WO2015131313A1 - 双级旋转式压缩机及具有其的制冷循环装置 - Google Patents

双级旋转式压缩机及具有其的制冷循环装置 Download PDF

Info

Publication number
WO2015131313A1
WO2015131313A1 PCT/CN2014/072803 CN2014072803W WO2015131313A1 WO 2015131313 A1 WO2015131313 A1 WO 2015131313A1 CN 2014072803 W CN2014072803 W CN 2014072803W WO 2015131313 A1 WO2015131313 A1 WO 2015131313A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
air
rotary compressor
refrigeration cycle
stage rotary
Prior art date
Application number
PCT/CN2014/072803
Other languages
English (en)
French (fr)
Inventor
梁双建
郭宏
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to PCT/CN2014/072803 priority Critical patent/WO2015131313A1/zh
Priority to JP2016572865A priority patent/JP6349417B2/ja
Priority to EP14884528.2A priority patent/EP3115611B1/en
Priority to US15/121,244 priority patent/US10254013B2/en
Publication of WO2015131313A1 publication Critical patent/WO2015131313A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/005Multi-stage pumps with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation

Definitions

  • the present invention relates to the field of electrical appliances, and more particularly to a two-stage rotary compressor and a refrigeration cycle apparatus therewith. Background technique
  • a refrigeration cycle device such as an air conditioner
  • a large load such as ultra-low temperature heating
  • the specific volume of the refrigerant is large
  • the flow rate of the suction air of the compressor is reduced, and the heat capacity of the compression mechanism is greatly reduced.
  • the mass flow rate is reduced, the oil return is difficult, and the heat taken away by the refrigerant is reduced, which easily causes the compressor pump body to wear and the motor reliability to decrease, and the system has low energy efficiency.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. Accordingly, it is an object of the present invention to provide a two-stage rotary compressor which has improved performance at various ambient temperatures and high reliability.
  • Another object of the present invention is to provide a refrigeration cycle apparatus having the above two-stage rotary compressor.
  • a two-stage rotary compressor includes: a gas pipe; a casing; an outer portion of the casing is provided with a liquid reservoir, the casing has a gas injection chamber, and the gas injection chamber is respectively
  • the accumulator is connected to the jet tube; two cylinders are disposed in the housing and spaced apart from each other in a vertical direction, and one of the two cylinders is in communication with the jet chamber And a further sliding vane slot and a compression chamber communicating with the reservoir, the exhaust port of the compression chamber being in communication with the jet chamber; a piston, the piston being disposed at the pressure And a sliding piece, the sliding piece is movably disposed in the sliding groove and the outer end and the inner wall of the sliding groove define a back pressure a chamber, the back pressure chamber is in communication with the air injection chamber, wherein the sliding piece is configured to be received in the sliding groove, the air injection chamber and the air chamber when the air injection chamber is in communication with the liquid reservoir
  • the inner end of the lance is connected to
  • the two-stage rotary compressor of the embodiment of the present invention when the refrigeration cycle device is subjected to, for example, an air conditioning load such as ultra-low temperature heating, the two-stage jet compression is used, which can effectively increase the mass flow rate of the gas, improve the heating capacity of the refrigeration cycle device, and It can reduce the lubrication of the pump body and use single-stage compression during normal temperature operation to improve the efficiency and energy efficiency of the refrigeration cycle.
  • an air conditioning load such as ultra-low temperature heating
  • the two-stage rotary compressor according to the above embodiment of the present invention may further have the following additional technical features:
  • a bottom of the lower one of the two cylinders is provided with a bearing, and a bottom of the bearing is provided There is a cover plate that together with the bearing defines the jet chamber.
  • an isolation device is disposed between the two cylinders, and the air injection chamber is defined in the isolation device.
  • the isolating device includes: a separator, the top and/or the bottom of the separator is open; and a partition plate, the partition plate is disposed at a top and/or a bottom of the separator and the separator
  • the jet chamber is defined together.
  • the gas injection chamber is connected to the accumulator and the gas injection tube through a three-way valve.
  • the air injection chamber has an air inlet connected to the three-way valve, and the back pressure chamber communicates with the air inlet.
  • the height of one of the cylinders is smaller than the height of the other cylinder
  • the crankshaft is disposed in the casing
  • the crankshaft is provided with two eccentric portions spaced apart in the axial direction, and the lower end of the crankshaft Extending into the two cylinders, and the two eccentric portions are respectively located in the two cylinders, and an eccentric amount of the eccentric portion in one of the cylinders is greater than or equal to the eccentricity of the other cylinder The amount of eccentricity of the department.
  • a refrigeration cycle apparatus comprising: an evaporator; a condenser, the condenser being connected to the evaporator; a throttle device, the throttle device being disposed at the evaporator and Between the condensers; a flasher, the flasher being disposed between the throttling device and the condenser; and the two-stage rotary compressor according to the above first aspect of the invention, the two-stage rotary type
  • the compressor has a gas return port and an air outlet port, and the evaporator and the condenser are respectively connected to the air return port and the air outlet through a four-way valve, and the flasher is connected to the air nozzle.
  • the refrigeration cycle apparatus of the embodiment of the present invention by providing the two-stage rotary compressor of the first aspect of the present invention, when the load is small, single-stage operation is selected, and when the load is large, the two-stage operation is adopted, thereby effectively improving The overall performance, reliability and energy efficiency of the refrigeration cycle unit.
  • control valve is disposed between the condenser and the flasher, and the bypass valve is connected in parallel with the control valve and the flasher.
  • the refrigeration cycle apparatus further includes: a first throttle device and a first control valve, wherein the first throttle device and the first control valve are respectively disposed at the control valve and the flasher, Between the flasher and the throttling device, the control valve, the first throttling device, and the flasher are connected in parallel with the bypass valve.
  • the throttling device is a capillary or an expansion valve.
  • a second control valve is disposed between the air return port and the air nozzle.
  • the refrigeration cycle device is an air conditioner.
  • the refrigeration cycle apparatus further includes: a water tank connected to the evaporator to exchange heat with the evaporator.
  • the refrigeration cycle device is a heat pump water heater.
  • FIG. 1 is a schematic view of a two-stage rotary compressor according to an embodiment of the present invention
  • Figure 2 is a schematic view of a compression device of the two-stage rotary compressor shown in Figure 1;
  • Figure 3 is a plan view of the compression device shown in Figure 2;
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • Figure 5 is a side view of the compression device shown in Figure 1;
  • Figure 6 is a cross-sectional view taken along line BB of Figure 5;
  • Figure 7 is a schematic illustration of a compression device in accordance with another embodiment of the present invention.
  • Figure 8 is a schematic view of a refrigeration cycle apparatus in accordance with an embodiment of the present invention.
  • Figure 9 is a schematic view showing the refrigeration cycle apparatus shown in Figure 8 when it is heated;
  • Figure 10 is a schematic view showing the refrigeration cycle apparatus shown in Figure 8 when defrosting;
  • Figure 11 is a schematic view of a refrigeration cycle apparatus in accordance with another embodiment of the present invention.
  • 3 reservoir; 31: low pressure suction pipe; 32: first suction pipe; 33: air return port;
  • 61 main bearing; 62: first cylinder; 621: first compression chamber;
  • 622 first piston
  • 623 first sliding piece
  • 624 spring
  • 64 a second cylinder; 641: a second compression chamber; 642: a second piston;
  • 643 a second sliding piece
  • 644 a back pressure chamber
  • 65 auxiliary bearing; 651: jet chamber; 652: suction port; 653: second suction pipe;
  • 6541 first channel
  • 6542 second channel
  • 6543 third channel
  • 201 evaporator
  • 202 condenser
  • 203 throttling device
  • the two-stage rotary compressor 100 according to the embodiment of the first aspect of the present invention can be used in a refrigeration cycle apparatus such as an air conditioner.
  • a description will be given of an example in which the two-stage rotary compressor 100 is used in an air conditioner.
  • the two-stage rotary compressor 100 according to the present invention can also be used in a heat pump water heater or the like.
  • a two-stage rotary compressor 100 includes a jet pipe 1, a casing 2, two cylinders, a piston, and a slide.
  • An external accumulator 3 is disposed outside the casing 2, and the casing 2 has a jet chamber 651 therein.
  • the accumulator 3 can To be fixed to the side wall of the casing 2, the casing 2 defines a receiving chamber, the upper portion of the accommodating chamber has a motor 4, and the motor 4 includes an annular stator 41 and a rotor 42 fixed to the inner wall of the casing 2 The rotor 42 is rotatably disposed in the stator 41.
  • the lower portion of the accommodating chamber has a compression device 6.
  • the motor 4 drives the compression device 6 to compress the gas.
  • the compression device 6 defines a gas chamber 651.
  • the gas chamber 651 is respectively The accumulator 3 and the lance 1 are connected to each other to introduce a gas of a different pressure into the jet chamber 651.
  • the compression device 6 comprises two cylinders, two pistons, two slides, two bearings, a diaphragm 63 and a crankshaft 67.
  • two cylinders, two pistons, two slides, and two bearings are respectively divided into a first cylinder 62, a second cylinder 64, a first piston 622, and a second piston.
  • first cylinder 62 and the second cylinder 64 are cylindrical in shape in which both the top and the bottom are open, the first cylinder 62 and the second cylinder 64 are spaced apart from each other in the up and down direction, and the first cylinder 62 is located above the second cylinder 64.
  • the first cylinder 62 and the second cylinder 64 are respectively formed with a radially extending first sliding vane groove and a second sliding vane groove, and the first sliding piece 623 and the second sliding piece 643 are respectively accommodated in the first sliding vane groove and
  • the second sliding piece groove is movable in the inner and outer directions, and the outer end of the first sliding piece 623 is connected with a spring.
  • the inner end of the first sliding piece 623 can always be kept with the first piston 622.
  • the outer peripheral wall contacts, the partition plate 63 is disposed between the first cylinder 62 and the second cylinder 64, the main bearing 61 is disposed at the top of the first cylinder 62, and the sub-bearing 65 is disposed at the bottom of the second cylinder 64, so that the main bearing 61,
