface in which an insulating film 3 is flatly coated on the connection terminals 2 and between the connection terminals 2. Thereby, the oxidation of the connection terminal 2 can be prevented. Moreover, the adhesiveness of the anisotropic conductive film 4 improves, and the temperature which can be temporarily stuck can be reduced.

また、接続端子2間に絶縁膜3が塗布されているため、異方性導電フィルム4の充填量を削減することができ、異方性導電フィルム4の厚さを薄くすることができる。したがって、異方性導電フィルム4を巻回させたリール体として提供する場合、異方性導電フィルム4の長さを大きくすることができる。   Moreover, since the insulating film 3 is applied between the connection terminals 2, the filling amount of the anisotropic conductive film 4 can be reduced, and the thickness of the anisotropic conductive film 4 can be reduced. Therefore, when providing the reel body in which the anisotropic conductive film 4 is wound, the length of the anisotropic conductive film 4 can be increased.

絶縁膜3としては、保護膜として機能するレジストが用いられ、例えば、基板の絶縁部分に塗布されるソルダーレジストが最適に用いられる。レジストの塗布方法としては、接続端子上に平面状に塗布するために、スキージ等を用いることが好ましい。具体的には、スキージを用いて接続端子2上及び接続端子2間上に液状のレジストを塗布し、熱による半硬化、UV(ultraviolet)による硬化、熱による後硬化を行う。このようにスキージを用いて第1の電子部品の接続端子上及び接続端子間上に液状の絶縁材を塗布し、硬化させる工程を仮貼工程の前に設けても構わない。   As the insulating film 3, a resist functioning as a protective film is used, and for example, a solder resist applied to the insulating portion of the substrate is optimally used. As a method for applying the resist, it is preferable to use a squeegee or the like in order to apply the resist on the connection terminal in a planar shape. Specifically, a liquid resist is applied onto the connection terminals 2 and between the connection terminals 2 using a squeegee, and semi-curing with heat, curing with UV (ultraviolet), and post-curing with heat are performed. As described above, a step of applying and curing the liquid insulating material on the connection terminals and between the connection terminals of the first electronic component using the squeegee may be provided before the temporary sticking step.

異方性導電フィルム4の中に分散された導電性粒子5は、絶縁膜3を貫通するための硬さが必要であるため、コア材が、例えば、ニッケル、鉄、銅、アルミニウム、錫、鉛、クロム、コバルト、銀、金等の金属又は合金であることが好ましい。また、導電性粒子5の平均粒子径dは、接続端子2上の絶縁膜3の厚さh以上であることが好ましい。これにより、接合体において良好な導通抵抗を得ることができる。なお、本明細書における平均粒子径とは、レーザー回折法により測定したメディアン径d50である。   Since the conductive particles 5 dispersed in the anisotropic conductive film 4 need to have hardness for penetrating the insulating film 3, the core material is, for example, nickel, iron, copper, aluminum, tin, A metal or alloy such as lead, chromium, cobalt, silver, or gold is preferable. The average particle diameter d of the conductive particles 5 is preferably equal to or greater than the thickness h of the insulating film 3 on the connection terminal 2. Thereby, a favorable conduction resistance can be obtained in the joined body. In addition, the average particle diameter in this specification is the median diameter d50 measured by the laser diffraction method.

また、異方性導電フィルム4は、熱硬化性樹脂成分と、硬化剤とを含有する。熱硬化性樹脂成分としては、例えば、各種エポキシ樹脂やエポキシ(メタ)アクリレート、ウレタン変性(メタ)アクリレート等の熱硬化性樹脂等を挙げることができる。これらの樹脂は、1種又は2種以上含有されていてもよい。硬化剤は、使用する熱硬化性樹脂成分の種類に応じて選択すればよい。例えば熱硬化性樹脂成分としてエポキシ(メタ)アクリレートやウレタン変性(メタ)アクリレート等のアクリレート系の樹脂を使用する場合、硬化剤としては、例えばパーオキサイドを使用することが可能であり、パーオキサイドとしては、例えばラウロイルパーオキサイド等を挙げることができる。また、例えば熱硬化性樹脂成分がエポキシ樹脂を使用する場合には、イミダゾール系潜在性硬化剤等を挙げることができる。   Moreover, the anisotropic conductive film 4 contains a thermosetting resin component and a curing agent. Examples of the thermosetting resin component include various epoxy resins, thermosetting resins such as epoxy (meth) acrylate, urethane-modified (meth) acrylate, and the like. These resins may be contained alone or in combination of two or more. What is necessary is just to select a hardening | curing agent according to the kind of thermosetting resin component to be used. For example, when using an acrylate-based resin such as epoxy (meth) acrylate or urethane-modified (meth) acrylate as the thermosetting resin component, for example, peroxide can be used as the curing agent, Can include, for example, lauroyl peroxide. Further, for example, when the thermosetting resin component uses an epoxy resin, an imidazole-based latent curing agent can be exemplified.

また、第2の電子部品についても、接続端子上及び接続端子間上に絶縁膜が平坦に被覆されていることが好ましい。これにより、異方性導電フィルム4の充填量をさらに削減することができ、異方性導電フィルム4の厚さをさらに薄くすることができる。また、この場合、導電性粒子5の平均粒子径が、第1の電子部品及び第2の電子部品の接続端子上の絶縁膜の厚さ以上であることが好ましい。導電性粒子5の平均粒子径が接続端子上の絶縁膜の総厚さ以上であることにより、接合体において良好な導通抵抗を得ることができる。   In addition, the second electronic component is preferably covered with an insulating film on the connection terminals and between the connection terminals. Thereby, the filling amount of the anisotropic conductive film 4 can be further reduced, and the thickness of the anisotropic conductive film 4 can be further reduced. In this case, the average particle diameter of the conductive particles 5 is preferably equal to or greater than the thickness of the insulating film on the connection terminals of the first electronic component and the second electronic component. When the average particle diameter of the conductive particles 5 is equal to or greater than the total thickness of the insulating film on the connection terminal, a good conduction resistance can be obtained in the joined body.

