WO2015129823A1 - 主軸装置 - Google Patents

主軸装置 Download PDF

Info

Publication number
WO2015129823A1
WO2015129823A1 PCT/JP2015/055696 JP2015055696W WO2015129823A1 WO 2015129823 A1 WO2015129823 A1 WO 2015129823A1 JP 2015055696 W JP2015055696 W JP 2015055696W WO 2015129823 A1 WO2015129823 A1 WO 2015129823A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
housing
sleeve
bearing
cooling
Prior art date
Application number
PCT/JP2015/055696
Other languages
English (en)
French (fr)
Inventor
翔一郎 小栗
美昭 勝野
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to KR1020167023608A priority Critical patent/KR101917015B1/ko
Priority to EP15754847.0A priority patent/EP3112714B1/en
Priority to CN201580011204.8A priority patent/CN106062395B/zh
Publication of WO2015129823A1 publication Critical patent/WO2015129823A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/70Stationary or movable members for carrying working-spindles for attachment of tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/121Arrangements for cooling or lubricating parts of the machine with lubricating effect for reducing friction
    • B23Q11/123Arrangements for cooling or lubricating parts of the machine with lubricating effect for reducing friction for lubricating spindle bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/126Arrangements for cooling or lubricating parts of the machine for cooling only
    • B23Q11/127Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/007Cooling of bearings of rolling bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General buildup of machine tools, e.g. spindles, slides, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/768Sealings of ball or roller bearings between relatively stationary parts, i.e. static seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/08Rigid support of bearing units; Housings, e.g. caps, covers for spindles
    • F16C35/12Rigid support of bearing units; Housings, e.g. caps, covers for spindles with ball or roller bearings

