WO2015129078A1 - バッテリー駆動式電子機器 - Google Patents

バッテリー駆動式電子機器 Download PDF

Info

Publication number
WO2015129078A1
WO2015129078A1 PCT/JP2014/073038 JP2014073038W WO2015129078A1 WO 2015129078 A1 WO2015129078 A1 WO 2015129078A1 JP 2014073038 W JP2014073038 W JP 2014073038W WO 2015129078 A1 WO2015129078 A1 WO 2015129078A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
switch
voltage
latch
computer
Prior art date
Application number
PCT/JP2014/073038
Other languages
English (en)
French (fr)
Inventor
一良 中村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201480047568.7A priority Critical patent/CN105531901B/zh
Publication of WO2015129078A1 publication Critical patent/WO2015129078A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery-driven electronic device, and more particularly to an electronic device including a computer that operates with a voltage provided from a battery that can be attached to and detached from a main body, and a latch switch that turns on and off the voltage.
  • a latch switch is applied to the switching means so that the switching means can be turned off when the computer finishes its work, and when the computer enters a standby state, the computer A configuration is known in which a latch switch is turned off to cut off battery power to the computer.
  • FIG. 8 is a circuit diagram showing an example of a configuration in which the computer can turn off the latch switch to cut off the battery power.
  • a portion surrounded by a chain line is a latch switch SW131.
  • the MPU 123 is a microcomputer. As shown in FIG. 8, the power supply from the battery 113 to the MPU 123 is turned on and off by the power MOSFET of Q101. When either one of the transistors Q131 and Q132 is turned on, a base current flows to the other and both are turned on. Then, the potential of the gate terminal of Q101 falls and Q1 is turned on. In the initial state in which the latch switch SW131 is off, both are off.
  • transistor Q132 is off, so no current flows through the base of transistor Q131 and Q131 remains off.
  • transistor Q131 is off, so that no current flows through the base of transistor Q132 and Q132 remains off. If both the transistors Q131 and Q132 are off, the gate terminal of Q101 does not drop in potential and Q101 is off.
  • the base of Q133 is connected to one of the output ports of the MPU 123 via a resistor R136.
  • the latch switch SW131 When the latch switch SW131 is in the ON latch state, Q133 is turned ON when the MPU 123 sets its output port to high. Then, the base of Q132 is grounded via Q133. Therefore, Q132 is turned off. Then, the base current of Q131 is cut off and Q131 is turned off. When Q132 and Q131 are turned off, Q101 is turned off. Thus, the latch state of the latch switch SW131 is released by the output from the MPU.
  • the letter “R” attached to each resistor and the three-digit number that follows it indicate the resistance element code, and the numerical value under each code indicates an example of the resistance value (unit: ohms).
  • the letter “C” attached to each capacitor and the three-digit number following it indicate the code of each element, and the numerical value below the code indicates an example of the capacitance (unit: farad).
  • the energy of the battery is limited, there are many electronic devices that can be attached to and detached from the main body for replacement or charging. If the battery is not properly attached to the main body of these electronic devices, not only the original performance cannot be demonstrated, but also a normal power supply voltage is not provided to the computer that operates with the battery as a power source, and it does not work or unstable operation There is a risk of malfunction. Therefore, the part where the battery is mounted is mechanically considered so that the battery is mounted securely and safely, but there is also a device that electrically detects that the battery is mounted and notifies the user. is there. Since the computer operates when the battery is attached, the computer informs the user that the battery has been normally attached by display, sound (including sound) or the like. Since the notification is made, the user can recognize that the installation of the battery is completed, and the user's erroneous operation related to the installation of the battery can be prevented.
  • the present invention has been made in consideration of the above-described circumstances, and is a simple method that does not use a dedicated sensor or switch in a battery-driven electronic device in which power supply to an on-board computer is turned on and off with a latch switch.
  • the present invention provides a method that can detect battery mounting with a simple configuration.
  • the present invention relates to a battery that can be attached to and detached from a main body, a computer that is disposed in the main body and operates with a power supply voltage from the battery, and is connected between the battery and the computer to turn on and off the power supply voltage to the computer.
  • a battery-driven electronic device comprising a self-holding type latch switch and a mounting detection circuit that turns on the latch switch in response to mounting of the battery.
  • the battery-driven electronic device includes a mounting detection circuit that turns on the latch switch in response to mounting of the battery, the mounting of the battery can be detected with a simple configuration that does not use a dedicated sensor or switch. . Since the attachment detection circuit turns on the latch switch in response to detection of the attachment of the battery, the voltage of the battery is provided to the computer and the computer operates. Then, the computer can notify the user that the battery is attached.
  • (Initial stage of processing) 4 is a flowchart illustrating processing executed by an MPU in the embodiment of the present invention.
  • (During operation and standby 1) 4 is a flowchart illustrating processing executed by an MPU in the embodiment of the present invention.
  • (During operation and standby 2) It is a circuit diagram which shows the structural example of the conventional latch switch.
  • FIG. 1 is an explanatory diagram showing an electrical configuration of a battery-driven vacuum cleaner as one embodiment of the electronic apparatus of the present invention.
  • the cleaner 11 is a canister-type cleaner, and is roughly divided into a cleaner body, a suction hose 17, and a battery 13.
  • the battery 13 and the suction hose 17 can be attached to and detached from the cleaner body, and are electrically connected via a connector.
  • the battery 13 has battery terminals 13a and 13b, and is connected to the cleaner body via the battery terminals 13a and 13b.
  • the battery 13 is assumed to be a secondary battery such as a lithium ion battery, but is not limited thereto.
  • the battery 13 may be accommodated inside the cleaner body while being attached to the cleaner body and covered with a lid, or may be exposed to the outside of the cleaner body.
  • the control circuit 15 is disposed in the cleaner body.
  • the driving strength / weakness switch 30 is a momentary type switch and is disposed in the suction hose 17.
  • the driving strength / weakness switch 30 corresponds to a work start switch according to the present invention.
  • FIG. 1 is merely an example.
  • the driving strength / weakness switch 30 may be provided in the cleaner body instead of the suction hose 17.
  • the cleaner 11 is not limited to the canister type, and may be, for example, a self-propelled cleaner or a handy type cleaner that does not have the suction hose 17.
  • the electronic device of the present invention is not limited to a vacuum cleaner.
  • the control circuit 15 includes a latch switch 31, a power supply IC 21, an MPU 23, and a motor drive circuit 25.
  • the motor drive circuit 25 drives the motor of the electric blower 29 arranged in the cleaner body.
  • the latch switch 31 has the function of the mounting detection circuit according to the present invention in addition to the function of the latch switch SW131 shown in FIG. That is, the battery 13 is triggered to be turned on in response to the battery 13 being attached to the cleaner body. Details will be described later.
  • the power supply IC 21 is the same as the power supply IC (IC1) of FIG.
  • the MPU 23 corresponds to the computer of the present invention.
  • the MPU 23 controls the motor drive circuit 25. Further, the on / off state of the operation strength / weak switch 30 and the off switch 32 and the state of attachment / detachment of the suction hose 17 are read.
  • the resistors R11 and R12 in the control circuit 15 constitute a voltage dividing circuit.
  • One end of the resistor R11 is connected to the battery terminal 13a via the latch switch 31.
  • the voltage of the battery terminal 13a is divided by the resistors R11 and R12 to generate the signal Vin, which is input to the MPU 23 and internally A / D converted. That is, the MPU 23 reads the voltage level obtained by dividing the voltage of the battery terminal 13a.
  • the power supply IC 21 is a step-down stabilized power supply circuit
  • the MPU 23 operates with a power supply voltage lower than the output voltage of the battery 13.
  • the voltage dividing circuit of the resistors R11 and R12 converts the voltage of the battery terminal 13a into a voltage Vin in a range that the MPU 23 can correctly read.
  • the rated voltage of the battery 13 is 18V, for example.
  • the output voltage of the power supply IC 21 is 5 V as an example.
  • the resistors R13 and R14 in the control circuit 15 constitute a voltage dividing circuit, and the voltage dividing circuit corresponds to the switch reading circuit of the present invention.
  • One end of the resistor R13 (location indicated by a latch-on signal in FIG. 1) is connected to the battery terminal 13a via the driving strength / weakness switch 30.
  • the potential of the latch-on signal is equal to the output voltage of the battery terminal 13a when the driving strength / weak switch 30 is on, but becomes the ground potential when the driving strength / weak switch 30 is off.
  • This latch-on signal is connected to the latch switch 31.
  • the latch switch 31 enters a latching state and is kept on, and power is supplied to the MPU 23.
