WO2015131602A1 - 一种多端柔性直流输电系统的协调控制方法 - Google Patents
一种多端柔性直流输电系统的协调控制方法 Download PDFInfo
- Publication number
- WO2015131602A1 WO2015131602A1 PCT/CN2014/093832 CN2014093832W WO2015131602A1 WO 2015131602 A1 WO2015131602 A1 WO 2015131602A1 CN 2014093832 W CN2014093832 W CN 2014093832W WO 2015131602 A1 WO2015131602 A1 WO 2015131602A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- station
- network
- power
- direct current
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/36—Arrangements for transfer of electric power between ac networks via a high-tension dc link
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Definitions
- the invention relates to the field of flexible direct current transmission technology, in particular to a coordinated control method for a multi-terminal flexible direct current transmission system, in particular to a control method for a flexible direct current transmission converter of a multi-terminal converter station with three ends and above.
- the Modular Multilevel Converter (MMC) for flexible DC transmission uses the new modular multi-level topology that is currently popular in the world. Its core unit, Sub Module (SM), is a half-bridge structure consisting of two switchable power electronic switching devices with anti-parallel diodes and a capacitor.
- the multi-terminal connection mode is the same as the two-level and three-level flexible direct current transmission modes, and is connected in parallel by the T-connected converter station.
- the multi-terminal coordinated control method currently used is a multi-point DC voltage coordinated control method based on DC voltage deviation.
- the power of the DC network is out of balance. If the power of the injected DC network is less than the transmission power of the DC network, the DC voltage drops.
- station 2 detects that the DC voltage is lower than the DC voltage threshold, station 2 switches from the current control mode to the constant DC voltage control within the allowable range of capacity to stabilize the DC voltage of the flexible DC system.
- the multi-point DC voltage coordinated control method based on DC voltage deviation needs to detect that the DC voltage rises or falls to the set value, and the judgment is slow. When the takeover occurs, the DC voltage of the system oscillates greatly, and overvoltage or undervoltage faults are prone to occur.
- Patent 201210442336.4 proposes an improved coordinated control method: (1) In the case where the inter-station communication is effective, the DC voltage master station will stop the information through the inter-station communication. The DC voltage sent to the take-over control slave station, the DC voltage control slave station monitors to the DC voltage master control station after the shutdown, switches from the current control mode to the DC voltage control mode; (2) the station-to-station communication fails or no station In the case of inter-communication, the DC voltage controls the change of the DC voltage of the slave monitoring system. When the difference between the DC voltage value and the rated value exceeds a certain threshold, the current control mode is switched to the DC voltage control mode. This method shortens the detection process and improves the stability of the system. However, there is still a slow judgment in the absence of communication. At the same time, this method does not involve adjusting the DC voltage setting by power, and the problem of DC voltage oscillation cannot be solved more effectively.
- Patent 201310093266.0 "A method for controlling the DC voltage deviation slope of a multi-terminal flexible DC transmission system” combines a DC voltage deviation and a DC voltage slope control method to accelerate the dynamic response characteristics of the system.
- the DC voltage change caused when the flow of other stations reaches the limit is likely to cause the DC voltage to exceed the limit.
- the present invention provides a coordinated control method for a multi-terminal flexible direct current transmission system, which does not require inter-station communication, and solves a DC system voltage increase caused by a converter station failure or maintenance shutdown. .
- the invention provides a coordinated control method for a multi-terminal flexible direct current transmission system, which is improved in that when the direct current network is disturbed or malfunctioned in the system, the method comprises the following steps:
- the two fixed DC voltage stations in the multi-terminal system are set as the fixed DC voltage control station, and the fixed DC voltage control station is used as the balance node in the DC network.
- an N-1 fault occurs, including the following conditions:
- Case 1 The DC voltage in the DC network does not change, that is, the DC network is controlled when a certain active power station is locked out and the N-1 fault occurs or the DC network power flow changes.
- the fixed DC voltage station maintains the DC network voltage and balances the active power of the multi-terminal flexible direct current transmission system, and the fixed active power station maintains the DC network power according to the power demand of the active power station and the DC network voltage;
- Case 2 The DC voltage fluctuation in the DC network exceeds the normal operating range allowed by the DC voltage (the normal operating range allowed by the DC voltage is 0.95 pu ⁇ 1.05 pu, as shown in the dotted line range shown in Figures 4 and 6), that is, a change
- the DC station is controlled when the flow station is blocked from exiting and the N-1 fault occurs or the DC network power flow changes cause the DC voltage to change;
- the normal operating range allowed by the DC voltage is 0.95 p.u to 1.05 p.u.
- the DC voltage in the DC network does not change, that is, when a certain active power station is locked out and the N-1 fault occurs or the DC network power flow changes, the DC voltage station maintains the DC network voltage and balances the multi-end.
- the active power of the flexible direct current transmission system, the fixed power converter station maintains the DC network power according to the power demand of each active power converter station and the DC network voltage.
- the DC voltage variation in the DC network exceeds the normal operating range allowed by the DC voltage (the normal operating interval allowed by the DC voltage is 0.95 pu to 1.05 pu, as shown in the dotted line ranges shown in FIGS. 4 and 6. If the DC voltage exceeds this range for a long time, it will cause overvoltage in the converter station equipment, which will affect the safety of the equipment.), that is, a converter station is locked out and the operation occurs. N-1 fault or DC network power flow change causes the DC voltage to change beyond the allowable.