Definitions

  • the present invention relates to a spindle device, and more particularly to a spindle device of a rotating machine that rotates at high speed, such as a machine tool spindle, a high-speed motor, a centrifuge, or a turbo refrigerator.
  • a conventional cooling device 100 that suppresses heat generation from the front bearing is provided on an outer peripheral surface of a front housing 104 in which a pair of front bearings 102 and 103 that support the front side of the main shaft 101 are fitted.
  • a circumferential groove 105 is provided.
  • a cooling medium is circulated between the outer peripheral surface of the front housing 104 and the inner peripheral surface of the other housing 106 to cool the front bearings 102 and 103.
  • Patent Document 1 discloses a machine tool in which a cooling medium passage is provided in an inner ring spacer disposed between a front bearing and a rear bearing, and the inner ring spacer is cooled by a cooling medium pumped from a pump or the like. Discloses a spindle cooling device.
  • the rear-side bearing which is the free-side bearing, often uses a bearing that is slightly smaller in size than the front-side bearing (for example, the inner diameter of the bearing is about 10 to 30 mm smaller than the fixed-side bearing). . For this reason, the dmn value of the bearing is reduced, and the temperature rise is correspondingly reduced.
  • the rear bearing is a free side, and the thermal deformation of the rear part of the main shaft has a smaller influence on the machining accuracy than the front bearing (for example, the rotating shaft is less than the non-rotating part.
  • the rear bearing has a complicated cooling structure due to the fact that the rear side of the spindle slides backwards even if it expands relative to the direction, and it is difficult to appear in the displacement of the front side of the spindle where the blade is mounted. Is often not added.
  • dmn values of bearings have increased dmn values of bearings to be used of 1 million or more, or more than 1.5 million, and more than 2 million. Accordingly, the dmn value of the rear bearing is also increased. Increasing and generating fever. If the rear bearing generates a large amount of heat, the lubricating oil viscosity decreases due to an increase in the internal temperature of the bearing, and seizure may occur due to poor oil film formation at the rolling contact portion.
  • the cooling device 110 shown in FIG. 12 it is conceivable to cool the rear bearing while simplifying the peripheral structure.
  • a sleeve 114 into which a pair of free-side bearings 112, 113 that support the rear side of the main shaft 101 is fitted is fitted in the rear housing 115, and a circumferential groove 116 is provided on the outer circumferential surface of the rear housing 115. Then, the free side bearings 112 and 113 are cooled by circulating a cooling medium between the outer peripheral surface of the rear housing 115 and the inner peripheral surface of the other housing 117.
  • the cooling part is disposed at a position radially away from the heat generating part (bearings 112 and 113), and the sleeve 114 and the rear housing 115 that are fitted by clearance fitting are arranged. Since the heat transfer efficiency between them is low, there is a problem that the cooling efficiency is low. Therefore, although the rear housing is cooled, the sleeve is not cooled effectively, and there is a possibility that a gap between the rear housing and the sleeve becomes small and a sliding failure occurs.
  • the present invention has been made in view of the above-described problems, and an object thereof is to effectively suppress a temperature rise due to heat generation from the rear bearing, thereby extending the life of the rear bearing, that is, the life of the spindle device.
  • An object of the present invention is to provide a spindle device that can be extended and improved in machining accuracy.
  • the above object of the present invention can be achieved by the following constitution. (1) a housing; A rotating shaft relatively rotatable with respect to the housing; A fixed-side bearing in which an inner ring is fitted on one end side of the rotating shaft and an outer ring is fixed to the housing; A sleeve disposed in the housing on the other end side of the rotary shaft and movable in the axial direction of the rotary shaft; A free side bearing in which the inner ring is fitted on the other end of the rotating shaft, and the outer ring is fitted in the sleeve; A spindle device having A cooling path through which a cooling medium can flow is formed between the outer peripheral surface of the sleeve and the inner peripheral surface of the housing that face each other.
  • the cooling path is formed on the outer peripheral surface of the sleeve or the inner peripheral surface of the housing, and is formed at least one place between the plurality of annular grooves arranged in the axial direction and the adjacent annular grooves, and the adjacent annular grooves are communicated with each other.
  • a spindle device comprising: a slit; (2) The supply port for supplying the cooling medium opens toward the annular groove located on one end side in the axial direction, and the discharge port for discharging the cooling medium opens toward the annular groove located on the other end side in the axial direction.
  • the spindle device according to (1) characterized in that: (3) An annular elastic member for liquid-tightly sealing between the outer peripheral surface of the sleeve and the inner peripheral surface of the housing is disposed on both sides in the axial direction of the cooling path (1) or The spindle device according to (2). (4) The chamfered portion is formed on both end edges of the outer peripheral surface of the sleeve or both end edges of the inner peripheral surface of the housing. (1) to (3) Spindle device. (5) The spindle device according to any one of (1) to (4), wherein the side wall surface of the annular groove is formed to be inclined with respect to a direction orthogonal to the axial direction.
  • a cooling path through which a cooling medium can flow is formed between the outer peripheral surface of the sleeve and the inner peripheral surface of the housing that face each other, and the cooling path is the outer peripheral surface of the sleeve or the housing.
  • a plurality of annular grooves formed on the inner peripheral surface of each of the annular grooves and arranged in the axial direction, and at least one slit formed between the adjacent annular grooves to communicate the adjacent annular grooves. It is possible to directly cool the sleeve in which the inner sleeve is fitted, and the free-side bearing can be efficiently cooled.
  • the flow of the cooling medium in the annular groove becomes smooth, and the entire sleeve is uniformly cooled, so that deformation distortion due to cooling does not occur.
  • there is no distortion of the bearing that fits inside the rotation accuracy of the main shaft is maintained with high accuracy, and the processing accuracy of the main shaft is improved.
  • FIG. 1 is a cross-sectional view of a first embodiment of a spindle device according to the present invention. It is an expanded sectional view of the free side bearing vicinity shown in FIG.
  • FIG. 3 is a partial cross-sectional view corresponding to FIG. 2 showing an outer peripheral surface of a sleeve for explaining an annular groove. It is sectional drawing of an annular groove. It is sectional drawing of the annular groove
  • FIG. 9 is a partial cross-sectional view corresponding to FIG. 8 showing an outer peripheral surface of a sleeve for explaining an annular groove. It is a graph which compares and shows the temperature rise by the difference in the cooling structure of a free side bearing. It is sectional drawing which shows the structure of the conventional fixed side bearing. It is sectional drawing which shows the structure of the conventional free side bearing.
  • the spindle device 10 has a housing 11 and a tool (not shown) attached to one end (left side in the figure), a rotary shaft 12 that is rotatable relative to the housing 11, and a front end side (left side in the figure) of the rotary shaft 12.
  • Angular ball bearings) 14 and 14 and a sleeve 15 that is inserted in the housing 11 and is slidable in the axial direction.
  • the housing 11 includes a substantially cylindrical housing body 31, a front housing 32 fitted and fixed to the front end side of the housing body 31, and a rear housing 33 fitted and fixed to the rear end side of the housing body 31. ing.
  • a front lid 34 is fastened and fixed to the front end of the front housing 32, and a rear lid 36 is fastened and fixed to the rear end of the rear housing 33.
  • the stator 38 of the built-in motor 37 is fixed to the sleeve 29 that fits inside the inner peripheral surface 31 a of the housing body 31.
  • a rotor 39 is fixed to an intermediate portion in the axial direction of the rotating shaft 12 so as to face the stator 38, and a rotating force is given by a rotating magnetic field generated by the stator 38 to rotationally drive the rotating shaft 12.
  • a plurality of annular grooves 29 a are formed on the outer peripheral surface of the sleeve 29, and a cooling path 28 is formed between the inner peripheral surface 31 a and the inner groove 31 a by being fitted inside the housing body 31.
  • the fixed-side bearings 13 and 13 have outer rings 18 and 18 fitted in the front housing 32, and inner rings 19 and 19 fitted on the rotary shaft 12, so that the front end side of the rotary shaft 12 is supported rotatably.
  • the outer rings 18, 18 of the fixed side bearings 13, 13 are sandwiched by the step 32 a of the front housing 32 and the front lid 34 via the outer ring spacer 20, and are positioned in the axial direction with respect to the front housing 32.
  • the inner rings 19, 19 are clamped by the front step portion 12 a of the rotating shaft 12 through the inner ring spacer 21 and a nut 22 screwed to the rotating shaft 12, and are positioned in the axial direction with respect to the rotating shaft 12.
  • a plurality of annular grooves 32 b are formed on the outer peripheral surface of the front housing 32, and the cooling path 30 is formed between the inner peripheral surface 31 b of the housing main body 31 by being fitted into the housing main body 31. .
  • a substantially cylindrical bearing sleeve 16 that is movable in the axial direction is fitted to the inner peripheral surface 33a of the rear housing 33. Further, an outer ring presser 17 that extends radially outward from the outer peripheral surface of the bearing sleeve 16 is attached to the end surface on the side opposite to the tool of the bearing sleeve 16 with a screw (not shown).
  • the bearing sleeve 16 and the outer ring presser 17 constitute the sleeve 15 of the present invention.
  • the rear housing 33 is formed with a plurality of spring chambers 55 that open to the end surface on the side opposite to the tool (the right side surface in the drawing), and the flange portion of the outer ring retainer 17 that extends radially outward from the bearing sleeve 16. Opposite the tool side end face.
  • the coil spring 56 is accommodated in the spring chamber 55 and interposed between the flange portion of the outer ring presser 17 and the spring chamber 55.
  • the coil spring 56 applies an elastic force in the axial direction (right direction in the drawing) to the sleeve 15, thereby applying a constant pressure preload to the fixed side bearings 13 and 13 and the free side bearings 14 and 14.
  • the free-side bearings 14 and 14 have outer rings 23 and 23 fitted in the bearing sleeve 16 and inner rings 24 and 24 fitted on the rotary shaft 12 so as to rotatably support the rear end side of the rotary shaft 12.
  • the outer rings 23, 23 of the free-side bearings 14, 14 are sandwiched by the step 16 a of the bearing sleeve 16 and the annular convex portion 17 a of the outer ring retainer 17 via the outer ring spacer 25, and are pivoted with respect to the bearing sleeve 16.
  • the inner rings 24, 24 are clamped by the rear step portion 12 b of the rotating shaft 12 through the inner ring spacer 26 and a nut 27 screwed to the rotating shaft 12, and are positioned in the axial direction with respect to the rotating shaft 12.
  • a plurality of annular grooves 41 are formed on the outer peripheral surface 16b of the bearing sleeve 16 side by side in the axial direction. Between the adjacent annular grooves 41, a slit 42 is formed along the axial direction, and the adjacent annular grooves 41 communicate with each other. It is desirable that the phases of the slits 42 are alternately arranged with phases different by 180 °.
  • the annular groove 41 and the slit 42 are cooled between the outer peripheral surface of the bearing sleeve 16 and the inner peripheral surface 33 a of the rear housing 33 facing each other by fitting the bearing sleeve 16 to the inner peripheral surface 33 a of the rear housing 33.
  • a path 40 is formed.
  • a cooling medium such as cooling oil flows through the cooling path 40.
  • phase of the slit 42 By changing the phase of the slit 42 by 180 °, the cooling medium stagnation in the annular groove 41 is reduced, and the flow of the cooling medium becomes uniform.
  • the phase of the slit 42 is not limited to 180 °, and the slit 42 can be provided in any phase in which the cooling medium flows smoothly.
  • the supply port 51 of the supply path 57 for supplying the cooling medium in the cooling path 40 is formed so as to open toward the annular groove 41 located closest to the built-in motor 37, and the discharge path 58 for discharging the cooling medium is formed.
  • the discharge port 52 opens toward the annular groove 41 farthest from the built-in motor 37 and is provided with a phase that is 180 ° different from the supply port 51.
  • the cooling medium pumped from a pump (not shown) is supplied from the supply port 51, flows in the cooling path 40 and cools, and is then discharged from the discharge port 52.