また、本実施の形態における接合体は、接続端子間には絶縁膜が充填され、接続端子上の絶縁膜が導電性粒子によって貫通することにより導通が得られるため、隣接接続端子間のショート確率の小さい優れた特性を有する。   In the bonded body in this embodiment, an insulating film is filled between the connection terminals, and conduction is obtained when the insulating film on the connection terminal penetrates with the conductive particles. Have excellent characteristics.

<2.実施例>
以下、本発明の実施例について説明する。ここでは、基板としてPCB(Printed Circuit Board)、配線材としてFPC(Flexible Printed Circuits)を用い、これらを異方性導電フィルム(ACF:Anisotropic Conductive Film)によって接続した。
<2. Example>
Examples of the present invention will be described below. Here, PCB (Printed Circuit Board) is used as a substrate and FPC (Flexible Printed Circuits) is used as a wiring material, and these are connected by an anisotropic conductive film (ACF).

実施例1〜7及び参照例1では、図2に示すように、接続端子11上及び接続端子11間上にレジスト12が平坦に被覆されたPCB10を用いて層構造Iの接合体を作製した。また、実施例8〜14及び参照例2では、図3に示すように、接続端子11上及び接続端子11間上にレジスト12が平坦に被覆されたPCB10及び接続端子41上及び接続端子41間上にレジスト42が平坦に被覆されたFPC40を用いて層構造IIの接合体を作製した。また、比較例1では、図4に示すように、従来のPCB100及びFPC110を用いて層構造IIIの接合体を作製した。また、比較例2〜5では、図5に示すように、接続端子121間にレジスト122が塗布されたPCB120を用いて層構造IVの接合体を作製した。各接合体について、導通抵抗、接着強度、絶縁抵抗、及び仮貼り可能温度を測定し、評価した。なお、本発明はこれらの実施例に限定されるものではない。   In Examples 1 to 7 and Reference Example 1, as shown in FIG. 2, a bonded structure having a layer structure I was manufactured using PCB 10 in which a resist 12 was flatly coated on the connection terminals 11 and between the connection terminals 11. . Further, in Examples 8 to 14 and Reference Example 2, as shown in FIG. 3, the PCB 10 on which the resist 12 is flatly coated on the connection terminals 11 and between the connection terminals 11, and on the connection terminals 41 and between the connection terminals 41. A joined body having a layer structure II was manufactured using the FPC 40 on which the resist 42 was flatly coated. In Comparative Example 1, as shown in FIG. 4, a bonded body having a layer structure III was manufactured using a conventional PCB 100 and FPC 110. In Comparative Examples 2 to 5, as shown in FIG. 5, a bonded body having a layer structure IV was manufactured using PCB 120 in which a resist 122 was applied between connection terminals 121. About each joined body, the conduction resistance, the adhesive strength, the insulation resistance, and the temperature which can be temporarily attached were measured and evaluated. The present invention is not limited to these examples.

[導通抵抗の測定及び評価]
各接合体について、デジタルマルチメータ(品番:デジタルマルチメータ7555、横河電機社製)を用いて4端子法にて電流1mAを流したときの導通抵抗値(初期)の測定を行った。そして、導通抵抗値が2Ω未満のものをランクA、通電はするが2Ω以上のものをランクB、OpenのものをランクCと評価した。
[Measurement and evaluation of conduction resistance]
With respect to each joined body, a conduction resistance value (initial) was measured when a current of 1 mA was passed by a four-terminal method using a digital multimeter (product number: digital multimeter 7555, manufactured by Yokogawa Electric Corporation). And the thing with a conduction resistance value of less than 2Ω was evaluated as Rank A, the one with energization but 2Ω or more was evaluated as Rank B, and the one with Open was evaluated as Rank C.

[接着強度の測定及び評価]
各接合体について、引張試験機(テンシロン、オリエンテック社製)を用いて1cm幅にカットしたFPCを剥離速度50mm/分で90度(Y軸方向)に引き上げ、接着強度を測定した。接着強度が10N/cm以上のものをランクA、6N/cm以上10N/cm未満のものをランクB、6N/cm以下のものをランクCと評価した。
[Measurement and evaluation of adhesive strength]
About each joined body, FPC cut to 1 cm width using a tensile tester (Tensilon, manufactured by Orientec Co., Ltd.) was pulled up to 90 degrees (Y-axis direction) at a peeling speed of 50 mm / min, and the adhesive strength was measured. Those having an adhesive strength of 10 N / cm or more were evaluated as Rank A, those having an adhesive strength of 6 N / cm or more and less than 10 N / cm as Rank B, and those having an adhesive strength of 6 N / cm or less as Rank C.

[絶縁抵抗の測定及び評価]
各接合体について、デジタルマルチメータ(品番:デジタルマルチメータ7555、横河電機社製)を用いて4端子法にて電流1mAを流したときの隣接端子間の絶縁抵抗値(初期)の測定を行った。そして、絶縁抵抗値が10Ω以上のものをランクA、10Ω以上10Ω未満のものをランクB、10Ω未満のものをランクCと評価した。
[Measurement and evaluation of insulation resistance]
For each joined body, measurement of insulation resistance value (initial) between adjacent terminals when a current of 1 mA was passed by a four-terminal method using a digital multimeter (part number: digital multimeter 7555, manufactured by Yokogawa Electric Corporation). went. Then, those having an insulation resistance value of 10 9 Ω or more were evaluated as Rank A, those having an insulation resistance value of 10 8 Ω or more and less than 10 9 Ω as Rank B, and those having an insulation resistance value of less than 10 8 Ω as Rank C.