- the DC power supply droop slope control of the active power station adjusts the power demand of each station according to the transient change of the DC voltage to avoid the instability of the AC/DC network; the unblocked DC voltage station balances the current of the DC network;
- the DC voltage station When the DC voltage station reaches the limit of its power regulation capability, the DC voltage will not be controlled by the command value but will remain stable, causing the DC voltage to exceed the normal operating range allowed by the DC voltage for a long time, causing overvoltage or low voltage of the converter station equipment.
- the change of the power flow is introduced into the constant DC voltage control link to maintain the DC network voltage at the set level;
- the other fixed power stations adjust the power of each station according to the DC voltage again, so that the power variation of each active power station after the fault is minimized, and the power level required by each station before the fault is reached;
- the normal operating range allowed by the DC voltage is 0.95 p.u to 1.05 p.u.
- the droop slope control in the step (1) follows an adjustment relationship in which the DC current increase amount is proportional to the DC voltage decrease amount.
- the present invention optimizes a fixed DC voltage station controller.
- the present invention can adjust the system DC voltage and the power of each station with an optimal target, so that the DC network can maintain the optimal voltage after a serious fault occurs. Level.
- the fixed DC voltage control station of the method acts as a regulating power balance station, stabilizes the power of the fixed power station, reduces the overvoltage of the DC side equipment, and solves the DC voltage increase caused by the one station blocking of the multi-terminal converter station or reduce.
- the method provided by the present invention is applicable to any three-terminal and above DC network structure; it is suitable for modular multi-level or two-level, three-level and other flexible DC converter topologies.
- FIG. 1 is a schematic diagram of a droop slope control structure of a constant DC voltage station provided by the present invention: a DC current is involved in adjustment;
- FIG 3 is a graph showing the active change of the multi-terminal straightening system provided by the present invention (the DC voltage station has no drooping slope control);
- FIG. 4 is a graph showing a DC voltage variation curve of a multi-terminal straightening system provided by the present invention (a DC voltage station has no drooping slope control);
- Figure 5 is a graph showing the active change of the multi-terminal straightening system provided by the present invention (DC voltage station is added to the droop slope control);
- FIG. 6 is a graph showing a DC voltage variation curve of a multi-terminal straight-line system according to the present invention (a DC voltage station is added to a droop slope control);
- FIG. 7 is a schematic diagram of a droop slope control structure of a constant power station provided by the present invention: a DC voltage participates in adjustment;
- FIG. 8 is a flow chart of a coordinated control method for a multi-terminal flexible direct current transmission system provided by the present invention.
- the present invention designs a control method for maintaining the DC voltage of the system after a station is blocked, and does not require inter-station communication, and solves the DC system voltage caused by a converter station failure or maintenance shutdown. Raise or lower.
- a flowchart of a coordinated control method for a multi-terminal flexible direct current transmission system provided by the present invention is shown in FIG. 8 and includes:
- the coordinated control method for stabilizing the DC grid is implemented.
- the DC voltage station is added to the DC current regulation droop control, the control block diagram is shown in Figure 1;
- the active power station is added to the DC voltage regulation droop control, the control block diagram is shown in the figure 7;
- the two stations in the multi-terminal system are set as the fixed DC voltage control station, and the station can be used as the balance node in the DC network.
- the fixed DC voltage stations are controlled by the DC current droop slope described in the step (1), and the remaining fixed power stations are controlled by the DC voltage droop slope described in the step (2).
- the fixed power station determines the power setting value of each station according to the AC side power demand of each station.
- the two fixed DC voltage stations serve as the power balance station of the DC network, and the power flow of the AC/DC system is optimal.
- Case 1 The DC voltage in the DC network is constant, that is, when a certain active power station is blocked and exits, when the N-1 fault occurs or the DC network power flow changes, the DC voltage station maintains the DC network voltage and balances the active power of the multi-terminal flexible DC transmission system.
- the fixed active power converter station maintains the DC network power according to the power demand of each active power converter station and the DC network voltage.
- Case 2 The DC voltage change in the DC network exceeds the normal operating range allowed by the DC voltage, that is, when a converter station is locked out and the operation occurs, N-1 fault or DC network power flow change causes the DC voltage to change beyond the allowable normal operating range.
- the DC voltage droop slope control of the power station adjusts the power of each station according to the transient change of the DC voltage to avoid the instability of the AC/DC network; the unblocked DC voltage station balances the current of the DC network;
- the DC voltage station When the DC voltage station reaches the limit of its power regulation capability, the DC voltage will not be controlled by the command value but will remain stable, causing the DC voltage to exceed the normal operating range allowed by the DC voltage for a long time, causing overvoltage or low voltage of the converter station equipment.
- step (1) Adding the DC current droop slope control described in step (1), after the constant DC voltage station reaches the limit of the power flow adjustment capability, the change of the power flow is introduced into the constant DC voltage control link to maintain the DC network voltage at the set level;
- the other fixed power stations adjust the power of each station according to the DC voltage again, so that the power variation of each active power station after the fault is minimized, and the power level required by each station before the fault is reached; the constant power station provided by the present invention: DC voltage participation
- the adjusted droop slope control structure is shown in Figure 7.
- the normal operating range allowed by the DC voltage is 0.95 p.u to 1.05 p.u.
- the difference between the integrated coordinated control method of the present invention and the drooping slope control method described in (2) only can be seen by the comparison of Figs.