  • the cooling path 40 has a symmetric arrangement and can be cooled uniformly. Note that the phase difference between the supply port 51 and the discharge port 52 can be arbitrarily changed according to the arrangement of the peripheral components, and may be in the same phase, for example.
  • the supply port 51 and the discharge port 52 are provided at a phase that is 90 ° different from the phase of the slit 42, but the phase difference with the slit 42 can be arbitrarily changed, and the phase of the slit 42 can be changed. And the same phase.
  • a pair of annular grooves 44 are formed on the outer peripheral surface 16 b of the bearing sleeve 16 on the outer side in the axial direction from the cooling path 40.
  • An O-ring 45 that is an elastic member is attached to the annular groove 44 to seal the fitting portion between the inner peripheral surface 33 a of the rear housing 33 and the bearing sleeve 16.
  • the crushing allowance of the O-ring 45 is preferably in the range of 0.1 mm to 2.0 mm, and in order to more easily eliminate the sliding failure of the bearing sleeve 16, it should be in the range of 0.2 mm to 0.5 mm. Is desirable.
  • the fitting gap between the bearing sleeve 16 and the rear housing 33 may have a difference in diameter, that is, the dimension indicated by the inner diameter of the rear housing 33 ⁇ the outer diameter of the bearing sleeve 16 within a range of 5 ⁇ m to 100 ⁇ m. Preferably, in the range of 15 ⁇ m to 50 ⁇ m, in order to easily solve the sliding trouble due to insufficient gap or inclination of the bearing sleeve 16.
  • the sliding amount of the bearing sleeve 16 and the rear housing 33 in this embodiment is a displacement enough to escape deformation due to processing load and thermal axial expansion of the spindle, so at most ⁇ 0.5 mm or less. Both are ⁇ 1 mm or less.
  • the spindle device 10 cools the fixed side bearings 13 and 13, the cooling path 30 that cools the stator 38 of the built-in motor 37, and the cooling paths that cool the free side bearings 14 and 14.
  • the cooling device (not shown) is also provided in a separate system from the other cooling paths 28 and 30 for optimal cooling of the free-side bearings 14 and 14, and is used for the cooling path 40. It is preferable to arrange them independently. Thereby, the temperature adjustment of the cooling medium can be performed without being affected by the conditions of the other cooling paths 28 and 30.
  • the cooling device 40 may be independent but not the cooling device.
  • an optimum cooling condition can be adjusted by providing a throttle somewhere in the supply side piping to the cooling path 40 and controlling the supply amount of the cooling medium.
  • the cooling path 40 that cools the free-side bearings 14 and 14. If the path configuration is to be circulated, the temperature of the spindle device 10 as a whole can be lowered more efficiently. Further, when it is desired to cool the free-side bearings 14 and 14 more efficiently, a cooling medium having a lower temperature may be circulated through the cooling path 40 as a path configuration opposite to the above, and as required. Can be selected.
  • the cooling path 40 through which the cooling medium can flow is formed between the outer peripheral surface 16 b of the bearing sleeve 16 and the inner peripheral surface 33 a of the rear housing 33.
  • the cooling path 40 is formed on the outer peripheral surface 16b of the bearing sleeve 16 and is formed between at least one annular groove 41 arranged in the axial direction and between the adjacent annular grooves 41, and between the adjacent annular grooves 41. Therefore, the bearing sleeve 16 into which the free-side bearings 14 and 14 are fitted can be directly cooled, and the free-side bearings 14 and 14 can be efficiently cooled.
  • both the members of the rear housing 33 and the bearing sleeve 16 are cooled at the same time, the amount of radial contraction of both the members becomes uniform, and the gap between the slide portions (the gap between the rear housing 33 and the bearing sleeve 16) is not clogged. It is possible to prevent the occurrence of a slide failure due to insufficient gap. Furthermore, the flow of the cooling medium in the annular groove 41 becomes smooth, and the entire bearing sleeve 16 is uniformly cooled, so that deformation distortion due to cooling does not occur. As a result, the free-side bearings 14 and 14 fitted therein are not distorted, the rotational accuracy of the rotary shaft 12 is maintained with high accuracy, and the processing accuracy of the spindle device 10 is improved.
  • the supply port 51 for supplying the cooling medium opens toward the annular groove 41 located on one end side in the axial direction, and the discharge port 52 for discharging the cooling medium is formed in the annular groove 41 located on the other end side in the axial direction. Therefore, the flow of the cooling medium in the annular groove 41 becomes smooth, and the entire bearing sleeve 16 can be cooled uniformly. Thereby, high rotational accuracy is maintained.
  • O-rings 45 are disposed for liquid-tight sealing between the outer peripheral surface 16b of the bearing sleeve 16 and the inner peripheral surface 33a of the rear housing 33. Leakage is prevented, and the damping characteristic of the spindle device 10 is improved by the elasticity of the O-ring 45, which contributes to the improvement of dynamic rigidity, which particularly affects the machining characteristics of difficult-to-cut materials. In addition, a damping action due to the damper effect of the cooling medium flowing through the slide portion is also added.
  • the annular groove 41 is formed in a rectangular cross-sectional shape by a bottom surface 41a and a side wall surface 41b, as shown in FIG.
  • the size of the groove width B and the depth T of the annular groove 41 having a rectangular cross-sectional shape can be selected as appropriate.
  • B> T since the radial depth of the annular groove 41 is shallow, the radial thickness of the bearing sleeve 16 is ensured, so that the sleeve rigidity can be increased.
  • Such a shape is applied when importance is placed on improving the processing accuracy of the sleeve or when the rigidity of the main shaft is improved.
  • the cross-sectional shape of the annular groove 41 can be various shapes as shown in FIGS. 5A to 5C in addition to the rectangular shape.
  • the side wall surface 41b of the annular groove 41 may be formed to be inclined with respect to the direction orthogonal to the axial direction, that is, the radial direction.
  • the annular groove 41 of the bearing sleeve 16 shown in FIG. 5A is a trapezoidal groove whose groove width B gradually increases toward the outer peripheral surface 16 b of the bearing sleeve 16. That is, in the trapezoidal annular groove 41, the cross-sectional shape of the annular groove 41 is such that the angle formed by the bottom surface 41a and the side wall surface 41b is an obtuse angle ( ⁇ 1 ), and thus there is no interference with the inner peripheral surface 33a of the rear housing 33. , Improved slideability. Further, the annular groove 41 of the bearing sleeve 16 shown in FIG.
  • the cross-sectional shape of the annular groove 41 is a portion close to the free-side bearings 14 and 14 that are heat sources because the angle formed by the bottom surface 41a and the side wall surface 41b is an acute angle ( ⁇ 2 ). Therefore, the heat of the free-side bearings 14 and 14 can be efficiently transmitted to the cooling medium, and the cooling performance is improved.
  • annular groove 41 of the bearing sleeve 16 shown in FIG. 5C has a semicircular cross section with a radius of curvature R, so that it can be processed with a round bite, and the bite is less worn during processing, and the workability is improved. Can be improved.
  • chamfered portions 43 may be formed at both ends of the outer peripheral surface 16 b of the bearing sleeve 16.
  • the angle ⁇ 3 of the chamfered portion 43 with respect to the outer peripheral surface 16b is preferably 3 to 45 °, more preferably 3 to 30 °.
  • the chamfered portion 46 is formed on the shoulder portion of the annular groove 41 in addition to the chamfered portions 43 at both end edges of the bearing sleeve 16, the interference with the inner peripheral surface 33 a of the rear housing 33. Is further prevented and slidability is maintained.
  • the chamfering angle ⁇ 4 of the shoulder of the annular groove 41 is 3 to 45 °, more preferably 3 to 30 °.
  • FIGS. 1-10 a second embodiment of the spindle device according to the present invention will be described with reference to FIGS.
  • the spindle device of this embodiment is the same as that of the first embodiment except that an annular groove is provided on the inner peripheral surface of the rear housing.
  • the same reference numerals are given to the descriptions, and the description thereof is omitted or simplified. Further, only the vicinity of the free-side bearing will be illustrated and described.
  • a plurality of annular grooves 47 are formed in the axial direction in the inner peripheral surface 33 a of the rear housing 33. Between the adjacent annular grooves 47, a slit 48 is formed in the axial direction to communicate the adjacent annular grooves 47. It is desirable that the phases of the slits 48 are alternately arranged with phases different by 180 °.
  • the annular groove 47 and the slit 48 form a cooling path 49 through which the cooling medium flows between the outer peripheral surface 16 b of the bearing sleeve 16 by fitting the bearing sleeve 16 to the inner peripheral surface 33 a of the rear housing 33.
  • the supply port 51 and the discharge port 52 are provided so as to have the same phase as any of the slits 42, but also in this embodiment, the phase difference with the slit 42 can be set arbitrarily.
  • a pair of annular grooves 50 are formed on the inner peripheral surface 33 a of the rear housing 33 on the outer side in the axial direction from the cooling passage 49.
  • An O-ring 45 which is an elastic member, is attached to the annular groove 50 to seal the fitting portion between the inner peripheral surface 33 a of the rear housing 33 and the bearing sleeve 16.
  • the cooling path 49 through which the cooling medium can flow is formed between the outer peripheral surface 16 b of the bearing sleeve 16 and the inner peripheral surface 33 a of the rear housing 33.
  • the cooling path 49 is formed on the inner peripheral surface 33a of the rear housing 33, and is formed at least one place between the plurality of annular grooves 47 arranged in the axial direction and the adjacent annular grooves 47. And a slit 48 to be communicated. For this reason, there can exist an effect similar to the said 1st Embodiment. Other configurations and operational effects are the same as those in the first embodiment.
  • the cross-sectional shape of the annular groove 47 and the shape of both end edges of the inner peripheral surface 33a of the rear housing 33 are the same as the cross-sectional shape of the annular groove 41 of the first embodiment and the outer periphery of the bearing sleeve 16.
  • the present invention can be applied in the same manner as the shape of both edge portions of the surface 16b.
  • chamfered portions may be formed at both end edges of the inner peripheral surface 33a of the rear housing 33, and the side wall surfaces of the plurality of annular grooves 47 are inclined with respect to a direction orthogonal to the axial direction. It may be formed.
  • this invention is not limited to each embodiment mentioned above, A deformation
  • the spindle device in which the preload is applied by the constant pressure preload between the fixed side bearing and the free side bearing has been described.
  • the present invention can also be applied to the main spindle device, and the same effect can be obtained.
  • a free side bearing it is not limited to an angular ball bearing, Other rolling bearings, such as a cylindrical roller bearing, may be applied.
  • the cooling structure of the present invention (first embodiment) in which the cooling path is provided on the outer peripheral surface of the bearing sleeve 16, the cooling structure shown in FIG. 12 in which the cooling path is provided on the outer peripheral surface of the rear housing, and the bearing sleeve.
  • the temperature rise values from the inner diameter of the bearing sleeve to the outer diameter of the housing were compared using a structure without cooling provided in the rear housing and the rear housing.
  • FIG. 10 is a graph comparing temperature rise values from the inner diameter of the bearing sleeve to the outer diameter of the housing due to different cooling structures.
  • the temperature rise due to each cooling structure is the smallest in the temperature rise value of the cooling structure of the present invention in which the cooling path 40 is provided on the outer peripheral surface of the bearing sleeve 16, and the spindle device 10 is cooled with high efficiency.
  • the difference in temperature rise between the inner diameter of the housing (the sleeve inner fitting portion) and the bearing sleeve is extremely small compared to the outer cylinder cooling structure shown in FIG. 12, and the sliding gap of the slide portion is reduced due to the difference in thermal expansion. It can be made small and good sliding characteristics can be maintained.
  • the temperature difference between the bearing sleeve and the inner diameter of the housing is 2.2 ° C. in the configuration of the present invention compared to 8.5 ° C. in the case of the outer cylinder cooling structure shown in FIG. is there.
  • the configuration of the present invention provides an effect of preventing these problems.
  • the temperature of the bearing sleeve is about 11 ° C. lower, the bearing temperature is lowered, the base oil viscosity of the lubricant can be maintained, and the oil film formation at the rolling contact portion is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Turning (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