[仮貼り可能温度の測定及び評価]
図6に示す圧着機50を用いて、PCB60上に異方性導電フィルム70を仮貼りした。具体的には、熱電対測定により異方性導電フィルム70が所定温度になるように加熱ツール52を設定し、ステージ51上に固定されたPCB60上に異方性導電フィルム70を仮貼りした。その後、図7に示すように加熱ツール52を上昇させ、剥離シート71を剥離ツール53により引き剥がした。そして、剥離シート71を異方性導電フィルム70から引き剥がすことができる最小温度を仮貼り可能温度とした。
[Measurement and Evaluation of Temporary Pasting Temperature]
An anisotropic conductive film 70 was temporarily pasted on the PCB 60 using the crimping machine 50 shown in FIG. Specifically, the heating tool 52 was set so that the anisotropic conductive film 70 was at a predetermined temperature by thermocouple measurement, and the anisotropic conductive film 70 was temporarily attached onto the PCB 60 fixed on the stage 51. Thereafter, as shown in FIG. 7, the heating tool 52 was raised, and the release sheet 71 was peeled off by the release tool 53. And the minimum temperature which can peel off the peeling sheet 71 from the anisotropic conductive film 70 was made into temporary attachment temperature.

[実施例1]
(異方性導電フィルム)
AuメッキNi粒子からなる平均粒子径6μmの導電性粒子8質量部に、フェノキシ樹脂(YP−50、東都化成(株))22質量部、ジシクロペンタジエンジメタクリレート(DCP、新中村化学工業(株))5質量部、ウレタンアクリレート(M−1600、東亞合成(株))10質量部、アクリルゴム(SG−80H、ナガセケムテックス(株))5質量部、リン含有メタクリレート(PM2、日本化薬(株))1質量部、ジアシルパーオキサイド系開始剤(パーロイルL、日油(株))2質量部、及びトルエン50質量部を混合し、得られた混合物を剥離シートに乾燥厚が16μmとなるように塗布し、80℃で5分間乾燥することにより異方性導電フィルムを得た。
[Example 1]
(Anisotropic conductive film)
8 parts by mass of conductive particles having an average particle diameter of 6 μm made of Au-plated Ni particles, 22 parts by mass of phenoxy resin (YP-50, Toto Kasei Co., Ltd.), dicyclopentadiene dimethacrylate (DCP, Shin-Nakamura Chemical Co., Ltd.) )) 5 parts by mass, urethane acrylate (M-1600, Toagosei Co., Ltd.) 10 parts by mass, acrylic rubber (SG-80H, Nagase ChemteX Corporation) 5 parts by mass, phosphorus-containing methacrylate (PM2, Nippon Kayaku) Ltd.) 1 part by mass, 2 parts by mass of a diacyl peroxide initiator (Perroyl L, NOF Corporation), and 50 parts by mass of toluene were mixed, and the resulting mixture was dried on a release sheet with a dry thickness of 16 μm. The anisotropic conductive film was obtained by apply | coating so that it might become, and drying at 80 degreeC for 5 minute (s).

また、導電性粒子の10%圧縮変位時の圧縮硬さを微小圧縮試験機(PCT−200、島津製作所(株))を用いて測定したところ、6000kgf/mmであった。 Moreover, it was 6000 kgf / mm < 2 > when the compression hardness at the time of 10% compression displacement of electroconductive particle was measured using the micro compression tester (PCT-200, Shimadzu Corporation Corp.).

(接合体)
図2に示すように、接続端子11上にレジスト12が1μm被覆されたPCB10(FR−4グレード:銅配線ピッチ200μm、配線高35μm)と、FPC30(ポリイミド厚38μm、銅配線ピッチ200μm、配線高8μm)とを、前記異方性導電フィルムを用いて、170℃、4MPa、5秒という加熱加圧条件で異方性導電接続し、層構造Iの接合体を作製した。
(Joint)
As shown in FIG. 2, PCB 10 (FR-4 grade: copper wiring pitch 200 μm, wiring height 35 μm) coated with resist 12 on connection terminal 11 and FPC 30 (polyimide thickness 38 μm, copper wiring pitch 200 μm, wiring height) 8 μm) was anisotropically conductively connected under the heating and pressing conditions of 170 ° C., 4 MPa, and 5 seconds using the anisotropic conductive film, to produce a layered structure I joined body.

(評価)
実施例1の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はA、接着強度の評価はB、絶縁抵抗の評価はAであった。表1にこれらの結果を示す。
(Evaluation)
The temporarily stickable temperature of the joined body of Example 1 was 35 ° C. or higher. The evaluation of conduction resistance was A, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 1 shows these results.

[実施例2]
接続端子11上にレジスト12が3μm被覆されたPCB10(FR−4グレード:銅配線ピッチ200μm、配線高35μm)を用いた以外は、実施例1と同様にして層構造Iの接合体を作製した。実施例2の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はA、接着強度の評価はB、絶縁抵抗の評価はAであった。表1にこれらの結果を示す。
[Example 2]
A joined body having a layer structure I was prepared in the same manner as in Example 1 except that PCB 10 (FR-4 grade: copper wiring pitch 200 μm, wiring height 35 μm) coated with 3 μm of resist 12 on connection terminal 11 was used. . The temporarily stickable temperature of the joined body of Example 2 was 35 ° C. or higher. The evaluation of conduction resistance was A, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 1 shows these results.