- the biggest difference is that the present invention optimizes the fixed DC voltage station controller.
- the present invention can adjust the DC voltage of the system and the power of each station with an optimal target, so that the DC network can maintain an optimal voltage level after a serious fault occurs. .
- station 1 and station 2 use conventional constant DC voltage control; station 3, station 4 and station 5 use constant power control with droop power control.
- station 1 fails to lock, the DC voltage rises from 1 p.u. to 1.25 p.u.
- Station 1 and Station 2 use constant DC voltage control with droop slope control
- Station 3 use constant power control with droop power control.
- the station 1 is blocked, the DC voltage is still stable at 1p.u., and the fluctuation is less than 1.05p.u., p.u. indicates the value of the standard.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Direct Current Feeding And Distribution (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
一种多端柔性直流输电系统的协调控制方法,包括下述步骤:(1)在多端柔性直流输电系统中,定直流电压站加入直流电流调节的下垂斜率控制;(2)定有功功率站加入直流电压调节的下垂斜率控制;(3)当无站间通讯时,将多端系统中的两个定电流电压站设定为定直流电压控制站,定直流电压控制站作为直流网络中的平衡节点。当系统运行状况超出仅有直流电压下垂斜率控制所能调节的范围时,该方法能够以最优的目标调整系统直流电压及各站功率,使直流网络发生严重故障后仍能维持最优电压水平。
Description
本发明涉及柔性直流输电技术领域,具体涉及一种多端柔性直流输电系统的协调控制方法,尤其涉及3端及以上的多端换流站柔性直流输电换流器的控制方法。
用于柔性直流输电的模块化多电平换流器(Modular Multilevel Converter,MMC)采用目前国际上较为流行的新型模块化多电平拓扑结构。其核心单元——子模块(Sub Module,SM)是由两个带有反并联二极管的可关断的电力电子开关器件和一个电容器构成的半桥结构。多端连接方式与两电平和三电平柔性直流输电方式相同,采用T接换流站并联方式连接。
目前较多采用的多端协调控制方法为基于直流电压偏差的多点直流电压协调控制方式。以3端模型为例,当站1停运时,直流网络的功率失去平衡,若注入直流网络功率小于直流网络发送功率,则直流电压下降。站2检测到直流电压低于直流电压阈值时,站2在容量允许范围内由当前控制方式切换为定直流电压控制,稳定柔性直流系统的直流电压。基于直流电压偏差的多点直流电压协调控制方式需通过检测直流电压上升或者下降到设定值,判断较慢,其存在接管时系统直流电压振荡较大,容易出现过电压或者欠压故障。
专利201210442336.4“一种多端柔性直流输电系统协调控制方法”提出的一种改进的协调控制方法为:(1)在站间通讯有效的情况下,直流电压主控站通过站间通讯将停运信息发送至该接管的直流电压控制从站,该直流电压控制从站监视到直流电压主控站停运后,从当前控制方式切换到直流电压控制方式;(2)在站间通讯失效或者无站间通讯的情况下,直流电压控制从站监测系统直流电压的变化,当直流电压值与额定值的差值超过一定阈值后,即从当前控制方式切换到直流电压控制方式。这种方式缩短了检测的过程,提高了系统的稳定性。但在无通信情况下仍然存在判断较慢的情况。同时此方法未涉及通过功率调整直流电压定值,无法更有效地解决直流电压震荡的问题。
专利201310093266.0“一种多端柔性直流输电系统的直流电压偏差斜率控制方法”中结合了直流电压偏差与直流电压斜率控制方式,加快系统的动态响应特性。但主站和后备站切换的过程中,未考虑按照新的直流电压定值进行调节时,当其他几个站潮流达到限值时造成的直流电压变化,易造成直流电压越限等情况出现。
发明内容
针对现有技术的不足,本发明的是提供一种多端柔性直流输电系统的协调控制方法,该方法无需站间通讯,解决因某个换流站故障或检修停运造成的直流系统电压升高。
本发明的目的是采用下述技术方案实现的:
本发明提供一种多端柔性直流输电系统的协调控制方法,其改进之处在于,当直流网络在系统扰动或故障时,所述方法包括下述步骤:
(1)在多端柔性直流输电系统中,定直流电压站加入直流电流调节的下垂斜率控制;
(2)定有功功率站加入直流电压调节的下垂斜率控制;
(3)当无站间通讯时,将多端系统中的两个定直流电压站设定为定直流电压控制站,定直流电压控制站作为直流网络中的平衡节点。
进一步地,当直流网络潮流变化时,或直流网络中某一换流站受到扰动或故障引起某一换流站闭锁时,即发生N-1故障,包括下述情况进行控制:
情况一:直流网络中直流电压不变,即某一定有功功率站闭锁退出运行发生N-1故障或直流网络潮流变化时对直流网络进行控制;
定直流电压站维持直流网络电压,并平衡多端柔性直流输电系统有功功率,定有功功率站根据有功功率站的功率需求及直流网络电压维持直流网络功率;
