WO2015128950A1 - 燃料集合体 - Google Patents

燃料集合体 Download PDF

Info

Publication number
WO2015128950A1
WO2015128950A1 PCT/JP2014/054608 JP2014054608W WO2015128950A1 WO 2015128950 A1 WO2015128950 A1 WO 2015128950A1 JP 2014054608 W JP2014054608 W JP 2014054608W WO 2015128950 A1 WO2015128950 A1 WO 2015128950A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel assembly
tie plate
mesh portion
mesh
Prior art date
Application number
PCT/JP2014/054608
Other languages
English (en)
French (fr)
Inventor
良 石橋
中根 一起
一雄 中島
素行 橋本
克仁 高橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/054608 priority Critical patent/WO2015128950A1/ja
Publication of WO2015128950A1 publication Critical patent/WO2015128950A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/322Means to influence the coolant flow through or around the bundles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/3206Means associated with the fuel bundle for filtering the coolant, e.g. nozzles, grids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/33Supporting or hanging of elements in the bundle; Means forming part of the bundle for inserting it into, or removing it from, the core; Means for coupling adjacent bundles
    • G21C3/3305Lower nozzle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a fuel assembly loaded in a reactor core, and more particularly, to a fuel assembly capable of preventing damage to fuel rods in the fuel assembly due to an accidental drop during transfer of the fuel assembly.
  • a large number of fuel assemblies are loaded in the core of a boiling water reactor (BWR).
  • BWR boiling water reactor
  • a zirconium alloy fuel cladding tube has been known to have a lower tie plate buffer or reinforcement structure that constitutes a fuel assembly in order to prevent damage to the fuel against impacts such as earthquakes and drops.
  • the lower tie plate is made of austenitic cast stainless steel, and supports the fuel rods in the lattice part, and also plays a role of flowing cooling water from the inside of the main body part through the holes in the lattice part to the gap between the fuel rods. Have.
  • Patent Document 1 discloses that a lower tie plate body is provided with notches at the four corners of the upper rectangular tube portion, and this lower type is applied when a drop impact is applied to the fuel assembly.
  • a buffer structure is disclosed in which the body portion of the rate is plastically deformed in advance.
  • Patent Document 2 the outermost peripheral fuel among the support portions in the lower tie plate is compared with the coupled fuel rod that tends to increase bending stress because it is mechanically fastened directly to the lower tie plate.
  • a reinforcing structure is disclosed in which the thickness in the axial direction of the support portion that supports the rod is made larger than that of the central portion, so that the deformation accompanying the drop impact is distributed to other portions.
  • Patent Document 3 discloses a structure in which the lattice portion of the lower tie plate is integrated with the foreign matter filter at the lower portion of the lattice.
  • the fuel assembly is housed in a transfer container provided with a buffer structure, and is designed so that the fuel rod is not damaged even if it falls.
  • Ceramics such as SiC / SiC composites with high economic efficiency brought about by high burnup or high safety against hydrogen generation at the time of an accident as the material for fuel rods such as cladding tubes, their mechanical properties were considered.
  • a fuel assembly structure is required. While ceramics such as SiC / SiC composites can maintain strength up to high temperatures, they cannot be expected to be ductile like conventional zirconium alloys or stainless steel in the operating temperature range from room temperature to 400 ° C, and are used as structural materials. Therefore, it is required to design with a low allowable strength. In particular, care should be taken so that the product will not be critically damaged due to a drop during transport.
  • the fuel assembly is dimensionally designed to maintain its nuclear characteristics and cooling performance.
  • the upper and lower tie plates that support the fuel rods need to have a low pressure loss structure so that sufficient cooling water can be supplied to cool the fuel rods.
  • the cross-sectional area of the cooling hole must be ensured appropriately. That is, there is a restriction in reducing the solid ratio of the mesh portion for improving the structural strength, and it is difficult to improve the structural strength by a large dimensional change.