  • the latch-on signal is divided by the resistors R13 and R14 to generate the voltage signal V1, which is input to the MPU 23 and internally A / D converted.
  • the voltage dividing circuit of the resistors R13 and R14 converts the voltage of the latch-on signal into a voltage signal V1 in a range that the MPU 23 can correctly read.
  • One of the output ports of the MPU 23 is connected to a latch switch 31 (indicated by a latch release signal in FIG. 1).
  • the latch state of the latch switch 31 is released. This portion corresponds to the latch release circuit of the present invention.
  • the driving strength / weak switch 30 is pressed when the cleaner 11 is in the power-off state
  • the latch switch 31 is turned on and power is supplied to the MPU 23.
  • the MPU 23 starts executing (processing) a predetermined control program.
  • the MPU 23 reads the voltage levels of the input signals Vin and V1.
  • One end of the resistor R15 and one end of the off switch 32 are both connected to the battery terminal 13a via a connector 17a that connects the suction hose 17 and the cleaner body.
  • a voltage signal V2 at a connection point between the resistors R16 and R17 is input to the MPU 23.
  • the voltage of the battery terminal 13a is divided by the resistors R15 to R17 to become a voltage signal V2.
  • the voltage signal V2 is input to the MPU 23 and A / D converted.
  • the voltage dividing circuit of the resistors R15 to R17 converts the terminal voltage of the battery 13a into a voltage signal V2 in a range that the MPU 23 can read correctly.
  • the voltage division ratio changes depending on whether the off switch 32 is on or off, and the voltage level of V2 changes accordingly.
  • the voltage dividing circuit of the resistors R15 to R17 enables two detections, that is, ON / OFF of the OFF switch 32 and detection of the attachment state of the suction hose 17.
  • the potential of V2 becomes a level obtained by dividing the voltage of the battery terminal 13a by the resistors R15 and R17.
  • V2 becomes the ground potential.
  • the off switch 32 is turned on, the potential of V2 becomes a level obtained by dividing the voltage of the battery terminal 13a by the parallel resistance of the resistors R15 and R16 and R17.
  • V2 takes three levels depending on the combination of insertion / extraction of the suction hose 17 and on / off of the switch 32.
  • the MPU 23 monitors the voltage level of V2 to recognize the disconnection of the suction hose 17 and the operation of the off switch.
  • the MPU 23 sequentially monitors the voltage level of V2 during operation.
  • the MPU 23 determines the voltage level of V2 based on the voltage level of Vin. Actually, there are measurement errors due to variations in circuit element characteristics and noise, etc., so that (1) the suction hose 17 is disconnected, (2) the suction hose 17 is attached and the switch 32 is off. (3) Three windows corresponding to the state in which the suction hose 17 is attached and the switch OFF is turned on are determined in advance. If the voltage level of V2 is within the range of any window, the state is recognized, but if V2 does not fit in any window, it is ignored as noise.
  • the MPU 23 determines that an instruction to stop the operation has been received, stops the electric blower 29 (not shown), and shifts to a standby state.
  • the standby state when no operation is performed for a predetermined period, the latch release signal is set high. As a result, the latch switch 31 is turned off, and the power supply to the MPU 23 is interrupted.
  • the operation of the driving strength / weakness switch 30 is performed by a person. Even if it is a momentary on as a sense of operation performed by a person, a sufficiently long period of time elapses compared to the following circuit operation. In other words, when the driving strength / weak switch 30 is pressed, the latch switch 31 is turned on, and the MPU 23 starts processing to read the voltage levels of Vin and V1. Therefore, when the MPU 23 reads the voltage levels of Vin and V1 after the operation is started, it is assumed that the driving strength / weak switch 30 is still pressed and is kept on. In addition, when it is assumed that it takes time to read the voltage levels of Vin and V1 after the driving strength / weak switch 30 is turned on, the delay circuit 25 may be inserted into V1.
  • a simple configuration of the delay circuit 25 can be realized by a resistor and a capacitor. Since the delay circuit 25 is not an essential component, it is indicated by a chain line. Thus, by devising the circuit configuration, when the MPU 23 reads the voltage levels of Vin and V1 after the operation starts, it is assumed that the driving strength / weak switch 30 is kept on.
  • the MPU 23 reads the voltage levels of Vin and V1 and makes the following determination.
  • the driving strength / weak switch 30 is on, the latch-on signal is equal to the voltage at the battery terminal 13a. Therefore, the voltage levels of V1 and Vin must be approximately equal. If the voltage levels of V1 and Vin are different, it is considered that the disturbance switch is superimposed on the latch-on signal and the latch switch 31 is turned on. Therefore, when it is determined that the voltage levels of V1 and Vin are different, the MPU 23 may release the latch state of the latch switch 31 by setting the latch release signal high. If it does so, the electric power supply to MPU23 will be interrupted
  • the latch switch 31 can be cut off by itself at the initial stage when the MPU 23 starts processing. Therefore, it is possible to prevent the power from being turned on due to a malfunction and to suppress wasteful power consumption of the battery 13.
  • the MPU 23 can recognize the on / off state of the driving strength / weakness switch 30 by sequentially monitoring V1 during driving.
  • the MPU 23 recognizes this and controls the motor drive circuit 25 to change the rotational speed of the electric blower 29 from the high speed corresponding to “strong”. Switch to low speed corresponding to “weak” or vice versa.
  • the MPU 23 makes a determination by sequentially comparing Vin and V1. And if both are substantially equal, it will recognize that the driving strong / weak switch 30 is an ON state.
  • the driving strength / weak switch 30 is within a predetermined level range (ON window), it is determined that the switch is ON. If it is within a predetermined level range (off window), it is determined to be off.
  • the voltage of the battery terminal 13a decreases with use. Along with this, the Vin level also decreases. Similarly, the V1 level when the driving strength / weak switch 30 is on also decreases.
  • the MPU 23 reads the voltage levels of Vin and V1, and compares the voltage level of V1 with the level of Vin to determine whether the driving strength / weak switch 30 is in the on window or in the off window. Therefore, even if the voltage of the battery terminal 13a changes with use, it is possible to correctly recognize whether the driving strength / weakness switch 30 is on or off. If the voltage level of V1 is not within the on or off window, the MPU 23 can recognize that noise is superimposed on the latch-on signal. If it is recognized as noise at the initial stage of processing, a latch release signal may be output. During driving, no operation is performed and the driving strength / weak switch 30 may be ignored as being off.
  • the driving strength / weak switch 30 has a function as hardware for turning on the latch switch 31 and a function as means for giving an instruction for software processing by causing the MPU 23 to monitor the on / off state.
  • FIG. 2 is a circuit diagram showing a configuration example of the latch switch SW31 having the mounting detection circuit according to the present invention. Note that the latch switch SW31 is inside a rectangle surrounded by a one-dot chain line in FIG. In order to make the connection relationship with the surroundings easy to understand, the battery 13, the power supply IC 21, the MPU 23, and the like are shown. If the conventional configuration of FIG. 8 is compared with FIG. 2, the configuration of the mounting detection circuit will be easily understood. The description of the same configuration as in FIG. 8 is omitted to avoid duplication, and only the portions different from FIG. 8 will be described.
  • capacitor C33 is added. One end of the capacitor C33 is connected to the base of the transistor Q31, and the other end is grounded and connected in parallel with the resistor R33 and the transistor Q32.
  • the voltage of the battery 13 is applied to the emitter of Q31 via the resistor R31, and a stepped steep voltage rise occurs.
  • a capacitor C33 is connected to the base of the transistor Q31. Due to the capacitance component, the voltage at the base of Q31 cannot follow the steep rise in voltage on the emitter side.
  • a delay of a time constant determined by the resistor R31 and the capacitor C33 occurs with respect to the emitter, and a potential difference is generated between the emitter and the base of the transistor Q31 due to the delay. Due to this potential difference, a forward current flows through the base of the transistor Q31 and the transistor Q31 is turned on.
  • transistor Q31 When transistor Q31 is turned on, the collector potential of Q31 rises. A voltage is applied to the base of transistor Q32 connected to the collector of Q31 via resistor R34. Q32 is turned on by the voltage. When Q32 is turned on, a current flows through a resistor R33 between the base and emitter of Q31, as in the description of FIG. Accordingly, even after the emitter voltage of the transistor Q31 rises to the voltage of the battery 13, the Q31 remains on. When the on state of Q31 and Q32 continues, the potential of the gate terminal of Q1 falls and Q1 continues to be on. It is in a latched state.
  • the latch switch SW31 is turned on when the battery 13 is attached to the cleaner body.
  • the capacitor C33 corresponds to the mounting detection circuit according to the present invention. Note that the capacitor (corresponding to C131 in FIG. 8) in parallel with the resistor R132 is removed from the circuit in FIG. If the capacitor is connected in parallel with the resistor R132, the emitter and base of Q31 are connected in an alternating manner via the power MOSFET Q1. When the emitter voltage of the transistor Q31 rises sharply as the battery 13 is attached to the cleaner body, a potential difference is unlikely to occur between the emitter and base of Q31. Therefore, it becomes difficult to turn on Q31. In order to avoid this, the capacitor in parallel with the resistor R132 is removed.