情况二:直流网络中直流电压波动,超出直流电压允许的正常运行范围时(直流电压允许的正常运行区间为0.95p.u~1.05p.u,如图4和6所示的虚线范围。),即某换流站闭锁退出运行发生N-1故障或直流网络潮流变化引起直流电压变化时对直流网络进行控制;
所述直流电压允许的正常运行范围为0.95p.u~1.05p.u。
进一步地,所述情况一中,直流网络中直流电压不变,即某一定有功功率站闭锁退出运行发生N-1故障或直流网络潮流变化时,定直流电压站维持直流网络电压,并平衡多端柔性直流输电系统有功功率,定有功功率换流站根据各有功功率换流站的功率需求及直流网络电压维持直流网络功率。
进一步地,所述情况二中,直流网络中直流电压变化超出直流电压允许的正常运行范围(直流电压允许的正常运行区间为0.95p.u~1.05p.u,如图4和6所示的虚线范围。如直流电压超出该范围长时间运行,会造成换流站设备产生过电压,影响设备安全。),即某换流站闭锁退出运行发生N-1故障或直流网络潮流变化引起直流电压变化超出允许的正常运行范围时,定有功功率站直流电压下垂斜率控制根据直流电压暂态变化情况调整各站功率需求,避免交直流网络失稳;未闭锁的定直流电压站平衡直流网络的潮流;
当定直流电压站达到其功率调节能力的极限时,直流电压将不受指令值控制但保持稳定,造成直流电压长时间超出直流电压允许的正常运行范围,从而引起换流站设备过电压或低压;加入步骤(1)所描述的直流电流下垂斜率控制,在定直流电压站达到潮流调节能力极限后,将潮流的变化引入定直流电压控制环节,实现维持直流网络电压在设定水平不变;其他定有功功率站再一次根据直流电压调整各站功率,使故障后各定有功功率站的功率变化最小,达到故障前各站所需的功率水平;
所述直流电压允许的正常运行范围为0.95p.u~1.05p.u。
进一步地,所述步骤(1)中的下垂斜率控制遵循直流电流增加量与直流电压降低量成正比的调节关系。
与现有技术比,本发明达到的有益效果是:
1、本发明优化了定直流电压站控制器。当系统运行状况超出仅有直流电压下垂斜率控制所能调节的范围时,本发明能够以最优的目标调整系统直流电压及各站功率,使直流网络发生较严重故障后仍能维持最优电压水平。
2、本方法的定直流电压控制站作为调节功率平衡站,稳定了定功率站的功率,减小了直流侧设备过压,解决了多端换流站因一站闭锁造成的直流电压升高或降低。
3、在多种直流网络结构中,无需站间通讯。当发生变压器或线路N-1故障后,任意站无需改变其控制策略,即可对严重故障造成的直流电压变化进行有效抑制,确保设备安全运行。同时能够在定直流电压站达到功率调节极限时,使整个直流网络达到系统最优潮流,起到优化直流网络潮流的目的。
4、本发明提供的方法适用于任意3端及以上的直流网络结构;适用于模块化多电平或两电平、三电平等多种柔性直流换流器拓扑。
图1是本发明提供的定直流电压站:直流电流参与调节的下垂斜率控制结构图;
图2是本发明提供的直流电流下垂斜率控制UI特性曲线;
图3是本发明提供的多端柔直系统有功变化曲线图(直流电压站无下垂斜率控制);
图4是本发明提供的多端柔直系统直流电压变化曲线图(直流电压站无下垂斜率控制);
图5是本发明提供的多端柔直系统有功变化曲线图(直流电压站加入下垂斜率控制);
图6是本发明提供的多端柔直系统直流电压变化曲线图(直流电压站加入下垂斜率控制);
图7是本发明提供的定功率站:直流电压参与调节的下垂斜率控制结构图;
图8是本发明提供的多端柔性直流输电系统的协调控制方法的流程图。
下面结合附图对本发明的具体实施方式作进一步的详细说明。
针对多端柔性直流输电系统直流电压稳定问题,本发明设计了一站故障闭锁后保持系统直流电压的控制方法,无需站间通讯,解决因某个换流站故障或检修停运造成的直流系统电压升高或降低。本发明提供的多端柔性直流输电系统的协调控制方法的流程图如图8所示,包括:
直流网络在系统扰动或故障时,用于稳定直流电网的协调控制方法实现含三
部分内容设计:(1)多端系统中,定直流电压站加入直流电流调节的下垂控制,控制框图如图1所示;(2)定有功功率站加入直流电压调节的下垂控制,控制框图如图7所示;(3)当无站间通讯时,将多端系统中的两个站设定为定直流电压控制站,该站可作为直流网络中的平衡节点。
在多端柔性直流输电系统中,两个定直流电压站采用步骤(1)所描述的直流电流下垂斜率控制,其余定功率站采用步骤(2)所描述的直流电压下垂斜率控制。在系统正常运行时,定功率站根据各站的交流侧功率需求确定各站的功率定值,两个定直流电压站作为直流网络的功率平衡站,达到交直流系统的潮流最优。
当直流网络潮流变化时,或直流网络中某一站受到扰动或故障引起某一换流站闭锁时(即发生N-1故障),分两种情况描述本发明的协调控制方法:
情况一:直流网络中直流电压不变,即某一定有功功率站闭锁退出运行发生N-1故障或直流网络潮流变化时,定直流电压站维持直流网络电压,并平衡多端柔性直流输电系统有功功率,定有功功率换流站根据各有功功率换流站的功率需求及直流网络电压维持直流网络功率。
情况二:直流网络中直流电压变化超出直流电压允许的正常运行范围,即某换流站闭锁退出运行发生N-1故障或直流网络潮流变化引起直流电压变化超出允许的正常运行范围时,定有功功率站直流电压下垂斜率控制根据直流电压暂态变化情况调整各站功率,避免交直流网络失稳;未闭锁的定直流电压站平衡直流网络的潮流;
当定直流电压站达到其功率调节能力的极限时,直流电压将不受指令值控制但保持稳定,造成直流电压长时间超出直流电压允许的正常运行范围,从而引起换流站设备过电压或低压;加入步骤(1)所描述的直流电流下垂斜率控制,在定直流电压站达到潮流调节能力极限后,将潮流的变化引入定直流电压控制环节,实现维持直流网络电压在设定水平不变;其他定有功功率站再一次根据直流电压调整各站功率,使故障后各定有功功率站的功率变化最小,达到故障前各站所需的功率水平;本发明提供的定功率站:直流电压参与调节的下垂斜率控制结构图如图7所示。
所述直流电压允许的正常运行范围为0.95p.u~1.05p.u。