  • the first cylinder 62 and the partition 63 collectively define a first compression chamber 621.
  • the partition 63, the second cylinder 64 and the secondary bearing 65 collectively define a second compression chamber 641, the upper end of the crankshaft 67 and the rotor 42 of the motor 4.
  • crankshaft 6 Connected and driven by rotor 42 to rotate, crankshaft 6
  • the lower end of the seventh end sequentially passes through the main bearing 61 and the partition 63 and extends into the first compression chamber 621 and the second compression chamber 641.
  • the crank shaft 67 is provided with a first eccentric portion 671 which is spaced apart from each other in the axial direction thereof and
  • the second eccentric portion 672, the first piston 622 and the second piston 642 are respectively sleeved on the first eccentric portion 671 and the second eccentric portion 672 and are rollable along the inner walls of the first compression chamber 621 and the second compression chamber 641 .
  • the direction “inner” can be understood as a direction toward the center of the first cylinder 62 or the second cylinder 64, and the opposite direction is defined as “outer”, that is, away from the center of the first cylinder 62 or the second cylinder 64.
  • first cylinder 62 and second cylinder 64 are disposed within housing 2 and are spaced apart from each other in a vertical direction (e.g., up and down direction in Fig. 1), one of the two cylinders (e.g., The first cylinder 62 in FIG. 1 is in communication with the gas injection chamber 651.
  • the gas injection chamber 651 communicates with the intake port of the first compression chamber 621 of the first cylinder 62, thereby allowing gas in the gas injection chamber 651 to pass. Compression is performed in the first compression chamber 621.
  • the other of the two cylinders (for example, the second cylinder 64 in FIG. 1) is in communication with the accumulator 3, specifically, the second compression chamber 641 of the second cylinder 64 passes through the first intake duct 32 and the liquid storage
  • the bottom of the vessel 3 communicates to pass gas to be compressed into the second compression chamber 641 for compression
  • the other cylinder e.g., the second cylinder 64 in Fig. 1 has a radially extending vane slot.
  • the exhaust port of the compression chamber (ie, the second compression chamber 641) communicates with the jet chamber 651
  • the piston (ie, the second piston) 642) is disposed in the compression chamber (ie, the second compression chamber 641) and is slidable along the inner wall of the compression chamber (ie, the second compression chamber 641), and when the second cylinder 64 is compressed, at the second pressure
  • the compressed gas in the contraction chamber 641 can enter the gas injection chamber 651 through the exhaust port, and the gas chamber 651 can pass the gas therein into the first compression chamber 621 to be compressed again.
  • a sliding piece (for example, the second sliding piece 643 in FIGS. 1 and 4) is movably disposed in the sliding piece groove (ie, the second sliding piece groove), And the outer end of the sliding piece (ie, the second sliding piece 643) and the inner wall of the sliding piece groove (ie, the second sliding piece groove) together define a back pressure chamber 644, and the back pressure chamber 644 communicates with the air injection chamber 651, wherein the sliding piece ( That is, the second sliding piece 643 is configured to be housed in the sliding groove (ie, the second sliding plate groove) when the air injection chamber 651 is in communication with the accumulator 3, for example, the air conditioner enters the air injection chamber under the cooling condition.
  • the gas of the 651 and the second cylinder 64 are both low-pressure gases, and the pressures at the inner and outer ends of the second vane 643 are equal, that is, the pressures in the second compression chamber 641 and the back pressure chamber 644 are equal, and the inner ends of the second vane 643 are not limited.
  • the second piston 642 is abutted, so that the second cylinder 64 is unloaded, and the first cylinder 62 sucks the low-pressure gas from the jet chamber 651 to perform single-stage compression.
  • the inner end of the second vane 643 abuts against the piston (i.e., the second piston 642) when the jet chamber 651 is in communication with the jet tube 1.
  • the second cylinder 64 draws in the low pressure gas from the outlet of the evaporator 201 of the air conditioner, and the air chamber 651 sucks the medium pressure gas from the flasher 204 of the air conditioner, at this time, the inner and outer ends of the second vane 643
  • the pressure is not equal, that is, the second compression chamber 641 is a low-pressure low-pressure gas, the back pressure chamber 644 is a medium-pressure gas with a high pressure, and the second sliding piece 643 is terminated by the pressure difference.
  • the second piston 64 is loaded, the second cylinder 64 is loaded, and after the second cylinder 64 is compressed, the gas of the gas injection chamber 651 is a mixed gas of the gas compressed by the second cylinder 64 and the medium pressure gas from the flasher 204, the first cylinder After the medium pressure gas is sucked in, the second compression is performed, and the gas is compressed to a high pressure and discharged to the accommodating space of the casing 2, thereby achieving two-stage compression.
  • the air pressure in the air chamber 651 is low pressure in a single-stage operation, which is equal to the pressure in the second cylinder 64, that is, the second slider 643 is vented.
  • the second slide piece 643 does not operate, so that the wear of the two-stage rotary compressor 100 can be reduced, and the energy efficiency of the two-stage rotary compressor 100 can be improved.
  • the air pressure in the air chamber 651 is medium pressure, so that the air pressure in the back pressure chamber 644 is medium pressure, and the inner and outer portions of the second sliding piece 643 are compared with the high pressure outside the casing 2 and the compression device 6.
  • the pressure difference at the end is reduced, thereby reducing the wear of the second sliding piece 643, effectively protecting the second sliding piece 643, thereby reducing the wear of the two-stage rotary compressor 100, and improving the two-stage rotary compression.
  • the service life of the machine 100 is reduced.
  • two-stage rotary compressor 100 of the embodiment of the present invention when the refrigeration cycle apparatus 200 is subjected to, for example, an air conditioning load such as ultra-low temperature heating, two-stage jet compression is employed, which can effectively increase the mass flow rate of the gas, and improve the refrigeration cycle apparatus 200.
  • the heat capacity and energy efficiency, and the lubrication of the pump body are improved.
  • the single-stage compression can improve the efficiency and energy efficiency of the refrigeration cycle device 200.
  • the bottom of the lower of the two cylinders (e.g., the second cylinder 64 of Figures 1 and 2) is provided with bearings (e.g., Figure 1)
  • the sub-bearing 65 in Fig. 2
  • the bottom of the bearing i.e., the sub-bearing 65
  • the cover plate 66 and the bearing i.e., the sub-bearing 65
  • an isolation device is disposed between the two cylinders, and the air injection chamber 651 is defined in the isolation device.
  • the isolating device includes: a separator 631 and a partition plate 632, and the top and/or the bottom of the separator 631 are open.
  • a spacer 632 is disposed on the top and/or bottom of the spacer 631 and defines a jet chamber 651 in conjunction with the spacer 631.
  • the isolation device isolates the first cylinder 62 from the second cylinder 64.
  • the isolation device includes a spacer 631 and a spacer 632.
  • the bottom of the spacer 631 is open, and the spacer 632 is disposed on the spacer.
  • the bottom of the 631 and together with the spacer 631 define a gas jet chamber 651, at which time the upper surface of the separator 631 and the first cylinder 62
  • the lower surface is in contact with the lower surface of the spacer 632 in contact with the upper surface of the second cylinder 64.
  • the separator 632 may also be disposed on the top of the separator 631 to define a gas injection chamber 651 with the separator 631, wherein the top of the separator 631 is open (not shown).
  • the top and bottom of the spacer 631 are open, and the top and bottom of the spacer 631 may be respectively provided with a spacer 632, and the two spacers 632 and the spacer 631 collectively define the air ejection chamber 651. ( Figure not shown).
  • the air injection chamber 651 is connected to the accumulator 3 and the air nozzle 1 through a three-way valve 5, as shown in FIG. 1, a second air suction duct 653 is disposed outside the housing 2, and the second suction is provided.
  • the air pipe 653 is always in communication with the air injection chamber 651.
  • the second air suction pipe 653 is connected to the low pressure suction pipe 31 and the air injection pipe 1 at the bottom of the liquid storage device 3 through the three-way valve 5.
  • the three-way valve 5 is controlled.
  • the second intake pipe 653 is in communication with the low pressure intake pipe 31.
  • the three-way valve 5 controls the second intake pipe 653 to communicate with the air injection pipe 1.
  • the refrigerant flowing into the jet chamber 651 can be automatically switched, whether the refrigerant from the flasher 204 or the refrigerant from the evaporator 201; the air conditioner is at a low load.
  • the three-way valve 5 controls the jet chamber 651 to suck in the refrigerant from the evaporator 201, and the second cylinder 64 of the two-stage rotary compressor 100 is unloaded, and the first cylinder 62 compresses the gas;
  • the three-way valve 5 controls the jet chamber 651 to draw in refrigerant from the flasher 204 to operate the two-stage rotary compressor 100 in two stages.
  • the air injection chamber 651 has an air inlet 652 connected to the three-way valve 5, and the back pressure chamber 644 is in communication with the air inlet 652.
  • the air inlet 652 corresponds to the second air suction duct 653, and one end of the second air suction duct 653 extends into the air inlet 652 and communicates with the inside of the air injection chamber 651, and the back pressure chamber 644 passes through, for example,
  • the air flow passages shown in FIGS. 5 and 6 are in communication with the suction port 652.
  • the air flow passage includes a first passage 6541, a second passage 6542, and a third passage 6543, and the first passage 6541 extends in a vertical direction, and The lower end of the first passage 6541 communicates with the suction port 652, the second passage 6542 extends in the horizontal direction, and one end of the second passage 6542 communicates with the upper end of the first passage 6541.
  • the second passage 6542 is constituted by the sub-bearing 65
  • the upper end surface is recessed downwardly
  • the third passage 6543 extends in the vertical direction
  • the lower end of the third passage 6543 communicates with the other end of the second passage 6542
  • the upper end of the third passage 6543 communicates with the back pressure chamber 644 due to the first
  • the air intake of the air cylinder 62 may cause the pressure of the air injection chamber 651 to fluctuate, which may cause the back pressure of the second sliding piece 643 to be insufficient during the double-stage compression, and the direct connection between the back pressure chamber 644 and the air inlet 652 is beneficial to stabilize the second.