 本発明は、互いに対向し、且つ自由側軸受(14)が内嵌する軸受スリーブ(16)の外周面とハウジング(33)の内周面との間には、冷却媒体が流動可能な冷却路(40等)を備え、冷却路(40)は、軸受スリーブ(16)の外周面又はハウジング(33)の内周面に形成され、軸方向にそれぞれ並ぶ複数の環状溝(41)と、隣接する環状溝(41)間に少なくとも1ヶ所形成されて、隣接する環状溝(41)同士を連通させるスリット(42)とを備える主軸装置に関する。本発明は、これにより、後側軸受からの発熱による温度上昇を効果的に抑制して、寿命の延長、加工精度の向上を図るものである。

Description

主軸装置
 本発明は、主軸装置に関し、より詳細には、工作機械主軸、高速モータ、遠心分離機、或いはターボ冷凍機などの高速回転する回転機械の主軸装置に関する。
 工作機械主軸の高速化は著しく発展しており、主軸の高速化を可能にするための潤滑方法として、オイルエア潤滑やオイルミスト潤滑が採用されている。また、他の潤滑方法として、環境保護の観点から、潤滑油を外部に排出しないグリース潤滑も改めて見直されており、高速回転で耐焼付き性に優れた軽量のセラミック転動体(たとえば、窒化けい素など)を使用した転がり軸受と共に採用されている。
 また、高速回転主軸における駆動方法としては、歯車駆動やベルト駆動、あるいは、カップリングによる直結駆動よりも、主軸内にモータを内蔵した、所謂、モータビルトイン主軸が大勢を占めている。
 このような構成の高速主軸では、主軸を支持する転がり軸受からの発熱以外にも、内蔵するモータ(ステータ及びロータ)からの発熱も大きい。工作機械主軸の場合、主軸の温度上昇が高いと、熱変形が生じ加工精度が低下する。このため、主軸の温度上昇を抑制するように、主軸外筒であるハウジングに外部から冷却油を流す手段が用いられている。熱膨張による主軸の変形は、固定側となる前側軸受を原点として、軸方向に発生するので、固定側である前側軸受及びモータのステータの外周部を冷却することが多い。
 例えば、前側軸受からの発熱を抑制する従来の冷却装置100としては、図11に示すように、主軸101の前側を支持する一対の前側軸受102,103が内嵌するフロントハウジング104の外周面に円周方向溝105を設ける。そして、フロントハウジング104の外周面と他のハウジング106の内周面との間に、冷却媒体を循環させて前側軸受102,103を冷却している。
 また、特許文献1には、前側軸受と後側軸受との間に配置した内輪間座に冷却媒体通路を設け、ポンプなどから圧送される冷却媒体によって内輪間座を冷却するようにした工作機械におけるスピンドル冷却装置が開示されている。
 一方、自由側軸受となる後側軸受は、前側軸受と比較して、サイズが若干小さい軸受(例えば、軸受内径寸法で、固定側軸受よりφ10~φ30mm前後小さいサイズ)が使用されることが多い。このため、軸受のdmn値が小さくなって、その分、温度上昇が少なくなる。また、後側軸受は、自由側であること、及び、主軸後部の熱変形は加工精度に及ぼす影響度が前側軸受に比べて小さいこと(例えば、仮に、回転軸が非回転部品に対して軸方向に相対膨張しても主軸後側は後方にスライド移動して、刃物が装着される主軸前側の変位には現れ難い)などの理由により、後側軸受には、構造が複雑となる冷却構造を付加しないことが多い。
日本国実開平4-133555号公報
 ところで、最近の高速主軸は、使用する軸受のdmn値が100万以上、あるいは、150万を越える、更には200万以上のタイプが増加しており、これに伴って後側軸受のdmn値も増加し、発熱が大きくなっている。後側軸受の発熱が大きいと、軸受の内部温度の上昇により、潤滑油粘度が低下し、転がり接触部などでの油膜形成不良による焼付きが発生する虞がある。
 このため、図12に示す冷却装置110では、周辺構造を簡素化しつつ、後側軸受を冷却することが考えられる。この場合、主軸101の後側を支持する一対の自由側軸受112,113が内嵌するスリーブ114をリアハウジング115に内嵌し、このリアハウジング115の外周面に円周方向溝116を設ける。そして、リアハウジング115の外周面と他のハウジング117の内周面との間に冷却媒体を循環させて、自由側軸受112,113を冷却する。
 しかしながら、図12に示す構造では、冷却部は、発熱部(軸受112,113)から径方向に離れた位置に配置されており、また、すきま嵌めで嵌合するスリーブ114とリアハウジング115との間の熱伝達効率が低いため、冷却効率が低いという問題がある。したがって、リアハウジングは冷却されるが、スリーブが効果的に冷却されず、リアハウジングとスリーブとの間のすきまが小さくなってスライド不良が発生する虞がある。このため、前側軸受(固定側軸受)と後側軸受(自由側軸受)間で熱膨張による突っ張り荷重が発生し、軸受に過大荷重が負荷されて軸受が損傷する可能性がある。或いは、予圧抜けが発生して異音や異常振動が発生する要因となる。
 本発明は、前述した課題に鑑みてなされたものであり、その目的は、後側軸受からの発熱による温度上昇を効果的に抑制して、後側軸受の寿命延長、即ち、主軸装置の寿命延長を図ると共に、加工精度を向上させることができる主軸装置を提供することにある。
 本発明の上記目的は、下記の構成により達成される。
(1) ハウジングと、
 該ハウジングに対して相対回転自在な回転軸と、
 内輪が前記回転軸の一端側に外嵌され、外輪が前記ハウジングに固定される固定側軸受と、
 回転軸の他端側でハウジング内に配置され、回転軸の軸方向に移動可能なスリーブと、
 内輪が回転軸の他端側に外嵌され、外輪がスリーブに内嵌される自由側軸受と、
を有する主軸装置であって、
 互いに対向するスリーブの外周面とハウジングの内周面との間には、冷却媒体が流動可能な冷却路が形成され、
 冷却路は、スリーブの外周面又はハウジングの内周面に形成され、軸方向にそれぞれ並ぶ複数の環状溝と、隣接する環状溝間に少なくとも1ヶ所形成されて、隣接する環状溝同士を連通させるスリットと、を備えることを特徴とする主軸装置。
(2) 冷却媒体を供給する供給口は、軸方向一端側に位置する環状溝に向けて開口し、冷却媒体を排出する排出口は、軸方向他端側に位置する環状溝に向けて開口することを特徴とする(1)に記載の主軸装置。
(3) 冷却路の軸方向両側には、スリーブの外周面とハウジングの内周面との間を液密に封止する環状の弾性部材が配設されることを特徴とする(1)又は(2)に記載の主軸装置。
(4) スリーブの外周面の両端縁部、又は前記ハウジングの内周面の両端縁部には、面取り部が形成されることを特徴とする(1)~(3)のいずれかに記載の主軸装置。
(5) 環状溝の側壁面は、軸方向と直交する方向に対して傾斜して形成されることを特徴とする(1)~(4)のいずれかに記載の主軸装置。
 本発明の主軸装置によれば、互いに対向するスリーブの外周面とハウジングの内周面との間には、冷却媒体が流動可能な冷却路が形成され、冷却路は、スリーブの外周面又はハウジングの内周面に形成され、軸方向にそれぞれ並ぶ複数の環状溝と、隣接する環状溝間に少なくとも1ヶ所形成されて、隣接する環状溝同士を連通させるスリットと、を備えるようにしたため、軸受が内嵌するスリーブを直接冷却可能となり、自由側軸受を効率的に冷却できる。これにより、軸受の内部温度が下がり、回転中の転がり接触部や保持器案内面などでの粘度低下による潤滑油膜切れが生じ難く、潤滑不良による寿命低下や軸受の焼付きが防止される。また、ハウジングとスリーブとの両部材を同時に冷却するので、両部材の半径方向収縮量が均一となり、スライド部の隙間(ハウジングとスリーブとの隙間)が詰まらず、隙間不足によるスライド不具合の発生を防止することができる。更に、環状溝内における冷却媒体の流れがスムーズとなり、スリーブ全体を均一に冷却することで、冷却による変形歪が生じない。その結果、内嵌する軸受の歪も発生せず、主軸の回転精度が高い精度で維持され、主軸の加工精度が良好となる。
本発明に係る主軸装置の第1実施形態の断面図である。 図1に示す自由側軸受近傍の拡大断面図である。 環状溝を説明するため、スリーブの外周面を示す図2に対応する部分断面図である。 環状溝の断面図である。 変形例としての環状溝の断面図である。 変形例としての環状溝の断面図である。 変形例としての環状溝の断面図である。 外周面両端縁部に面取り部が形成されたスリーブの部分破断側面図である。 環状溝の肩部に面取り部が形成されたスリーブの部分破断側面図である。 本発明に係る主軸装置の第2実施形態の自由側軸受近傍の拡大断面図である。 環状溝を説明するため、スリーブの外周面を示す図8に対応する部分断面図である。 自由側軸受の冷却構造の違いによる温度上昇を比較して示すグラフである。 従来の固定側軸受の構造を示す断面図である。 従来の自由側軸受の構造を示す断面図である。
 以下、本発明に係る主軸装置の各実施形態について、図面に基づいて詳細に説明する。
(第1実施形態)
 まず、図1を参照して、本発明に係る第1実施形態の主軸装置の全体構成について説明する。
 主軸装置10は、ハウジング11と、一端(図中左側)に不図示の工具が取り付けられ、ハウジング11に対して相対回転自在な回転軸12と、回転軸12の前端側(図中左側)に配設された一対の固定側軸受(本実施形態では、アンギュラ玉軸受)13,13と、回転軸12の後端側(図中右側)に配設された一対の自由側軸受(本実施形態では、アンギュラ玉軸受)14,14と、ハウジング11に内挿されて軸方向にスライド移動可能なスリーブ15と、を備える。
 ハウジング11は、略円筒形状のハウジング本体31と、ハウジング本体31の前端側に嵌合固定されるフロントハウジング32と、ハウジング本体31の後端側に嵌合固定されるリアハウジング33とを有している。フロントハウジング32の前端には、前蓋34が締結固定され、リアハウジング33の後端には、後蓋36が締結固定されている。