可通过图3-图6的对比看出本发明的综合协调控制方法与只加入(2)所描述的下垂斜率控制方法的不同之处。最大的区别在于:本发明优化了定直流电压站控制器。当系统运行状况超出直流电压下垂控制(2)可调节的范围时,本发明能够以最优的目标调整系统直流电压及各站功率,使直流网络发生较严重故障后仍能维持最优电压水平。
实施例1
以五端系统为例:站1和站2采用常规定直流电压控制;站3、站4和站5采用带下垂功率控制的定功率控制。当站1故障闭锁后,直流电压由1p.u.升高至1.25p.u.。
实施例2
以五端系统为例:站1和站2采用带下垂斜率控制的定直流电压控制;站3、站4和站5采用带下垂功率控制的定功率控制。当站1故障闭锁后,直流电压仍稳定在1p.u.运行,且波动小于1.05p.u.,p.u.表示标幺值。
通过两种算法比较可以看到:未加本控制的算例1,故障后直流电压上升,使设备绝缘域度大大降低;而采用本控制方法的算例2未造成直流电压变化。最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。
Claims (5)
- 一种多端柔性直流输电系统的协调控制方法,其特征在于,当直流网络在系统扰动或故障时,所述方法包括下述步骤:(1)在多端柔性直流输电系统中,定直流电压站或主控站加入直流电流调节的下垂斜率控制;(2)定有功功率站加入直流电压调节的下垂斜率控制;(3)当无站间通讯时,将多端系统中的两个定直流电压站设定为定直流电压控制站,定直流电压控制站作为直流网络中的平衡节点。
- 如权利要求1所述的协调控制方法,其特征在于,当直流网络潮流变化时,或直流网络中某一换流站受到扰动或故障引起任一换流站闭锁时,即发生N-1故障,包括下述情况进行控制:情况一:直流网络中直流电压不变,即某一定有功功率站闭锁退出运行发生N-1故障或直流网络潮流变化时对直流网络进行控制;定直流电压站维持直流网络电压,并平衡多端柔性直流输电系统有功功率,定有功功率站根据有功功率站的功率需求及直流网络电压维持直流网络功率;情况二:直流网络中直流电压波动,超出直流电压允许的正常运行范围时,即某换流站闭锁退出运行发生N-1故障或直流网络潮流变化引起直流电压变化时对直流网络进行控制;所述直流电压允许的正常运行范围为0.95p.u~1.05p.u。
- 如权利要求2所述的协调控制方法,其特征在于,所述情况一中,直流网络中直流电压不变,即某一换流站闭锁退出运行发生N-1故障或直流网络潮流变化时,定直流电压站维持直流网络电压,并平衡多端柔性直流输电系统有功功率,定有功功率换流站根据各有功功率换流站的功率需求及直流网络电压维持直流网络功率。
- 如权利要求2所述的协调控制方法,其特征在于,所述情况二中,直流网络中直流电压变化超出直流电压允许的正常运行范围,即某换流站闭锁退出运行发生N-1故障或直流网络潮流变化引起直流电压变化超出允许的正常运行范围时,定有功功率站直流电压下垂斜率控制根据直流电压暂态变化情况调整各站功率需求,避免交直流网络失稳;未闭锁的定直流电压站平衡直流网络的潮流;当定直流电压站达到其功率调节能力的极限时,直流电压将不受指令值控制但保持稳定,造成直流电压长时间超出直流电压允许的正常运行范围,从而引起换流站设备过电压或低压;加入步骤(1)所描述的直流电流下垂斜率控制,在定直流电压站达到潮流调节能力极限后,将潮流的变化引入定直流电压控制环节,实现维持直流网络电压在设定水平不变;其他定有功功率站再一次根据直流电压调整各站功率,使故障后各定有功功率站的功率变化最小,达到故障前各站所需的功率水平;所述直流电压允许的正常运行范围为0.95p.u~1.05p.u。
- 如权利要求1所述的协调控制方法,其特征在于,所述步骤(1)中的下垂斜率控制遵循直流电流增加量与直流电压降低量成正比的调节关系。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410075641.3 | 2014-03-04 | ||
CN201410075641.3A CN104901301B (zh) | 2014-03-04 | 2014-03-04 | 一种多端柔性直流输电系统的协调控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015131602A1 true WO2015131602A1 (zh) | 2015-09-11 |
Family
ID=54033792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/093832 WO2015131602A1 (zh) | 2014-03-04 | 2014-12-15 | 一种多端柔性直流输电系统的协调控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104901301B (zh) |
WO (1) | WO2015131602A1 (zh) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106058842A (zh) * | 2016-07-25 | 2016-10-26 | 国家电网公司 | 一种直流电网电压控制的方法 |
CN106451515A (zh) * | 2016-08-17 | 2017-02-22 | 东北电力大学 | 适用于多端柔性直流输电系统的广义下垂控制方法 |
CN106602587A (zh) * | 2017-01-13 | 2017-04-26 | 全球能源互联网研究院 | 一种适用于柔性直流输电系统的附加功率控制方法和装置 |
CN106786481A (zh) * | 2017-01-23 | 2017-05-31 | 全球能源互联网研究院 | 一种直流电网多点电压控制方法 |
CN107732894A (zh) * | 2017-11-06 | 2018-02-23 | 许继电气股份有限公司 | 一种三端直流输电系统及其换流站的控制方法 |
CN109347111A (zh) * | 2018-10-22 | 2019-02-15 | 国网山东省电力公司济南供电公司 | 一种考虑电压变化率的柔性直流换流站有功无功控制方法 |