[実施例3]
接続端子11上にレジスト12が8μm被覆されたPCB10(FR−4グレード:銅配線ピッチ200μm、配線高35μm)を用いた以外は、実施例1と同様にして層構造Iの接合体を作製した。実施例3の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はC、接着強度の評価はB、絶縁抵抗の評価はAであった。表1にこれらの結果を示す。
[Example 3]
A joined body having a layer structure I was produced in the same manner as in Example 1 except that PCB 10 (FR-4 grade: copper wiring pitch 200 μm, wiring height 35 μm) coated with resist 12 on connection terminal 11 was used. . The temporarily pastable temperature of the joined body of Example 3 was 35 ° C. or higher. The evaluation of conduction resistance was C, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 1 shows these results.

[実施例4]
平均粒子径3μmの導電性粒子を配合した異方性導電フィルムを用いた以外は、実施例1と同様にして層構造Iの接合体を作製した。実施例4の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はA、接着強度の評価はB、絶縁抵抗の評価はAであった。表1にこれらの結果を示す。
[Example 4]
A bonded structure having a layer structure I was prepared in the same manner as in Example 1 except that an anisotropic conductive film containing conductive particles having an average particle diameter of 3 μm was used. The temporarily pastable temperature of the joined body of Example 4 was 35 ° C. or higher. The evaluation of conduction resistance was A, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 1 shows these results.

[実施例5]
平均粒子径3μmの導電性粒子を配合した異方性導電フィルムを用い、接続端子11上にレジスト12が3μm被覆されたPCB10(FR−4グレード:銅配線ピッチ200μm、配線高35μm)を用いた以外は、実施例1と同様にして層構造Iの接合体を作製した。実施例5の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はB、接着強度の評価はB、絶縁抵抗の評価はAであった。表1にこれらの結果を示す。
[Example 5]
An anisotropic conductive film containing conductive particles having an average particle diameter of 3 μm was used, and PCB 10 (FR-4 grade: copper wiring pitch 200 μm, wiring height 35 μm) in which resist 12 was coated on connection terminals 11 by 3 μm was used. Except for the above, a bonded structure having the layer structure I was produced in the same manner as in Example 1. The temporarily pastable temperature of the joined body of Example 5 was 35 ° C. or higher. The evaluation of conduction resistance was B, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 1 shows these results.

[実施例6]
平均粒子径3μmの導電性粒子を配合した異方性導電フィルムを用い、接続端子11上にレジスト12が8μm被覆されたPCB10(FR−4グレード:銅配線ピッチ200μm、配線高35μm)を用いた以外は、実施例1と同様にして層構造Iの接合体を作製した。実施例6の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はC、接着強度の評価はB、絶縁抵抗の評価はAであった。表1にこれらの結果を示す。
[Example 6]
An anisotropic conductive film containing conductive particles having an average particle diameter of 3 μm was used, and PCB 10 (FR-4 grade: copper wiring pitch 200 μm, wiring height 35 μm) in which resist 12 was coated on connection terminals 11 by 8 μm was used. Except for the above, a bonded structure having the layer structure I was produced in the same manner as in Example 1. The temporarily pastable temperature of the joined body of Example 6 was 35 ° C. or higher. The evaluation of conduction resistance was C, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 1 shows these results.

[実施例7]
Au/Niメッキ樹脂粒子からなる平均粒子径5μmの導電性粒子を配合した異方性導電フィルムを用い、接続端子11上にレジスト12が3μm被覆されたPCB10(FR−4グレード:銅配線ピッチ200μm、配線高35μm)を用いた以外は、実施例1と同様にして層構造Iの接合体を作製した。実施例7の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はC、接着強度の評価はB、絶縁抵抗の評価はAであった。表1にこれらの結果を示す。なお、Au/Niメッキ樹脂粒子からなる導電性粒子の10%圧縮変位時の圧縮硬さを微小圧縮試験機(PCT−200、島津製作所(株))を用いて測定したところ、700kgf/mmであった。
[Example 7]
PCB10 (FR-4 grade: copper wiring pitch 200 μm) in which an anisotropic conductive film composed of Au / Ni plated resin particles and containing conductive particles with an average particle diameter of 5 μm is coated with 3 μm of resist 12 on connection terminals 11 Except for using a wiring height of 35 μm, a joined body having a layer structure I was produced in the same manner as in Example 1. The temporarily stickable temperature of the joined body of Example 7 was 35 ° C. or higher. The evaluation of conduction resistance was C, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 1 shows these results. In addition, it was 700 kgf / mm < 2 > when the compression hardness at the time of 10% compression displacement of the electroconductive particle which consists of Au / Ni plating resin particle | grains was measured using the micro compression tester (PCT-200, Shimadzu Corporation Corp.). Met.

[参照例1]
厚さが35μmの異方性導電フィルムを用いた以外は、実施例1と同様にして層構造Iの接合体を作製した。参照例1の接合体の仮貼り可能温度は、40℃以上であった。また、導通抵抗の評価はC、接着強度の評価はB、絶縁抵抗の評価はAであった。表1にこれらの結果を示す。
[Reference Example 1]
A bonded structure having a layer structure I was prepared in the same manner as in Example 1 except that an anisotropic conductive film having a thickness of 35 μm was used. The temporarily stickable temperature of the joined body of Reference Example 1 was 40 ° C. or higher. The evaluation of conduction resistance was C, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 1 shows these results.