 ハウジング本体31の内周面31aに内嵌するスリーブ29には、ビルトインモータ37のステータ38が固定されている。また、回転軸12の軸方向中間部には、ステータ38と対向してロータ39が固定されており、ステータ38が発生する回転磁界によって回転力が与えられて回転軸12を回転駆動する。スリーブ29の外周面には、円環状の複数の溝29aが形成されており、ハウジング本体31に内嵌することで内周面31aとの間に冷却路28が形成される。
 固定側軸受13,13は、外輪18,18がフロントハウジング32に内嵌され、内輪19,19が回転軸12に外嵌して、回転軸12の前端側を回転自在に支承する。固定側軸受13,13の外輪18,18は、外輪間座20を介してフロントハウジング32の段部32aと前蓋34とによって狭持されてフロントハウジング32に対して軸方向に位置決めされる。内輪19,19は、内輪間座21を介して回転軸12の前側段部12aと、回転軸12に螺合するナット22とによって狭持されて回転軸12に対して軸方向に位置決めされる。フロントハウジング32の外周面には、円環状の複数の溝32bが形成されており、ハウジング本体31に内嵌することでハウジング本体31の内周面31bとの間に冷却路30が形成される。
 リアハウジング33の内周面33aには、軸方向に移動可能な略円筒形状の軸受スリーブ16が嵌合している。また、軸受スリーブ16の反工具側端面には、軸受スリーブ16の外周面から径方向外方に延出する外輪押え17が不図示のネジによって取り付けられている。なお、軸受スリーブ16と外輪押え17は、本発明のスリーブ15を構成している。
 リアハウジング33には、その反工具側端面(図中右側面)に開口する複数のばね室55が形成されており、軸受スリーブ16から径方向外方に延出する外輪押え17のフランジ部分の工具側端面と対向する。コイルスプリング56は、ばね室55に収容されて外輪押え17のフランジ部分とばね室55との間に介装される。コイルスプリング56は、スリーブ15に軸方向(図中右方向)の弾性力を付与し、これにより固定側軸受13,13及び自由側軸受14,14に定圧予圧を付与している。
 自由側軸受14,14は、外輪23,23が軸受スリーブ16に内嵌され、内輪24,24が回転軸12に外嵌して、回転軸12の後端側を回転自在に支承する。自由側軸受14,14の外輪23,23は、外輪間座25を介して軸受スリーブ16の段部16aと外輪押え17の円環状凸部17aとによって狭持されて軸受スリーブ16に対して軸方向に位置決めされる。内輪24,24は、内輪間座26を介して回転軸12の後側段部12bと、回転軸12に螺合するナット27とによって狭持されて回転軸12に対して軸方向に位置決めされる。
 図2及び図3に示すように、軸受スリーブ16の外周面16bには、複数の環状溝41が軸方向に並んで形成されている。隣接する環状溝41間には、スリット42が軸方向に沿って形成されて隣接する環状溝41同士を連通している。スリット42の位相は、180°異なる位相で交互に配置することが望ましい。環状溝41及びスリット42は、軸受スリーブ16をリアハウジング33の内周面33aに嵌合することで、互いに対向する軸受スリーブ16の外周面とリアハウジング33の内周面33aとの間に冷却路40が形成される。この冷却路40には、冷却油等の冷却媒体が流動する。スリット42の位相を180°ずつ異ならせることで、環状溝41内での冷却媒体の澱みが少なくなり、冷却媒体の流れが均一になる。なお、スリット42の位相は、180°に限定されず、冷却媒体がスムーズに流れる任意の位相で設けることができる。
 また、冷却路40の冷却媒体を供給する供給路57の供給口51は、最もビルトインモータ37側に位置する環状溝41に向けて開口するように形成され、冷却媒体を排出する排出路58の排出口52は、ビルトインモータ37から最も離間する環状溝41に向けて開口し、供給口51と180°異なる位相で設けられる。そして、不図示のポンプから圧送される冷却媒体は、供給口51から供給されて冷却路40内を流動して冷却した後、排出口52から排出される。冷却媒体をビルトインモータ37に近い環状溝41から供給することにより、発生熱量の大きな、即ち、温度が高くなり易い部分を、より低温の冷却媒体で冷却することができ、効率的な冷却が可能となる。また、供給口51と排出口52とを180°位相に配置することで、冷却路40がシンメトリック配置となり、均一に冷却することができる。なお、供給口51と排出口52との位相差は、周辺部品の配置に応じて任意に変更することができ、例えば、同位相であってもよい。
 また、本実施形態では、供給口51と排出口52は、スリット42の位相と90°異なる位相に設けているが、スリット42との位相差も任意に変更することができ、スリット42の位相と同位相であってもよい。
 また、軸受スリーブ16の外周面16bには、冷却路40より軸方向外側に一対の環状凹溝44が形成されている。環状凹溝44には、弾性部材であるOリング45が装着されて、リアハウジング33の内周面33aと軸受スリーブ16との嵌合部を封止している。Oリング45のつぶし代は0.1mm~2.0mmの範囲にすることが好ましく、軸受スリーブ16の摺動不具合をより解消しやすくするには、0.2mm~0.5mmの範囲にすることが望ましい。また、軸受スリーブ16とリアハウジング33との嵌め合い隙間は、直径寸法の差、即ち、リアハウジング33の内径-軸受スリーブ16の外径で示される寸法を、5μm~100μmの範囲にすることが好ましく、隙間不足や軸受スリーブ16の傾きにより摺動不具合を解消しやすくするには、15μm~50μmの範囲にすることが望ましい。
 Oリング45の材料としては、一般的なニトリルゴムやアクリルゴムなどに加え、モータビルトインスピンドルの発熱に対応した耐熱性のあるシリコンゴムや各種エラストマー、或いは、冷却媒体に対応した耐膨潤性・耐油性のあるフッ素ゴムなどが、必要に応じて選定される。なお、本実施形態における軸受スリーブ16とリアハウジング33とのスライド量は、加工荷重による変形やスピンドルの熱的な軸方向の膨張を逃げる程度の変位であるので、せいぜい±0.5mm以下、多くとも±1mm以下である。従って、可動シリンダ部に装着されるピストンリングに見られるような大きく、且つ、早いストロークによる摺動摩耗によるシール性低下の問題は小さく、経年変化(熱や初期のしめしろ嵌合)による耐クリープ特性に優れた材料を選定するのが望ましい。
 図1に示すように、主軸装置10が、固定側軸受13,13を冷却する冷却路30、ビルトインモータ37のステータ38を冷却する冷却路28、及び自由側軸受14,14を冷却する冷却路40の複数の冷却路を備える場合、自由側軸受14,14の最適な冷却としては、冷却装置(図示せず)も他の冷却路28,30とは別系統で設け、冷却路40用に独立させて配設することが好ましい。これにより、冷却媒体の温度調整が、他の冷却路28,30の状況に影響されることなく行うことができる。
 しかし、実用上困難な場合には、冷却装置は独立させず、冷却路40を独立させるだけでもよい。この場合、冷却路40への供給側配管のどこかに絞りを設け、冷却媒体の供給量を制御することで、最適な冷却条件を調整することができる。
 なお、1経路冷却構成とした場合には、先に発熱量が大きい傾向があるステータ38を冷却する冷却路28に冷却媒体を通過させた後、自由側軸受14,14を冷却する冷却路40に循環させるような経路構成とすれば、主軸装置10全体の温度をより効率的に下げられる。また、自由側軸受14,14の温度をより効率的に冷却したい場合には、上記と逆の経路構成として、より低温の冷却媒体を冷却路40に先に循環させればよく、必要に応じて選択することができる。
 以上説明したように、本実施形態の主軸装置10によれば、軸受スリーブ16の外周面16bとリアハウジング33の内周面33aとの間には、冷却媒体が流動可能な冷却路40が形成され、冷却路40は、軸受スリーブ16の外周面16bに形成され、軸方向にそれぞれ並ぶ複数の環状溝41と、隣接する環状溝41間に少なくとも1ヶ所形成されて、隣接する環状溝41同士を連通させるスリット42と、を備えるようにしたため、自由側軸受14,14が内嵌する軸受スリーブ16を直接冷却可能となり、自由側軸受14,14を効率的に冷却できる。これにより、自由側軸受14,14の内部温度が下がり、回転中の転がり接触部や保持器案内面などでの粘度低下による潤滑油膜切れが生じ難く、潤滑不良による寿命低下や自由側軸受14,14の焼付きが防止される。
 また、リアハウジング33と軸受スリーブ16との両部材を同時に冷却するので、両部材の半径方向収縮量が均一となり、スライド部の隙間(リアハウジング33と軸受スリーブ16との隙間)が詰まらず、隙間不足によるスライド不具合の発生を防止することができる。更に、環状溝41内における冷却媒体の流れがスムーズとなり、軸受スリーブ16全体を均一に冷却することで、冷却による変形歪が生じない。その結果、内嵌する自由側軸受14,14の歪も発生せず、回転軸12の回転精度が高い精度で維持され、主軸装置10の加工精度が良好となる。
 また、スライド部は、常時冷却油が循環しているので、摩擦係数も小さく、よりスライド性が向上される効果もある。スライド部に、ボールガイド(ボールブッシュ)等を配置させ、転がり作用によってスライド性を良くする方法もあるが、剛性低下により、振動の発生や、スピンドルの固有振動数の低下などの不具合が生じる。一方、剛性を上げるために、予圧すきま(即ち、ハウジング内径、ボール、スリーブ外径間のラジアルすきま)を大きくすると、かえって逆に、滑りによるスライドよりもスライド性が悪くなるという問題が生じる。