EP3419136A4 (en) * | 2016-03-30 | 2019-04-17 | NR Electric Co., Ltd. | METHOD FOR CONTROLLING DIRECT CURRENT POWER NETWORK VOLTAGE |
CN109802425A (zh) * | 2017-11-17 | 2019-05-24 | 中国电力科学研究院有限公司 | 一种柔直电网无源送出系统故障穿越的方法和装置 |
CN109936139A (zh) * | 2019-04-30 | 2019-06-25 | 国网内蒙古东部电力有限公司 | 一种配电网双端柔性互联配电系统及其配电方法 |
CN110247415A (zh) * | 2019-05-09 | 2019-09-17 | 华北电力大学 | 一种适用于风电送出的mmc-lcc型直流输电系统拓扑 |
CN111224420A (zh) * | 2019-10-14 | 2020-06-02 | 中国电力科学研究院有限公司 | 一种用于换流站大扰动后自适应的下垂控制方法及系统 |
CN111953013A (zh) * | 2020-07-22 | 2020-11-17 | 南京东博智慧能源研究院有限公司 | 真双极柔性直流输电系统故障下的自适应优化调控方法 |
CN112147977A (zh) * | 2020-08-19 | 2020-12-29 | 中国南方电网有限责任公司 | 一种直流输电系统的稳控系统高保真传动试验方法 |
CN112202192A (zh) * | 2020-01-03 | 2021-01-08 | 南京南瑞继保工程技术有限公司 | 一种柔性直流稳定控制用直流阀组运行及闭锁判别方法 |
CN112436518A (zh) * | 2020-11-02 | 2021-03-02 | 哈尔滨工程大学 | 一种传统下垂控制微电网的精确潮流计算方法 |
CN112467775A (zh) * | 2020-10-30 | 2021-03-09 | 中国南方电网有限责任公司超高压输电公司 | 一种并联三端直流输电系统平衡双极电流的方法 |
CN112886629A (zh) * | 2021-03-22 | 2021-06-01 | 国家电网公司华北分部 | 多馈出直流系统暂态过电压的评估方法及装置 |
CN113054629A (zh) * | 2019-12-27 | 2021-06-29 | 西安西电高压开关有限责任公司 | 一种直流配电网及其优化控制方法和装置 |
CN113890039A (zh) * | 2021-10-09 | 2022-01-04 | 广东电网有限责任公司 | 一种多端柔性直流配电网潮流调度优化方法 |
CN114142512A (zh) * | 2021-11-02 | 2022-03-04 | 广东电网有限责任公司电力调度控制中心 | 基于多直流馈入受端电网的柔性直流系统控制方法和装置 |
CN114268127A (zh) * | 2021-12-09 | 2022-04-01 | 华北电力大学 | 一种大规模风电接入的混合直流输电系统送端电网频率控制策略 |
CN117239817A (zh) * | 2023-09-20 | 2023-12-15 | 兰州理工大学 | 一种基于柔性直流并网的光储与风光协调运行方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106936141B (zh) * | 2015-12-30 | 2020-10-13 | 国网辽宁省电力有限公司电力科学研究院 | 一种柔性环网控制器的有功功率控制方法及其控制系统 |
CN106655235A (zh) * | 2016-10-18 | 2017-05-10 | 南方电网科学研究院有限责任公司 | 一种混合多端直流系统的能量平衡调控方法及其系统 |
CN108767864B (zh) * | 2018-06-06 | 2020-07-10 | 华中科技大学 | 一种基于柔性多状态开关的配电网电压波动越限抑制方法 |
CN108923448B (zh) * | 2018-06-19 | 2022-04-29 | 东南大学 | 一种多端柔性直流输电协调控制方法及系统 |
CN109120005B (zh) * | 2018-06-22 | 2022-04-01 | 华北电力大学(保定) | 一种多端柔性直流输电系统功率协调控制方法 |
CN110492520B (zh) * | 2019-08-21 | 2023-05-26 | 国网山西省电力公司电力科学研究院 | 基于换流器容量和调节速度的直流电压斜率控制策略 |
CN111416376B (zh) * | 2020-03-13 | 2021-09-07 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 一种特高压柔性直流定有功功率mmc换流站电压平衡方法 |
CN111884195B (zh) * | 2020-07-27 | 2022-01-04 | 山东大学 | 考虑概率潮流的直流电网下垂控制裕度优化方法及系统 |
CN112398157B (zh) * | 2020-09-14 | 2022-11-04 | 国电南瑞科技股份有限公司 | 一种基于损耗最优的多端直流系统运行控制方法和装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102969733A (zh) * | 2012-11-08 | 2013-03-13 | 南京南瑞继保电气有限公司 | 一种多端柔性直流输电系统协调控制方法 |
CN103368170A (zh) * | 2013-06-26 | 2013-10-23 | 许继集团有限公司 | 一种多端柔性直流输电系统的换流器及其控制方法 |
CN103414179A (zh) * | 2013-06-04 | 2013-11-27 | 南方电网科学研究院有限责任公司 | 一种适用于多端柔性直流输电系统的下垂控制方法 |
-
2014
- 2014-03-04 CN CN201410075641.3A patent/CN104901301B/zh active Active