  • FIG. 3 is a circuit diagram showing a configuration example different from FIG. 2 of the mounting detection circuit according to the present invention.
  • the one corresponding to the capacitor C33 in FIG. 2 is removed.
  • the one corresponding to the capacitor C131 in FIG. 8 is removed.
  • the same reference numerals are given to circuit components corresponding to FIG.
  • FIG. 4 is a circuit diagram showing a further different configuration example of the mounting detection circuit according to the present invention. Compared to FIG. 8, the difference is that a capacitor C35 and a diode D1 are added. The cathode of the diode D1 is connected to the base of the transistor Q32, and the anode is connected to the battery 13 via the capacitor C35. Capacitor C35 and diode D1 form a differentiating circuit and respond to the rise of the voltage caused by the attachment of battery 13 to the cleaner body.
  • Q32 is kept on even after the voltage rises with the attachment of the battery 13 to the cleaner body. Therefore, Q31 is also kept on.
  • the potential of the gate terminal of Q1 falls and Q1 is kept on (latched state).
  • the diode D1 is inserted for preventing backflow. That is, when the driving strength / weak switch 30 is pressed and turned on while the battery 13 is attached to the main body of the vacuum cleaner, the cathode potential of the diode D1 rises in a step-like manner as it is turned on. At this time, the discharge current of the capacitor C35 is prevented from flowing to the battery 13 side.
  • the current flows to the base of Q32 due to the rise of the voltage accompanying the attachment of the battery 13 to the cleaner body, and Q32 is first turned on.
  • Q31 is turned on as Q32 is turned on.
  • the operation is not hindered.
  • FIG. 5 is a process at an initial stage in which power is supplied to the MPU 23 and the execution of the process is started
  • FIGS. 6 and 7 are processes when the apparatus is in a standby state and in operation through the initial stage. Each of them shows processing deeply related to the present invention, and other processing is omitted.
  • the MPU 23 that has started processing when the latch switch 31 is turned on and supplied with power from the battery 13 first executes initialization processing required for operating the control circuit such as initial setting of the memory and input / output ports. (Step S11 in FIG. 5). Thereafter, the MPU 23 reads the voltage of Vin obtained by dividing the voltage of the battery terminal 13a (step S13).
  • the voltage of Vin is a voltage used as a reference when determining the levels of V1 and V2.
  • the MPU 23 reads the level of the voltage signal V1 indicating the on / off state of the driving strength / weak switch 30 (step S15). Then, it is checked whether or not the level of V1 is within a predetermined range (window) with respect to the level of Vin (step S17).
  • the range is a voltage in a range that is determined in advance as a value that should be recognized that the driving strength / weak switch 30 is on. If the V1 level is within the ON window (Yes in step S17), the MPU 23 determines that it has been activated by pressing the driving strength / weak switch 30. In that case, the MPU 23 then reads the level of the voltage signal V2 (step S19).
  • step S21 it is determined whether or not the level of V2 is within a predetermined range in which it is determined that the suction hose 17 is attached (step S21). If the level of V2 is within the window in which it is determined that the suction hose 17 is attached (Yes in step S21), the motor drive circuit 25 is controlled to rotate the electric blower 29 "strongly" (step S21). S23). Then, the routine proceeds to the standby state and the process during operation shown in step 31 and subsequent steps in FIG.
  • step S21 if the level of V2 is not within the window to be determined that the suction hose 17 is attached (No in step S21) in step S21, the routine does not rotate the electric blower 29 and the routine proceeds to step 31 in FIG. The process proceeds to the standby state and the process during operation described below. The description returns to step S17.
  • step S17 when the level of V1 is not in the ON window (No in step S17), the MPU 23 determines that it has been activated by mounting the battery 13. Then, the user is notified that the battery is attached (step S25 in FIG. 6). Thereafter, the routine proceeds to a standby state and a process during operation shown in step 31 and thereafter.
  • step S31 the MPU 23 newly reads the reference voltage Vin (step S31). Subsequently, the MPU 23 reads the level of V1 indicating the state of the driving strength / weakness switch 30 (step S33). Then, it is checked whether or not there is a level of V1 within a window that is predetermined as a voltage to be recognized as the driving strength / weak switch 30 being on (step S35).
  • step S35 If the V1 level is within the ON window (Yes in step S35), the MPU 23 determines that the driving strength / weak switch 30 has been pressed again. Then, the level of V2 is read (step S37), and it is determined whether or not the level is within a predetermined range in which it is determined that the suction hose 17 is attached (step S39). If the level of V2 is within the window in which it is determined that the suction hose 17 is attached (Yes in Step S39), it is checked whether or not the electric blower 29 is operating at “strong” (Step S43). If it is strong and driving, the motor drive circuit 25 is controlled to switch to “weak” (step S45). Thereafter, the routine returns to step S31 described above.
  • step S43 when the electric blower 29 is “strong” and not operating (No in step S43), the MPU 23 controls the motor drive circuit 25 to rotate the electric blower 29 with “strong” (step S47). Thereafter, the routine returns to step S31 described above. If it is determined in step S39 that the suction hose is not attached (No in step S39), the MPU 23 controls the motor drive circuit 25 to stop the electric blower 29 (step S41). Thereafter, the routine returns to step S31 described above.
  • step S35 If it is determined in step S35 that the level of V1 is not within the ON window (No in step S35), the routine proceeds to step S51 in FIG. In step S51 in FIG. 7, the MPU 23 determines whether or not the level of V2 is within the window in which it should be determined that the OFF switch 32 has been pressed. When it is determined that the off switch 32 has been pressed (Yes in Step S51), the MPU 23 controls the motor drive circuit 25 so as to stop the rotation of the electric blower 29 (Step S53). Thereafter, the routine returns to step S31 in FIG.
  • step S57 when it is determined that the turn-off switch 32 has not been pressed (No in step S51), the MPU 23 is in a predetermined range in which it is determined that the suction hose 17 is attached. It is determined whether or not (step S57). When the level of V2 is within the window to be determined that the suction hose 17 is attached (Yes in step S57), the routine proceeds to step S61 while maintaining the state of the electric blower 29. On the other hand, if the level of V2 is not within the window to be determined that the suction hose 17 is attached (No in step S57), the motor drive circuit 25 is controlled to stop the rotation of the electric blower 29 (step S57). (S59) The routine proceeds to step S61.
  • step S61 the MPU 23 checks whether or not a predetermined period has elapsed in a state in which neither the driving strength / weak switch 30 nor the off switch 32 is operated.
  • An example of the period is 30 seconds, but is not limited thereto.
  • a battery-driven electronic device includes a battery that can be attached to and detached from a main body, a computer that is disposed in the main body and that operates with a power supply voltage from the battery, and that is connected between the battery and the computer.
  • a self-holding type latch switch for turning on and off the power supply voltage to the battery and a mounting detection circuit for turning on the latch switch in response to mounting of the battery.
  • a latch release circuit that turns off the latch switch in response to an output from the computer, a momentary type work start switch that gives the latch switch a trigger to turn on, and the work start switch is turned on or off.
  • a switch reading circuit that causes the computer to read the power, and the computer determines whether the work start switch is on or off when the power supply voltage is provided from the battery and the operation is started. In some cases, the work associated with the work start switch is started, but when it is determined to be off, the work may not be started. In this way, the computer determines the state of the work start switch when the power is turned on and starts operation, that is, when the work start switch is turned on, the latch switch is turned on and the operation is started. It is possible to correctly recognize whether the latch switch is turned on or the operation is started by mounting the battery. The process to be executed can be correctly selected according to the result.
  • the mounting detection circuit may turn on the latch switch with a rise in voltage generated when the battery is mounted on the main body as a trigger. In this way, the latch switch can be turned on with a circuit having a simple configuration that uses the rise of the voltage generated when the battery is mounted.
  • the computer may notify that the battery is mounted when the operation start switch is determined to be off when the power supply voltage is provided from the battery and the operation is started. . In this way, it is possible to correctly recognize that the battery is attached and notify the user of the attachment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 本体に着脱可能なバッテリーと、本体に配置され前記バッテリーからの電源電圧で動作するコンピュータと、前記バッテリーと前記コンピュータとの間に接続され前記コンピュータへの電源電圧をオンおよびオフする自己保持型のラッチスイッチと、前記バッテリーの装着に応答して前記ラッチスイッチをオン状態にする装着検出回路とを備えるバッテリー駆動式電子機器。

