WO2015129468A1 - 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜 - Google Patents

酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜 Download PDF

Info

Publication number
WO2015129468A1
WO2015129468A1 PCT/JP2015/053848 JP2015053848W WO2015129468A1 WO 2015129468 A1 WO2015129468 A1 WO 2015129468A1 JP 2015053848 W JP2015053848 W JP 2015053848W WO 2015129468 A1 WO2015129468 A1 WO 2015129468A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
sintered body
thin film
oxide
gaino
Prior art date
Application number
PCT/JP2015/053848
Other languages
English (en)
French (fr)
Inventor
中山 徳行
英一郎 西村
文彦 松村
正史 井藁
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to KR1020167022418A priority Critical patent/KR102353562B1/ko
Priority to CN201580009757.XA priority patent/CN106029604B/zh
Priority to US15/117,529 priority patent/US9670577B2/en
Publication of WO2015129468A1 publication Critical patent/WO2015129468A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds

Definitions

  • the present invention relates to an oxide sintered body, a target, and an oxide semiconductor thin film obtained by using the oxide sintered body, and more specifically, enables the carrier concentration of a crystalline oxide semiconductor thin film to be reduced by containing zinc.
  • a thin film transistor is one type of a field effect transistor (hereinafter referred to as FET).
  • a TFT is a three-terminal element having a gate terminal, a source terminal, and a drain terminal as a basic configuration.
  • a semiconductor thin film formed on a substrate is used as a channel layer in which electrons or holes move, and a voltage is applied to the gate terminal. This is an active element having a function of switching the current between the source terminal and the drain terminal by applying and controlling the current flowing in the channel layer.
  • a TFT is an electronic device that is most frequently put into practical use, and a typical application is a liquid crystal driving element.
  • the most widely used TFT is a metal-insulator-semiconductor-FET (MIS-FET) using a polycrystalline silicon film or an amorphous silicon film as a channel layer material. Since the MIS-FET using silicon is opaque to visible light, a transparent circuit cannot be formed. For this reason, when the MIS-FET is applied as a switching element for liquid crystal driving of a liquid crystal display, the device has a small aperture ratio of display pixels.
  • MIS-FET metal-insulator-semiconductor-FET
  • Patent Document 1 discloses a transparent amorphous oxide thin film formed by vapor phase film formation and composed of elements of In, Ga, Zn, and O.
  • the composition of the product is InGaO 3 (ZnO) m (m is a natural number less than 6) when crystallized, and carrier mobility (also referred to as carrier electron mobility) is added without adding impurity ions.
  • a thin film transistor characterized by using the transparent semi-insulating amorphous oxide thin film as a channel layer has been proposed.
  • the transparent amorphous oxide formed by vapor phase deposition method of either sputtering method or pulse laser deposition method proposed in Patent Document 1 and composed of elements of In, Ga, Zn and O
  • the thin film (a-IGZO film) has an electron carrier mobility of approximately 1 to 10 cm 2 / (V ⁇ sec), and it has been pointed out that the carrier mobility is insufficient for further high definition display. ing.
  • Patent Document 2 discloses a sputtering target for forming the amorphous oxide thin film described in Patent Document 1, that is, a sintered body target containing at least In, Zn, and Ga, and the composition thereof is A sputtering target including In, Zn, and Ga, having a relative density of 75% or more and a resistance value ⁇ of 50 ⁇ cm or less is disclosed.
  • the target of Patent Document 2 is a polycrystalline oxide sintered body having a homologous phase crystal structure, the amorphous oxide thin film obtained therefrom has a carrier mobility of about 10 cm 2 as in Patent Document 1. / V ⁇ s.
  • Patent Document 3 gallium is dissolved in indium oxide and the atomic ratio Ga / (Ga + In) is 0.001 to 0.12, and indium with respect to all metal atoms.
  • a thin film transistor characterized by using an oxide thin film having an In 2 O 3 bixbite structure with a gallium content of 80 atomic% or more, and gallium is fixed to indium oxide as a raw material.
  • the atomic ratio Ga / (Ga + In) is 0.001 to 0.12
  • the content ratio of indium and gallium with respect to all metal atoms is 80 atomic% or more
  • the In 2 O 3 bixbite structure is obtained.
  • An oxide sintered body characterized by having it has been proposed.
  • Patent Document 4 discloses an oxide sintered body having a bixbite structure and containing indium oxide, gallium oxide, and zinc oxide, and a composition amount of indium (In), gallium (Ga), and zinc (Zn). Describes a sintered body having a composition range satisfying the formula In / (In + Ga + Zn) ⁇ 0.75 in atomic%, and an example showing a high mobility of about 20 cm 2 / V ⁇ s is disclosed in TFT evaluation. ing.
  • the oxide semiconductor thin film obtained by the sintered body of Patent Document 4 has a problem that microcrystals and the like are easily generated, and it becomes difficult to form a TFT with a high yield particularly on a large glass substrate.
  • an amorphous film is once formed, and an amorphous or crystalline oxide semiconductor thin film is obtained by subsequent annealing.
  • wet etching with a weak acid such as an aqueous solution containing oxalic acid or hydrochloric acid is performed in order to perform patterning into a desired channel layer shape.
  • An object of the present invention is to provide a sputtering target capable of forming an amorphous oxide semiconductor thin film exhibiting good wet etching properties and high carrier mobility, an oxide sintered body optimal for obtaining the target, and a sputtering target thereof.
  • Another object of the present invention is to provide an oxide semiconductor thin film having a low carrier concentration and a high carrier mobility obtained by using the above-described metal.
  • the inventors of the present invention are oxide sintered bodies containing indium, gallium, and zinc as oxides, and the gallium content is in a Ga / (In + Ga) atomic ratio of 0.20 to 0.49, and An amorphous oxide semiconductor thin film manufactured using an oxide sintered body in which the zinc content is 0.0001 or more and less than 0.08 in terms of the atomic ratio of Zn / (In + Ga + Zn) is oxide-sintered It was newly found that the atomic weight ratio was the same as that of the body, and good wet etching property, low carrier concentration and high carrier mobility were exhibited.
  • the first of the present invention contains indium, gallium, and zinc as oxides, and the gallium content is in a Ga / (In + Ga) atomic ratio of 0.20 to 0.49,
  • the oxide sintered body characterized in that the content is 0.0001 or more and less than 0.08 in terms of the Zn / (In + Ga + Zn) atomic ratio.
  • a second aspect of the present invention is the oxide sintered body according to the first aspect, wherein the zinc content is 0.01 or more and 0.05 or less in terms of a Zn / (In + Ga + Zn) atomic number ratio.
  • a third aspect of the present invention is the oxide sintered body according to the first or second aspect, wherein the gallium content is in a Ga / (In + Ga) atomic ratio of 0.20 or more and 0.40 or less.
  • a fourth aspect of the present invention is the oxide according to any one of the first to third aspects of the invention, which does not substantially contain a positive divalent element other than zinc and a positive trivalent to positive hexavalent element other than indium and gallium. It is a sintered body.
  • the fifth of the present invention and In 2 O 3 phase bixbyite structure, In 2 O 3 phase other than production phase of ⁇ -Ga 2 GaInO 3-phase O 3 -type structure, beta-Ga 2 O 3 -type structure GaInO 3 phase and (Ga, In) 2 O 3 phase, ⁇ -Ga 2 O 3 type GaInO 3 phase and Yb 2 Fe 3 O 7 type structure In 2 Ga 2 ZnO 7 phase, (Ga, In) 2 O 3 phase and Yb 2 Fe 3 O 7 type In 2 Ga 2 ZnO 7 phase, ⁇ -Ga 2 O 3 type GaInO 3 phase, (Ga, In) 2 O 3 phase and Yb 2 Fe 3
  • the sixth aspect of the present invention is the fifth aspect of the present invention, wherein the X-ray diffraction peak intensity ratio of the GaInO 3 phase of ⁇ -Ga 2 O 3 type structure defined by the following formula 1 is in the range of 3% to 58%.
  • Seventh aspect of the present invention is a sputtering target obtained by processing the oxide sintered body according to any one of the first to sixth aspects.
  • the eighth aspect of the present invention is an amorphous oxide semiconductor thin film formed on a substrate by a sputtering method using the sputtering target according to the seventh aspect of the present invention and then heat-treated.
  • a ninth aspect of the present invention is the amorphous material according to the eighth aspect, wherein the carrier concentration is less than 4.0 ⁇ 10 18 cm ⁇ 3 and the carrier mobility is 10 cm 2 / V ⁇ s or more. This is an oxide semiconductor thin film.
  • a tenth aspect of the present invention is the amorphous oxide semiconductor thin film according to the ninth aspect, wherein the carrier concentration is 3.0 ⁇ 10 18 cm ⁇ 3 or less.
  • An eleventh aspect of the present invention is the amorphous oxide semiconductor thin film according to the ninth aspect, wherein the carrier mobility is 15 cm 2 / V ⁇ s or more.
  • the oxide sintered body having an atomic ratio of / (In + Ga + Zn) of 0.0001 or more and less than 0.08 is used as a sputtering target, the oxide sintered body is formed by sputtering film formation and then heat-treated.
  • the amorphous oxide semiconductor thin film according to the present invention can be obtained.
  • the thin film formed by the above sputtering film formation has a desired shape by wet etching because it does not generate microcrystals due to the effect of containing a predetermined amount of gallium and zinc and has sufficient amorphousness. Can be patterned.
  • the amorphous oxide semiconductor thin film according to the present invention exhibits low carrier concentration and high carrier mobility. Therefore, the amorphous oxide semiconductor thin film of the present invention can be applied as a channel layer of a TFT. Therefore, the oxide semiconductor thin film according to the present invention obtained using the oxide sintered body and the target is extremely useful industrially.
  • the oxide sintered body used in the present invention the sputtering target, the oxide semiconductor thin film of the present invention, and the method for producing the oxide semiconductor thin film will be described in detail.
  • Oxide sintered body (a) Composition
  • the oxide sintered body used in the present invention is an oxide sintered body containing indium, gallium and zinc as oxides, and the gallium content is Ga / (In + Ga). )
  • the atomic ratio is 0.20 or more and 0.49 or less, and the zinc content is Zn01 / (In + Ga + Zn) atomic ratio, and is 0.0001 or more and less than 0.08.
  • the oxide sintered body within this range, the amorphous oxide semiconductor thin film according to the present invention can have the same atomic weight ratio.