Figure 2012054568
Figure 2012054568

[実施例8]
図3に示すように、接続端子11上にレジスト12が1μm被覆されたPCB10(FR−4グレード:銅配線ピッチ200μm、配線高35μm)と、接続端子41上にレジスト42が1μm被覆されたFPC40(ポリイミド厚38μm、銅配線ピッチ200μm、配線高8μm)とを、平均粒子径6μmの導電性粒子を配合した厚さ8μmの異方性導電フィルムを用いて、170℃、4MPa、5秒という加熱加圧条件で異方性導電接続し、層構造IIの接合体を作製した。
[Example 8]
As shown in FIG. 3, PCB 10 (FR-4 grade: copper wiring pitch 200 μm, wiring height 35 μm) coated with 1 μm of resist 12 on connecting terminal 11 and FPC 40 coated with resist 42 of 1 μm on connecting terminal 41 are shown. (A polyimide thickness of 38 μm, a copper wiring pitch of 200 μm, and a wiring height of 8 μm) were heated at 170 ° C., 4 MPa, and 5 seconds using an anisotropic conductive film having a thickness of 8 μm mixed with conductive particles having an average particle diameter of 6 μm. An anisotropic conductive connection was made under pressure conditions to produce a layered structure II joined body.

実施例8の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はA、接着強度の評価はA、絶縁抵抗の評価はAであった。表2にこれらの結果を示す。   The temporarily stickable temperature of the joined body of Example 8 was 35 ° C. or higher. The evaluation of the conduction resistance was A, the evaluation of the adhesive strength was A, and the evaluation of the insulation resistance was A. Table 2 shows these results.

[実施例9]
接続端子41上にレジスト42が3μm被覆されたFPC40(ポリイミド厚38μm、銅配線ピッチ200μm、配線高8μm)を用いた以外は、実施例8と同様にして層構造IIの接合体を作製した。実施例9の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はA、接着強度の評価はA、絶縁抵抗の評価はAであった。表2にこれらの結果を示す。
[Example 9]
A joined body having a layer structure II was produced in the same manner as in Example 8 except that FPC 40 (polyimide thickness 38 μm, copper wiring pitch 200 μm, wiring height 8 μm) coated with 3 μm of resist 42 on connection terminal 41 was used. The temporarily stickable temperature of the joined body of Example 9 was 35 ° C. or higher. The evaluation of the conduction resistance was A, the evaluation of the adhesive strength was A, and the evaluation of the insulation resistance was A. Table 2 shows these results.

[実施例10]
接続端子11上にレジスト12が3μm被覆されたPCB10(FR−4グレード:銅配線ピッチ200μm、配線高35μm)を用いた以外は、実施例8と同様にして層構造IIの接合体を作製した。実施例10の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はA、接着強度の評価はA、絶縁抵抗の評価はAであった。表2にこれらの結果を示す。
[Example 10]
A joined body having a layer structure II was produced in the same manner as in Example 8 except that PCB 10 (FR-4 grade: copper wiring pitch 200 μm, wiring height 35 μm) coated with 3 μm of resist 12 on connection terminal 11 was used. . The temporarily pastable temperature of the joined body of Example 10 was 35 ° C. or higher. The evaluation of the conduction resistance was A, the evaluation of the adhesive strength was A, and the evaluation of the insulation resistance was A. Table 2 shows these results.

[実施例11]
接続端子11上にレジスト12が3μm被覆されたPCB10(FR−4グレード:銅配線ピッチ200μm、配線高35μm)、及び接続端子41上にレジスト42が3μm被覆されたFPC40(ポリイミド厚38μm、銅配線ピッチ200μm、配線高8μm)を用いた以外は、実施例8と同様にして層構造IIの接合体を作製した。実施例11の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はB、接着強度の評価はA、絶縁抵抗の評価はAであった。表2にこれらの結果を示す。
[Example 11]
PCB 10 (FR-4 grade: copper wiring pitch 200 μm, wiring height 35 μm) coated with resist 12 on connection terminal 11 and FPC 40 (polyimide thickness 38 μm, copper wiring coated with resist 42 3 μm on connection terminal 41) A joined body having a layer structure II was produced in the same manner as in Example 8 except that a pitch of 200 μm and a wiring height of 8 μm were used. The temporarily stickable temperature of the joined body of Example 11 was 35 ° C. or higher. The evaluation of conduction resistance was B, the evaluation of adhesive strength was A, and the evaluation of insulation resistance was A. Table 2 shows these results.

[実施例12]
接続端子11の配線高さが18μmのPCB10(FR−4グレード:銅配線ピッチ200μm、配線高18μm)を用いた以外は、実施例8と同様にして層構造IIの接合体を作製した。実施例12の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はA、接着強度の評価はA、絶縁抵抗の評価はAであった。表2にこれらの結果を示す。
[Example 12]
A layered structure II assembly was produced in the same manner as in Example 8 except that PCB 10 (FR-4 grade: copper wiring pitch 200 μm, wiring height 18 μm) having a wiring height of the connection terminal 11 of 18 was used. The temporarily pastable temperature of the joined body of Example 12 was 35 ° C. or higher. The evaluation of the conduction resistance was A, the evaluation of the adhesive strength was A, and the evaluation of the insulation resistance was A. Table 2 shows these results.

[実施例13]
接続端子41の配線高さが35μmのFPC40(ポリイミド厚75μm、銅配線ピッチ200μm、配線高35μm)を用いた以外は、実施例8と同様にして層構造IIの接合体を作製した。実施例13の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はA、接着強度の評価はA、絶縁抵抗の評価はAであった。表2にこれらの結果を示す。
[Example 13]
A joined body having a layer structure II was produced in the same manner as in Example 8 except that FPC 40 (polyimide thickness: 75 μm, copper wiring pitch: 200 μm, wiring height: 35 μm) having a wiring height of the connection terminal 41 of 35 μm was used. The temporarily stickable temperature of the joined body of Example 13 was 35 ° C. or higher. The evaluation of the conduction resistance was A, the evaluation of the adhesive strength was A, and the evaluation of the insulation resistance was A. Table 2 shows these results.