  • the discharge volume can be understood as the volume of the compressed gas discharged from the exhaust port on the first cylinder 62 or the second cylinder 64. For different regions and conditions of use, the difference in V1/V2 ratio will bring different energy efficiency.
  • V1/V2 When the temperature difference between evaporation and condensation is large (such as heat pump condition), V1/V2 can take a smaller value; When it is small, a larger value can be taken, so that the energy efficiency of the two-stage rotary compressor 100 can be improved for different regions and different use conditions.
  • one of the cylinders (eg, the first cylinder 62 in FIG. 1) has a lower height than the other cylinder (eg, the second cylinder 64 in FIG. 1), and the crankshaft 67 is provided in the housing 2, the crankshaft There are two eccentric portions (i.e., a first eccentric portion 671 and a second eccentric portion 672) which are axially spaced apart.
  • the lower end of the crankshaft 67 extends into the two cylinders, and the two eccentric portions are respectively located in the two cylinders. (ie, the first cylinder 62 and the second cylinder 64), one of the cylinders (for example, The eccentricity of the eccentric portion in the first cylinder 62) in Fig.
  • the refrigerants such as R22 and R410A currently used have a pressure range that determines the low pressure differential of the low pressure stage and a large differential pressure of the high pressure stage. Further flattening of the first cylinder 62 can improve the energy efficiency of the two-stage rotary compressor 100. In addition, the structure of the two-stage rotary compressor 100 is also made more compact, which is advantageous for improving reliability, particularly bearing and shaft reliability.
  • a refrigeration cycle apparatus 200 includes an evaporator 201, a condenser 202, a throttling device 203, a flasher 204, and an embodiment of the first aspect of the present invention according to the present invention.
  • a two-stage rotary compressor 100 includes
  • the condenser 202 is connected to the evaporator 201.
  • a throttle device 203 is provided between the evaporator 201 and the condenser 202.
  • the flasher 204 is disposed between the throttle device 203 and the condenser 202.
  • the two-stage rotary compressor 100 has a return air port 33 and an air outlet port 21, and the evaporator 201 and the condenser 202 communicate with the air return port 33 and the air outlet port 21 through the four-way valve 206, respectively, and the flasher 204 is connected to the air nozzle 1.
  • a control valve 207 may be disposed between the condenser 202 and the flasher 204.
  • the refrigeration cycle apparatus 200 further includes: a bypass valve 205, and the bypass valve 205 is connected in parallel with the control valve 207 and the flasher 204.
  • the bypass valve 205 causes the gas from the condenser 202 to not flow through the flasher 204 and is bypassed to the throttle device 203.
  • the air return port 33 is provided at the top of the accumulator 3, and the air outlet port 21 is provided at the top of the casing 2.
  • the control valve 207 When the refrigeration cycle apparatus 200 is an air conditioner, when the air conditioner is cooling, as shown in FIG. 8, the control valve 207 is closed, the bypass valve 205 is opened, and the high temperature and high pressure refrigerant that has exited through the air outlet 21 of the casing 2 enters the condenser 202. The high temperature and high pressure refrigerant passes through the condensation process of the condenser 202 and becomes a liquid refrigerant.
  • the liquid refrigerant flows through the bypass valve 205 and is depressurized by the throttling device 203 to become a low pressure liquid refrigerant, and the throttled refrigerant Entering the evaporator 201, the refrigerant undergoes evaporative heat exchange in the evaporator 201 and becomes a gas, and the gas refrigerant enters the casing 2 through the return port 33.
  • the control valve 207 When the air conditioner is heating, as shown in FIG. 9, the control valve 207 is opened, the bypass valve 205 is closed, and the high temperature and high pressure gas refrigerant that has exited through the exhaust port of the casing 2 first enters the evaporator 201, and passes through the evaporator 201. After the condensation process, it becomes a supercooled high-pressure liquid refrigerant, and the liquid refrigerant is depressurized by the throttling device 203 to become a low-pressure liquid refrigerant.
  • the throttling device 203 is a capillary or an expansion valve, and the throttling refrigerant The gas is separated into the flasher 204, and the gaseous refrigerant flows directly to the gas return port 33.
  • the pure liquid refrigerant enters the condenser 202, and the refrigerant enters the casing 2 through the gas return port 33 after undergoing an evaporation process in the condenser 202.
  • the refrigeration cycle apparatus 200 such as an air conditioner, according to an embodiment of the present invention, by providing the two-stage rotary compressor 100 of the first aspect of the above embodiment, selects a single-stage operation when the load is small, and uses a two-stage operation when the load is large. Therefore, the overall performance, reliability, and energy efficiency of the refrigeration cycle apparatus 200 are effectively improved.
  • the refrigeration cycle apparatus 200 further includes: a first throttle device 208 and a first control valve 209, the first throttle device 208 and the first control valve 209 are respectively provided Between control valve 207 and flasher 204, flasher 204, and throttling device 203, control valve 207, first throttle device 208, and flasher 204 are coupled in parallel with bypass valve 205.
  • the control valve 207 and the first control valve 209 are closed (the first control valve 209 may not be closed), the bypass valve 205 is opened, and the high-pressure refrigerant compressed by the two-stage rotary compressor 100 is shown.
  • the bypass valve 205 flows through the expansion device 203, and the throttle-expanded refrigerant flows through the evaporator 201, absorbs heat through the evaporator 201, and returns to the two-stage rotary compressor 100.
  • the three-way valve 5 controls the air injection chamber 651 to communicate with the low pressure intake pipe 31, the suction pressure of the second cylinder 64 is consistent with the suction pressure of the air injection chamber 651, the low pressure passage of the back pressure chamber is low, and the second sliding vane 643 is not action.
  • the first cylinder 62 draws in a low-pressure refrigerant for compression to achieve single-stage compression. In the refrigeration cycle, the circuit can reduce the piping and components through which the refrigerant flows, reduce the system flow resistance loss, and improve the system energy efficiency.
  • the bypass valve 205 is closed, the control valve 207 and the first control valve 209 are opened, and the high-pressure refrigerant compressed by the two-stage rotary compressor 100 flows to the evaporator 201 via the four-way valve 206.
  • the refrigerant from the evaporator 201 is throttled and expanded by the throttling device 203, and then flows into the flasher 204.
  • the gas-liquid two-phase refrigerant flashed in the flasher 204 is divided into two paths: the refrigerant liquid of the main road passes through the first throttling device.
  • the condenser 202 After the 208 throttle expansion, the condenser 202 is entered, and after the heat exchange in the condenser 202, the refrigerant gas is turned into a refrigerant gas, and then flows into the two-stage rotary compressor 100 for compression; the refrigerant gas of the auxiliary circuit is discharged from the flasher 204. , entering the jet circuit, thereby flowing into the two-stage rotary compressor 100.
  • the three-way valve 5 controls the gas injection chamber 651 to communicate with the gas injection tube 1, the medium pressure gas from the flasher 204 enters the gas injection chamber 651, and the discharge pressure of the second cylinder 64 is the medium pressure gas pressure, the two-stage rotary pressure
  • the compressor 100 performs a two-stage compression cycle.
  • the refrigeration cycle apparatus 200 further includes: a water tank (not shown) connected to the evaporator 201 to exchange heat with the evaporator 201.
  • the refrigeration cycle unit 200 is a heat pump water heater.
  • the evaporator 201 exchanges heat with the water tank, and the system cycle is consistent with the above-described cooling and heating processes.
  • the differential pressure is relatively large. Especially in low-temperature heating and heat pump conditions, a two-stage compression cycle can effectively increase the system's heat and improve the system's energy efficiency.
  • the bypass valve 205 and the first control valve 209 are closed, and the high-pressure refrigerant compressed by the two-stage rotary compressor 100 flows to the condenser 202 through the four-way valve 206, and is condensed.
  • the refrigerant from the device 202 passes through the first throttling device 208, and the expanded low-pressure refrigerant flows into the flasher 204, and the refrigerant from the flasher 204 enters the two-stage rotary compressor 100 through the air supply circuit.
  • the three-way valve 5 controls the air injection chamber 651 to communicate with the air injection tube 1.
  • a second control valve 2041 is provided between the air return port 33 and the air nozzle 1. Specifically, the lance tube 1 and the low pressure suction pipe 31 are connected, and a second control valve 2041 is provided therebetween.
  • the second control valve 2041 is opened only when operating in the defrosting mode, and is closed when the other mode is activated, during defrosting.
  • the low-temperature refrigerant enters the jet chamber 651 and the second cylinder 64 of the two-stage rotary compressor 100 through the jet circuit, and the second cylinder 64 may be effectively prevented from inhaling the negative pressure during the defrosting operation.
  • the high and low pressure differentials are small and the pressure ratio is small. If two-stage compression is used, over-compression is easily caused, resulting in an increase in power consumption. This circuit can effectively avoid this situation.
  • first”, “second”, and “third” are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • Features having “first”, “second”, and “third” may explicitly or implicitly include one or more of the features.
  • the "multiple” There are two or more meanings unless explicitly and specifically defined.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like are to be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or integrated; can be mechanical connection, or electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood by one of ordinary skill in the art based on the specific circumstances.
  • first feature "on” or “below” the second feature may be the direct contact of the first and second features, or the first and second features may be indirectly through the intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the description of the terms “one embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” and the like means a specific feature described in connection with the embodiment or example.
  • a structure, material or feature is included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms is not necessarily directed to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
  • various embodiments or examples described in the specification, as well as features of various embodiments or examples may be combined and combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种制冷循环装置及其双级旋转式压縮机(100),双级旋转式压縮机(100)包括喷气管(1)、壳体(2)、两个气缸、活塞和滑片,壳体(2)外设有储液器(3),壳体(2)内具有喷气腔(651)和两个气缸,喷气腔(651)与储液器(3)和喷气管(1)相连,其中一个气缸与喷气腔(651)连通、另一个与储液器(3)连通且具有滑片槽和压縮腔,压縮腔与喷气腔(651)连通;活塞设在压縮腔内;滑片外端与滑片槽限定出背压室,背压室与喷气腔(651)连通,喷气腔(651)与储液器(3)连通时滑片收纳在滑片槽内、与喷气管连通时滑片内端止抵活塞。