  • the gallium content is Ga0 (In + Ga) atomic ratio of 0.20 or more and 0.49 or less, and more preferably 0.20 or more and 0.40 or less.
  • Gallium has the effect of increasing the crystallization temperature of the amorphous oxide semiconductor thin film of the present invention. Further, gallium has a strong bonding force with oxygen and has an effect of reducing the amount of oxygen vacancies in the amorphous oxide semiconductor thin film according to the present invention.
  • the gallium content is less than 0.20 in terms of Ga / (In + Ga) atomic ratio, these effects cannot be obtained sufficiently.
  • it exceeds 0.49 sufficiently high carrier mobility cannot be obtained as the oxide semiconductor thin film.
  • the oxide sintered body used in the present invention contains zinc in addition to indium and gallium in the composition range specified as described above.
  • the zinc concentration is 0.0001 or more and less than 0.08, preferably 0.01 or more and 0.05 or less, in terms of the atomic ratio of Zn / (In + Ga + Zn).
  • the oxide sintered compact used in the present invention does not substantially contain a positive divalent element other than zinc and an element M which is a positive trivalent to positive hexavalent element other than indium and gallium.
  • substantially not containing the element M means that each single M is 500 ppm or less, preferably 200 ppm or less, more preferably 100 ppm or less in terms of the atomic ratio of M / (In + Ga + M).
  • M include Mg, Ni, Co, Cu, Ca, Sr, and Pb as positive divalent elements, and Al, Y, Sc, B, and lanthanoids as positive trivalent elements.
  • Sn, Ge, Ti, Si, Zr, Hf, C, and Ce can be exemplified as positive tetravalent elements
  • Nb and Ta can be exemplified as positive pentavalent elements
  • W and Mo can be exemplified as positive hexavalent elements. It can be illustrated.
  • the oxide sintered body used in the present invention is mainly composed of an In 2 O 3 phase having a bixbite structure and a GaInO 3 phase having a ⁇ -Ga 2 O 3 structure.
  • a (Ga, In) 2 O 3 phase may be included to some extent.
  • gallium is preferably dissolved in the In 2 O 3 phase or constitutes a GaInO 3 phase and a (Ga, In) 2 O 3 phase.
  • gallium which is a positive trivalent ion, replaces the lattice position of indium, which is also a positive trivalent ion, when it is dissolved in the In 2 O 3 phase.
  • Ga When forming the GaInO 3 phase and the (Ga, In) 2 O 3 phase, Ga basically occupies the original lattice position, but it may be slightly substituted and dissolved as a defect in the In lattice position. Absent. In addition, gallium hardly dissolves in the In 2 O 3 phase due to the fact that sintering does not proceed, or a GaInO 3 phase and a (Ga, In) 2 O 3 phase having a ⁇ -Ga 2 O 3 type structure are formed. As a result, it is not preferable to form a Ga 2 O 3 phase having a ⁇ -Ga 2 O 3 type structure. Since the Ga 2 O 3 phase has poor conductivity, it causes abnormal discharge.
  • the oxide sintered body of the present invention may include an In 2 Ga 2 ZnO 7 phase having a Yb 2 Fe 3 O 7 type structure, but the In 2 O 3 phase and the In 2 Ga 2 ZnO 7 phase.
  • the carrier mobility is lowered, which is not preferable.
  • a GaInO 3 phase, a (Ga, In) 2 O 3 phase having a ⁇ -Ga 2 O 3 type structure, or a ⁇ -Ga Since the carrier mobility is increased by including a GaInO 3 phase having a 2 O 3 type structure and a (Ga, In) 2 O 3 phase, a preferable oxide sintered body can be obtained.
  • the oxide sintered body used in the present invention is mainly composed of a GaInO 3 phase having a ⁇ -Ga 2 O 3 type structure, and may contain some (Ga, In) 2 O 3 phases.
  • the phase crystal grains preferably have an average grain size of 5 ⁇ m or less. Since the crystal grains of these phases are less likely to be sputtered than the In 2 O 3 phase crystal grains having a bixbite type structure, nodules are generated when left unexposed, which may cause arcing.
  • the oxide sintered body used in the present invention is mainly composed of an In 2 O 3 phase having a bixbite structure and a GaInO 3 phase having a ⁇ -Ga 2 O 3 structure, and (Ga, In) 2 O 3.
  • the GaInO 3 phase having a ⁇ -Ga 2 O 3 type structure is included in an X-ray diffraction peak intensity ratio defined by the following formula 1 in the range of 3% to 58%. It is preferable.
  • the carrier mobility in the oxide semiconductor film can be set in a preferable range.
  • the oxide sintered compact used for this invention does not contain a homologous structure compound substantially.
  • the homologous structure refers to a hexagonal crystal-based layered structure represented by a composition formula of InGaO 3 (ZnO) m (m is a natural number of 2 to 20) in the case of an oxide containing In, Ga, and Zn.
  • the oxide sintered body does not substantially contain a homologous structure compound, an effect that the obtained amorphous oxide semiconductor thin film exhibits high carrier mobility can be obtained.
  • substantially free of a homologous structure compound means that the phase is composed of a homologous compound for all phases constituting the oxide sintered body used in the present invention (hereinafter sometimes referred to as a homologous phase).
  • the weight ratio obtained by Rietveld analysis is 8% or less, preferably 5% or less, more preferably 3% or less, still more preferably 1% or less, and still more preferably 0%. .
  • indium oxide powder, gallium oxide powder, and zinc oxide powder are used as raw material powders.
  • the oxide sintered body used in the present invention In the manufacturing process of the oxide sintered body used in the present invention, these raw material powders are mixed and then molded, and the molded product is sintered by a normal pressure sintering method.
  • the formation phase of the oxide sintered body structure used in the present invention strongly depends on the production conditions in each step of the oxide sintered body, for example, the particle size of the raw material powder, the mixing conditions, and the sintering conditions.
  • the microstructure of the oxide sintered body used in the present invention is controlled so that each crystal grain of the ⁇ -Ga 2 O 3 type GaInO 3 phase and further the (Ga, In) 2 O 3 phase has a particle size of 5 ⁇ m or less.
  • the average particle diameter of the raw material powder is preferably 1.5 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • a ⁇ -Ga 2 O 3 type GaInO 3 phase, or ⁇ - GaInO 3 phase of Ga 2 O 3 -type structure and (Ga, in) 2 is O 3 phase is included, in the order to minimized the formation of these phases, 1.0 .mu.m or less average particle size of each raw material powder It is preferable that
  • zinc oxide powder is also a main raw material of AZO (aluminum-added zinc oxide), it is possible to obtain raw material powder having an average particle size of 1.0 ⁇ m or less for the same reason as indium oxide powder.
  • gallium oxide powder since the amount used is still smaller than that of indium oxide powder, it may be difficult to obtain a raw material powder having an average particle size of 1.0 ⁇ m or less. When only coarse gallium oxide powder is available, it is necessary to grind to an average particle size of 1.0 ⁇ m or less.
  • the atmospheric pressure sintering method is a simple and industrially advantageous method, and is also a preferable means from the viewpoint of low cost.
  • a molded body is first prepared as described above.
  • the raw material powder is put into a resin pot and mixed with a binder (for example, PVA) by a wet ball mill or the like.
  • the oxide sintered body used in the present invention includes an In 2 O 3 phase having a bixbite type structure and a GaInO 3 phase having a ⁇ -Ga 2 O 3 type structure, and further includes a (Ga, In) 2 O 3 phase.
  • the crystal grains of these phases are finely dispersed by controlling the average grain size to 5 ⁇ m or less.
  • (Ga, In) 2 O 3 generation of phase are preferably as much as possible suppressed.
  • the ball mill mixing is preferably performed for 18 hours or more.
  • a hard ZrO 2 ball may be used as the mixing ball.
  • the slurry is taken out, filtered, dried and granulated. Thereafter, the granulated product obtained was molded by applying a pressure of about 9.8MPa (0.1ton / cm 2) ⁇ 294MPa (3ton / cm 2) cold isostatic pressing, the molded body.
  • an atmosphere in which oxygen is present is preferable, and the oxygen volume fraction in the atmosphere is more preferably more than 20%.
  • the oxygen volume fraction exceeds 20%, the oxide sintered body is further densified. Due to the excessive oxygen in the atmosphere, the sintering of the surface of the compact proceeds first in the early stage of sintering. Subsequently, sintering in a reduced state inside the molded body proceeds, and finally a high-density oxide sintered body is obtained.
  • the temperature range of atmospheric pressure sintering is preferably 1200 to 1550 ° C., more preferably 1350 to 1450 ° C. in an atmosphere in which oxygen gas is introduced into the atmosphere in the sintering furnace.
  • the sintering time is preferably 10 to 30 hours, more preferably 15 to 25 hours.
  • In 2 O mainly having a bixbite structure is used. is constituted by a three-phase, particularly when the content of gallium is 0.08 or more Ga / (in + Ga) atomic ratio, tend to GaInO 3-phase ⁇ -Ga 2 O 3 -type structure is likely to be generated, When the zinc content is less than 0.08 in terms of the Zn / (In + Ga + Zn) atomic ratio, it tends to be easy to obtain an oxide sintered body substantially free of a homologous structure compound.
  • the sintering temperature is less than 1200 ° C., the sintering reaction does not proceed sufficiently. On the other hand, when the sintering temperature exceeds 1550 ° C., it is difficult to increase the density, while the sintering furnace member and the oxide sintered body react to obtain the desired oxide sintered body. Disappear. Since the gallium content of the oxide sintered body used in the present invention is 0.20 or more in terms of Ga / (In + Ga) atomic ratio, the sintering temperature is preferably 1450 ° C. or less. This is because in the temperature range around 1500 ° C., the formation of (Ga, In) 2 O 3 phase may be remarkable. A small amount of (Ga, In) 2 O 3 phase is not a problem, but a large amount is not preferable because it may cause a decrease in film formation rate or arcing.
  • the heating rate up to the sintering temperature is preferably in the range of 0.2 to 5 ° C./min in order to prevent cracking of the sintered body and to proceed with debinding. If it is this range, you may heat up to sintering temperature combining a different temperature increase rate as needed.
  • the binder In the temperature raising process, the binder may be held for a certain time at a specific temperature for the purpose of progressing debinding and sintering. After sintering, when introducing oxygen, the introduction of oxygen is stopped, and the temperature can be lowered to 1000 ° C. at a rate of 0.2 to 5 ° C./min, particularly 0.2 ° C./min to 1 ° C./min. preferable.
  • Target used in the present invention is obtained by processing the oxide sintered body used in the present invention into a predetermined size.
  • the surface can be further polished and adhered to a backing plate.