[実施例14]
厚さが16μmの異方性導電フィルムを用いた以外は、実施例8と同様にして層構造IIの接合体を作製した。実施例14の接合体の仮貼り可能温度は、35℃以上であった。また、導通抵抗の評価はC、接着強度の評価はA、絶縁抵抗の評価はAであった。表2にこれらの結果を示す。
[Example 14]
A joined body having a layer structure II was produced in the same manner as in Example 8 except that an anisotropic conductive film having a thickness of 16 μm was used. The temporarily pastable temperature of the joined body of Example 14 was 35 ° C. or higher. The evaluation of conduction resistance was C, the evaluation of adhesive strength was A, and the evaluation of insulation resistance was A. Table 2 shows these results.

[参照例2]
厚さが35μmの異方性導電フィルムを用いた以外は、実施例8と同様にして層構造IIの接合体を作製した。参照例2の接合体の仮貼り可能温度は、40℃以上であった。また、導通抵抗の評価はC、接着強度の評価はB、絶縁抵抗の評価はAであった。表2にこれらの結果を示す。
[Reference Example 2]
A joined body having a layer structure II was produced in the same manner as in Example 8 except that an anisotropic conductive film having a thickness of 35 μm was used. The temporarily stickable temperature of the joined body of Reference Example 2 was 40 ° C. or higher. The evaluation of conduction resistance was C, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 2 shows these results.

Figure 2012054568
Figure 2012054568

[比較例1]
図4に示すように、PCB100(FR−4グレード:銅配線ピッチ200μm、配線高35μm)と、FPC110(ポリイミド厚38μm、銅配線ピッチ200μm、配線高8μm)とを、平均粒子径6μmの導電性粒子を配合した厚さ35μmの異方性導電フィルムを用いて、170℃、4MPa、5秒という加熱加圧条件で異方性導電接続し、層構造IIIの接合体を作製した。
[Comparative Example 1]
As shown in FIG. 4, PCB100 (FR-4 grade: copper wiring pitch 200 μm, wiring height 35 μm) and FPC110 (polyimide thickness 38 μm, copper wiring pitch 200 μm, wiring height 8 μm) are electrically conductive with an average particle diameter of 6 μm. Using an anisotropic conductive film having a thickness of 35 μm blended with particles, anisotropic conductive connection was performed under heating and pressurization conditions of 170 ° C., 4 MPa, and 5 seconds, to prepare a layered structure III joined body.

比較例1の接合体の仮貼り可能温度は、60℃以上であった。また、導通抵抗の評価はA、接着強度の評価はB、絶縁抵抗の評価はAであった。表3にこれらの結果を示す。   The temporarily stickable temperature of the joined body of Comparative Example 1 was 60 ° C. or higher. The evaluation of conduction resistance was A, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 3 shows these results.

[比較例2]
図5に示すように、接続端子121間にレジスト122が塗布されたPCB120(FR−4グレード:銅配線ピッチ200μm、配線高35μm)と、FPC110(ポリイミド厚38μm、銅配線ピッチ200μm、配線高8μm)とを、平均粒子径6μmの導電性粒子を配合した厚さ35μmの異方性導電フィルムを用いて、170℃、4MPa、5秒という加熱加圧条件で異方性導電接続し、層構造IVの接合体を作製した。
[Comparative Example 2]
As shown in FIG. 5, PCB 120 (FR-4 grade: copper wiring pitch 200 μm, wiring height 35 μm) coated with a resist 122 between connection terminals 121 and FPC 110 (polyimide thickness 38 μm, copper wiring pitch 200 μm, wiring height 8 μm). ) With an anisotropic conductive film having a thickness of 35 μm mixed with conductive particles having an average particle diameter of 6 μm under a heat and pressure condition of 170 ° C., 4 MPa, 5 seconds, and a layer structure A joined body of IV was prepared.

比較例2の接合体の仮貼り可能温度は、40℃以上であった。また、導通抵抗の評価はC、接着強度の評価はB、絶縁抵抗の評価はAであった。表3にこれらの結果を示す。   The temporarily stickable temperature of the joined body of Comparative Example 2 was 40 ° C. or higher. The evaluation of conduction resistance was C, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 3 shows these results.

[比較例3]
厚さが16μmの異方性導電フィルムを用いた以外は、比較例2と同様にして層構造IVの接合体を作製した。比較例3の接合体の仮貼り可能温度は、40℃以上であった。また、導通抵抗の評価はA、接着強度の評価はB、絶縁抵抗の評価はAであった。表3にこれらの結果を示す。
[Comparative Example 3]
A bonded structure having a layer structure IV was produced in the same manner as in Comparative Example 2 except that an anisotropic conductive film having a thickness of 16 μm was used. The temporarily pastable temperature of the joined body of Comparative Example 3 was 40 ° C. or higher. The evaluation of conduction resistance was A, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 3 shows these results.

[比較例4]
接続端子121の配線高さが18μmのPCB120(FR−4グレード:銅配線ピッチ200μm、配線高18μm)、及び厚さが16μmの異方性導電フィルムを用いた以外は、比較例2と同様にして層構造IVの接合体を作製した。比較例4の接合体の仮貼り可能温度は、40℃以上であった。また、導通抵抗の評価はA、接着強度の評価はB、絶縁抵抗の評価はAであった。表3にこれらの結果を示す。
[Comparative Example 4]
The same as Comparative Example 2 except that PCB 120 (FR-4 grade: copper wiring pitch 200 μm, wiring height 18 μm) with a wiring height of the connecting terminal 121 and an anisotropic conductive film with a thickness of 16 μm were used. Thus, a joined body having a layer structure IV was produced. The temporarily pastable temperature of the joined body of Comparative Example 4 was 40 ° C. or higher. The evaluation of conduction resistance was A, the evaluation of adhesive strength was B, and the evaluation of insulation resistance was A. Table 3 shows these results.