Description

バッテリー駆動式電子機器
 この発明は、バッテリー駆動式電子機器に関し、より詳細には本体に着脱可能なバッテリーから提供される電圧で動作するコンピュータとその電圧をオンおよびオフするラッチスイッチとを備えた電子機器に関する。
 バッテリーを電源とし、マイクロコンピュータ等のコンピュータを搭載した種々の電子機器が知られている。近年は電池の進歩により小型軽量で大容量のものが安価で入手できるようになっている。それに伴い、比較的消費電力の小さい携帯電話等の情報処理機器に限らず、モータを搭載した掃除機などにもバッテリー駆動式のものが増えつつある。しかし、大小の差はあってもバッテリーの容量に限りがある以上、消費電力の低減は常に課題となる。
 コンピュータを搭載したバッテリー駆動式の電子機器では、コンピュータが動作(処理実行)するためにバッテリーから電力を供給する必要がある。なお、バッテリーは使用に伴ってその端子電圧が降下するところ、コンピュータを安定して動作させるためにバッテリーからの電源は電源IC(IC1)で電圧を安定化したうえでコンピュータに供給される。
 しかし、電子機器を動作させない期間、コンピュータに電力を供給し続けるのは待機電力の消費低減の観点から好ましくない。この無駄に消費される電力を削減することに着目し、コンピュータ等の電子回路が動作していないときに電力源と電子回路との間を完全に遮断するためにスイッチング手段を設け、さらに環境エネルギーを電気エネルギーに変換する発電源と、前記発電源の電力で駆動されてラッチ式または切り替え式のスイッチング手段を制御するスイッチ制御回路とを備えた電子装置が提案されている(例えば、特許文献1参照)。
 また、前記発電源および前記スイッチ制御回路に代えて、前記コンピュータが作業を終えたときに自ら前記スイッチング手段をオフできるように前記スイッチング手段にラッチスイッチを適用し、待機状態に入るとコンピュータが前記ラッチスイッチをオフにして前記コンピュータへのバッテリーの電力を遮断するように構成したものが知られている。
 図8は、コンピュータが自らラッチスイッチをオフしてバッテリーの電力を遮断し得るようにした構成の一例を示す回路図である。図8で、鎖線で囲んだ部分がラッチスイッチSW131である。MPU123は、マイクロコンピュータである。図8に示すように、バッテリー113からMPU123への電源は、Q101のパワーMOSFETでオンおよびオフする。トランジスタQ131またはQ132の何れか一方をオンにすると他方にベース電流が流れ両者はオンになる。そしてQ101のゲート端子の電位が下がりQ1はオンになる。ラッチスイッチSW131がオフの初期状態では両者がオフである。例えば、トランジスタQ132がオフであり、従ってトランジスタQ131のベースに電流は流れずQ131はオフのままである。見方を変えれば、トランジスタQ131がオフであり、従ってトランジスタQ132のベースに電流は流れずQ132はオフのままである。トランジスタQ131およびQ132が共にオフであれば、Q101のゲート端子は電位が下がらずQ101はオフしている。
 その状態でモーメンタリー型のスイッチSW130が一瞬オンすると、トランジスタQ132のベースに電圧がかかり、Q132がオンする。すると、Q132のコレクタに接続された抵抗R133の一端の電位が下がる。抵抗R133の他端はQ131のベースに接続されているので、Q131にベース電流が流れてQ131がオンする。Q131がオンすると、そのコレクタから抵抗R134を経てQ132のベースに電流が流れるので、スイッチSW130がオフになってもQ132はオンの状態を維持する。Q132がオンを維持するとQ131のベース電流が継続しQ131もオンの状態を維持する。Q131およびQ132のオン状態が続くと、Q101のゲート端子の電位が下がりQ101のオンが続く。これがラッチ状態である。
 Q133のベースは、抵抗R136を介してMPU123の出力ポートの一つに接続されている。ラッチスイッチSW131がオンのラッチ状態にあるとき、MPU123がその出力ポートをハイにするとQ133がオンになる。すると、Q132のベースがQ133を介して接地される。よって、Q132がオフ状態になる。すると、Q131のベース電流が遮断されてQ131がオフする。Q132およびQ131がオフになるとQ101がオフ状態になる。このようにMPUからの出力によって、ラッチスイッチSW131のラッチ状態が解除される。
 なお、図8において各抵抗に付した英文字「R」とそれに続く3桁の数字は抵抗素子の符号を表し、各符号の下の数値は抵抗値(単位はオーム)の一例を表している。各コンデンサに付した英文字「C」とそれに続く3桁の数字は各素子の符号を表し、符号の下の数値は容量(単位はファラッド)の一例を表している。
特開2007-43793号公報
 バッテリーのエネルギーは有限のため、交換や充電のため本体に着脱可能とした電子機器が多い。それらの電子機器でバッテリーが本体に正しく装着されないと、本来の性能が発揮できないばかりかバッテリーを電源として動作するコンピュータに正規の電源電圧が提供されず、動作しなかったり不安定な動作をしたりするなど誤動作の虞がある。
 そこで、バッテリーが装着される部分は確実かつ安全にバッテリーが装着されるように機構的に配慮されているが、さらに、バッテリーが装着されたことを電気的に検知してユーザに報知するものがある。バッテリーが装着されるとコンピュータが動作するので、コンピュータが表示、音(音声を含む)などでバッテリーが正常に装着されたことをユーザに知らせる。報知がなされたことでユーザはバッテリーの装着が完了したことを認識することができ、バッテリー装着に係るユーザの誤操作を防止できる。
 しかし、バッテリーの装着を電気的に検知するために、専用のセンサやスイッチが用いるとコストが上昇する。専用のセンサやスイッチを用いずともバッテリーの装着を検出できる手法が望まれている。
 この発明は、以上のような事情を考慮してなされたものであって、搭載されたコンピュータへの電力供給をラッチスイッチでオンオフするバッテリー駆動式の電子機器において専用のセンサやスイッチを用いない単純な構成でバッテリーの装着を検知できる手法を提供するものである。
 この発明は、本体に着脱可能なバッテリーと、本体に配置され前記バッテリーからの電源電圧で動作するコンピュータと、前記バッテリーと前記コンピュータとの間に接続され前記コンピュータへの電源電圧をオンおよびオフする自己保持型のラッチスイッチと、前記バッテリーの装着に応答して前記ラッチスイッチをオン状態にする装着検出回路とを備えることを特徴とするバッテリー駆動式電子機器を提供する。
 この発明によるバッテリー駆動式電子機器は、バッテリーの装着に応答して前記ラッチスイッチをオン状態にする装着検出回路を備えるので、専用のセンサやスイッチを用いない単純な構成でバッテリーの装着を検知できる。前記装着検出回路はバッテリーの装着を検知に応答してラッチスイッチをオン状態にするので、バッテリーの電圧がコンピュータに提供されてコンピュータが動作する。そして、コンピュータは、バッテリーが装着された旨をユーザに報知することができる。
この発明の電子機器の一態様であるバッテリー駆動式の掃除機の電気的構成例を示す説明図である。 この発明に係る装着検出回路を有するラッチスイッチの構成例を示す回路図である。(実施の形態1) この発明に係る装着検出回路を有するラッチスイッチの異なる構成例を示す回路図である。(実施の形態2) この発明に係る装着検出回路を有するラッチスイッチのさらに異なる構成例を示す回路図である。(実施の形態3) この発明の実施形態において、MPUが実行する処理を示すフローチャートである。(処理開始の初期段階) この発明の実施形態において、MPUが実行する処理を示すフローチャートである。(運転中および待機中その1) この発明の実施形態において、MPUが実行する処理を示すフローチャートである。(運転中および待機中その2) 従来のラッチスイッチの構成例を示す回路図である。
 以下、図面を用いてこの発明をさらに詳述する。なお、以下の説明は、すべての点で例示であって、この発明を限定するものと解されるべきではない。
 (実施の形態1)
 ≪バッテリー駆動式掃除機の構成≫
 図1は、この発明の電子機器の一形態として、バッテリー駆動式の掃除機の電気的な構成を示す説明図である。分かり易くするためにこの発明と関連の深い部分のみを抽出しており、いくつかの周知の要素は省略している。掃除機11は、この実施形態においてはキャニスター型の掃除機であり、掃除機本体、吸引ホース17およびバッテリー13に大別される。バッテリー13および吸引ホース17は、掃除機本体に着脱可能であり、電気的にはコネクタを介して接続される。なお、バッテリー13は、バッテリー端子13aおよび13bを有し、バッテリー端子13aおよび13bを介して掃除機本体に接続される。バッテリー13は、リチウムイオン電池等の二次電池を想定しているが、それに限定されるものでない。バッテリー13は、掃除機本体に装着された状態で掃除機本体の内部に収容され蓋で覆われていてもよいし、掃除機本体の外側に露出していてもよい。