  • the target shape is preferably a flat plate shape, but may be a cylindrical shape.
  • a cylindrical target it is preferable to suppress particle generation due to target rotation.
  • the oxide sintered body can be processed into, for example, a cylindrical shape to form a tablet, which can be used for film formation by vapor deposition or ion plating.
  • the density of the oxide sintered body used in the present invention is preferably 6.3 g / cm 3 or more, more preferably 6.7 g / cm 3 or more.
  • the density is less than 6.3 g / cm 3 , it causes nodules during mass production.
  • the ion plating tablet is preferably less than 6.3 g / cm 3, more preferably when the 3.4 ⁇ 5.5g / cm 3.
  • the sintering temperature may be better than 1200 ° C.
  • Oxide Semiconductor Thin Film and Method for Forming the Oxide Amorphous oxide semiconductor thin film according to the present invention mainly forms an amorphous oxide thin film once on a substrate by sputtering using the sputtering target. It is obtained by forming and then annealing.
  • the resulting oxide thin film exhibits a high crystallization temperature, that is, a crystallization temperature of 300 ° C. or higher, more preferably 350 ° C. or higher, and becomes a stable amorphous material.
  • the oxide sintered body is constituted only by the In 2 O 3 phase having a bixbite structure
  • the oxide thin film obtained therefrom has a low crystallization temperature of about 200 to 250 ° C.
  • the crystallinity is not stable. For this reason, as will be described later, when annealing is performed at 250 ° C. or higher, further 300 ° C. or higher, crystallization occurs. In this case, microcrystals are already generated after the film formation and the amorphousness is not maintained, and patterning processing by wet etching becomes difficult. This is well known in general ITO (tin-added indium oxide) transparent conductive films.
  • a general sputtering method is used.
  • a direct current (DC) sputtering method the thermal influence during film formation is small and high speed is achieved. Since film formation is possible, it is industrially advantageous.
  • a mixed gas composed of an inert gas and oxygen, particularly argon and oxygen as a sputtering gas.
  • the substrate is typically a glass substrate and is preferably alkali-free glass, but any resin plate or resin film that can withstand the above process conditions can be used.
  • the substrate temperature is preferably set to 600 ° C. or lower in the sputtering film formation, and particularly preferably set to a temperature of about room temperature or higher and 300 ° C. or lower.
  • a mixed gas composed of argon and oxygen is introduced, and the gas pressure is set to 0.2 to 0.8 Pa.
  • Pre-sputtering can be performed by generating direct current plasma by applying direct current power so that the direct current power with respect to the area of the target, that is, the direct current power density is in the range of about 1 to 7 W / cm 2 . After performing this pre-sputtering for 5 to 30 minutes, it is preferable to perform sputtering after correcting the substrate position if necessary. Note that, in the sputtering film formation in the film formation step, in order to improve the film formation rate, the DC power to be input is increased within a range that does not adversely affect the film quality.
  • the amorphous oxide semiconductor thin film according to the present invention can be obtained by forming an amorphous oxide thin film and then annealing it.
  • an amorphous oxide thin film is once formed at a low temperature such as near room temperature, and then an annealing treatment is performed at a temperature lower than the crystallization temperature to maintain the amorphous state.
  • a physical semiconductor thin film is obtained.
  • the amorphous oxide semiconductor thin film is formed by heating the substrate to a temperature lower than the crystallization temperature, preferably 100 to 300 ° C. This may be followed by further annealing.
  • the heating temperature in these two methods may be about 600 ° C. or less, and can be made below the strain point of the alkali-free glass substrate.
  • the amorphous oxide semiconductor thin film according to the present invention can be obtained by forming an amorphous oxide thin film and then annealing it.
  • the annealing treatment condition is a temperature lower than the crystallization temperature in an oxidizing atmosphere.
  • an atmosphere containing oxygen, ozone, water vapor, nitrogen oxide, or the like is preferable.
  • the annealing temperature is 250 to 600 ° C, preferably 300 to 550 ° C, more preferably 350 to 500 ° C.
  • the annealing time is preferably 1 to 120 minutes, more preferably 5 to 60 minutes, which is maintained at the annealing temperature.
  • the composition of indium, gallium, and zinc of the amorphous oxide thin film and the amorphous oxide semiconductor thin film is almost the same as the composition of the oxide sintered body used in the present invention. That is, it is an amorphous oxide-baked semiconductor thin film containing indium and gallium as oxides and containing zinc.
  • Gallium content is 0.20 or more and 0.49 or less in Ga / (In + Ga) atomic ratio
  • zinc content is 0.0001 or more and less than 0.08 in Zn / (In + Ga + Zn) atomic ratio, preferably Is 0.05 or less.
  • the amorphous oxide semiconductor thin film according to the present invention is formed by using an oxide sintered body having a controlled composition and structure as described above as a sputtering target and the like, and is annealed under the appropriate conditions described above.
  • the carrier concentration decreases to less than 4.0 ⁇ 10 18 cm ⁇ 3 , more preferably the carrier concentration is 3.0 ⁇ 10 18 cm ⁇ 3 or less, and particularly preferably 2.0 ⁇ 10 18 cm ⁇ 3 or less. can get.
  • an amorphous oxide semiconductor thin film made of indium, gallium, and zinc is in a degenerate state at a carrier concentration of 4.0 ⁇ 10 18 cm ⁇ 3 or more.
  • the amorphous oxide semiconductor thin film according to the present invention is convenient because the carrier concentration is controlled in a range in which the above TFT shows normally-off.
  • the carrier mobility is 10 cm 2 / V ⁇ s or more, and more preferably the carrier mobility is 15 cm 2 / V ⁇ s or more.
  • the amorphous oxide semiconductor thin film according to the present invention is subjected to fine processing necessary for applications such as TFT by wet etching or dry etching.
  • fine processing by wet etching can be performed.
  • the etchant any weak acid can be used, but a weak acid mainly composed of oxalic acid or hydrochloric acid is preferred.
  • commercially available products such as ITO-06N manufactured by Kanto Chemical Co., Ltd. can be used.
  • dry etching may be selected.
  • the thickness of the amorphous oxide semiconductor thin film according to the present invention is not limited, but is 10 to 500 nm, preferably 20 to 300 nm, and more preferably 30 to 100 nm. If the thickness is less than 10 nm, sufficient semiconductor characteristics cannot be obtained, and as a result, high carrier mobility cannot be realized. On the other hand, if it exceeds 500 nm, a problem of productivity occurs, which is not preferable.
  • the composition of the obtained oxide thin film was examined by ICP emission spectroscopy.
  • the film thickness of the oxide thin film was measured with a surface roughness meter (manufactured by Tencor).
  • the film formation rate was calculated from the film thickness and the film formation time.
  • the carrier concentration and mobility of the oxide thin film were determined by a Hall effect measuring device (manufactured by Toyo Technica).
  • the formation phase of the film was identified by X-ray diffraction measurement.
  • phase identification of the oxide sintered body was performed by X-ray diffraction measurement.
  • a ⁇ -Ga 2 O 3 type GaInO 3 phase is included, the X-ray diffraction peak intensity ratio of the ⁇ -Ga 2 O 3 type GaInO 3 phase defined by the following formula 1 is shown in Table 1. It was shown to.
  • the oxide sintered body was processed into a size of 152 mm in diameter and 5 mm in thickness, and the sputtering surface was polished with a cup grindstone so that the maximum height Rz was 3.0 ⁇ m or less.
  • the processed oxide sintered body was bonded to a backing plate made of oxygen-free copper using metallic indium to obtain a sputtering target.
  • a DC plasma was generated by applying a DC power of 300 W (1.64 W / cm 2 ). After pre-sputtering for 10 minutes, an oxide thin film having a thickness of 50 nm was formed by placing the substrate directly above the sputtering target, that is, at a stationary facing position. It was confirmed that the composition of the obtained oxide thin film was almost the same as that of the target.
  • the deposited oxide thin film was subjected to heat treatment in oxygen at 300 to 500 ° C. for 30 to 60 minutes, and the crystallinity of the oxide thin film after heat treatment was examined by X-ray diffraction measurement. . As a result, both the examples and comparative examples remained amorphous. For the crystallized oxide semiconductor thin film, the crystal phase constituting the oxide semiconductor thin film was identified. Example and Comparative Example Hall effect measurement of oxide semiconductor thin films was performed to determine carrier concentration and carrier mobility. The evaluation results obtained are summarized in Table 2.
  • an In 2 O 3 phase having a bixbite structure and a GaInO 3 phase having a ⁇ -Ga 2 O 3 type structure or an In 2 O 3 phase having a bixbite structure and ⁇ -Ga 2 O 3 type GaInO 3 phase and (Ga, In) 2 O 3 phase, or bixbite type In 2 O 3 phase and ⁇ -Ga 2 O 3 type structure GaInO 3 phase and Yb 2 Fe It was composed of an In 2 Ga 2 ZnO 7 phase having a 3 O 7 type structure.
  • the oxide semiconductor thin films of the examples are all amorphous.
  • the oxide semiconductor thin film of the example has a carrier concentration of less than 4.0 ⁇ 10 18 cm ⁇ 3 and a carrier mobility of 10 cm 2 / V ⁇ s or more.
  • the gallium content is Ga / (In + Ga).
  • the oxide semiconductors of Examples 2, 3, and 5 to 9 having an atomic ratio of 0.20 to 0.40 and a zinc content of 0.01 to 0.05 in terms of Zn / (In + Ga + Zn) atomic ratio It can be seen that the thin film exhibits excellent characteristics with a carrier concentration of 3.0 ⁇ 10 18 cm ⁇ 3 or less and a carrier mobility of 15 cm 2 / V ⁇ s or more.
  • the zinc content represented by the Zn / (In + Ga + Zn) atomic ratio satisfies the scope of the present invention, but the gallium content represented by the Ga / (In + Ga) atomic ratio is The lower limit of the invention is less than 0.20, and in Comparative Example 2, the gallium content satisfies the scope of the present invention, but the zinc content falls below the lower limit of 0.0001 of the present invention. It can be seen that the concentration is 4.0 ⁇ 10 18 cm ⁇ 3 or more.
  • the oxide semiconductor thin films of Comparative Examples 3 to 5 have an excess zinc content of 0.08, which indicates that the carrier mobility is less than 10 cm 2 / V ⁇ s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thin Film Transistor (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