Description

双级旋转式压缩机及具有其的制冷循环装置
技术领域
本发明涉及电器领域, 尤其是涉及一种双级旋转式压縮机及具有其的制冷循环装置。 背景技术
相关技术中指出, 在制冷循环装置例如空调负荷大的时候, 如超低温制热, 由于制冷 剂的比容大, 压縮机吸气质量流量减小, 除了导致压縮机制热能力大幅度降低, 同时, 由 于质量流量降低, 回油困难, 制冷剂带走的热量减少, 容易导致压縮机泵体磨损及电机可 靠性下降, 并且系统能效低。 发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。 为此, 本发明的一个 目的在于提出一种双级旋转式压縮机, 所述双级旋转式压縮机在各种环境温度下的性能有 所改善, 且可靠性高。
本发明的另一个目的在于提出一种具有上述双级旋转式压縮机的制冷循环装置。
根据本发明第一方面实施例的双级旋转式压縮机, 包括: 喷气管; 壳体, 所述壳体外 设有储液器, 所述壳体内具有喷气腔, 所述喷气腔分别与所述储液器和所述喷气管相连; 两个气缸, 所述两个气缸均设在所述壳体内且在竖向上彼此间隔开, 所述两个气缸中的其 中一个与所述喷气腔连通、 另一个与所述储液器连通且具有径向延伸的滑片槽和压縮腔, 所述压縮腔的排气口与所述喷气腔连通; 活塞, 所述活塞设在所述压縮腔内且沿所述压縮 腔的内壁可滚动; 以及滑片, 所述滑片可移动地设在所述滑片槽内且外端与所述滑片槽的 内壁共同限定出背压室, 所述背压室与所述喷气腔连通, 其中所述滑片被构造成所述喷气 腔与所述储液器连通时收纳在所述滑片槽内、 所述喷气腔与所述喷气管连通时内端止抵所 述活塞。
根据本发明实施例的双级旋转式压縮机, 在制冷循环装置例如空调负荷大例如超低温 制热时, 采用双级喷气压縮, 可以有效增加气体质量流量, 提高制冷循环装置制热能力和 能降, 并改善泵体润滑, 在普通温度工况制冷运行时, 采用单级压縮, 可以提高制冷循环 装置的效率和能效。
另外, 根据本发明上述实施例的双级旋转式压縮机还可以具有如下附加的技术特征: 可选地, 所述两个气缸中较下一个的底部设有轴承, 所述轴承的底部设有盖板, 所述 盖板与所述轴承共同限定出所述喷气腔。
或者可选地, 所述两个气缸之间设有隔离装置, 所述隔离装置内限定出所述喷气腔。 具体地, 所述隔离装置包括: 隔离体, 所述隔离体的顶部和 /或底部敞开; 和隔离板, 所述隔离板设在所述隔离体的顶部和 /或底部且与所述隔离体共同限定出所述喷气腔。 可选地, 所述喷气腔通过三通阀与所述储液器和所述喷气管相连。
进一步地, 所述喷气腔具有与所述三通阀相连的吸气口, 所述背压室与所述吸气口相 通。
可选地, 所述其中一个气缸的排出容积为 VI, 所述另一个气缸的排出容积为 V2, 其中 Vl/V2=0. 45 0. 95。
可选地, 所述其中一个气缸的高度小于所述另一个气缸的高度, 所述壳体内设有曲轴, 所述曲轴上设有沿轴向间隔开的两个偏心部, 所述曲轴的下端伸入所述两个气缸内, 且所 述两个偏心部分别位于所述两个气缸内, 所述其中一个气缸内的所述偏心部的偏心量大于 等于所述另一个气缸的所述偏心部的偏心量。
根据本发明第二方面实施例的制冷循环装置, 包括: 蒸发器; 冷凝器, 所述冷凝器与 所述蒸发器相连; 节流装置, 所述节流装置设在所述蒸发器和所述冷凝器之间; 闪蒸器, 所述闪蒸器设在所述节流装置和所述冷凝器之间; 以及根据本发明上述第一方面的双级旋 转式压縮机, 所述双级旋转式压縮机上具有回气口和出气口, 所述蒸发器、 所述冷凝器通 过四通阀分别与所述回气口、 所述出气口连通, 所述闪蒸器与所述喷气管相连。
根据本发明实施例的制冷循环装置, 通过设置上述第一方面实施例的双级旋转式压縮 机, 在负荷较小时, 选择单级运行, 在负荷大时, 采用双级运行, 从而有效提高了制冷循 环装置的整体性能、 可靠性以及能效。
进一步地, 所述冷凝器和所述闪蒸器之间设有控制阀, 所述旁通阀与所述控制阀和所 述闪蒸器并联。
更进一步地, 所述制冷循环装置还包括: 第一节流装置和第一控制阀, 所述第一节流 装置和所述第一控制阀分别设在所述控制阀和所述闪蒸器、 所述闪蒸器和所述节流装置之 间, 所述控制阀、 所述第一节流装置和所述闪蒸器与所述旁通阀并联。
可选地, 所述节流装置为毛细管或膨胀阀。
进一步地, 所述回气口和所述喷气管之间设有第二控制阀。
可选地, 所述制冷循环装置为空调。
进一步地, 所述制冷循环装置进一步包括: 水箱, 所述水箱与所述蒸发器相连以与所 述蒸发器换热。
可选地, 所述制冷循环装置为热泵热水器。 附图说明
图 1是根据本发明实施例的双级旋转式压縮机的示意图;
图 2是图 1中所示的双级旋转式压縮机的压縮装置的示意图;
图 3是图 2中所示的压縮装置的俯视图;
图 4是沿图 3中 A-A线的剖面图;
图 5是图 1中所示的压縮装置的侧视图;
图 6是沿图 5中 B-B线的剖面图; 图 7是根据本发明另一个实施例的压縮装置的示意图;
图 8是根据本发明实施例的制冷循环装置制冷时的示意图;
图 9是图 8中所示的制冷循环装置制热时的示意图;
图 10是图 8中所示的制冷循环装置除霜时的示意图;
图 11是根据本发明另一个实施例的制冷循环装置除霜时的示意图。
附图标记:
100: 双级旋转式压縮机;
1: 喷气管; 2: 壳体; 21 : 出气口;
3: 储液器; 31 : 低压吸气管; 32: 第一吸气管; 33: 回气口;
4: 电机; 41 : 定子; 42: 转子; 5: 三通阀;
6: 压縮装置;
61: 主轴承; 62: 第一气缸; 621 : 第一压縮腔;
622: 第一活塞; 623: 第一滑片; 624: 弹簧;
63: 隔板; 631 : 隔离体; 632: 隔离板;
64: 第二气缸; 641 : 第二压縮腔; 642: 第二活塞;
643: 第二滑片; 644: 背压室;
65: 副轴承; 651 : 喷气腔; 652: 吸气口; 653: 第二吸气管;
6541: 第一通道; 6542: 第二通道; 6543: 第三通道;
66: 盖板; 67: 曲轴; 671 : 第一偏心部; 672: 第二偏心部;
200: 制冷循环装置;
201: 蒸发器; 202: 冷凝器; 203: 节流装置;
204: 闪蒸器; 2041 : 第二控制阀;
205: 旁通阀; 206: 四通阀; 207: 控制阀;
208: 第一节流装置; 209: 第一控制阀。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参考附图描 述的实施例是示例性的, 旨在用于解释本发明, 而不能理解为对本发明的限制。
根据本发明第一方面实施例的双级旋转式压縮机 100可以用于制冷循环装置例如空调 内。 在本申请下面的描述中, 以双级旋转式压縮机 100用于空调内为例进行说明。 当然, 本领域内的技术人员理解, 根据本发明的双级旋转式压縮机 100还可以用于热泵热水器内 等。
如图 1-图 4所示,根据本发明第一方面实施例的双级旋转式压縮机 100,包括喷气管 1、 壳体 2、 两个气缸、 活塞以及滑片。
壳体 2外设有储液器 3, 壳体 2内具有喷气腔 651。 例如在图 1的示例中, 储液器 3可 以固定在壳体 2的侧壁上, 壳体 2内限定出容纳腔室, 容纳腔室的上部具有电机 4, 电机 4 包括环形的定子 41和转子 42, 定子 41固定在壳体 2的内壁上, 转子 42可转动地设在定 子 41内, 容纳腔室的下部具有压縮装置 6, 电机 4驱动压縮装置 6压縮气体, 压縮装置 6 内限定出喷气腔 651, 喷气腔 651分别与储液器 3和喷气管 1相连, 以分别向喷气腔 651 内通入压力不等的气体。
压縮装置 6包括两个气缸、 两个活塞、 两个滑片、 两个轴承、 隔板 63和曲轴 67。 为了 便于描述, 在本申请下面的描述中, 将两个气缸、 两个活塞、 两个滑片、 两个轴承分别区 分为第一气缸 62、 第二气缸 64, 第一活塞 622、 第二活塞 642, 第一滑片 623、 第二滑片 643, 主轴承 61和副轴承 65。
其中, 第一气缸 62和第二气缸 64为顶部和底部均敞开的筒形, 第一气缸 62和第二气 缸 64在上下方向上相互间隔开, 且第一气缸 62位于第二气缸 64的上方, 第一气缸 62和 第二气缸 64上分别形成有径向延伸的第一滑片槽和第二滑片槽,第一滑片 623和第二滑片 643分别容纳在第一滑片槽和第二滑片槽内且在内外方向上可移动, 第一滑片 623 的外端 连接有弹簧, 在弹簧的弹力作用下可以使得第一滑片 623 的内端始终保持与第一活塞 622 的外周壁接触, 隔板 63设在第一气缸 62和第二气缸 64之间, 主轴承 61设在第一气缸 62 的顶部, 副轴承 65设在第二气缸 64的底部, 从而主轴承 61、 第一气缸 62和隔板 63共同 限定出第一压縮腔 621, 隔板 63、 第二气缸 64和副轴承 65共同限定出第二压縮腔 641, 曲轴 67的上端与电机 4的转子 42相连并由转子 42驱动转动, 曲轴 67的下端依次穿过主 轴承 61和隔板 63并伸入第一压縮腔 621和第二压縮腔 641内, 曲轴 67上设有沿其轴向彼 此间隔开的第一偏心部 671和第二偏心部 672, 第一活塞 622和第二活塞 642分别套设在 第一偏心部 671和第二偏心部 672上且沿第一压縮腔 621和第二压縮腔 641的内壁可滚动。 这里, 需要说明的是, 方向 "内"可以理解为朝向第一气缸 62或第二气缸 64中心的方向, 其相反方向被定义为 "外", 即远离第一气缸 62或第二气缸 64中心的方向。