- 2014-12-15 WO PCT/CN2014/093832 patent/WO2015131602A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102969733A (zh) * | 2012-11-08 | 2013-03-13 | 南京南瑞继保电气有限公司 | 一种多端柔性直流输电系统协调控制方法 |
CN103414179A (zh) * | 2013-06-04 | 2013-11-27 | 南方电网科学研究院有限责任公司 | 一种适用于多端柔性直流输电系统的下垂控制方法 |
CN103368170A (zh) * | 2013-06-26 | 2013-10-23 | 许继集团有限公司 | 一种多端柔性直流输电系统的换流器及其控制方法 |
Non-Patent Citations (1)
Title |
---|
YAN, FAYOU ET AL.: "An Improved Droop Control Strategy for MMC-based VSC-MTDC Systems", PROCEEDINGS OF THE CSEE, vol. 34, no. 3, 25 January 2014 (2014-01-25), pages 399 - 403, XP055222334, ISSN: 0258-8013 * |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3419136A4 (en) * | 2016-03-30 | 2019-04-17 | NR Electric Co., Ltd. | METHOD FOR CONTROLLING DIRECT CURRENT POWER NETWORK VOLTAGE |
CN106058842A (zh) * | 2016-07-25 | 2016-10-26 | 国家电网公司 | 一种直流电网电压控制的方法 |
CN106451515A (zh) * | 2016-08-17 | 2017-02-22 | 东北电力大学 | 适用于多端柔性直流输电系统的广义下垂控制方法 |
CN106451515B (zh) * | 2016-08-17 | 2019-04-26 | 东北电力大学 | 适用于多端柔性直流输电系统的广义下垂控制方法 |
CN106602587B (zh) * | 2017-01-13 | 2023-01-24 | 全球能源互联网研究院有限公司 | 一种适用于柔性直流输电系统的附加功率控制方法和装置 |
CN106602587A (zh) * | 2017-01-13 | 2017-04-26 | 全球能源互联网研究院 | 一种适用于柔性直流输电系统的附加功率控制方法和装置 |
CN106786481A (zh) * | 2017-01-23 | 2017-05-31 | 全球能源互联网研究院 | 一种直流电网多点电压控制方法 |
CN107732894A (zh) * | 2017-11-06 | 2018-02-23 | 许继电气股份有限公司 | 一种三端直流输电系统及其换流站的控制方法 |
CN107732894B (zh) * | 2017-11-06 | 2024-04-12 | 许继电气股份有限公司 | 一种三端直流输电系统及其换流站的控制方法 |
CN109802425A (zh) * | 2017-11-17 | 2019-05-24 | 中国电力科学研究院有限公司 | 一种柔直电网无源送出系统故障穿越的方法和装置 |
CN109802425B (zh) * | 2017-11-17 | 2023-09-22 | 中国电力科学研究院有限公司 | 一种柔直电网无源送出系统故障穿越的方法和装置 |
CN109347111A (zh) * | 2018-10-22 | 2019-02-15 | 国网山东省电力公司济南供电公司 | 一种考虑电压变化率的柔性直流换流站有功无功控制方法 |
CN109347111B (zh) * | 2018-10-22 | 2022-12-13 | 国网山东省电力公司济南供电公司 | 一种考虑电压变化率的柔性直流换流站有功无功控制方法 |
CN109936139A (zh) * | 2019-04-30 | 2019-06-25 | 国网内蒙古东部电力有限公司 | 一种配电网双端柔性互联配电系统及其配电方法 |
CN110247415A (zh) * | 2019-05-09 | 2019-09-17 | 华北电力大学 | 一种适用于风电送出的mmc-lcc型直流输电系统拓扑 |
CN111224420B (zh) * | 2019-10-14 | 2022-10-18 | 中国电力科学研究院有限公司 | 一种用于换流站大扰动后自适应的下垂控制方法及系统 |
CN111224420A (zh) * | 2019-10-14 | 2020-06-02 | 中国电力科学研究院有限公司 | 一种用于换流站大扰动后自适应的下垂控制方法及系统 |
CN113054629B (zh) * | 2019-12-27 | 2024-06-04 | 西安西电高压开关有限责任公司 | 一种直流配电网及其优化控制方法和装置 |
CN113054629A (zh) * | 2019-12-27 | 2021-06-29 | 西安西电高压开关有限责任公司 | 一种直流配电网及其优化控制方法和装置 |
CN112202192A (zh) * | 2020-01-03 | 2021-01-08 | 南京南瑞继保工程技术有限公司 | 一种柔性直流稳定控制用直流阀组运行及闭锁判别方法 |
CN111953013A (zh) * | 2020-07-22 | 2020-11-17 | 南京东博智慧能源研究院有限公司 | 真双极柔性直流输电系统故障下的自适应优化调控方法 |
CN111953013B (zh) * | 2020-07-22 | 2023-02-14 | 南京东博智慧能源研究院有限公司 | 真双极柔性直流输电系统故障下的自适应优化调控方法 |