 スパッタリング法によって酸化物半導体薄膜とした場合に、低キャリア濃度、高キャリア移動度が得られる酸化物焼結体、及びそれを用いたスパッタリング用ターゲットを提供する。 この酸化物焼結体は、インジウム、ガリウム及び亜鉛を酸化物として含有する。ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.49以下であり亜鉛の含有量がZn/(In+Ga+Zn)原子数比で0.0001以上0.08未満である。この酸化物焼結体をスパッタリング用ターゲットとして形成した非晶質の酸化物半導体薄膜は、キャリア濃度4.0×1018cm-3以下で、キャリア移動度10cm/V・s以上が得られる。

Description

酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
 本発明は、酸化物焼結体、ターゲット、及びそれを用いて得られる酸化物半導体薄膜に関し、より詳しくは、亜鉛を含有させることによって結晶質の酸化物半導体薄膜のキャリア濃度低減を可能にするスパッタリング用ターゲット、それを得るのに最適な亜鉛を含有する酸化物焼結体、ならびにそれを用いて得られる低いキャリア濃度と高いキャリア移動度を示す非晶質の亜鉛を含有する酸化物半導体薄膜に関する。
 薄膜トランジスタ(Thin Film Transistor、TFT)は、電界効果トランジスタ(Field Effect Transistor、以下FET)の1種である。TFTは、基本構成としてゲート端子、ソース端子及び、ドレイン端子を備えた3端子素子であり、基板上に成膜した半導体薄膜を、電子又はホールが移動するチャネル層として用い、ゲート端子に電圧を印加して、チャネル層に流れる電流を制御し、ソース端子とドレイン端子間の電流をスイッチングする機能を有するアクティブ素子である。TFTは、現在、最も多く実用化されている電子デバイスであり、その代表的な用途として液晶駆動用素子がある。
 TFTとして、現在、最も広く使われているのは多結晶シリコン膜又は非晶質シリコン膜をチャネル層材料としたMetal-Insulator-Semiconductor-FET(MIS-FET)である。シリコンを用いたMIS-FETは、可視光に対して不透明であるため、透明回路を構成することができない。このため、MIS-FETを液晶ディスプレイの液晶駆動用スイッチング素子として応用した場合、該デバイスは、ディスプレイ画素の開口比が小さくなる。
 また、最近では、液晶の高精細化が求められるのに伴い、液晶駆動用スイッチング素子にも高速駆動が求められるようになってきている。高速駆動を実現するためには、キャリアである電子又はホールの移動度が少なくとも非晶質シリコンのそれより高い半導体薄膜をチャネル層に用いる必要が出てきている。
 このような状況に対して、特許文献1では、気相成膜法で成膜され、In、Ga、Zn、及びOの元素から構成される透明非晶質酸化物薄膜であって、該酸化物の組成は、結晶化したときの組成がInGaO(ZnO)(mは6未満の自然数)であり、不純物イオンを添加することなしに、キャリア移動度(キャリア電子移動度ともいう)が1cm/(V・秒)超、かつキャリア濃度(キャリア電子濃度ともいう)が1016/cm以下である半絶縁性であることを特徴とする透明半絶縁性非晶質酸化物薄膜、ならびに、この透明半絶縁性非晶質酸化物薄膜をチャネル層としたことを特徴とする薄膜トランジスタが提案されている。
 しかし、特許文献1で提案された、スパッタ法、パルスレーザー蒸着法のいずれかの気相成膜法で成膜され、In、Ga、Zn及びOの元素から構成される透明非晶質酸化物薄膜(a-IGZO膜)は、その電子キャリア移動度が概ね1~10cm/(V・秒)の範囲にとどまり、ディスプレイのさらなる高精細化に対してキャリア移動度が不足することが指摘されている。
 また、特許文献2には、特許文献1に記載のアモルファス酸化物薄膜を形成することを目的としたスパッタリングターゲット、すなわち、少なくともIn、Zn、Gaを含む焼結体ターゲットであって、その組成にIn、Zn、Gaを含み、相対密度が75%以上、かつ抵抗値ρが50Ωcm以下であることを特徴とするスパッタリングターゲットが開示されている。しかし、特許文献2のターゲットがホモロガス相の結晶構造を示す多結晶酸化物焼結体であるため、これより得られるアモルファス酸化物薄膜は、特許文献1と同様に、キャリア移動度が概ね10cm/V・s程度にとどまってしまう。
 高いキャリア移動度を実現する材料として、特許文献3では、ガリウムが酸化インジウムに固溶していて、原子数比Ga/(Ga+In)が0.001~0.12であり、全金属原子に対するインジウムとガリウムの含有率が80原子%以上であり、Inのビックスバイト構造を有する酸化物薄膜を用いることを特徴とする薄膜トランジスタが提案されており、その原料として、ガリウムが酸化インジウムに固溶していて、原子比Ga/(Ga+In)が0.001~0.12であり、全金属原子に対するインジウムとガリウムの含有率が80原子%以上であり、Inのビックスバイト構造を有することを特徴とする酸化物焼結体が提案されている。
 しかしながら、特許文献3で提案されているような結晶質の酸化物半導体薄膜をTFTに適用した場合、結晶粒界に起因するTFT特性のばらつきが課題である。特に、第8世代以上の大型ガラス基板上に、均一にTFTを形成することは極めて困難である。
 特許文献4には、ビックスバイト構造を有し、酸化インジウム、酸化ガリウム、酸化亜鉛を含有する酸化物焼結体であって、インジウム(In)、ガリウム(Ga)及び亜鉛(Zn)の組成量が原子%でIn/(In+Ga+Zn)<0.75の式を満たす組成範囲にある焼結体が記載され、TFT評価では、20cm/V・s程度の高い移動度を示す実施例が開示されている。
 しかしながら、特許文献4の焼結体によって得られる酸化物半導体薄膜には微結晶などが生成しやすい点が課題であり、特に大型ガラス基板上に歩留まりよくTFTを形成することが困難になる。一般に酸化物半導体の薄膜トランジスタの製造工程では、一旦非晶質膜を形成し、その後のアニール処理によって非晶質あるいは結晶質の酸化物半導体薄膜を得る。非晶質膜形成工程の後には、所望のチャネル層の形状にパターニング加工するため、蓚酸や塩酸などを含む水溶液などの弱酸によるウエットエッチングを実施する。ところが、特許文献4の実質的にビッグスバイト構造のみからなる酸化物焼結体を用いた場合には、形成される非晶質膜の結晶化温度が低くなってしまい、成膜後の段階ですでに微結晶が生成してエッチング工程で残渣が発生する、あるいは部分的に結晶化してエッチングできないといった問題が生じる。すなわち、フォトリソグラフィ技術などを利用して、ウエットエッチング法により、所望のTFTチャネル層のパターンを形成することが困難になる、あるいはTFT形成ができたとしても安定動作しないなどの問題が起こってしまう。
特開2010-219538号公報 特開2007-073312号公報 WO2010/032422号公報 WO2009/148154号公報
A.Takagi,K.Nomura,H.Ohta,H.Yanagi,T. Kamiya,M.Hirano,and H.Hosono,Thin Solid Films 486,38(2005)
 本発明の目的は、良好なウエットエッチング性と高いキャリア移動度を示す非晶質の酸化物半導体薄膜の形成が可能なスパッタリング用ターゲット、それを得るのに最適な酸化物焼結体、ならびにそれを用いて得られる低いキャリア濃度と高いキャリア移動度を示す酸化物半導体薄膜を提供することにある。
 本発明者らは、インジウム、ガリウム及び亜鉛を酸化物として含有した酸化物焼結体であって、ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.49以下、かつ亜鉛の含有量がZn/(In+Ga+Zn)の原子数比で0.0001以上0.08未満である酸化物焼結体を用いて作製された非晶質の酸化物半導体薄膜が、酸化物焼結体と同様の原子量比となり、良好なウエットエッチング性と低いキャリア濃度と高いキャリア移動度を示すことを新たに見出した。
 すなわち、本発明の第1は、インジウム、ガリウム及び亜鉛を酸化物として含有し、前記ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.49以下であり、前記亜鉛の含有量がZn/(In+Ga+Zn)原子数比で0.0001以上0.08未満であることを特徴とする酸化物焼結体である。
 本発明の第2は、前記亜鉛の含有量がZn/(In+Ga+Zn)原子数比で0.01以上0.05以下である第1の発明に記載の酸化物焼結体である。
 本発明の第3は、前記ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.40以下である第1又は第2の発明に記載の酸化物焼結体である。
 本発明の第4は、亜鉛以外の正二価元素、及び、インジウムとガリウム以外の正三価から正六価の元素、を実質的に含有しない第1から第3のいずれかの発明に記載の酸化物焼結体である。
 本発明の第5は、ビックスバイト型構造のIn相と、In相以外の生成相がβ-Ga型構造のGaInO相、β-Ga型構造のGaInO相と(Ga,In)相、β-Ga型構造のGaInO相とYbFe型構造のInGaZnO相、(Ga,In)相とYbFe型構造のInGaZnO相、及びβ-Ga型構造のGaInO相と(Ga,In)相とYbFe型構造のInGaZnO相からなる群より選ばれた生成相によって構成される第1から第4の発明のいずれかに記載の酸化物焼結体である。