两个气缸(即第一气缸 62和第二气缸 64)均设在壳体 2内且在竖向 (例如, 图 1中的 上下方向) 上彼此间隔开, 两个气缸中的其中一个 (例如, 图 1中的第一气缸 62 ) 与喷气 腔 651连通, 具体地, 喷气腔 651与第一气缸 62的第一压縮腔 621的进气口连通, 从而将 喷气腔 651内的气体通入第一压縮腔 621内进行压縮。
两个气缸中的另一个 (例如, 图 1中的第二气缸 64) 与储液器 3连通, 具体地, 第二 气缸 64的第二压縮腔 641通过第一吸气管 32与储液器 3的底部相通以将待压縮的气体通 入第二压縮腔 641内进行压縮, 且上述另一个气缸 (例如, 图 1中的第二气缸 64) 具有径 向延伸的滑片槽 (即第二滑片槽) 和压縮腔 (即第二压縮腔 641 ), 压縮腔 (即第二压縮腔 641 )的排气口与喷气腔 651连通,活塞(即第二活塞 642 )设在压縮腔(即第二压縮腔 641 ) 内且沿压縮腔 (即第二压縮腔 641 ) 的内壁可滚动, 当第二气缸 64压縮工作时, 在第二压 縮腔 641 内压縮后的气体可以通过排气口进入喷气腔 651, 喷气腔 651将其内的气体通入 第一压縮腔 621内再次压縮。
滑片(例如, 图 1和图 4中的第二滑片 643 )可移动地设在滑片槽(即第二滑片槽)内, 且滑片(即第二滑片 643 )的外端与滑片槽(即第二滑片槽)的内壁共同限定出背压室 644, 背压室 644与喷气腔 651连通, 其中滑片 (即第二滑片 643 ) 被构造成喷气腔 651与储液 器 3连通时收纳在滑片槽 (即第二滑片槽) 内, 例如, 空调在制冷工况下, 此时进入到喷 气腔 651和第二气缸 64的气体都是低压气体, 第二滑片 643内外两端的压力相等, 即第二 压縮腔 641和背压室 644内的压力相等, 第二滑片 643的内端不止抵第二活塞 642, 因此, 第二气缸 64卸载, 第一气缸 62吸气来自喷气腔 651的低压气体, 进行单级压縮。
喷气腔 651与喷气管 1连通时第二滑片 643的内端止抵活塞(即第二活塞 642)。例如, 空调在低温工况时, 第二气缸 64吸入来自空调的蒸发器 201出口的低压气体, 喷气腔 651 吸入来自空调的闪蒸器 204的中压气体, 此时第二滑片 643内外两端的压力不等, 即第二 压縮腔 641内为压力较低的低压气体,背压室 644内为压力较高的中压气体,第二滑片 643 在压差的作用下内端止抵第二活塞 642, 第二气缸 64加载, 第二气缸 64压縮后, 喷气腔 651的气体为经第二气缸 64压縮后的气体及来自闪蒸器 204的中压气体的混合气体, 第一 气缸 62吸入中压气体后,进行第二次压縮,将气体压縮到高压后排出到壳体 2的容纳空间, 从而实现双级压縮。
由此, 通过采用喷气腔 651的气压来控制第二滑片 643, 单级运行时, 喷气腔 651内的 气压是低压,与第二气缸 64内的压力相等, 即对第二滑片 643泄压,第二滑片 643不动作, 从而可以减小双级旋转式压縮机 100磨耗, 提高双级旋转式压縮机 100能效。双级运行时, 喷气腔 651 内的气压是中压, 从而背压室 644内的气压是中压, 与壳体 2内、 压縮装置 6 外的高压相比, 第二滑片 643内外两端的压差减小, 从而减小了第二滑片 643的磨损, 有 效地保护了第二滑片 643, 进而减小双级旋转式压縮机 100的磨耗, 提高了双级旋转式压 縮机 100的使用寿命。
根据本发明实施例的双级旋转式压縮机 100,在制冷循环装置 200例如空调负荷大例如 超低温制热时, 采用双级喷气压縮, 可以有效增加气体质量流量, 提高制冷循环装置 200 制热能力和能效, 并改善泵体润滑, 在普通温度工况制冷运行时, 采用单级压縮, 可以提 高制冷循环装置 200的效率和能效。
在本发明的一个实施例中, 如图 1和图 2所示, 两个气缸中较下一个 (例如, 图 1和 图 2中的第二气缸 64) 的底部设有轴承 (例如, 图 1和图 2中的副轴承 65), 轴承 (即副 轴承 65 ) 的底部设有盖板 66, 盖板 66与轴承 (即副轴承 65 ) 共同限定出喷气腔 651。 由 此, 安装方便、 装配效率高且成本低。
当然, 本发明不限于此, 在本发明的另一些实施例中, 参照图 7, 两个气缸之间设有隔 离装置, 隔离装置内限定出喷气腔 651。具体地, 隔离装置包括: 隔离体 631和隔离板 632, 隔离体 631的顶部和 /或底部敞开。 隔离板 632设在隔离体 631的顶部和 /或底部且与隔离 体 631共同限定出喷气腔 651。
例如在图 7的示例中, 隔离装置将第一气缸 62和第二气缸 64隔离开, 隔离装置包括 一个隔离体 631和一个隔离板 632, 隔离体 631的底部敞开, 隔离板 632设在隔离体 631 的底部且与隔离体 631共同限定出喷气腔 651, 此时隔离体 631的上表面与第一气缸 62的 下表面接触, 隔离板 632的下表面与第二气缸 64的上表面接触。 当然, 在本发明的另一个 示例中, 隔离板 632还可以设在隔离体 631的顶部以与隔离体 631限定出喷气腔 651, 其 中隔离体 631的顶部敞开(图未示出)。 在本发明的再一些示例中, 隔离体 631的顶部和底 部均敞开, 隔离体 631的顶部和底部可以分别设有一个隔离板 632, 两个隔离板 632和隔 离体 631共同限定出喷气腔 651 (图未示出)。
在本发明的一个实施例中, 喷气腔 651通过三通阀 5与储液器 3和喷气管 1相连, 如 图 1所示, 壳体 2外设有第二吸气管 653, 第二吸气管 653与喷气腔 651始终保持连通, 第二吸气管 653通过三通阀 5与储液器 3底部的低压吸气管 31、 喷气管 1相连, 当空调制 冷时, 三通阀 5控制第二吸气管 653与低压吸气管 31连通, 当空调制热时, 三通阀 5控制 第二吸气管 653与喷气管 1连通。 由此, 通过设置三通阀 5, 根据工况, 可以自动切换流 入上述喷气腔 651的制冷剂, 是来自闪蒸器 204出来的制冷剂还是来自蒸发器 201出来的 制冷剂; 在空调处于低负荷下运行时, 三通阀 5控制喷气腔 651吸入来自蒸发器 201出来 的制冷剂, 使上述双级旋转式压縮机 100的第二气缸 64卸载, 第一气缸 62压縮气体; 在 空调处于制热条件下运行时,三通阀 5控制喷气腔 651吸入来自闪蒸器 204出来的制冷剂, 使上述双级旋转式压縮机 100双级运行。
进一步地, 喷气腔 651具有与三通阀 5相连的吸气口 652, 背压室 644与吸气口 652 相通。 参照图 5和图 6, 吸气口 652与第二吸气管 653对应, 第二吸气管 653的一端伸入 吸气口 652内且与喷气腔 651的内部连通, 背压室 644通过如图 5和图 6中所示的气流通 道与吸气口 652连通, 具体地, 气流通道包括第一通道 6541、 第二通道 6542和第三通道 6543, 第一通道 6541沿竖直方向延伸, 且第一通道 6541的下端与吸气口 652相通, 第二 通道 6542沿水平方向延伸, 第二通道 6542的一端与第一通道 6541的上端连通, 可选地, 第二通道 6542由副轴承 65的上端面向下凹入形成, 第三通道 6543沿竖直方向延伸, 且第 三通道 6543的下端与第二通道 6542的另一端连通,第三通道 6543的上端与背压室 644连 通, 由于第一气缸 62吸气可能会导致喷气腔 651压力波动, 有可能在双级压縮时导致第二 滑片 643背压不足,通过设置背压室 644与吸气口 652直接连通,有利于稳定第二滑片 643 的背压, 保证第二滑片 643的动作。
可选地, 其中一个气缸 (例如, 图 1中的第一气缸 62 ) 的排出容积为 VI, 另一个气缸 (例如, 图 1中的第二气缸 64) 的排出容积为 V2, 其中, Vl/V2=0. 45~0. 95。 这里, 需要 说明的是, "排出容积"可以理解为从第一气缸 62或第二气缸 64上的排气口排出的压縮气 体的容积。 针对不同的地区和使用条件, V1/V2 比值的不同将带来不同的能效, 在蒸发与 冷凝的温差大 (如热泵工况) 时, V1/V2 可以取较小值; 在上述两者温差较小时, 可以取 较大值, 这样针对不同地区和不同的使用条件, 可以提高双级旋转式压縮机 100能效。
可选地, 其中一个气缸(例如, 图 1中的第一气缸 62 ) 的高度小于另一个气缸(例如, 图 1中的第二气缸 64) 的高度, 壳体 2内设有曲轴 67, 曲轴 67上设有沿轴向间隔开的两 个偏心部 (即第一偏心部 671和第二偏心部 672), 曲轴 67的下端伸入两个气缸内, 且两 个偏心部分别位于两个气缸 (即第一气缸 62和第二气缸 64) 内, 其中一个气缸 (例如, 图 1中的第一气缸 62 ) 内的偏心部的偏心量大于等于另一个气缸 (例如, 图 1中的第二气 缸 64) 的偏心部的偏心量。 目前使用的 R22、 R410A等冷媒, 其运行的压力范围决定了其 低压级压差小、 高压级压差大, 第一气缸 62进一步扁平化将能提高双级旋转式压縮机 100 的能效, 此外, 也使得双级旋转式压縮机 100的结构更为紧凑, 有利于提高可靠性, 特别 是轴承与轴的可靠性。