CN112147977B (zh) * | 2020-08-19 | 2023-09-01 | 中国南方电网有限责任公司 | 一种直流输电系统的稳控系统高保真传动试验方法 |
CN112147977A (zh) * | 2020-08-19 | 2020-12-29 | 中国南方电网有限责任公司 | 一种直流输电系统的稳控系统高保真传动试验方法 |
CN112467775B (zh) * | 2020-10-30 | 2023-05-16 | 中国南方电网有限责任公司超高压输电公司 | 一种并联三端直流输电系统平衡双极电流的方法 |
CN112467775A (zh) * | 2020-10-30 | 2021-03-09 | 中国南方电网有限责任公司超高压输电公司 | 一种并联三端直流输电系统平衡双极电流的方法 |
CN112436518A (zh) * | 2020-11-02 | 2021-03-02 | 哈尔滨工程大学 | 一种传统下垂控制微电网的精确潮流计算方法 |
CN112886629A (zh) * | 2021-03-22 | 2021-06-01 | 国家电网公司华北分部 | 多馈出直流系统暂态过电压的评估方法及装置 |
CN113890039A (zh) * | 2021-10-09 | 2022-01-04 | 广东电网有限责任公司 | 一种多端柔性直流配电网潮流调度优化方法 |
CN113890039B (zh) * | 2021-10-09 | 2023-07-04 | 广东电网有限责任公司 | 一种多端柔性直流配电网潮流调度优化方法 |
CN114142512A (zh) * | 2021-11-02 | 2022-03-04 | 广东电网有限责任公司电力调度控制中心 | 基于多直流馈入受端电网的柔性直流系统控制方法和装置 |
CN114142512B (zh) * | 2021-11-02 | 2023-12-26 | 广东电网有限责任公司电力调度控制中心 | 基于多直流馈入受端电网的柔性直流系统控制方法和装置 |
CN114268127A (zh) * | 2021-12-09 | 2022-04-01 | 华北电力大学 | 一种大规模风电接入的混合直流输电系统送端电网频率控制策略 |
CN117239817A (zh) * | 2023-09-20 | 2023-12-15 | 兰州理工大学 | 一种基于柔性直流并网的光储与风光协调运行方法 |
CN117239817B (zh) * | 2023-09-20 | 2024-05-03 | 兰州理工大学 | 一种基于柔性直流并网的光储与风光协调运行方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104901301B (zh) | 2017-12-05 |
CN104901301A (zh) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015131602A1 (zh) | 一种多端柔性直流输电系统的协调控制方法 | |
CN109120005B (zh) | 一种多端柔性直流输电系统功率协调控制方法 | |
WO2019170040A1 (zh) | 一种多端直流输电系统站间通讯故障下控制方法及装置 | |
CN106849148B (zh) | 一种混合直流输电系统整流站交流故障穿越控制方法 | |
KR101967127B1 (ko) | 직류 전력망 전압 제어 방법 | |
WO2014071742A1 (zh) | 一种多端柔性直流输电系统协调控制方法 | |
WO2016101669A1 (zh) | 换相控制方法及换相控制装置 | |
CN105720611B (zh) | 风电场无功功率控制方法及系统 | |
US11394221B2 (en) | Method and system for controlling DC bus voltage | |
CN105140948B (zh) | 柔性直流输电系统功率协调控制方法 | |
CN109347133B (zh) | 一种基于特高压直流输电工程的逆变侧控制方法 | |
CN105429164B (zh) | 混合直流输电系统的送端低电压故障穿越方法 | |
WO2018098673A1 (zh) | 一种双极型vsc-hvdc和upfc混合拓扑结构及其运行方法 | |
WO2021212987A1 (zh) | 一种模块式直流耗能装置故障冗余控制方法 | |
CN107732892B (zh) | 一种基于高压直流输电无功控制的过电压抑制方法 | |
CN108321818B (zh) | 多直流功率紧急支援协调控制方法 | |
CN112103984B (zh) | 抑制混合双馈入直流输电系统连续换相失败的控制方法 | |
CN111555335B (zh) | 基于主从控制的自储能多端背靠背柔直系统协调控制方法 | |
WO2019228028A1 (zh) | 补偿器及其控制方法和装置 | |
CN113178895B (zh) | 海上风电交流故障穿越协同控制方法、装置及存储介质 | |
Wang et al. | Series and shunt DC electric springs | |
KR102233773B1 (ko) | 전력 변환 시스템 및 그의 제어 방법 | |
CN116169705A (zh) | 一种vsc-mtdc系统多点直流电压无差协调控制方法 | |
CN106451547B (zh) | 一种最大功率点追踪方法、控制器及光伏储能系统 | |
CN112421662A (zh) | 一种直流耗能装置的功率电压协调控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14884384 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14884384 Country of ref document: EP Kind code of ref document: A1 |