 また、重切削加工中などに発生することがあるびびり振動などにより、リアハウジング33と軸受スリーブ16間に初期のフレッチング摩耗粉が発生した場合でも、冷却媒体が微摩耗粉を外部に運び去ってくれるので、摩耗粉が助剤となって更にフレッチングが進行してしまうのを抑制することができる。
 また、冷却媒体を供給する供給口51は、軸方向一端側に位置する環状溝41に向けて開口し、冷却媒体を排出する排出口52は、軸方向他端側に位置する環状溝41に向けて開口するため、環状溝41内における冷却媒体の流れがスムーズとなり、軸受スリーブ16全体を均一に冷却することができる。これにより、高い回転精度が維持される。
 更に、冷却路40の軸方向両側には、軸受スリーブ16の外周面16bとリアハウジング33の内周面33aとの間を液密に封止するOリング45が配設されるため、冷却媒体のリークが防止されると共に、Oリング45の弾性により主軸装置10における減衰特性が向上して、特に難削材の加工特性に影響を与える動剛性向上にも寄与する。また、スライド部を流れる冷却媒体のダンパー効果による減衰作用も加わる。
 なお、上記実施形態においては、環状溝41は、図4に示すように、底面41aと側壁面41bとによって矩形の断面形状に形成されている。この矩形断面形状の環状溝41の溝幅B及び深さTの大きさは、適宜選択可能である。
 B>Tとすると、環状溝41の半径方向深さが浅いので、軸受スリーブ16の径方向厚みが確保されるので、スリーブ剛性を大きくすることができる。このような形状は、スリーブの加工精度向上を重視する場合や、主軸の剛性を向上する場合などに適用される。また、B<Tとすると、環状溝41の半径方向深さが深いので、環状溝41が軸受に近くに形成され、軸受近傍をより効果的に冷却することができ、冷却効率を向上することができる。このような形状は、主軸の冷却特性向上を重視する場合に適用される。B=Tとすると、上記の効果をバランスよく両立させることができる。
 また、環状溝41の断面形状は、矩形以外にも図5A~図5Cに示すような各種形状が可能である。例えば、図5A及び図5Bに示すように、環状溝41の側壁面41bは、軸方向と直交する方向、即ち、半径方向に対して傾斜して形成されてもよい。
 具体的に、図5Aに示す軸受スリーブ16の環状溝41は、溝幅Bが軸受スリーブ16の外周面16bに向かって次第に大きくなる台形溝となっている。即ち、台形状の環状溝41では、環状溝41の断面形状は、底面41aと側壁面41bのなす角度が鈍角(θ)であるので、リアハウジング33の内周面33aとの干渉がなく、スライド性が向上する。また、図5Bに示す軸受スリーブ16の環状溝41は、溝幅Bが軸受スリーブ16の外周面16bに向かって次第に小さくなる、所謂、アリ溝となっている。即ち、アリ溝の環状溝41では、環状溝41の断面形状は、底面41aと側壁面41bのなす角度が鋭角(θ)であるので、発熱源である自由側軸受14,14に近い部分の表面積が大きく、自由側軸受14,14の熱を効率的に冷却媒体に伝達することができ、冷却性能が向上する。
 また、図5Cに示す軸受スリーブ16の環状溝41は、曲率半径Rの断面半円形であるので、丸形状のバイトで加工することができ、加工する際にバイトの摩滅が少なく、加工性を向上することができる。
 また、軸受スリーブ16の外周面16bの両端縁部には、図6に示すように、面取り部43が形成されてもよい。面取り部43の外周面16bに対する角度θは、3~45°、より好ましくは、3~30°とするのがよい。これにより、軸受スリーブ16がリアハウジング33内で傾いても、リアハウジング33の内周面33aとの干渉が防止され、スライド性が確保される。
 また、図7に示すように、軸受スリーブ16の両端縁部の面取り部43に加えて、環状溝41の肩部に面取り部46を形成すれば、リアハウジング33の内周面33aとの干渉が更に防止されて、スライド性が維持される。環状溝41の肩部の面取り角度θは、3~45°、より好ましくは、3~30°である。
(第2実施形態)
 次に、図8及び図9を参照して、本発明に係る主軸装置の第2実施形態について説明する。なお、本実施形態の主軸装置は、環状溝がリアハウジングの内周面に設けられている以外は、第1実施形態と同様であるので、第1実施形態と同一又は同等部分については、図面に同一符号を付してその説明を省略或いは簡略化する。また、自由側軸受近傍のみを図示して説明する。
 図8及び図9に示すように、リアハウジング33の内周面33aには、複数の環状溝47が軸方向に並んで形成されている。隣接する環状溝47間には、スリット48が軸方向に形成されて隣接する環状溝47同士を連通している。スリット48の位相は、180°異なる位相で交互に配置することが望ましい。環状溝47及びスリット48は、軸受スリーブ16をリアハウジング33の内周面33aに嵌合することで、軸受スリーブ16の外周面16bとの間に冷却媒体が流動する冷却路49を形成する。
 なお、供給口51と排出口52は、いずれかのスリット42と同位相となるように設けているが、本実施形態においても、スリット42との位相差を任意に設定することができる。
 また、リアハウジング33の内周面33aには、冷却路49より軸方向外側に一対の環状凹溝50が形成されている。環状凹溝50には、弾性部材であるOリング45が装着されて、リアハウジング33の内周面33aと軸受スリーブ16との嵌合部を封止している。
 従って、本実施形態の主軸装置10においても、軸受スリーブ16の外周面16bとリアハウジング33の内周面33aとの間には、冷却媒体が流動可能な冷却路49が形成される。冷却路49は、リアハウジング33の内周面33aに形成され、軸方向にそれぞれ並ぶ複数の環状溝47と、隣接する環状溝47間に少なくとも1ヶ所形成されて、隣接する環状溝47同士を連通させるスリット48と、を備えるようにした。このため、上記第1実施形態と同様の効果を奏することができる。
 その他の構成及び作用効果についても、上記第1実施形態と同様である。
 なお、本実施形態においても、環状溝47の断面形状や、リアハウジング33の内周面33aの両端縁部の形状は、第1実施形態の環状溝41の断面形状や、軸受スリーブ16の外周面16bの両端縁部の形状と同様に適用することができる。
 即ち、リアハウジング33の内周面33aの両端縁部には、面取り部が形成されてもよく、また、複数の環状溝47の側壁面は、軸方向と直交する方向に対して傾斜して形成されてもよい。
 尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
 例えば、上記実施形態では、固定側軸受と自由側軸受間に定圧予圧により予圧が付与された主軸装置について説明したが、これに限定されず、固定側軸受と自由側軸受にそれぞれ定位置予圧された主軸装置にも適用することができ、同様の効果が得られる。このため、自由側軸受としては、アンギュラ玉軸受に限定されず、円筒ころ軸受など他の転がり軸受が適用されてもよい。
 ここで、軸受スリーブ16の外周面に冷却路を設けた本発明(第1実施形態)の冷却構造と、リアハウジングの外周面に冷却路を設けた図12に示す冷却構造と、軸受スリーブにもリアハウジングにも冷却路を設けない冷却なしの構造とを用いて、軸受スリーブ内径からハウジング外径までの温度上昇値を比較した。図10は、冷却構造の違いによる軸受スリーブ内径からハウジング外径までの温度上昇値を比較したグラフである。
 図10から明らかなように、各冷却構造による温度上昇は、軸受スリーブ16の外周面に冷却路40を設けた本発明の冷却構造の温度上昇値が最も小さく、主軸装置10を高効率で冷却していることが分かる。また、ハウジング内径(スリーブ内嵌部)と軸受スリーブの温度上昇値の差も図12に示す外筒冷却構造に比べて極めて小さくなっており、熱膨張差によるスライド部の嵌め合い隙間の減少を小さくでき、良好な摺動特性が維持できる。
 詳しくは、軸受スリーブとハウジング内径の温度差が、図12に示す外筒冷却構造の場合の8.5℃に比べて本発明の構成では2.2℃であり、約6℃の優位差がある。仮にスライド部(=スリーブ外径寸法)がφ150mmの場合、軸受スリーブとハウジング(炭素鋼)の線膨張係数を11.5×10-6とすると、双方の熱膨張量の差は、
 11.5×10-6(/℃) × 150(mm) × 6(℃) = 0.010(mm)
となる。
 つまり、本発明の構成の場合、スライド部の設定すきまを従来構造(外筒冷却)での適正設定すきまより10μm小さくしても、良好なスライド特性の維持が可能となる。その結果、軸受温度上昇が比較的低く、スライド部の温度差が小さい低速回転での重切削加工時において、従来構造では、スライド部のすきまが過剰になることによる剛性不足や振動の発生及びフレッチング不具合が生じるところ、本発明の構成ではこれらを防止する効果が得られる。
 また、軸受スリーブの温度も約11℃低いので、軸受温度も低くなり潤滑剤の基油粘度が維持でき、転がり接触部の油膜形成も良好となる。グリース潤滑の場合、基油の増ちょう剤からの分離(離油)もしにくくなり、軸受外部へのグリース流出も少なくなり、グリース寿命の延長化も図れる。
本出願は2014年2月28日出願の日本国特許出願(特願2014-39261)、及び2014年8月27日出願の日本国特許出願(特願2014-173221)に基づくものであり、その内容はここに参照として取り込まれる。
10   主軸装置
11   ハウジング
12   回転軸
13   固定側軸受
14   自由側軸受
16   軸受スリーブ(スリーブ)
16b  スリーブの外周面
18,23   外輪
19,24   内輪
28,30,40,49   冷却路
31   ハウジング本体
32   フロントハウジング
33   リアハウジング(ハウジング)
33a  ハウジングの内周面
41,47   環状溝
42   スリット
43   面取り部
45   Oリング(弾性部材)
51   供給口
52   排出口 