 本発明の第6は、下記の式1で定義されるβ-Ga型構造のGaInO相のX線回折ピーク強度比が3%以上58%以下の範囲である第5の発明に記載の酸化物焼結体である。
  100×I[GaInO相(-111)]/{I[In相(400)]+I[GaInO相(-111)]} [%]・・・・式1
(式中、I[In相(400)]は、ビックスバイト型構造のIn相の(400)ピーク強度であり、I[GaInO相(-111)]は、β-Ga型構造の複合酸化物β-GaInO相(-111)ピーク強度を示す。)
 本発明の第7は、第1から第6の発明のいずれかに記載の酸化物焼結体を加工して得られるスパッタリング用ターゲットである。
 本発明の第8は、第7の発明に記載のスパッタリング用ターゲットを用いてスパッタリング法によって基板上に形成された後、熱処理された非晶質の酸化物半導体薄膜である。
 本発明の第9は、キャリア濃度が4.0×1018cm-3未満、かつキャリア移動度が10cm/V・s以上であることを特徴とする第8の発明に記載の非晶質の酸化物半導体薄膜である。
 本発明の第10は、キャリア濃度が3.0×1018cm-3以下であることを特徴とする第9の発明に記載の非晶質の酸化物半導体薄膜である。
 本発明の第11は、キャリア移動度が15cm/V・s以上であることを特徴とする第9の発明に記載の非晶質の酸化物半導体薄膜である。
 インジウム、ガリウム及び亜鉛を酸化物として含有する酸化物焼結体であって、ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.49以下、かつ亜鉛の含有量がZn/(In+Ga+Zn)の原子数比で0.0001以上0.08未満である酸化物焼結体は、スパッタリング用ターゲットとして用いられた場合に、スパッタリング成膜によって形成され、その後熱処理されることにより、本発明に係る非晶質の酸化物半導体薄膜を得ることができる。前記のスパッタリング成膜によって形成された薄膜は、所定量のガリウムと亜鉛を含む効果により、微結晶などが生成せず、十分な非晶質性を有しているため、ウエットエッチングによって所望の形状にパターニング加工することができる。また、同効果により、本発明に係る非晶質の酸化物半導体薄膜は、低いキャリア濃度と高いキャリア移動度を示す。よって、本発明の非晶質の酸化物半導体薄膜は、TFTのチャネル層として適用することができる。したがって、酸化物焼結体、及びターゲットを用いて得られる本発明に係る酸化物半導体薄膜は工業的に極めて有用である。
 以下に、本発明に用いられる酸化物焼結体、スパッタリング用ターゲット、ならびに本発明の酸化物半導体薄膜、及び酸化物半導体薄膜の製造方法について詳細に説明する。
 1.酸化物焼結体
 (a)組成
 本発明に用いられる酸化物焼結体は、インジウム、ガリウム及び亜鉛を酸化物として含有する酸化物焼結体であって、ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.49以下、かつ亜鉛の含有量がZn/(In+Ga+Zn)原子数比で0.0001以上0.08未満である。酸化物焼結体をこの範囲とすることで、本発明に係る非晶質の酸化物半導体薄膜も同様の原子量比とすることができる。
 ガリウムの含有量は、Ga/(In+Ga)原子数比で0.20以上0.49以下であり、0.20以上0.40以下であることがより好ましい。ガリウムは、本発明の非晶質の酸化物半導体薄膜の結晶化温度を高める効果を有する。また、ガリウムは酸素との結合力が強く、本発明に係る非晶質の酸化物半導体薄膜の酸素欠損量を低減させる効果がある。ガリウムの含有量がGa/(In+Ga)原子数比で0.20未満の場合、これらの効果が十分得られない。一方、0.49を超える場合、酸化物半導体薄膜として十分高いキャリア移動度を得ることができない。
 本発明に用いられる酸化物焼結体は、上記の通り規定される組成範囲のインジウムとガリウムに加え、亜鉛を含有する。亜鉛濃度はZn/(In+Ga+Zn)の原子数比で0.0001以上0.08未満であり、0.01以上0.05以下であることが好ましい。前記範囲内の亜鉛を添加することで、本発明に係る非晶質の酸化物半導体薄膜のキャリア濃度が抑制される。この効果によって、本発明に係る非晶質の酸化物半導体薄膜をTFTに適用した場合には、TFTのon/offを高めることが可能になる。
 なお、本発明に用いられる酸化物焼結体には、亜鉛以外の正二価元素、及び、インジウムとガリウム以外の正三価から正六価の元素である元素Mを実質的に含有しないことが好ましい。ここで、元素Mを実質的に含有しないとは、それぞれ単独のMが、M/(In+Ga+M)の原子数比で500ppm以下であり、好ましくは200ppm以下、より好ましくは100ppm以下である。具体的なMの例示としては、正二価元素としては、Mg、Ni、Co、Cu、Ca、Sr、Pbが例示でき、正三価元素としては、Al、Y、Sc、B、ランタノイドが例示でき、正四価元素としては、Sn、Ge、Ti、Si、Zr、Hf、C、Ceが例示でき、正五価元素としては、Nb、Taが例示でき、正六価元素としては、W、Moが例示できる。
 (b)焼結体組織
 本発明に用いられる酸化物焼結体は、主にビックスバイト型構造のIn相及びβ-Ga型構造のGaInO相によって構成されるが、これらに加えて(Ga,In)相を多少含んでもよい。ここでガリウムはIn相に固溶する、あるいはGaInO相ならびに(Ga,In)相を構成することが好ましい。基本的に正三価イオンであるガリウムは、In相に固溶する場合には同じく正三価イオンであるインジウムの格子位置を置換する。GaInO相ならびに(Ga,In)相を構成する場合には、基本的にGaが本来の格子位置を占有するが、Inの格子位置に欠陥として若干置換固溶していても構わない。また、焼結が進行しないなどの理由によって、ガリウムがIn相に固溶しにくい、あるいはβ-Ga型構造のGaInO相ならびに(Ga,In)相が生成しにくくなり、その結果として、β-Ga型構造のGa相を形成することは好ましくない。Ga相は導電性に乏しいため、異常放電の原因となる。
 また、本発明の酸化物焼結体は、YbFe型構造のInGaZnO相を含んでいてもよいが、In相とInGaZnO相の2相で焼結体が構成される場合は、キャリア移動度が低下するため好ましくない。YbFe型構造のInGaZnO相を含む場合は、他にβ-Ga型構造のGaInO相、(Ga,In)相、又はβ-Ga型構造のGaInO相と(Ga,In)相を含むことでキャリア移動度が上昇するため好ましい酸化物焼結体とすることができる。
 本発明に用いられる酸化物焼結体は、主にβ-Ga型構造のGaInO相によって構成され、さらに(Ga,In)相を多少含む場合があるが、これらの相の結晶粒は平均粒径5μm以下であることが好ましい。これらの相の結晶粒は、ビックスバイト型構造のIn相の結晶粒と比較してスパッタリングされにくいため、掘れ残ることでノジュールが発生し、アーキングの原因になる場合がある。
 本発明に用いられる酸化物焼結体は、主にビックスバイト型構造のIn相及びβ-Ga型構造のGaInO相によって構成され、さらに(Ga,In)相を多少含む場合があるが、特にβ-Ga型構造のGaInO相については、下記の式1で定義されるX線回折ピーク強度比が3%以上58%以下の範囲において含むことが好ましい。X線回折ピーク強度比が3%以上58%以下の範囲とすることで、酸化物半導体膜としたときのキャリア移動度を好ましい範囲とすることができる。
  100×I[GaInO相(-111)]/{I[In相(400)]+I[GaInO相(-111)]} [%]・・・・式1
(式中、I[In相(400)]は、ビックスバイト型構造のIn相の(400)ピーク強度であり、I[GaInO相(-111)]は、β-Ga型構造の複合酸化物β-GaInO相(-111)ピーク強度を示す。)
 また、本発明に用いられる酸化物焼結体は、ホモロガス構造化合物を実質的に含有しないことが好ましい。ここで、ホモロガス構造とは、In、Ga及びZnを含む酸化物の場合、InGaO(ZnO)(mは2~20の自然数)の組成式で表される六方晶ベースの層状構造を指す。例えば、m=1のInGaZnOは、InO層と(Ga,Zn)O層がc軸方向に繰り返した構造をとる。その存在はX線回折測定によって確認することができる。本発明においては、酸化物焼結体がホモロガス構造化合物を実質的に含有しないことで、得られた非晶質の酸化物半導体薄膜が高いキャリア移動度を示すという効果が得られる。なお、ホモロガス構造化合物を実質的に含有しないとは、本発明に用いられる酸化物焼結体を構成する全ての相に対するホモロガス化合物からなる相(以下、ホモロガス相と呼ぶ場合がある。)の、例えばリートベルト解析で求められる重量比が8%以下であり、好ましくは5%以下であり、より好ましくは3%以下であり、さらに好ましくは1%以下であり、なお一層好ましくは0%である。
 2.酸化物焼結体の製造方法
 本発明に用いられる酸化物焼結体の製造では、酸化インジウム粉末、酸化ガリウム粉末、ならびに酸化亜鉛粉末を原料粉末として用いる。
 本発明に用いられる酸化物焼結体の製造工程では、これらの原料粉末が混合された後、成形され、成形物を常圧焼結法によって焼結される。本発明に用いられる酸化物焼結体組織の生成相は、酸化物焼結体の各工程における製造条件、例えば原料粉末の粒径、混合条件及び焼結条件に強く依存する。
 本発明に用いられる酸化物焼結体の組織はβ-Ga型構造のGaInO相、さらに(Ga,In)相の各結晶粒が5μm以下になるよう制御されるが、このため前記原料粉末の平均粒径を1.5μm以下とすることが好ましく、1.0μm以下とすることがより好ましい。前記の通り、ガリウムの含有量がGa/(In+Ga)原子数比で0.08以上の場合には、In相以外にβ-Ga型構造のGaInO相、あるいはβ-Ga型構造のGaInO相と(Ga,In)相が含まれるが、これらの相の生成を極力抑制するためには、各原料粉末の平均粒径を1.0μm以下とすることが好ましい。