 図1で、制御回路15は、掃除機本体に配置される。運転強/弱スイッチ30は、モーメンタリー型のスイッチであって吸引ホース17に配置されている。運転強/弱スイッチ30は、この発明に係る作業開始スイッチに該当する。ただし、図1は単なる一例に過ぎず、例えば運転強/弱スイッチ30は、吸引ホース17ではなく掃除機本体にあってもよい。さらに、掃除機11はキャニスター型に限定されず、例えば吸引ホース17を持たない自走式掃除機やハンディータイプの掃除機であってもよい。さらにいえば、この発明の電子機器は掃除機に限定されるものでない。
 図1の説明に戻る。制御回路15は、ラッチスイッチ31、電源IC21、MPU23およびモータ駆動回路25を備える。モータ駆動回路25は、掃除機本体に配置された電動送風機29のモータを駆動する。
 この実施形態においてラッチスイッチ31は、図8に示すラッチスイッチSW131の機能に加えて、この発明に係る装着検出回路の機能を有している。即ち、バッテリー13が掃除機本体に装着されたことに応答してオン状態にトリガされる構成を有している。詳細は後述する。電源IC21は、図8の電源IC(IC1)と同様のものである。MPU23はこの発明のコンピュータに該当する。MPU23は、モータ駆動回路25を制御する。また、運転強/弱スイッチ30および切スイッチ32のオンオフおよび吸引ホース17の着脱の状態を読み取る。
 制御回路15内にある抵抗R11および抵抗R12は分圧回路を構成する。抵抗R11の一端は、ラッチスイッチ31を介してバッテリー端子13aに接続されている。バッテリー端子13aの電圧が抵抗R11とR12により分圧されて信号Vinが生成され、MPU23に入力されて内部でA/D変換される。即ち、MPU23はバッテリー端子13aの電圧が分圧された電圧レベルを読み取る。電源IC21が降圧型安定化電源回路の場合、MPU23はバッテリー13の出力電圧よりも低い電源電圧で動作する。よって、バッテリー端子13aの電圧を分圧せずに入力するとA/D変換の上限を超えてしまい、バッテリー13の出力電圧を正しく読取ることができない。抵抗R11およびR12の分圧回路は、バッテリー端子13aの電圧をMPU23が正しく読み取れる範囲の電圧Vinに変換する。バッテリー13の定格電圧は、一例で18Vである。電源IC21の出力電圧は一例で5Vである。
 また、制御回路15内にある抵抗R13および抵抗R14は分圧回路を構成し、その分圧回路はこの発明のスイッチ読取回路に該当する。抵抗R13の一端(図1にラッチオン信号で示す箇所)は、運転強/弱スイッチ30を介してバッテリー端子13aに接続されている。ラッチオン信号の電位は運転強/弱スイッチ30がオンのときはバッテリー端子13aの出力電圧に等しいが、運転強/弱スイッチ30がオフのときはグランド電位になる。このラッチオン信号はラッチスイッチ31に接続されており、運転強/弱スイッチ30が押下されてオンするとラッチスイッチ31がラッチ状態になってオンを維持し、MPU23に電力が供給される。
 また、抵抗R13とR14によりラッチオン信号が分圧されて電圧信号V1が生成され、MPU23に入力されて内部でA/D変換される。抵抗R13およびR14の分圧回路は、ラッチオン信号の電圧をMPU23が正しく読み取れる範囲の電圧信号V1に変換する。
 MPU23の出力ポートの一つは、ラッチスイッチ31に接続されている(図1にラッチ解除信号で示す)。MPU23がその出力ポートをハイにすると、ラッチスイッチ31のラッチ状態が解除される。この部分は、この発明のラッチ解除回路に該当する。
 この実施形態において、掃除機11が電源オフの状態にあるとき運転強/弱スイッチ30が押されると、ラッチスイッチ31がオンのラッチ状態になり、MPU23に電力が供給される。すると、MPU23は予め定められた制御プログラムの実行(処理)を開始する。処理の初期段階で、MPU23は、入力信号VinおよびV1の電圧レベルを読み取る。
 抵抗R11とR12による分圧比と抵抗R13とR14による分圧比とを等しく設定することが好ましい。両者の分圧比を等しくすることで、VinとV1との電圧レベルの比較が容易になる。R11とR13の抵抗値を互いに等しくし、R12とR14の抵抗値を互いに等しくすれば容易に実現できる。
 抵抗R15の一端および切スイッチ32の一端はいずれも、吸引ホース17と掃除機本体とを接続するコネクタ17aを介してバッテリー端子13aに接続されている。抵抗R16とR17の接続ポイントの電圧信号V2はMPU23に入力される。
 バッテリー端子13aの電圧が抵抗R15~R17で分圧され電圧信号V2となる。電圧信号V2は、MPU23に入力されてA/D変換される。抵抗R15~R17の分圧回路は、バッテリー13aの端子電圧をMPU23が正しく読み取れる範囲の電圧信号V2に変換する。切スイッチ32がオンの場合とオフの場合とで分圧比が変わり、それに応じてV2の電圧レベルが変わる。
 抵抗R15~R17の分圧回路は、切スイッチ32のオンおよびオフと吸引ホース17の装着状態の検出の2つの検出を可能にする。
 吸引ホース17が装着されているとV2の電位はバッテリー端子13aの電圧が抵抗R15とR17で分圧されたレベルになる。吸引ホース17が抜けると、V2は接地電位になる。さらに、切スイッチ32がオンすると、V2の電位はバッテリー端子13aの電圧が抵抗R15およびR16の並列抵抗とR17とで分圧されたレベルになる。
 以上のように、吸引ホース17の挿抜と切スイッチ32のオンオフの組合せによりV2は3つのレベルをとる。MPU23は、V2の電圧レベルをモニタして吸引ホース17の抜けおよび切スイッチの操作を認識する。MPU23は、運転中にV2の電圧レベルを逐次モニタする。
 MPU23は、Vinの電圧レベルを基準にV2の電圧レベルを判断する。
 実際には、回路素子の特性のバラツキやノイズに起因する測定誤差等があるので、(1)吸引ホース17が抜けた状態、(2)吸引ホース17が装着されかつ切スイッチ32がオフの状態、(3)吸引ホース17が装着されかつ切スイッチ32がオンの状態のそれぞれに対応する3つのウインドウを予め定めておく。V2の電圧レベルが何れかのウインドウの範囲内にあれば、その状態であると認識するがV2がいずれのウインドウにも収まらないときはノイズであるとして無視する。
 切スイッチ32のオフを検出すると、MPU23は運転停止の指示を受けたと判断し、図示しない電動送風機29を停止させて待機状態に移る。待機状態で、予め定められた期間を超えて何も操作がされなかったときはラッチ解除信号をハイにする。これによってラッチスイッチ31がオフし、MPU23への電源供給が遮断される。
 運転強/弱スイッチ30の操作は人が行う。人が行う操作の感覚として一瞬のオンであっても、以下の回路動作に比べると十分長い期間が経過する。即ち、運転強/弱スイッチ30が押されたら、ラッチスイッチ31がオンし、MPU23が処理を開始してVinおよびV1の電圧レベルを読み取る回路動作である。従って、MPU23が動作開始後VinおよびV1の電圧レベルを読み取るときには、まだ運転強/弱スイッチ30が押されてオンが継続しているとの想定が成り立つ。
 また、運転強/弱スイッチ30のオンからVinおよびV1の電圧レベルの読み取りまでに時間を要することが想定される場合、V1に遅延回路25を挿入してもよい。遅延回路25の単純な構成は抵抗とコンデンサで実現できる。遅延回路25は必須の構成要素でないため鎖線で示している。このように、回路構成を工夫することで、MPU23が動作開始後VinおよびV1の電圧レベルを読み取るときに、運転強/弱スイッチ30のオンが継続しているとの想定が成り立つ。
 MPU23は、VinおよびV1の電圧レベルを読み取って以下の判断を行う。運転強/弱スイッチ30がオンのとき、ラッチオン信号はバッテリー端子13aの電圧に等しい。従って、V1とVinの電圧レベルは略等しくなければならない。もし、V1とVinの電圧レベルが異なる場合は、ラッチオン信号に外乱ノイズが重畳されてラッチスイッチ31がオンしたものと考えられる。そこで、V1とVinの電圧レベルが異なると判断した場合、MPU23は、ラッチ解除信号をハイにしてラッチスイッチ31のラッチ状態を解除してもよい。そうすると、MPU23への電力供給が遮断されて処理が停止する。このようにして、外乱ノイズの影響でユーザが意図しないときにラッチスイッチ31がオンしても、MPU23が処理を開始した初期段階で自らラッチスイッチ31を遮断することが可能になる。よって、誤動作による電源オンを防止できると共に、バッテリー13の無駄な電力消費を抑制できる。