如图 8-图 11所示,根据本发明第二方面实施例的制冷循环装置 200,包括蒸发器 201、 冷凝器 202、节流装置 203、 闪蒸器 204以及根据本发明上述第一方面实施例的双级旋转式 压縮机 100。
冷凝器 202与蒸发器 201相连。 节流装置 203设在蒸发器 201和冷凝器 202之间。 闪 蒸器 204设在节流装置 203和冷凝器 202之间。双级旋转式压縮机 100上具有回气口 33和 出气口 21, 蒸发器 201、 冷凝器 202通过四通阀 206分别与回气口 33、 出气口 21连通, 闪蒸器 204与喷气管 1相连。进一步地,冷凝器 202和闪蒸器 204之间可以设有控制阀 207, 制冷循环装置 200进一步包括: 旁通阀 205, 旁通阀 205与控制阀 207和闪蒸器 204并联。 其中, 在制冷循环装置 200例如空调处于低负荷下运行时, 旁通阀 205使上述冷凝器 202 出来的气体不流经闪蒸器 204, 并被旁通至节流装置 203。 可选地, 如图 1、 图 8_图 11所 示, 回气口 33设在储液器 3的顶部, 出气口 21设在壳体 2的顶部。
制冷循环装置 200为空调时, 当空调制冷工作时, 如图 8所示, 控制阀 207关闭, 旁 通阀 205开启, 通过壳体 2的出气口 21出来的高温高压的制冷剂进入冷凝器 202, 高温高 压的制冷剂通过冷凝器 202的冷凝过程后变成液态制冷剂, 液态制冷剂流经旁通阀 205后 经过节流装置 203 降压, 成为低压液态制冷剂, 节流后的制冷剂进入蒸发器 201, 制冷剂 在蒸发器 201中进行蒸发换热并变成气体, 气体制冷剂通过回气口 33进入壳体 2内。
当空调制热工作时, 如图 9所示, 控制阀 207开启, 旁通阀 205关闭, 通过壳体 2的 排气口出来的高温高压气体制冷剂首先进入蒸发器 201, 通过蒸发器 201 的冷凝过程后变 成过冷的高压液体制冷剂, 液体制冷剂经过节流装置 203降压, 成为低压液态制冷剂, 可 选地, 节流装置 203为毛细管或膨胀阀, 节流后的制冷剂进入闪蒸器 204进行气液分离, 气态冷媒直接流向回气口 33, 纯液态制冷剂进入冷凝器 202, 制冷剂在冷凝器 202中进行 蒸发过程后通过回气口 33进入壳体 2内。
根据本发明实施例的制冷循环装置 200例如空调, 通过设置上述第一方面实施例的双 级旋转式压縮机 100, 在负荷较小时, 选择单级运行, 在负荷大时, 采用双级运行, 从而 有效提高了制冷循环装置 200的整体性能、 可靠性以及能效。
在本发明的一个实施例中, 参照图 8-图 11, 制冷循环装置 200还包括: 第一节流装置 208和第一控制阀 209,第一节流装置 208和第一控制阀 209分别设在控制阀 207和闪蒸器 204、 闪蒸器 204和节流装置 203之间, 控制阀 207、 第一节流装置 208和闪蒸器 204与旁 通阀 205并联。
如图 8所示, 控制阀 207和第一控制阀 209关闭 (第一控制阀 209也可以不关), 旁通 阀 205开启, 经双级旋转式压縮机 100压縮后的高压制冷剂经四通阀 206流向冷凝器 202, 再经旁通阀 205流经节流装置 203, 节流膨胀后的制冷剂流经蒸发器 201, 经蒸发器 201吸 热后, 返回到双级旋转式压縮机 100。 此时, 三通阀 5控制喷气腔 651与低压吸气管 31连 通, 第二气缸 64吸气压力与喷气腔 651 吸气压力一致, 背压腔通入的是低压, 第二滑片 643不动作。 第一气缸 62吸入低压制冷剂进行压縮, 实现单级压縮。 制冷循环时, 采用该 回路, 可以縮减冷媒流经的配管和元件, 降低系统流动阻力损失, 提高系统能效。
如图 9所示, 旁通阀 205关闭, 控制阀 207和第一控制阀 209开启, 经双级旋转式压 縮机 100压縮后的高压制冷剂经四通阀 206流向蒸发器 201, 由蒸发器 201出来的制冷剂 经节流装置 203节流膨胀后流入闪蒸器 204, 在闪蒸器 204闪发的气液两相制冷剂分成两 路: 主路的制冷剂液体经第一节流装置 208节流膨胀后进入冷凝器 202, 在冷凝器 202中 进行热交换后变成制冷剂气体, 再流入双级旋转式压縮机 100进行压縮; 辅助回路的制冷 剂气体从闪蒸器 204出来, 进入喷气回路, 从而流入双级旋转式压縮机 100。 此时, 三通 阀 5控制喷气腔 651与喷气管 1连通, 从闪蒸器 204出来的中压气体进入喷气腔 651, 第 二气缸 64的排气压力为中压气体压力, 双级旋转式压縮机 100进行两级压縮循环。
另外, 制冷循环装置 200进一步包括: 水箱(图未示出), 水箱与蒸发器 201相连以与 蒸发器 201换热。 可选地, 制冷循环装置 200为热泵热水器。 当制冷循环装置 200为热泵 热水器时, 蒸发器 201与水箱进行热交换, 系统循环与上述制冷、 制热过程一致。 制热时 压差压比较大, 特别是低温制热和热泵工况下, 采用两级压縮循环, 可以有效提高系统制 热量, 并提升系统能效。
如图 10所示, 除霜时, 旁通阀 205和第一控制阀 209关闭, 经双级旋转式压縮机 100 压縮后的高压制冷剂经四通阀 206流向冷凝器 202, 由冷凝器 202出来的制冷剂经第一节 流装置 208, 膨胀后的低压制冷剂流入闪蒸器 204, 从闪蒸器 204出来的制冷剂通过补气回 路进入双级旋转式压縮机 100。 此时, 三通阀 5控制喷气腔 651与喷气管 1连通。
进一步地, 回气口 33和喷气管 1之间设有第二控制阀 2041。 具体地, 连通喷气管 1 和低压吸气管 31, 并在之间设置第二控制阀 2041, 第二控制阀 2041仅在除霜模式下运行 时开启, 在其他模式动作时关闭, 除霜时, 低温制冷剂经喷气回路进入双级旋转式压縮机 100的喷气腔 651和第二气缸 64,可以有效避免第二气缸 64在除霜运行时可能出现吸气负 压的情况。 在除霜时, 高低压压差小, 压比小, 如果采用两级压縮, 容易造成过压縮, 导 致功耗上升, 采用该回路, 可有效避免这种情况的发生。
在本发明的描述中,需要理解的是,术语"中心"、 "横向"、 "长度"、 "宽度"、 "厚度"、 "上"、 "下"、 "前"、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"、 "底" "内"、 "外"、 "轴向"、 "径向"、 "周向"等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化描述, 而不是指示或暗示所指的装置或元件必须具有特定 的方位、 以特定的方位构造和操作, 因此不能理解为对本发明的限制。
此外, 术语 "第一"、 "第二"、 "第三,,仅用于描述目的, 而不能理解为指示或暗示相 对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二"、 "第三" 的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中, "多个"的含 义是两个或两个以上, 除非另有明确具体的限定。
在本发明中, 除非另有明确的规定和限定, 术语 "安装"、 "相连"、 "连接"、 "固定" 等术语应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或成一体; 可以是 机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间媒介间接相连, 可以是两 个元件内部的连通或两个元件的相互作用关系。 对于本领域的普通技术人员而言, 可以根 据具体情况理解上述术语在本发明中的具体含义。
在本发明中, 除非另有明确的规定和限定, 第一特征在第二特征 "上" 或 "下"可 以是第一和第二特征直接接触, 或第一和第二特征通过中间媒介间接接触。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示例"、 "具体示 例"、 或 "一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结构、 材料或者 特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语的示意性表述 不必须针对的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或者特点可以 在任一个或多个实施例或示例中以合适的方式结合。 此外, 在不相互矛盾的情况下, 本领 域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进 行结合和组合。
尽管上面已经示出和描述了本发明的实施例, 可以理解的是, 上述实施例是示例性的, 不能理解为对本发明的限制, 本领域的普通技术人员在本发明的范围内可以对上述实施例 进行变化、 修改、 替换和变型。