 酸化インジウム粉末は、ITO(スズ添加インジウム酸化物)の原料であり、焼結性に優れた微細な酸化インジウム粉末の開発は、ITOの改良とともに進められてきた。酸化インジウム粉末は、ITO用原料として大量に継続して使用されているため、最近では平均粒径1.0μm以下の原料粉末を入手することが可能である。
 酸化亜鉛粉末も、AZO(アルミニウム添加亜鉛酸化物)の主原料であるため、酸化インジウム粉末と同様の理由から、平均粒径1.0μm以下の原料粉末を入手することが可能である。
 ところが、酸化ガリウム粉末の場合、酸化インジウム粉末に比べて依然使用量が少ないため、平均粒径1.0μm以下の原料粉末を入手することは困難な場合がある。粗大な酸化ガリウム粉末しか入手できない場合、平均粒径1.0μm以下まで粉砕することが必要である。
 本発明に用いられる酸化物焼結体の焼結工程では、常圧焼結法の適用が好ましい。常圧焼結法は、簡便かつ工業的に有利な方法であって、低コストの観点からも好ましい手段である。
 常圧焼結法を用いる場合、前記の通り、まず成形体を作製する。原料粉末を樹脂製ポットに入れ、バインダー(例えば、PVA)などともに湿式ボールミルなどで混合する。本発明に用いられる酸化物焼結体はビックスバイト型構造のIn相及びβ-Ga型構造のGaInO相によって構成され、さらに(Ga,In)相を含む場合があるが、これらの相の結晶粒が平均粒径5μm以下に制御されて微細分散していることが好ましい。また、(Ga,In)相の生成はなるべく抑制されることが好ましい。加えて、これらの相以外にアーキングの原因となるβ-Ga型構造のGa相を生成させないことが必要である。これらの要件を満たすためには、上記ボールミル混合を18時間以上行うことが好ましい。この際、混合用ボールとしては、硬質ZrOボールを用いればよい。混合後、スラリーを取り出し、濾過、乾燥、造粒を行う。その後、得られた造粒物を、冷間静水圧プレスで9.8MPa(0.1ton/cm)~294MPa(3ton/cm)程度の圧力をかけて成形し、成形体とする。
 常圧焼結法の焼結工程では、酸素の存在する雰囲気とすることが好ましく、雰囲気中の酸素体積分率が20%を超えることがより好ましい。特に、酸素体積分率が20%を超えることで、酸化物焼結体がより一層高密度化する。雰囲気中の過剰な酸素によって、焼結初期には成形体表面の焼結が先に進行する。続いて成形体内部の還元状態での焼結が進行し、最終的に高密度の酸化物焼結体が得られる。
 酸素が存在しない雰囲気では、成形体表面の焼結が先行しないため、結果として焼結体の高密度化が進まない。酸素が存在しなければ、特に900~1000℃程度において酸化インジウムが分解して金属インジウムが生成するようになるため、目的とする酸化物焼結体を得ることは困難である。
 常圧焼結の温度範囲は、1200~1550℃が好ましく、より好ましくは焼結炉内の大気に酸素ガスを導入する雰囲気において1350~1450℃である。焼結時間は10~30時間であることが好ましく、より好ましくは15~25時間である。
 焼結温度を上記範囲とし、前記の平均粒径1.0μm以下に調整した酸化インジウム粉末、酸化ガリウム粉末、ならびに酸化亜鉛粉末を原料粉末として用いることで、主にビックスバイト型構造のIn相によって構成され、特にガリウムの含有量がGa/(In+Ga)原子数比で0.08以上の場合に、β-Ga型構造のGaInO相が生成されやすくなる傾向があり、亜鉛の含有量がZn/(In+Ga+Zn)原子数比で0.08未満の場合に、ホモロガス構造化合物が実質的に含まれない酸化物焼結体を得やすくなる傾向がある。
 焼結温度1200℃未満の場合には焼結反応が十分進行しない。一方、焼結温度が1550℃を超えると、高密度化が進みにくくなる一方で、焼結炉の部材と酸化物焼結体が反応してしまい、目的とする酸化物焼結体が得られなくなる。本発明で用いられる酸化物焼結体のガリウムの含有量はGa/(In+Ga)原子数比で0.20以上であるため、焼結温度を1450℃以下とすることが好ましい。1500℃前後の温度域では、(Ga,In)相の生成が著しくなる場合があるためである。(Ga,In)相は少量であれば支障はないが、多量の場合には成膜速度の低下やアーキングなどを招く恐れがあり好ましくない。
 焼結温度までの昇温速度は、焼結体の割れを防ぎ、脱バインダーを進行させるためには、昇温速度を0.2~5℃/分の範囲とすることが好ましい。この範囲であれば、必要に応じて、異なる昇温速度を組み合わせて、焼結温度まで昇温してもよい。昇温過程において、脱バインダーや焼結を進行させる目的で、特定温度で一定時間保持してもよい。焼結後、冷却する際は酸素導入を止め、1000℃までを0.2~5℃/分、特に、0.2℃/分以上1℃/分以下の範囲の降温速度で降温することが好ましい。
 3.ターゲット
 本発明に用いられるターゲットは、本発明に用いられる酸化物焼結体を所定の大きさに加工することで得られる。ターゲットとして用いる場合には、さらに表面を研磨加工し、バッキングプレートに接着して得ることができる。ターゲット形状は、平板形が好ましいが、円筒形でもよい。円筒形ターゲットを用いる場合には、ターゲット回転によるパーティクル発生を抑制することが好ましい。また、上記酸化物焼結体を、例えば円柱形状に加工してタブレットとし、蒸着法やイオンプレーティング法による成膜に使用することができる。
 スパッタリング用ターゲットとして用いる場合には、本発明に用いられる酸化物焼結体の密度は6.3g/cm以上であることが好ましく、より好ましくは6.7g/cm以上である。密度が6.3g/cm未満である場合、量産使用時のノジュール発生の原因となる。また、イオンプレーティング用タブレットとして用いる場合には、6.3g/cm未満であることが好ましく、3.4~5.5g/cmであればより好ましい。この場合、焼結温度を1200℃未満としたほうがよい場合がある。
 4.酸化物半導体薄膜とその成膜方法
 本発明に係る非晶質の酸化物半導体薄膜は、主に、前記のスパッタリング用ターゲットを用いて、スパッタリング法で基板上に一旦非晶質の酸化物薄膜を形成し、次いでアニール処理を施すことによって得られる。
 前記のスパッタリング用ターゲットは酸化物焼結体より得られるが、その酸化物焼結体組織、すなわちビックスバイト型構造のIn相及びβ-Ga型構造のGaInO相によって基本構成されている組織が重要である。本発明に係る非晶質の酸化物半導体薄膜を得るためには、非晶質の酸化物半導体薄膜の結晶化温度が高いことが重要であるが、これには酸化物焼結体組織が関係する。すなわち、本発明に用いられる酸化物焼結体のように、ビックスバイト型構造のIn相だけでなく、β-Ga型構造のGaInO相も含む場合には、これから得られる酸化物薄膜は高い結晶化温度、すなわち300℃以上、より好ましくは350℃以上の結晶化温度を示し、安定な非晶質となる。これに対して、酸化物焼結体がビックスバイト型構造のIn相のみによって構成される場合、これから得られる酸化物薄膜は、その結晶化温度が200~250℃程度と低く、非晶質性が安定ではなくなる。このため、後述するように、250℃以上、さらには300℃以上でアニール処理すると結晶化してしまう。なお、この場合には、成膜後にすでに微結晶が生成して非晶質性が維持されず、ウエットエッチングによるパターニング加工が困難になる。これについては、一般的なITO(スズ添加酸化インジウム)透明導電膜においてよく知られている。
 本発明に係る非晶質の酸化物半導体薄膜の成膜工程では、一般的なスパッタリング法が用いられるが、特に、直流(DC)スパッタリング法であれば、成膜時の熱影響が少なく、高速成膜が可能であるため工業的に有利である。本発明に係る酸化物半導体薄膜を直流スパッタリング法で形成するには、スパッタリングガスとして不活性ガスと酸素、特にアルゴンと酸素からなる混合ガスを用いることが好ましい。また、スパッタリング装置のチャンバー内を0.1~1Pa、特に0.2~0.8Paの圧力として、スパッタリングすることが好ましい。
 基板は、ガラス基板が代表的であり、無アルカリガラスが好ましいが、樹脂板や樹脂フィルムのうち上記プロセス条件に耐えうるものであれば使用できる。基板温度は、スパッタリング成膜において600℃以下とするのが好ましく、特に室温近傍の温度以上300℃以下とすることが好ましい。
 前記の非晶質の酸化物薄膜形成工程は、例えば、2×10-4Pa以下まで真空排気後、アルゴンと酸素からなる混合ガスを導入し、ガス圧を0.2~0.8Paとし、ターゲットの面積に対する直流電力、すなわち直流電力密度が1~7W/cm程度の範囲となるよう直流電力を印加して直流プラズマを発生させ、プリスパッタリングを実施することができる。このプリスパッタリングを5~30分間行った後、必要により基板位置を修正したうえでスパッタリングすることが好ましい。なお、前記の成膜工程におけるスパッタリング成膜では、成膜速度を向上させるために、膜質に悪影響を及ぼさない範囲で、投入する直流電力を高めることが行われる。
 本発明に係る非晶質の酸化物半導体薄膜は、前記の非晶質の酸化物薄膜を成膜後、これをアニール処理することによって得られる。アニール処理までの方法の1つとしては、例えば室温近傍など低温で一旦非晶質の酸化物薄膜を形成し、その後、結晶化温度未満でアニール処理して、非晶質を維持したままの酸化物半導体薄膜を得る。もう1つの方法としては、基板を結晶化温度未満の温度、好ましく100~300℃に加熱して、非晶質の酸化物半導体薄膜を成膜する。これに続いて、さらにアニール処理をしてもよい。これら2つの方法での加熱温度は概ね600℃以下で済み、無アルカリのガラス基板の歪み点以下とすることができる。