 さらに、正常な電源オンによりラッチスイッチ31がラッチ状態になり掃除機11の運転が開始された場合、運転中に運転強/弱スイッチ30がオンされてもラッチスイッチ31の状態に影響はない。一方、MPU23は、運転中もV1を逐次モニタすることで、運転強/弱スイッチ30のオンおよびオフ状態を認識できる。この実施形態で、運転中に運転強/弱スイッチ30がオンされると、MPU23はそれを認識し、モータ駆動回路25を制御して電動送風機29の回転速度を「強」に対応する高速から「弱」に対応する低速へ、あるいはその逆へと切換える。運転中に運転強/弱スイッチ30のオンおよびオフの状態を判定するため、MPU23はVinとV1とを逐次比較して判断を行う。そして、両者が略等しければ運転強/弱スイッチ30がオン状態であると認識する。
 現実には、回路素子の特性のバラツキや測定誤差があるので、運転強/弱スイッチ30が予め定められたレベルの範囲(オンのウインドウ)に入っていればオンであると判断し、別に予め定められたレベルの範囲(オフのウインドウ)に入っていればオフであると判断する。
 バッテリー端子13aの電圧は使用に伴って低下する。それに伴ってVinのレベルも低下するが、同様に運転強/弱スイッチ30がオンのときのV1のレベルも低下する。
 MPU23はVinとV1の電圧レベルを読み取り、V1の電圧レベルをVinのレベルと比較して運転強/弱スイッチ30がオンのウインドウに入っているか、あるいはオフのウインドウに入っているかを判断する。よって、バッテリー端子13aの電圧が使用に伴って変化しても、運転強/弱スイッチ30のオンおよびオフを正しく認識できる。
 V1の電圧レベルがオン、オフ何れのウインドウにも収まっていなければ、MPU23はラッチオン信号にノイズが重畳されたと認識できる。処理開始の初期段階ではノイズと認識するとラッチ解除信号を出力してもよい。運転中は、操作が行われず運転強/弱スイッチ30はオフであるとして無視してもよい。
 以上のように、運転強/弱スイッチ30は、ラッチスイッチ31をオンさせるハードウェアとしての機能と、MPU23にオンおよびオフの状態をモニタさせてソフトウェア処理に対する指示を与える手段としての機能を兼ね備える。
 ≪バッテリー装着時のラッチスイッチの動作≫
 続いて、この発明に係る装着検出回路の構成例を説明する。
 図2は、この発明に係る装着検出回路を有するラッチスイッチSW31の構成例を示す回路図である。なお、ラッチスイッチSW31は図2において一点鎖線で囲んだ矩形の内部である。周囲との接続関係を分かり易くするためにバッテリー13、電源IC21およびMPU23等を記している。図8の従来構成と図2を対比させると装着検出回路の構成が分かり易いであろう。図8と同様の構成については重複を避けるために説明を省略し、図8と異なる部分について説明する。
 図2のコンデンサC131に対応するものを図8の構成では取り除いている。さらに、コンデンサC33を追加している。コンデンサC33の一端はトランジスタQ31のベースに接続され、他端は接地されて抵抗R33およびトランジスタQ32と並列に接続されている。
 バッテリー13が掃除機本体に装着されると、抵抗R31を介してQ31のエミッタにバッテリー13の電圧がかかり、ステップ状の急峻な電圧の立ち上がりが生じる。一方、トランジスタQ31のベースにはコンデンサC33が接続されている。その容量成分ために、Q31のベースの電圧はエミッタ側の急峻な電圧の立ち上がりに追従できない。エミッタに対して抵抗R31とコンデンサC33で決まる時定数の遅延が生じ、その遅延によってトランジスタQ31のエミッタとベースの間に電位差が生じる。この電位差によって、トランジスタQ31のベースに順方向の電流が流れトランジスタQ31がオンする。
 トランジスタQ31がオンするとQ31のコレクタの電位が上昇する。抵抗R34を介してQ31のコレクタに接続されたトランジスタQ32のベースに電圧がかかる。その電圧によってQ32がオンする。Q32がオンすると、図8の説明と同様、Q31のベースとエミッタの間の抵抗R33に電流が流れる。よって、トランジスタQ31のエミッタの電圧がバッテリー13の電圧まで立ち上がった後も、Q31はオンの状態を維持する。Q31およびQ32のオン状態が続くと、Q1のゲート端子の電位が下がりQ1のオンが続く。ラッチ状態である。
 以上のように、コンデンサC33を挿入したことにより、掃除機本体へのバッテリー13の装着時にラッチスイッチSW31がオン状態になる。コンデンサC33は、この発明に係る装着検出回路に該当する。
 なお、抵抗R132と並列なコンデンサ(図8のC131に相当するもの)を図2の回路では取り除いている。仮にコンデンサが抵抗R132と並列に接続されていると、パワーMOSFETのQ1を介してQ31のエミッタとベースが交流的に接続される。掃除機本体へのバッテリー13の装着に伴ってトランジスタQ31のエミッタ電圧が急峻に立ち上がるとき、Q31のエミッタとベースに電位差が生じにくくなる。よって、Q31がオンしにくくなる。これを避けるために、抵抗R132と並列なコンデンサを取り除いている。
 (実施の形態2)
 図2に示す装着検出回路の異なる態様について説明する。
 図3は、この発明に係る装着検出回路の図2と異なる構成例を示す回路図である。
 図3に示す回路では、図2におけるコンデンサC33に相当するものを取り除いている。また、図8と対比すると、図8におけるコンデンサC131に相当するものを取り除いている。なお、図3において図2に対応する回路構成要素には同じ符号を付している。
 実施の形態1で述べたように、仮に図8のC131に相当するコンデンサが接続されていると、バッテリー13が装着されトランジスタQ31のエミッタ電圧が急峻に立ち上がるとき、Q31のエミッタとベースに電位差が生じにくくなる。よって、Q31がオンしにくくなる。
 逆をいえば、図8のC131を取り除くだけで、バッテリー13の装着時にQ31がオンし易くなる。トランジスタQ32は容量成分を有しており、その容量成分は図2に示すC33と同様の作用効果を生じさせる。回路素子としてコンデンサC33を接続せずとも、トランジスタQ32の容量成分が装着検出回路として機能する場合が図3に示す構成である。
 (実施の形態3)
 装着検出回路のさらに異なる態様について説明する。
 図4は、この発明に係る装着検出回路のさらに異なる構成例を示す回路図である。
 図8と対比すると、コンデンサC35およびダイオードD1を追加している点が異なる。ダイオードD1のカソードはトランジスタQ32のベースに接続され、アノードはコンデンサC35を介してバッテリー13に接続されている。コンデンサC35とダイオードD1とは微分回路を形成し、掃除機本体へのバッテリー13の装着により生じる電圧の立ち上がりに応答する。
 即ち、掃除機本体にバッテリー13が装着されると、バッテリー13に接続されたコンデンサC35の端子に電圧がかかりステップ状の急峻な立ち上がりが生じる。コンデンサC35の容量成分のためにその電圧の立ち上がりでダイオードD1のアノード端子の電位が上昇し、D1に順方向の電流が流れる。これによって、トランジスタQ32のベースの電位が上昇し、Q32がオンする。すると、Q31のベースに接続された抵抗R33に電流が流れ、Q31がオンする。Q31がオンすると、Q31のコレクタの電位が上昇し、抵抗R34を経てQ32のベースに電流が流れる。よって、掃除機本体へのバッテリー13の装着に伴って電圧が立ち上がった後もQ32はオンの状態を維持する。よって、Q31もオンの状態を維持する。Q31およびQ32のオン状態が続くと、Q1のゲート端子の電位が下がりQ1のオン(ラッチ状態)が続く。なお、ダイオードD1は、逆流防止用に挿入されている。即ち、掃除機本体にバッテリー13が装着された状態で、運転強/弱スイッチ30が押下されてオンすると、ダイオードD1のカソードの電位は、そのオンに伴ってステップ状に上昇する。そのとき、コンデンサC35の放電電流がバッテリー13の側に流れるのを防止する。
 この態様によれば、掃除機本体へのバッテリー13の装着に伴う電圧の立ち上がりによりQ32のベースに電流が流れてQ32がまずオンする。Q32のオンに伴ってQ31がオンする。図8と同様、抵抗R32と並列にコンデンサC31を接続しても、その動作に支障はない。
 ≪フローチャート≫
 以下、フローチャートを用いてMPU23が実行する処理を説明する。
 図5~図7は、この実施形態においてMPU23が実行する処理の手順を示すフローチャートである。
 図5はMPU23に電力が供給されて処理の実行を開始する初期段階の処理であり、図6および図7は初期段階を経て待機状態および運転中にあるときの処理である。いずれも、この発明に関連の深い処理を示しており、その他の処理を省略している。
 ラッチスイッチ31がオンになりバッテリー13から電力が供給されて処理を開始したMPU23は、まず、メモリや入出力ポートの初期設定等制御回路を動作させるうえで必要とされる初期化処理を実行する(図5のステップS11)。
 その後、MPU23は、バッテリー端子13aの電圧を分圧したVinの電圧を読み取る(ステップS13)。Vinの電圧は、V1およびV2のレベルを判定する際に基準とする電圧である。
 続いてMPU23は、運転強/弱スイッチ30のオンおよびオフの状態を示す電圧信号V1のレベルを読み取る(ステップS15)。そして、V1のレベルがVinのレベルに対して予め定められた範囲(ウインドウ)にあるか否かを調べる(ステップS17)。その範囲とは、運転強/弱スイッチ30がオンであると認識すべきものとして予め定められた範囲の電圧である。