Claims

权利要求书
1、 一种双级旋转式压縮机, 其特征在于, 包括:
喷气管;
壳体, 所述壳体外设有储液器, 所述壳体内具有喷气腔, 所述喷气腔分别与所述储液 器和所述喷气管相连;
两个气缸, 所述两个气缸均设在所述壳体内且在竖向上彼此间隔开, 所述两个气缸中 的其中一个与所述喷气腔连通、 另一个与所述储液器连通且具有径向延伸的滑片槽和压縮 腔, 所述压縮腔的排气口与所述喷气腔连通;
活塞, 所述活塞设在所述压縮腔内且沿所述压縮腔的内壁可滚动; 以及
滑片, 所述滑片可移动地设在所述滑片槽内且外端与所述滑片槽的内壁共同限定出背 压室, 所述背压室与所述喷气腔连通, 其中所述滑片被构造成所述喷气腔与所述储液器连 通时收纳在所述滑片槽内、 所述喷气腔与所述喷气管连通时内端止抵所述活塞。
2、 根据权利要求 1所述的双级旋转式压縮机, 其特征在于, 所述两个气缸中较下一个 的底部设有轴承, 所述轴承的底部设有盖板, 所述盖板与所述轴承共同限定出所述喷气腔。
3、 根据权利要求 1所述的双级旋转式压縮机, 其特征在于, 所述两个气缸之间设有隔 离装置, 所述隔离装置内限定出所述喷气腔。
4、 根据权利要求 3所述的双级旋转式压縮机, 其特征在于, 所述隔离装置包括: 隔离体, 所述隔离体的顶部和 /或底部敞开; 和
隔离板,所述隔离板设在所述隔离体的顶部和 /或底部且与所述隔离体共同限定出所述 喷气腔。
5、 根据权利要求 1-4中任一项所述的双级旋转式压縮机, 其特征在于, 所述喷气腔通 过三通阀与所述储液器和所述喷气管相连。
6、 根据权利要求 5所述的双级旋转式压縮机, 其特征在于, 所述喷气腔具有与所述三 通阀相连的吸气口, 所述背压室与所述吸气口相通。
7、 根据权利要求 1-6中任一项所述的双级旋转式压縮机, 其特征在于, 所述其中一个 气缸的排出容积为 VI, 所述另一个气缸的排出容积为 V2,
其中 Vl/V2=0. 45-0. 95。
8、 根据权利要求 1-6中任一项所述的双级旋转式压縮机, 其特征在于, 所述其中一个 气缸的高度小于所述另一个气缸的高度,
所述壳体内设有曲轴, 所述曲轴上设有沿轴向间隔开的两个偏心部, 所述曲轴的下端 伸入所述两个气缸内, 且所述两个偏心部分别位于所述两个气缸内, 所述其中一个气缸内 的所述偏心部的偏心量大于等于所述另一个气缸的所述偏心部的偏心量。
9、 一种制冷循环装置, 其特征在于, 包括:
蒸发器;
冷凝器, 所述冷凝器与所述蒸发器相连; 节流装置, 所述节流装置设在所述蒸发器和所述冷凝器之间;
闪蒸器, 所述闪蒸器设在所述节流装置和所述冷凝器之间; 以及
根据权利要求 1-8 中任一项所述的双级旋转式压縮机, 所述双级旋转式压縮机上具有 回气口和出气口, 所述蒸发器、 所述冷凝器通过四通阀分别与所述回气口、 所述出气口连 通, 所述闪蒸器与所述喷气管相连。
10、 根据权利要求 9所述的制冷循环装置, 其特征在于, 所述冷凝器和所述闪蒸器之 间设有控制阀, 所述制冷循环装置进一步包括:
旁通阀, 所述旁通阀与所述控制阀和所述闪蒸器并联。
11、 根据权利要求 10所述的制冷循环装置, 其特征在于, 还包括:
第一节流装置和第一控制阀, 所述第一节流装置和所述第一控制阀分别设在所述控制 阀和所述闪蒸器、 所述闪蒸器和所述节流装置之间, 所述控制阀、 所述第一节流装置和所 述闪蒸器与所述旁通阀并联。
12、 根据权利要求 9-11中任一项所述的制冷循环装置, 其特征在于, 所述节流装置为 毛细管或膨胀阀。
13、 根据权利要求 9-12中任一项所述的制冷循环装置, 其特征在于, 所述回气口和所 述喷气管之间设有第二控制阀。
14、 根据权利要求 9-13中任一项所述的制冷循环装置, 其特征在于, 所述制冷循环装 置为空调。
15、 根据权利要求 9-13中任一项所述的制冷循环装置, 其特征在于, 进一步包括: 水箱, 所述水箱与所述蒸发器相连以与所述蒸发器换热。
16、 根据权利要求 15所述的制冷循环装置, 其特征在于, 所述制冷循环装置为热泵热 水器。
PCT/CN2014/072803 2014-03-03 2014-03-03 双级旋转式压缩机及具有其的制冷循环装置 WO2015131313A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/072803 WO2015131313A1 (zh) 2014-03-03 2014-03-03 双级旋转式压缩机及具有其的制冷循环装置
JP2016572865A JP6349417B2 (ja) 2014-03-03 2014-03-03 二段回転式コンプレッサーおよび冷却サイクル装置
EP14884528.2A EP3115611B1 (en) 2014-03-03 2014-03-03 Two-stage rotary compressor and refrigerating circulation device having same
US15/121,244 US10254013B2 (en) 2014-03-03 2014-03-03 Two-stage rotary compressor and refrigeration cycle device having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072803 WO2015131313A1 (zh) 2014-03-03 2014-03-03 双级旋转式压缩机及具有其的制冷循环装置