 本発明に係る非晶質の酸化物半導体薄膜は、一旦非晶質の酸化物薄膜を形成した後、アニール処理することで得られる。アニール処理条件は、酸化性雰囲気において、結晶化温度未満の温度である。酸化性雰囲気としては、酸素、オゾン、水蒸気、あるいは窒素酸化物などを含む雰囲気が好ましい。アニール温度は、250~600℃であり、300~550℃が好ましく、350~500℃がより好ましい。アニール時間は、アニール温度に保持される時間が1~120分間であることが好ましく、5~60分間がより好ましい。
 前記の非晶質の酸化物薄膜及び非晶質の酸化物半導体薄膜のインジウム、ガリウム、及び亜鉛の組成は、本発明に用いられる酸化物焼結体の組成とほぼ同じである。すなわち、インジウム及びガリウムを酸化物として含有し、かつ亜鉛を含有する非晶質の酸化物焼半導体薄膜である。ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.49以下であり、前記亜鉛の含有量がZn/(In+Ga+Zn)原子数比で0.0001以上0.08未満、好ましくは0.05以下である。
 本発明に係る非晶質の酸化物半導体薄膜は、前記のような組成及び組織が制御された酸化物焼結体をスパッタリングターゲットなどに用いて成膜し、上記の適当な条件でアニール処理することで、キャリア濃度が4.0×1018cm-3未満に低下し、より好ましくはキャリア濃度3.0×1018cm-3以下、特に好ましくは2.0×1018cm-3以下が得られる。非特許文献1に記載の通り、インジウム、ガリウム、及び亜鉛からなる非晶質の酸化物半導体薄膜は、キャリア濃度が4.0×1018cm-3以上で縮退状態となるため、これをチャネル層に適用したTFTはノーマリーオフを示さなくなる。したがって、本発明に係る非晶質の酸化物半導体薄膜は、上記のTFTがノーマリーオフを示す範囲にキャリア濃度が制御されるため都合がよい。また、キャリア移動度は10cm/V・s以上を示し、より好ましくはキャリア移動度15cm/V・s以上を示す。
 本発明に係る非晶質の酸化物半導体薄膜は、ウエットエッチングあるいはドライエッチングによって、TFTなどの用途で必要な微細加工を施される。通常、結晶化温度未満の温度、例えば室温から300℃までの範囲から適当な基板温度を選択して一旦非晶質の酸化物薄膜を形成した後、ウエットエッチングによる微細加工を施すことができる。エッチャントとしては、弱酸であれば概ね使用できるが、蓚酸あるいは塩酸を主成分とする弱酸が好ましい。例えば、関東化学製ITO-06Nなどの市販品が使用できる。TFTの構成によっては、ドライエッチングを選択してもよい。
 本発明に係る非晶質の酸化物半導体薄膜の膜厚は限定されるものではないが、10~500nm、好ましくは20~300nm、さらに好ましくは30~100nmである。10nm未満であると十分な半導体特性が得られず、結果として高いキャリア移動度が実現しない。一方、500nmを超えると生産性の問題が生じてしまうので好ましくない。
 以下に、本発明の実施例を用いて、さらに詳細に説明するが、本発明は、これら実施例によって限定されるものではない。
 <酸化物焼結体の評価>
 得られた酸化物焼結体の金属元素の組成をICP発光分光法によって調べた。得られた酸化物焼結体の端材を用いて、X線回折装置(フィリップス製)を用いて粉末法による生成相の同定を行った。
 <酸化物薄膜の基本特性評価>
 得られた酸化物薄膜の組成をICP発光分光法によって調べた。酸化物薄膜の膜厚は表面粗さ計(テンコール社製)で測定した。成膜速度は、膜厚と成膜時間から算出した。酸化物薄膜のキャリア濃度及び移動度は、ホール効果測定装置(東陽テクニカ製)によって求めた。膜の生成相はX線回折測定によって同定した。
 (調整例)
 酸化インジウム粉末と酸化ガリウム粉末、ならびに酸化亜鉛粉末を平均粒径1.0μm以下となるよう調整して原料粉末とした。これらの原料粉末を、表1及び表2の実施例及び比較例のGa/(In+Ga)原子数比、Zn/(In+Ga+Zn)原子数比の通りになるように調合し、水とともに樹脂製ポットに入れ、湿式ボールミルで混合した。この際、硬質ZrOボールを用い、混合時間を18時間とした。混合後、スラリーを取り出し、濾過、乾燥、造粒した。造粒物を、冷間静水圧プレスで3ton/cmの圧力をかけて成形した。
 次に、成形体を次のように焼結した。炉内容積0.1m当たり5リットル/分の割合で、焼結炉内の大気に酸素を導入する雰囲気で、1350~1450℃の焼結温度で20時間焼結した。この際、1℃/分で昇温し、焼結後の冷却の際は酸素導入を止め、1000℃までを1℃/分で降温した。
 得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、金属元素について、原料粉末の配合時の仕込み組成とほぼ同じであることがいずれの実施例でも確認された。
 次に、X線回折測定による酸化物焼結体の相同定を行った。なお、β-Ga型構造のGaInO相を含む場合には、下記の式1で定義されるβ-Ga型構造のGaInO相のX線回折ピーク強度比を表1に示した。
  100×I[GaInO相(-111)]/{I[In相(400)]+I[GaInO相(-111)]} [%]・・・・式1
(式中、I[In相(400)]は、ビックスバイト型構造のIn相の(400)ピーク強度であり、I[GaInO相(-111)]は、β-Ga型構造の複合酸化物β-GaInO相(-111)ピーク強度を示す。)
Figure JPOXMLDOC01-appb-T000001
 酸化物焼結体を、直径152mm、厚み5mmの大きさに加工し、スパッタリング面をカップ砥石で最大高さRzが3.0μm以下となるように研磨した。加工した酸化物焼結体を、無酸素銅製のバッキングプレートに金属インジウムを用いてボンディングして、スパッタリング用ターゲットとした。
 実施例及び比較例のスパッタリング用ターゲットならびに無アルカリのガラス基板(コーニングEagleXG)を用いて、表2に記載の基板温度で直流スパッタリングによる成膜を行った。アーキング抑制機能のない直流電源を装備した直流マグネトロンスパッタリング装置(トッキ製)のカソードに、上記スパッタリングターゲットを取り付けた。このときターゲット-基板(ホルダー)間距離を60mmに固定した。2×10-4Pa以下まで真空排気後、アルゴンと酸素の混合ガスを各ターゲットのガリウム量ならびに亜鉛量に応じて適当な酸素の比率になるように導入し、ガス圧を0.6Paに調整した。直流電力300W(1.64W/cm)を印加して直流プラズマを発生させた。10分間のプリスパッタリング後、スパッタリングターゲットの直上、すなわち静止対向位置に基板を配置して、膜厚50nmの酸化物薄膜を形成した。得られた酸化物薄膜の組成は、ターゲットとほぼ同じであることが確認された。
 成膜された酸化物薄膜に、表2に記載の通り、酸素中、300~500℃において30~60分間の熱処理を施し、X線回折測定によって熱処理後の酸化物薄膜の結晶性を調べた。その結果、実施例及び比較例共に非晶質を維持していた。また、結晶化している酸化物半導体薄膜については、酸化物半導体薄膜を構成する結晶相を同定した。実施例及び比較例酸化物半導体薄膜のホール効果測定を行い、キャリア濃度及びキャリア移動度を求めた。得られた評価結果を、表2にまとめて記載した。
Figure JPOXMLDOC01-appb-T000002
 「評価」
 表1の結果より、実施例1~15では、ガリウム含有量がGa/(In+Ga)原子数比で0.20以上0.49以下であり、亜鉛の含有量がZn/(In+Ga+Zn)原子量比で0.0001以上0.08未満の場合には、ビックスバイト型構造のIn相とβ-Ga型構造のGaInO相、あるいはビックスバイト型構造のIn相とβ-Ga型構造のGaInO相と(Ga,In)相、あるいはビックスバイト型構造のIn相とβ-Ga型構造のGaInO相とYbFe型構造のInGaZnO相によって構成されていた。
 また、表2の結果より、インジウム、ガリウム及び亜鉛からなる非晶質の酸化物半導体薄膜であって、ガリウム含有量がGa/(In+Ga)原子数比で0.20以上0.49以下であり、亜鉛含有量がZn/(In+Ga+Zn)原子数比で0.0001以上0.08未満に制御された酸化物半導体薄膜の特性を示した。
 実施例の酸化物半導体薄膜は、いずれも非晶質であることがわかる。また、実施例の酸化物半導体薄膜は、キャリア濃度が4.0×1018cm-3未満、及びキャリア移動度が10cm/V・s以上であり、特にガリウム含有量がGa/(In+Ga)原子数比で0.20以上0.40以下であり、亜鉛含有量がZn/(In+Ga+Zn)原子数比で0.01以上0.05以下の実施例2、3、5~9の酸化物半導体薄膜は、キャリア濃度が3.0×1018cm-3以下、キャリア移動度が15cm/V・s以上の優れた特性を示していることがわかる。
 また、比較例1は、Zn/(In+Ga+Zn)原子数比で表される亜鉛の含有量は本発明の範囲を満足するが、Ga/(In+Ga)原子数比で表されるガリウム含有量が本発明の下限である0.20を下回り、比較例2は前記ガリウム含有量は本発明の範囲を満足するが、前記亜鉛の含有量が本発明の下限である0.0001を下回る結果、そのキャリア濃度が4.0×1018cm-3以上であることがわかる。また、比較例3~5の酸化物半導体薄膜は、前記亜鉛含有量が0.08と過剰であるため、そのキャリア移動度が10cm/V・s未満であることがわかる。