 V1のレベルがオンのウインドウ内にあれば(ステップS17のYes)、MPU23は、運転強/弱スイッチ30が押下されたことにより自身が起動されたと判断する。その場合MPU23は、続いて電圧信号V2のレベルを読み取る(ステップS19)。そして、V2のレベルが、吸引ホース17が装着されていると判定する予め定められた範囲にあるか否かを判定する(ステップS21)。V2のレベルが、吸引ホース17が装着されていると判定すべきウインドウ内にあれば(ステップS21のYes)、電動送風機29を「強」で回転させるようにモータ駆動回路25を制御する(ステップS23)。そして、ルーチンは図6のステップ31以降に示す待機状態および運転中の処理へ進む。
 一方、前記ステップS21でV2のレベルが、吸引ホース17が装着されていると判定すべきウインドウ内になければ(ステップS21のNo)、電動送風機29を回転させることなくルーチンは図6のステップ31以降に示す待機状態および運転中の処理へ進む。
 説明を前記ステップS17へ戻す。ステップS17で、V1のレベルがオンのウインドウ内にないとき(ステップS17のNo)、MPU23は、自身がバッテリーの13の装着によって起動されたと判断する。そして、バッテリーが装着された旨をユーザに報知する(図6のステップS25)。その後、ルーチンはステップ31以降に示す待機状態および運転中の処理へ進む。
 ステップS31で、MPU23は、基準とするVinの電圧を改めて読み取る(ステップS31)。
 続いてMPU23は、運転強/弱スイッチ30の状態を示すV1のレベルを読み取る(ステップS33)。そして、運転強/弱スイッチ30がオンであると認識すべき電圧として予め定められたウインドウ内にV1のレベルがあるか否かを調べる(ステップS35)。
 V1のレベルがオンのウインドウ内にあれば(ステップS35のYes)、MPU23は、運転強/弱スイッチ30が改めて押下されたと判断する。そして、V2のレベルを読み取り(ステップS37)、そのレベルが、吸引ホース17が装着されていると判定する予め定められた範囲にあるか否かを判定する(ステップS39)。V2のレベルが、吸引ホース17が装着されていると判定すべきウインドウ内にあれば(ステップS39のYes)、電動送風機29が「強」で運転中か否かを調べる(ステップS43)。強で運転中の場合は、「弱」に切り換えるようにモータ駆動回路25を制御する(ステップS45)。その後、ルーチンは前述のステップS31へ戻る。
 一方、電動送風機29が「強」で運転中でないとき(ステップS43のNo)、MPU23は、電動送風機29を「強」で回転させるようにモータ駆動回路25を制御する(ステップS47)。その後、ルーチンは前述のステップS31へ戻る。
 また、前記ステップS39で、吸引ホースが装着されていないと判断した場合(ステップS39のNo)、MPU23は、電動送風機29を停止させるようにモータ駆動回路25を制御する(ステップS41)。その後、ルーチンは前述のステップS31へ戻る。
 説明をステップS35に戻す。ステップS35で、V1のレベルがオンのウインドウ内になければ(ステップS35のNo)、ルーチンは図7のステップS51へ進む。
 図7のステップS51で、MPU23はV2のレベルが切スイッチ32が押されたと判断すべきウインドウ内にあるか否かを判断する。切スイッチ32が押されたと判断したとき(ステップS51のYes)、MPU23は電動送風機29の回転を停止させるようにモータ駆動回路25を制御する(ステップS53)。その後、ルーチンは図6のステップS31へ戻る。
 一方、切スイッチ32が押されていないと判断したとき(ステップS51のNo)、続いてMPU23は、V2のレベルが、吸引ホース17が装着されていると判定する予め定められた範囲にあるか否かを判定する(ステップS57)。V2のレベルが、吸引ホース17が装着されていると判定すべきウインドウ内にあるときは(ステップS57のYes)、電動送風機29の状態を維持したままでルーチンはステップS61へ進む。
 一方、V2のレベルが、吸引ホース17が装着されていると判定すべきウインドウ内になければ(ステップS57のNo)、電動送風機29の回転を停止させるようにモータ駆動回路25を制御し(ステップS59)、ルーチンはステップS61へ進む。
 ステップS61で、MPU23は、運転強/弱スイッチ30および切スイッチ32のいずれも操作がされない無操作状態のまま、予め定められた期間が経過したか否かを調べる。その期間の一例は30秒であるが、これに限定されるものでない。無操作状態のまま予め定められた期間が経過したら(ステップS61のYes)、MPU23はラッチ解除信号をハイにする(ステップS63)。これによって、ラッチスイッチ31のラッチ状態が解除されてオフになる。その結果、MPU23がバッテリー13から遮断されて電源電圧がなくなり、MPU23は処理を停止する。
 一方、無操作状態が継続しても予め定められた期間に満たないとき(ステップS61のNo)、ルーチンは図6のステップS31へ戻る。
 以上、MPU23が実行する処理の手順を説明した。
 以上に述べたように、
(i)この発明によるバッテリー駆動式電子機器は、本体に着脱可能なバッテリーと、本体に配置され前記バッテリーからの電源電圧で動作するコンピュータと、前記バッテリーと前記コンピュータとの間に接続され前記コンピュータへの電源電圧をオンおよびオフする自己保持型のラッチスイッチと、前記バッテリーの装着に応答して前記ラッチスイッチをオン状態にする装着検出回路とを備えることを特徴とする。
 さらに、この発明の好ましい態様について説明する。
 (ii)前記コンピュータからの出力に応答して前記ラッチスイッチをオフさせるラッチ解除回路と、前記ラッチスイッチにオン状態へのトリガを与えるモーメンタリー型の作業開始スイッチと、前記作業開始スイッチがオンかオフかを前記コンピュータに読み取らせるスイッチ読取回路とをさらに備え、前記コンピュータは、前記バッテリーから電源電圧が提供されて動作を開始したときに前記作業開始スイッチがオンかオフを判定し、オンと判定したときは前記作業開始スイッチに対応付けられた作業を開始するがオフと判定したときはその作業を開始しないように構成してもよい。
 このようにすれば、前記コンピュータは電源が立ち上がって動作、即ち処理の実行を開始したときに作業開始スイッチの状態を判定し、作業開始スイッチのオンによりラッチスイッチがオン状態になり動作を開始したのか、または、バッテリーの装着によってラッチスイッチがオン状態になり動作を開始したのかを正しく認識できる。その結果に応じて、実行すべき処理を正しく選択できる。
 (iii)前記装着検出回路は、前記バッテリーが本体に装着されたときに生じる電圧の立ち上がりをトリガとして前記ラッチスイッチをオン状態にしてもよい。
 このようにすれば、バッテリー装着の際に生じる電圧の立ち上がりを利用する単純な構成の回路でラッチスイッチをオン状態にすることができる。
 (iv)前記コンピュータは、前記バッテリーから電源電圧が提供されて動作を開始したときに前記作業開始スイッチがオフと判定した場合は、前記バッテリーが装着された旨の報知を行うようにしてもよい。
 このようにすれば、バッテリーが装着されたことを正しく認識してその装着をユーザに報知できる。
 (v)前記作業開始スイッチは、オンにより前記バッテリー端子の電圧を前記ラッチスイッチに導いて、前記ラッチスイッチをオン状態にするトリガを与え、前記スイッチ読取回路は、前記作業開始スイッチがオンのとき前記バッテリー端子の電圧を前記コンピュータの入力へ導くように構成されてもよい。
 この態様によれば、前記コンピュータは、前記作業開始スイッチがオンされてラッチスイッチがオン状態になりコンピュータが動作を開始したとき、および、バッテリーが装着されてコンピュータが動作を開始したとき、前記作業開始スイッチのオンおよびオフの状態を正しく認識して動作開始のトリガがいずれであったのかを判断できる。
 この発明の好ましい態様には、上述した複数の態様のうちの何れかを組み合わせたものも含まれる。
 前述した実施の形態の他にも、この発明について種々の変形例があり得る。それらの変形例は、この発明の範囲に属さないと解されるべきものではない。この発明には、請求の範囲と均等の意味および前記範囲内でのすべての変形とが含まれるべきである。
11:掃除機、 13、113:バッテリー、 13a、13b:バッテリー端子、 15:制御回路、 17:吸引ホース、 21:電源IC、 23,123:MPU、 25:モータ駆動回路、 27:遅延回路、 29:電動送風機、 30:運転強/弱スイッチ、 SW130:スイッチ、 SW31,SW131:ラッチスイッチ、 32:切スイッチ、 C31,C33、C35、C131:コンデンサ、 D1:ダイオード、 R11,R12,R13,R14,R15,R16,R17:抵抗、 Q31、Q32:トランジスタ、 V1、V2:電圧信号