Claims (5)

  1.  ハウジングと、
     該ハウジングに対して相対回転自在な回転軸と、
     内輪が前記回転軸の一端側に外嵌され、外輪が前記ハウジングに固定される固定側軸受と、
     前記回転軸の他端側で前記ハウジング内に配置され、前記回転軸の軸方向に移動可能なスリーブと、
     内輪が前記回転軸の他端側に外嵌され、外輪が前記スリーブに内嵌される自由側軸受と、
    を有する主軸装置であって、
     互いに対向する前記スリーブの外周面と前記ハウジングの内周面との間には、冷却媒体が流動可能な冷却路が形成され、
     前記冷却路は、前記スリーブの外周面又は前記ハウジングの内周面に形成され、軸方向にそれぞれ並ぶ複数の環状溝と、隣接する前記環状溝間に少なくとも1ヶ所形成されて、隣接する前記環状溝同士を連通させるスリットと、を備えることを特徴とする主軸装置。
  2.  前記冷却媒体を供給する供給口は、軸方向一端側に位置する前記環状溝に向けて開口し、前記冷却媒体を排出する排出口は、軸方向他端側に位置する前記環状溝に向けて開口することを特徴とする請求項1に記載の主軸装置。
  3.  前記冷却路の軸方向両側には、前記スリーブの外周面と前記ハウジングの内周面との間を液密に封止する環状の弾性部材が配設されることを特徴とする請求項1又は2に記載の主軸装置。
  4.  前記スリーブの外周面の両端縁部、又は前記ハウジングの内周面の両端縁部には、面取り部が形成されることを特徴とする請求項1~3のいずれか1項に記載の主軸装置。
  5.  前記環状溝の側壁面は、前記軸方向と直交する方向に対して傾斜して形成されることを特徴とする請求項1~4のいずれか1項に記載の主軸装置。
PCT/JP2015/055696 2014-02-28 2015-02-26 主軸装置 WO2015129823A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167023608A KR101917015B1 (ko) 2014-02-28 2015-02-26 주축 장치
EP15754847.0A EP3112714B1 (en) 2014-02-28 2015-02-26 Spindle device
CN201580011204.8A CN106062395B (zh) 2014-02-28 2015-02-26 主轴装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014039261 2014-02-28
JP2014-039261 2014-02-28
JP2014173221A JP6492459B2 (ja) 2014-02-28 2014-08-27 主軸装置
JP2014-173221 2014-08-27

Publications (1)

Publication Number Publication Date
WO2015129823A1 true WO2015129823A1 (ja) 2015-09-03

Family

ID=54009137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055696 WO2015129823A1 (ja) 2014-02-28 2015-02-26 主軸装置

Country Status (6)