Claims (11)

  1.  インジウム、ガリウム及び亜鉛を酸化物として含有し、
     前記ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.49以下であり、
     前記亜鉛の含有量がZn/(In+Ga+Zn)原子数比で0.0001以上0.08未満であることを特徴とする酸化物焼結体。
  2.  前記亜鉛の含有量がZn/(In+Ga+Zn)原子数比で0.01以上0.05以下である請求項1に記載の酸化物焼結体。
  3.  前記ガリウムの含有量がGa/(In+Ga)原子数比で0.15以上0.40以下である請求項1又は2に記載の酸化物焼結体。
  4.  亜鉛以外の正二価元素、及び、インジウムとガリウム以外の正三価から正六価の元素、を実質的に含有しない請求項1から3のいずれかに記載の酸化物焼結体。
  5.  ビックスバイト型構造のIn相と、In相以外の生成相がβ-Ga型構造のGaInO相、β-Ga型構造のGaInO相と(Ga,In)相、β-Ga型構造のGaInO相とYbFe型構造のInGaZnO相、(Ga,In)相とYbFe型構造のInGaZnO相、及びβ-Ga型構造のGaInO相と(Ga,In)相とYbFe型構造のInGaZnO相からなる群より選ばれた生成相によって構成される請求項1から4のいずれかに記載の酸化物焼結体。
  6.  下記の式1で定義されるβ-Ga型構造のGaInO相のX線回折ピーク強度比が3%以上58%以下の範囲である請求項5に記載の酸化物焼結体。
    100×I[GaInO相(-111)]/{I[In相(400)]+I[GaInO相(-111)]} [%]・・・・式1
    (式中、I[In相(400)]は、ビックスバイト型構造のIn相の(400)ピーク強度であり、I[GaInO相(-111)]は、β-Ga型構造の複合酸化物β-GaInO相(-111)ピーク強度を示す。)
  7.  請求項1から6のいずれかに記載の酸化物焼結体を加工して得られるスパッタリング用ターゲット。
  8.  請求項7に記載のスパッタリング用ターゲットを用いてスパッタリング法によって基板上に形成された後、熱処理された非晶質の酸化物半導体薄膜。
  9.  キャリア濃度が4.0×1018cm-3未満、かつキャリア移動度が10cm/V・s以上であることを特徴とする請求項8に記載の酸化物半導体薄膜。
  10.  キャリア濃度が3.0×1018cm-3以下であることを特徴とする請求項9に記載の酸化物半導体薄膜。
  11.  キャリア移動度が15cm/V・s以上であることを特徴とする請求項9に記載の酸化物半導体薄膜。
PCT/JP2015/053848 2014-02-27 2015-02-12 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜 WO2015129468A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167022418A KR102353562B1 (ko) 2014-02-27 2015-02-12 산화물 소결체, 스퍼터링용 타겟, 및 그것을 이용하여 얻어지는 산화물 반도체 박막
CN201580009757.XA CN106029604B (zh) 2014-02-27 2015-02-12 氧化物烧结体、溅射靶以及使用该溅射靶而得到的氧化物半导体薄膜
US15/117,529 US9670577B2 (en) 2014-02-27 2015-02-12 Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-037022 2014-02-27
JP2014037022 2014-02-27
JP2014-163148 2014-08-08
JP2014163148 2014-08-08
JP2014263621A JP6358083B2 (ja) 2014-02-27 2014-12-25 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP2014-263621 2014-12-25

Publications (1)

Publication Number Publication Date
WO2015129468A1 true WO2015129468A1 (ja) 2015-09-03

Family

ID=54008791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053848 WO2015129468A1 (ja) 2014-02-27 2015-02-12 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜

Country Status (6)

Country Link
US (1) US9670577B2 (ja)
JP (1) JP6358083B2 (ja)
KR (1) KR102353562B1 (ja)
CN (1) CN106029604B (ja)
TW (1) TWI547573B (ja)
WO (1) WO2015129468A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354841B2 (ja) * 2014-04-17 2018-07-11 住友金属鉱山株式会社 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6724057B2 (ja) * 2018-03-30 2020-07-15 Jx金属株式会社 スパッタリングターゲット部材
JP7247546B2 (ja) * 2018-11-26 2023-03-29 日新電機株式会社 薄膜トランジスタの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252231A (ja) * 2001-08-02 2011-12-15 Idemitsu Kosan Co Ltd スパッタリングターゲット、透明導電膜およびそれらの製造法
WO2012153491A1 (ja) * 2011-05-10 2012-11-15 出光興産株式会社 In-Ga-Zn系酸化物スパッタリングターゲット及びその製造方法
JP2013001590A (ja) * 2011-06-15 2013-01-07 Sumitomo Electric Ind Ltd 導電性酸化物およびその製造方法、ならびに酸化物半導体膜
JP2013100224A (ja) * 2008-06-06 2013-05-23 Idemitsu Kosan Co Ltd 酸化物薄膜用スパッタリングターゲットおよびその製造法
JP2014095144A (ja) * 2012-10-10 2014-05-22 Idemitsu Kosan Co Ltd スパッタリングターゲット

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101078483B1 (ko) 2004-03-12 2011-10-31 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Lcd 또는 유기 el 디스플레이의 스위칭 소자
JP5058469B2 (ja) 2005-09-06 2012-10-24 キヤノン株式会社 スパッタリングターゲットおよび該ターゲットを用いた薄膜の形成方法
JP5143410B2 (ja) * 2006-12-13 2013-02-13 出光興産株式会社 スパッタリングターゲットの製造方法
KR101518091B1 (ko) * 2007-12-13 2015-05-06 이데미쓰 고산 가부시키가이샤 산화물 반도체를 이용한 전계 효과형 트랜지스터 및 그 제조방법
WO2010032422A1 (ja) 2008-09-19 2010-03-25 出光興産株式会社 酸化物焼結体及びスパッタリングターゲット
WO2010070832A1 (ja) * 2008-12-15 2010-06-24 出光興産株式会社 複合酸化物焼結体及びそれからなるスパッタリングターゲット
JP2010202451A (ja) * 2009-03-03 2010-09-16 Sumitomo Electric Ind Ltd In−Ga−Zn系複合酸化物焼結体の製造方法
JP4875135B2 (ja) * 2009-11-18 2012-02-15 出光興産株式会社 In−Ga−Zn−O系スパッタリングターゲット
JP5596963B2 (ja) * 2009-11-19 2014-09-24 出光興産株式会社 スパッタリングターゲット及びそれを用いた薄膜トランジスタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252231A (ja) * 2001-08-02 2011-12-15 Idemitsu Kosan Co Ltd スパッタリングターゲット、透明導電膜およびそれらの製造法
JP2013100224A (ja) * 2008-06-06 2013-05-23 Idemitsu Kosan Co Ltd 酸化物薄膜用スパッタリングターゲットおよびその製造法
WO2012153491A1 (ja) * 2011-05-10 2012-11-15 出光興産株式会社 In-Ga-Zn系酸化物スパッタリングターゲット及びその製造方法
JP2013001590A (ja) * 2011-06-15 2013-01-07 Sumitomo Electric Ind Ltd 導電性酸化物およびその製造方法、ならびに酸化物半導体膜
JP2014095144A (ja) * 2012-10-10 2014-05-22 Idemitsu Kosan Co Ltd スパッタリングターゲット

Also Published As

Publication number Publication date
TWI547573B (zh) 2016-09-01
TW201536938A (zh) 2015-10-01
JP2016034887A (ja) 2016-03-17
KR102353562B1 (ko) 2022-01-20
CN106029604A (zh) 2016-10-12
US20160348229A1 (en) 2016-12-01
KR20160127732A (ko) 2016-11-04
CN106029604B (zh) 2019-03-05
US9670577B2 (en) 2017-06-06
JP6358083B2 (ja) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6424892B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6414210B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
WO2016084636A1 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6269814B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6387823B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
WO2016136479A1 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6358083B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
US9688580B2 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
TWI622568B (zh) 氧化物燒結體及濺鍍用靶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15117529

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167022418

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754620

Country of ref document: EP

Kind code of ref document: A1