Claims (5)

  1.  本体に着脱可能なバッテリーと、
     本体に配置され前記バッテリーからの電源電圧で動作するコンピュータと、
     前記バッテリーと前記コンピュータとの間に接続され前記コンピュータへの電源電圧をオンおよびオフする自己保持型のラッチスイッチと、
     前記バッテリーの装着に応答して前記ラッチスイッチをオン状態にする装着検出回路とを備えることを特徴とするバッテリー駆動式電子機器。
  2.  前記コンピュータからの出力に応答して前記ラッチスイッチをオフさせるラッチ解除回路と、
     前記ラッチスイッチにオン状態へのトリガを与えるモーメンタリー型の作業開始スイッチと、
     前記作業開始スイッチがオンかオフかを前記コンピュータに読み取らせるスイッチ読取回路とをさらに備え、
     前記コンピュータは、前記バッテリーから電源電圧が提供されて動作を開始したときに前記作業開始スイッチがオンかオフを判定し、オンと判定したときは前記作業開始スイッチに対応付けられた作業を開始するがオフと判定したときはその作業を開始しない請求項1に記載の電子機器。
  3.  前記装着検出回路は、前記バッテリーが本体に装着されたときに生じる電圧の立ち上がりをトリガとして前記ラッチスイッチをオン状態にする請求項1または2に記載の電子機器。
  4.  前記コンピュータは、前記バッテリーから電源電圧が提供されて動作を開始したときに前記作業開始スイッチがオフと判定した場合は、前記バッテリーが装着された旨の報知を行う請求項2に記載の電子機器。
  5.  前記作業開始スイッチは、オンにより前記バッテリーの電圧を前記ラッチスイッチに導いて、前記ラッチスイッチをオン状態にするトリガを与え、
     前記スイッチ読取回路は、前記作業開始スイッチがオンのとき前記バッテリーの電圧を前記コンピュータの入力へ導く請求項2または4に記載の電子機器。
PCT/JP2014/073038 2014-02-28 2014-09-02 バッテリー駆動式電子機器 WO2015129078A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480047568.7A CN105531901B (zh) 2014-02-28 2014-09-02 电池驱动式电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-038395 2014-02-28
JP2014038395A JP6294102B2 (ja) 2014-02-28 2014-02-28 バッテリー駆動式電子機器

Publications (1)

Publication Number Publication Date
WO2015129078A1 true WO2015129078A1 (ja) 2015-09-03

Family

ID=54008427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073038 WO2015129078A1 (ja) 2014-02-28 2014-09-02 バッテリー駆動式電子機器

Country Status (3)

Country Link
JP (1) JP6294102B2 (ja)
CN (1) CN105531901B (ja)
WO (1) WO2015129078A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065368A1 (ja) * 2019-09-30 2021-04-08 三洋電機株式会社 電池パック

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466338B2 (ja) * 2020-03-13 2024-04-12 東芝ライフスタイル株式会社 電気掃除機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183945A (ja) * 1984-03-01 1985-09-19 松下電器産業株式会社 バツクアツプ回路
JPS6229733U (ja) * 1985-08-02 1987-02-23
JPH08322144A (ja) * 1995-05-29 1996-12-03 Kyocera Corp 電源回路
JP2007043793A (ja) * 2005-08-02 2007-02-15 Seiko Instruments Inc 電子装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816862A (en) * 1984-12-29 1989-03-28 Minolta Camera Kabushiki Kaisha Power supply system for memory unit of camera
JP2950159B2 (ja) * 1994-05-09 1999-09-20 トヨタ車体株式会社 スライドドア用給電システム
JP5662105B2 (ja) * 2010-10-26 2015-01-28 株式会社マキタ 二次電池パック

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183945A (ja) * 1984-03-01 1985-09-19 松下電器産業株式会社 バツクアツプ回路
JPS6229733U (ja) * 1985-08-02 1987-02-23
JPH08322144A (ja) * 1995-05-29 1996-12-03 Kyocera Corp 電源回路
JP2007043793A (ja) * 2005-08-02 2007-02-15 Seiko Instruments Inc 電子装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065368A1 (ja) * 2019-09-30 2021-04-08 三洋電機株式会社 電池パック
CN114207922A (zh) * 2019-09-30 2022-03-18 三洋电机株式会社 电池组

Also Published As

Publication number Publication date
JP2015163020A (ja) 2015-09-07
CN105531901A (zh) 2016-04-27
JP6294102B2 (ja) 2018-03-14
CN105531901B (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
US8874886B2 (en) Executing soft reset for intelligent terminal in abnormal instruction state and hard reset for intelligent terminal in dead halt state
US6236226B1 (en) Test method and system for uninterruptible power supply
JP2015038639A (ja) 電源制御モジュール、電子機器及びリセット制御方法
US8497604B2 (en) Apparatus and system for controlling power saving in bidet
US20080070617A1 (en) Reset circuit and method of mobile phone
US11809251B2 (en) Power control device, display device, and power control method
JP6294102B2 (ja) バッテリー駆動式電子機器
JP6741734B2 (ja) バッテリー駆動式掃除機
TWI394973B (zh) 運用於手持式電子裝置中的電池偵測器與電池偵測方法
JP6417489B2 (ja) バッテリー駆動式電子機器
JP6195783B2 (ja) バッテリー駆動式電子機器
KR100736079B1 (ko) 휴대용 기기의 전원 관리 장치 및 방법
WO2016198003A1 (zh) 一种移动终端电源管理方法、装置和移动终端
CN103812200A (zh) 一种充电芯片、充电系统和电子设备
US20100257348A1 (en) Hardware Reset
CN113467292B (zh) 一种通用型仪表控制电路、控制方法及控制电路驱动装置
JP5708021B2 (ja) 2次電池保護回路、2次電池を用いる装置
CN112906635B (zh) 一种控制方法及电子设备
CN216672981U (zh) 一种按键电路、电源控制系统以及车辆
WO2022105411A1 (zh) 智能连接装置、启动电源设备以及电瓶夹设备
CN108426937B (zh) 甲醛传感器模组、自诊断方法及计算机可读存储介质
JP2010283911A (ja) 電源制御装置
CN113301740A (zh) 一种遥控器收纳装置、电子设备及遥控器收纳方法
CN104216464A (zh) 转换装置
CN116115113A (zh) 一种手持清洁设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047568.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883942

Country of ref document: EP

Kind code of ref document: A1