[比較例5]
接続端子111の配線高さが35μmのFPC110(ポリイミド厚75μm、銅配線ピッチ200μm、配線高35μm)、及び厚さが16μmの異方性導電フィルムを用いた以外は、比較例2と同様にして層構造IVの接合体を作製した。比較例4の接合体の仮貼り可能温度は、40℃以上であった。また、導通抵抗の評価はA、接着強度の評価はC、絶縁抵抗の評価はAであった。表3にこれらの結果を示す。
[Comparative Example 5]
Except for using FPC110 (polyimide thickness 75 μm, copper wiring pitch 200 μm, wiring height 35 μm) having a wiring height of connection terminal 111 and an anisotropic conductive film having a thickness of 16 μm, the same as Comparative Example 2 A joined body having a layer structure IV was produced. The temporarily pastable temperature of the joined body of Comparative Example 4 was 40 ° C. or higher. The evaluation of conduction resistance was A, the evaluation of adhesive strength was C, and the evaluation of insulation resistance was A. Table 3 shows these results.

Figure 2012054568
Figure 2012054568

実施例1〜14に示すように、接続端子上及び接続端子間上を絶縁膜で平坦に被覆することにより、異方性導電フィルムの密着性を向上させ、仮貼り可能温度を低下させることができることが分かる。また、実施例と比較例との比較により、層構造I、IIの接合体とすることにより、ACF厚みを小さくすることができることが分かる。   As shown in Examples 1 to 14, by covering the connection terminals and between the connection terminals flatly with an insulating film, the adhesion of the anisotropic conductive film can be improved and the temperature at which temporary bonding can be performed can be lowered. I understand that I can do it. Further, it can be seen from the comparison between the example and the comparative example that the ACF thickness can be reduced by using the joined structure of the layer structures I and II.

また、実施例2と実施例7との比較により、導電性粒子のコア材が、レジストよりも硬い金属又は合金であることにより、接続端子上のレジストを導電性粒子によって貫通させることが可能となり、優れた導通抵抗が得られることが分かる。   In addition, comparison between Example 2 and Example 7 makes it possible to penetrate the resist on the connection terminal with the conductive particles because the core material of the conductive particles is a metal or alloy harder than the resist. It can be seen that an excellent conduction resistance can be obtained.

また、実施例1、2、4、5と実施例3、6との比較により、導電性粒子の平均粒子径が、接続端子上のレジストの厚さ以上であることにより、優れた導通抵抗が得られることが分かる。また、実施例8〜14に示すようにFCP40の接続端子41上にレジスト42を塗布した場合、導電性粒子の平均粒子径が、PCB10の接続端子11上のレジスト12とFCP40の接続端子41上のレジスト42との総厚さ以上であることにより、優れた導通抵抗が得られることが分かる。   Further, by comparing Examples 1, 2, 4, 5 and Examples 3 and 6, the average particle diameter of the conductive particles is equal to or greater than the thickness of the resist on the connection terminal, so that excellent conduction resistance is obtained. You can see that Further, when the resist 42 is applied on the connection terminal 41 of the FCP 40 as shown in Examples 8 to 14, the average particle diameter of the conductive particles is the resist 12 on the connection terminal 11 of the PCB 10 and the connection terminal 41 of the FCP 40. It can be seen that an excellent conduction resistance can be obtained when the total thickness with the resist 42 is not less than the total thickness.

また、実施例8〜14に示すように層構造IIの接合体によれば、層構造Iの接合体よりもACFの厚みを小さくすることができることが分かる。   Further, as shown in Examples 8 to 14, it can be seen that according to the joined body of the layer structure II, the thickness of the ACF can be made smaller than that of the joined body of the layer structure I.

1 第1の電子部品、2 接続端子、3 絶縁膜、4 異方性導電フィルム、5 導電性粒子、10 PCB、11 接続端子、12 レジスト、20 異方性導電フィルム、21 導電性粒子、30 FPC、31 接続端子、40 FPC、41 接続端子、42 レジスト、100 PCB、101 接続端子、110 FPC、111 接続端子、120 PCB、121 接続端子、122 レジスト   DESCRIPTION OF SYMBOLS 1 1st electronic component, 2 connection terminal, 3 insulating film, 4 anisotropic conductive film, 5 conductive particle, 10 PCB, 11 connection terminal, 12 resist, 20 anisotropic conductive film, 21 conductive particle, 30 FPC, 31 connection terminal, 40 FPC, 41 connection terminal, 42 resist, 100 PCB, 101 connection terminal, 110 FPC, 111 connection terminal, 120 PCB, 121 connection terminal, 122 resist

Claims (7)