Country Link
EP (1) EP3112714B1 (ja)
JP (1) JP6492459B2 (ja)
KR (1) KR101917015B1 (ja)
CN (1) CN106062395B (ja)
TW (1) TWI566879B (ja)
WO (1) WO2015129823A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574365A (zh) * 2017-03-10 2018-09-25 郑州宇通客车股份有限公司 一种液冷电机壳体及使用该液冷电机壳体的液冷电机
CN110695759A (zh) * 2019-09-05 2020-01-17 深圳市爱贝科精密机械有限公司 一种带环喷的主轴冷却装置
US10935120B2 (en) * 2018-11-30 2021-03-02 Arvinmeritor Technology, Llc Axle assembly having a spigot bearing assembly
CN112709660A (zh) * 2021-01-26 2021-04-27 中国长江电力股份有限公司 水力发电机组轴承油气密封装置及方法
JP6963148B1 (ja) * 2020-12-25 2021-11-05 ヤマザキマザック株式会社 回転シャフトロック装置、加工ヘッド、および、複合加工機
US20220128095A1 (en) * 2020-10-27 2022-04-28 Aktiebolaget Skf Bearing housing and its applications

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3593179B1 (en) 2017-03-07 2021-01-27 Signify Holding B.V. A collimator and a lighting unit
CN108173381B (zh) * 2018-02-05 2024-02-13 宁夏巨能机器人股份有限公司 一种用于铸造砂芯搬运桁架机器手的直驱电机
FR3085407B1 (fr) * 2018-09-06 2020-07-31 Hevatech Dispositif de pivoterie fonctionnant a froid supportant une turbine fonctionnant a chaud, permettant de diminuer le cout d’un convertisseur d’energie thermique en energie mecanique et/ou electrique
CN112059212A (zh) * 2020-08-06 2020-12-11 珠海格力电器股份有限公司 主轴前端结构及电主轴
EP3967894B1 (en) * 2020-09-10 2023-11-15 Fulvio Marsetti Electrospindle with preloaded bearings for a machine tool
CN112780686B (zh) * 2021-01-22 2022-06-28 苏州汇川技术有限公司 一种轴承冷却结构及驱动电机
DE102021123523A1 (de) 2021-06-25 2022-12-29 GEDEE WEILER Pvt Ltd. Kühlvorrichtung für Lager, Anordnung mit einem Lager und Drehmaschine
CN113726080B (zh) * 2021-08-20 2023-05-16 珠海格力电器股份有限公司 一种轴承减振装置及电机
CN113649603B (zh) * 2021-08-27 2022-08-05 珠海格力电器股份有限公司 一种电主轴
CN113890261B (zh) * 2021-10-27 2022-12-23 苏州汇川控制技术有限公司 直驱机构和加工设备
CN115342118B (zh) * 2022-08-16 2023-12-15 杭州鑫凯传动机械有限公司 一种自动循环液冷式万向节十字轴

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152725U (ja) * 1984-09-13 1986-04-09
JPH1058277A (ja) * 1996-08-26 1998-03-03 Niigata Eng Co Ltd 工作機械の主軸冷却装置
JPH10225802A (ja) * 1997-02-14 1998-08-25 Okuma Mach Works Ltd 工作機械の主軸装置
JP2000317754A (ja) * 1999-04-30 2000-11-21 Niigata Eng Co Ltd 工作機械の主軸装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620642B2 (ja) * 1984-11-15 1994-03-23 光洋精工株式会社 工作機械主軸用転がり軸受装置
GB8807663D0 (en) * 1988-03-31 1988-05-05 Aisin Seiki Dynamoelectric machines
JPH04133555A (ja) 1990-09-26 1992-05-07 Nippon Telegr & Teleph Corp <Ntt> 多地点同時同報システム
SE510204C2 (sv) * 1997-06-16 1999-05-03 Alfa Laval Ab Anordning och sätt för kylning av ett lager
JP2000158288A (ja) * 1998-11-27 2000-06-13 Koyo Mach Ind Co Ltd 工作機械の主軸冷却装置およびスピンドル装置
CN2464981Y (zh) * 2001-02-20 2001-12-12 陈疆 榨糖机榨辊支承装置
CN100455407C (zh) * 2002-07-29 2009-01-28 日本精工株式会社 滚动轴承、主轴装置
JP4865371B2 (ja) * 2006-03-15 2012-02-01 ブラザー工業株式会社 工作機械のスピンドル冷却装置
TWI324429B (en) * 2006-12-14 2010-05-01 Alan Xiao Method of cooling system for use in motor or spindle
JP5146269B2 (ja) * 2007-11-07 2013-02-20 日本精工株式会社 玉軸受
JP5464879B2 (ja) * 2009-03-24 2014-04-09 高松機械工業株式会社 工作機械
KR101050063B1 (ko) * 2009-04-07 2011-07-19 (주) 카스윈 카트리지 타입 스핀들 유닛의 냉각장치
JP5687453B2 (ja) * 2010-08-11 2015-03-18 Ntn株式会社 静圧気体軸受スピンドル
CN202326756U (zh) * 2011-11-26 2012-07-11 广州市昊志机电股份有限公司 一种滚珠高速主轴的上轴承座套结构
DE102012008209A1 (de) * 2012-04-21 2013-10-24 Volkswagen Aktiengesellschaft Elektrische Maschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152725U (ja) * 1984-09-13 1986-04-09
JPH1058277A (ja) * 1996-08-26 1998-03-03 Niigata Eng Co Ltd 工作機械の主軸冷却装置
JPH10225802A (ja) * 1997-02-14 1998-08-25 Okuma Mach Works Ltd 工作機械の主軸装置
JP2000317754A (ja) * 1999-04-30 2000-11-21 Niigata Eng Co Ltd 工作機械の主軸装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112714A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574365A (zh) * 2017-03-10 2018-09-25 郑州宇通客车股份有限公司 一种液冷电机壳体及使用该液冷电机壳体的液冷电机
US10935120B2 (en) * 2018-11-30 2021-03-02 Arvinmeritor Technology, Llc Axle assembly having a spigot bearing assembly
CN110695759A (zh) * 2019-09-05 2020-01-17 深圳市爱贝科精密机械有限公司 一种带环喷的主轴冷却装置
US20220128095A1 (en) * 2020-10-27 2022-04-28 Aktiebolaget Skf Bearing housing and its applications
US11754123B2 (en) * 2020-10-27 2023-09-12 Aktiebolaget Skf Bearing housing and its applications
JP6963148B1 (ja) * 2020-12-25 2021-11-05 ヤマザキマザック株式会社 回転シャフトロック装置、加工ヘッド、および、複合加工機
CN112709660A (zh) * 2021-01-26 2021-04-27 中国长江电力股份有限公司 水力发电机组轴承油气密封装置及方法
CN112709660B (zh) * 2021-01-26 2024-06-11 中国长江电力股份有限公司 水力发电机组轴承油气密封装置及方法

Also Published As

Publication number Publication date
TW201544232A (zh) 2015-12-01
TWI566879B (zh) 2017-01-21
KR101917015B1 (ko) 2018-11-08
EP3112714B1 (en) 2018-05-02
KR20160113275A (ko) 2016-09-28
CN106062395B (zh) 2019-03-29
JP2015178165A (ja) 2015-10-08
CN106062395A (zh) 2016-10-26
EP3112714A4 (en) 2017-03-22
JP6492459B2 (ja) 2019-04-10
EP3112714A1 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
JP6492459B2 (ja) 主軸装置
JP6484960B2 (ja) 主軸装置
KR101917016B1 (ko) 주축 장치
JP6451146B2 (ja) 主軸装置
JP7242658B2 (ja) シールリング
JP6451147B2 (ja) 主軸装置
JP7210566B2 (ja) シールリング
KR102556910B1 (ko) 터보기계용 벤트식 베어링 리테이너
CA2444061C (en) Oil annulus to circumferentially equalize oil feed to inner race of a bearing
EP1075614B1 (en) Improved bearing isolator
US20090148088A1 (en) Lubricator for Rolling Bearings
CN108561435B (zh) 一种支承拉杆转子的组合对开式滑动轴承
WO2015129826A1 (ja) 主軸装置
JP2007024258A (ja) 転がり軸受の潤滑装置
JP4527622B2 (ja) 転がり軸受の潤滑装置
KR101727813B1 (ko) 유정압 베어링 및 이를 포함하는 공작기계

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167023608

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015754847

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015754847

Country of ref document: EP