Publications (1)

Publication Number Publication Date
WO2015131313A1 true WO2015131313A1 (zh) 2015-09-11

Family

ID=54054328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072803 WO2015131313A1 (zh) 2014-03-03 2014-03-03 双级旋转式压缩机及具有其的制冷循环装置

Country Status (4)

Country Link
US (1) US10254013B2 (zh)
EP (1) EP3115611B1 (zh)
JP (1) JP6349417B2 (zh)
WO (1) WO2015131313A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105757798A (zh) * 2016-03-03 2016-07-13 美的集团武汉制冷设备有限公司 空调系统和空调系统的控制方法
CN108518338A (zh) * 2018-06-04 2018-09-11 黄石东贝电器股份有限公司 制冷压缩机及制冷设备
US20210164712A1 (en) * 2018-07-25 2021-06-03 Guangdong Meizhi Compressor Co., Ltd. Compressor and refrigeration device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465682B2 (en) * 2015-08-24 2019-11-05 Guangdong Meizhi Compressor Co., Ltd. Rotary compressor and refrigeration cycle device having same
CN110985384B (zh) * 2019-11-29 2023-11-17 安徽美芝精密制造有限公司 压缩机及制冷设备
JP7303986B2 (ja) 2019-12-09 2023-07-06 積水ハウス株式会社 屋根構造

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094085A (en) * 1990-05-15 1992-03-10 Kabushiki Kaisha Toshiba Refrigerating cycle apparatus with a compressor having simultaneously driven two compressor means
CN100404867C (zh) * 2005-03-24 2008-07-23 松下电器产业株式会社 转子式密闭压缩机
JP2008286037A (ja) * 2007-05-16 2008-11-27 Fujitsu General Ltd ロータリ圧縮機およびヒートポンプシステム
CN100529407C (zh) * 2004-03-15 2009-08-19 三洋电机株式会社 多气缸旋转压缩机
CN202301036U (zh) * 2011-09-30 2012-07-04 珠海格力电器股份有限公司 旋转式双级增焓压缩机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261A (ja) 1983-06-17 1985-01-05 株式会社日立製作所 冷凍サイクル
JP2003206879A (ja) * 2002-01-17 2003-07-25 Sanyo Electric Co Ltd ロータリコンプレッサ
KR100466620B1 (ko) * 2002-07-09 2005-01-15 삼성전자주식회사 용량가변형 회전압축기
WO2005061901A1 (ja) * 2003-12-03 2005-07-07 Toshiba Carrier Corporation 冷凍サイクル装置
JP2006207559A (ja) 2005-01-31 2006-08-10 Toshiba Kyaria Kk 冷凍サイクル装置およびロータリ式圧縮機
KR101340725B1 (ko) * 2006-10-17 2013-12-12 엘지전자 주식회사 수냉식 공기조화기
KR100816656B1 (ko) * 2006-12-27 2008-03-26 엘지전자 주식회사 용량 가변형 로터리 압축기
JP2008190492A (ja) * 2007-02-07 2008-08-21 Daikin Ind Ltd 回転式圧縮機
CN101169117A (zh) * 2007-11-17 2008-04-30 美的集团有限公司 容量控制旋转式压缩机的吸气装置
JP2009264606A (ja) 2008-04-22 2009-11-12 Daikin Ind Ltd 冷凍装置
KR101679860B1 (ko) * 2010-07-14 2016-11-25 엘지전자 주식회사 압축기
JP5481568B2 (ja) * 2010-12-24 2014-04-23 東芝キヤリア株式会社 多気筒回転式圧縮機と冷凍サイクル装置
JP2013001268A (ja) 2011-06-17 2013-01-07 Nippon Soken Inc 車両用空調装置
CN202707496U (zh) 2012-07-30 2013-01-30 珠海格力节能环保制冷技术研究中心有限公司 变容量旋转压缩机
CN203285687U (zh) 2013-06-05 2013-11-13 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN203756524U (zh) 2014-03-03 2014-08-06 广东美芝制冷设备有限公司 双级旋转式压缩机及具有其的制冷循环装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094085A (en) * 1990-05-15 1992-03-10 Kabushiki Kaisha Toshiba Refrigerating cycle apparatus with a compressor having simultaneously driven two compressor means
CN100529407C (zh) * 2004-03-15 2009-08-19 三洋电机株式会社 多气缸旋转压缩机
CN100404867C (zh) * 2005-03-24 2008-07-23 松下电器产业株式会社 转子式密闭压缩机
JP2008286037A (ja) * 2007-05-16 2008-11-27 Fujitsu General Ltd ロータリ圧縮機およびヒートポンプシステム
CN202301036U (zh) * 2011-09-30 2012-07-04 珠海格力电器股份有限公司 旋转式双级增焓压缩机

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105757798A (zh) * 2016-03-03 2016-07-13 美的集团武汉制冷设备有限公司 空调系统和空调系统的控制方法
CN105757798B (zh) * 2016-03-03 2018-11-27 美的集团武汉制冷设备有限公司 空调系统和空调系统的控制方法
CN108518338A (zh) * 2018-06-04 2018-09-11 黄石东贝电器股份有限公司 制冷压缩机及制冷设备
CN108518338B (zh) * 2018-06-04 2024-05-17 黄石东贝压缩机有限公司 制冷压缩机及制冷设备
US20210164712A1 (en) * 2018-07-25 2021-06-03 Guangdong Meizhi Compressor Co., Ltd. Compressor and refrigeration device
US11933526B2 (en) * 2018-07-25 2024-03-19 Guangdong Meizhi Compressor Co., Ltd. Compressor and refrigeration device

Also Published As

Publication number Publication date
EP3115611A4 (en) 2017-10-18
JP6349417B2 (ja) 2018-06-27
US10254013B2 (en) 2019-04-09
EP3115611A1 (en) 2017-01-11
JP2017516024A (ja) 2017-06-15
EP3115611B1 (en) 2019-04-10
US20170108246A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2015131313A1 (zh) 双级旋转式压缩机及具有其的制冷循环装置
CN107842486B (zh) 压缩机以及具有其的空调系统
CN103821716A (zh) 双级旋转式压缩机及具有其的制冷循环装置
US20090007590A1 (en) Refrigeration System
CN106568225B (zh) 压缩机和具有其的制冷装置
CN104879942B (zh) 制冷制热循环系统
CN203756524U (zh) 双级旋转式压缩机及具有其的制冷循环装置
CN1333220C (zh) 制冷剂循环装置
US4262492A (en) Airconditioner
JPWO2011055444A1 (ja) ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法
CN208793221U (zh) 涡旋压缩机及包括该涡旋压缩机的空调系统
CN108071590B (zh) 气缸、压缩机构及压缩机
CN201363276Y (zh) 双缸型两级压缩旋转式压缩机
CN107084133B (zh) 压缩机和具有其的制冷装置
JPH02230995A (ja) ヒートポンプ用圧縮機及びその運転方法
CN106369863B (zh) 制冷装置
WO2017132824A1 (zh) 变容式压缩机和具有其的制冷装置
CN111854216A (zh) 空调系统
WO2015051537A1 (zh) 冷冻循环装置
CN204630142U (zh) 制冷制热循环系统
WO2017031669A1 (zh) 旋转式压缩机和具有其的冷冻循环装置
CN107816816B (zh) 制冷装置
EP2716999A1 (en) Refrigeration cycle device
CN111677665A (zh) 压缩机及具有其的空调装置
CN107489618B (zh) 旋转式压缩机和具有其的空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884528

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014884528

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014884528

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016572865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15121244

Country of ref document: US