第1の電子部品の接続端子上及び接続端子間上に絶縁膜が平坦に被覆された接続面に異方性導電フィルムを仮貼りする仮貼工程と、
前記異方性導電フィルム上に第2の電子部品の接続端子を配置させ、前記第1の電子部品と前記第2の電子部品とを本圧着させ、前記接続端子上の絶縁膜を導電性粒子によって貫通させる本圧着工程と
を有する接合体の製造方法。
A temporary pasting step of temporarily pasting an anisotropic conductive film on a connection surface in which an insulating film is flatly coated on the connection terminals and between the connection terminals of the first electronic component;
A connection terminal of a second electronic component is disposed on the anisotropic conductive film, the first electronic component and the second electronic component are finally pressure-bonded, and the insulating film on the connection terminal is formed of conductive particles. A method of manufacturing a joined body, comprising: a main press-bonding step that is caused to pass through.
前記導電性粒子のコア材が、金属又は合金であり、
前記絶縁膜が、レジストである請求項1記載の接合体の製造方法。
The core material of the conductive particles is a metal or an alloy,
The method for manufacturing a joined body according to claim 1, wherein the insulating film is a resist.
前記導電性粒子の平均粒子径が、前記接続端子上の絶縁膜の厚さ以上である請求項1又は2記載の接合体の製造方法。   The method for manufacturing a joined body according to claim 1 or 2, wherein an average particle diameter of the conductive particles is equal to or greater than a thickness of the insulating film on the connection terminal. 前記第2の電子部品は、接続端子上及び接続端子間上に絶縁膜が平坦に被覆されている請求項1又は2記載の接合体の製造方法。   3. The method for manufacturing a joined body according to claim 1, wherein the second electronic component has an insulating film coated flatly on the connection terminals and between the connection terminals. 前記導電性粒子の平均粒子径が、前記第1の電子部品及び前記第2の電子部品の接続端子上の絶縁膜の厚さ以上である請求項4記載の接合体の製造方法。   The method for manufacturing a joined body according to claim 4, wherein an average particle diameter of the conductive particles is equal to or greater than a thickness of an insulating film on a connection terminal of the first electronic component and the second electronic component. スキージを用いて、第1の電子部品の接続端子上及び接続端子間上に液状の絶縁材を塗布し、硬化させる工程をさらに有する請求項1乃至5のいずれか1項に記載の接合体の製造方法。   The joined body according to any one of claims 1 to 5, further comprising a step of applying and curing a liquid insulating material on the connection terminals and between the connection terminals of the first electronic component using a squeegee. Production method. 接続端子上及び接続端子間上に絶縁膜が平坦に被覆された第1の電子部品と、
前記第1の電子部品の接続端子と電気的に接続された第2の電子部品を備え、
前記接続端子上の絶縁膜が、導電性粒子によって貫通している接合体。
A first electronic component in which an insulating film is flatly coated on the connection terminals and between the connection terminals;
A second electronic component electrically connected to the connection terminal of the first electronic component;
A joined body in which an insulating film on the connection terminal is penetrated by conductive particles.
JP2011215091A 2011-09-29 2011-09-29 Manufacturing method of joined body Active JP5924896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011215091A JP5924896B2 (en) 2011-09-29 2011-09-29 Manufacturing method of joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011215091A JP5924896B2 (en) 2011-09-29 2011-09-29 Manufacturing method of joined body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016083582A Division JP6286473B2 (en) 2016-04-19 2016-04-19 Zygote

Publications (2)

Publication Number Publication Date
JP2012054568A true JP2012054568A (en) 2012-03-15
JP5924896B2 JP5924896B2 (en) 2016-05-25

Family

ID=45907513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011215091A Active JP5924896B2 (en) 2011-09-29 2011-09-29 Manufacturing method of joined body

Country Status (1)

Country Link
JP (1) JP5924896B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335379A (en) * 1997-05-29 1998-12-18 Brother Ind Ltd Mounting method for semiconductor device
JP2012212864A (en) * 2011-03-18 2012-11-01 Sekisui Chem Co Ltd Manufacturing method of connection structure and connection structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335379A (en) * 1997-05-29 1998-12-18 Brother Ind Ltd Mounting method for semiconductor device
JP2012212864A (en) * 2011-03-18 2012-11-01 Sekisui Chem Co Ltd Manufacturing method of connection structure and connection structure

Also Published As

Publication number Publication date
JP5924896B2 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5833809B2 (en) Anisotropic conductive film, joined body and connection method
JP5690648B2 (en) Anisotropic conductive film, connection method and connection structure
JP6435540B2 (en) Electromagnetic wave shielding film, flexible printed wiring board with electromagnetic wave shielding film, and manufacturing method thereof
JP5690637B2 (en) Anisotropic conductive film, connection method and connection structure
JP5509542B2 (en) Wiring member connection structure and wiring member connection method
JP7347576B2 (en) adhesive film
WO2007080842A1 (en) Isotropically conductive adhesive sheet and circuit board
WO2012137754A1 (en) Anisotropic conductive film, method for producing connected body, and connected body
KR20190087365A (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
JP2011049175A (en) Connection method and connection structure for electronic component
JP6505423B2 (en) Method of manufacturing mounting body, and anisotropic conductive film
JP5024117B2 (en) Circuit member mounting method
JP6307191B2 (en) Metal foil for press bonding and electronic component package
JP6286473B2 (en) Zygote
JP5924896B2 (en) Manufacturing method of joined body
KR20230159702A (en) Conductive adhesive layer
JP5082296B2 (en) Adhesive with wiring and circuit connection structure
JP6321944B2 (en) Metal foil for press bonding and electronic component package
JP2012160765A (en) Flexible printed wiring board and manufacturing method thereof
JP6431572B2 (en) Connection film, connection film manufacturing method, connection structure, connection structure manufacturing method, and connection method
JP5966069B2 (en) Anisotropic conductive film, joined body and connection method
JP2007258421A (en) Flexible printed-wiring board and its manufacturing method
JP6177642B2 (en) Connection film, connection structure, method for manufacturing connection structure, connection method
JP6307308B2 (en) Manufacturing method of connection structure and circuit connection material
JP2010206209A (en) Connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160419

R150 Certificate of patent or registration of utility model

Ref document number: 5924896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250