  • the fuel assembly is stored in a transfer container provided with a buffer structure. Even when the degree of impact is small, if there is a possibility that the fuel may be damaged as described above, it is necessary to greatly enhance the buffer function of the transfer container. For this reason, it is necessary to increase the size of the transfer container or reduce the number of fuel assemblies to be stored. Therefore, the transportation cost due to the increase in restrictions on mobile vehicles such as transportable vehicles and roads, or the decrease in transport efficiency. There is a concern about the increase.
  • a fuel assembly according to the present invention includes a plurality of fuel rods containing fuel pellets arranged in a grid in a rectangular tube channel box, and upper and lower ends of the plurality of fuel rods.
  • a fuel assembly that is supported by an upper tie plate and a lower tie plate, respectively, and a fuel cladding tube that constitutes the fuel rod is made of a low-strength material and is formed in the lower tie plate to allow cooling water to flow.
  • the mesh part having a plurality of openings is made of a constituent material having a room temperature proof stress of 490 MPa or more, and the axial height of the mesh part is 15 mm or more.
  • the mesh portion formed in the lower tie plate has a high rigidity, deformation of the mesh portion due to an unexpected drop impact is suppressed, and as a result, the mesh portion of the lower tie plate is supported.
  • the bending stress generated in the fuel rod can be suppressed.
  • a material having a low allowable stress for example, a ceramic such as a SiC / SiC composite material is used for the fuel cladding tube, the possibility that the fuel rod is damaged can be greatly reduced.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 2 is an enlarged longitudinal sectional view in the vicinity of a lower tie plate of the fuel assembly shown in FIG. 1.
  • FIG. 2 is a partial enlarged cross-sectional view of a lower tie plate of the fuel assembly shown in FIG. 1.
  • FIG. 1 (a) shows a longitudinal sectional view of a fuel assembly according to an embodiment of the present invention
  • FIG. 1 (b) shows an AA transverse sectional view of FIG. 1 (a).
  • a fuel assembly 10 employed in a boiling water reactor (BWR) has an upper tie plate 11, a lower tie plate 12, and both ends held by these tie plates.
  • a handle 18 is fastened to the upper tie plate 11, and when the handle 18 is lifted, the entire fuel assembly 10 can be pulled up.
  • a partial-length fuel rod 17 whose height does not reach the upper tie plate 11 may be employed. That is, the partial-length fuel rod 17 is a fuel rod having a shorter effective fuel length that is filled inside than the full-length fuel rod 13 reaching the upper tie plate 11.
  • a full length fuel rod 13, a partial length fuel rod 17, and a water rod 14 are bundled and accommodated in a square lattice shape in a channel box 16 having a rectangular cross section.
  • a channel box 16 having a rectangular cross section.
  • two water rods 14 are arranged in a substantially central portion of the cross section of the channel box 16 and each water rod 14 is arranged in a lattice region where four full length fuel rods 13 can be arranged.
  • the fuel assembly 10 having the above-described configuration is loaded in a lattice shape in the core of the nuclear reactor, and a control rod having a substantially cross-shaped cross section is disposed at the center of the four fuel assemblies 10, and the neutron flux is A plurality of local output area monitors are arranged for detection.
  • the fuel assembly 10 is supported by a core support plate and an upper lattice plate (not shown) and is surrounded by a cylindrical core shroud. From below, the cooling water flows into the rectangular tubular channel box 16 via the orifice of the fuel support fitting and the lower tie plate 12 of the fuel assembly 10, and is heated by the fuel rod 13 to generate steam by boiling. Occurs and becomes a gas-liquid two-phase flow.
  • the full length fuel rod 13 used in the current commercial boiling water reactor (BWR) has an effective fuel length of about 3.7 m and a total length of about 4 m.
  • FIG. 2 shows an enlarged longitudinal sectional view of the vicinity of the lower tie plate of the fuel assembly shown in FIG.
  • the lower tie plate 12 that supports the lower ends of the full length fuel rod 13, the partial length fuel rod 17, and the water rod 14 is used for the purpose of preventing foreign matter from entering the fuel assembly 10.
  • the lower tie plate 12 supports the nozzle portion 21 whose flow path gradually expands from the cooling water inlet opening 20 toward the downstream side, the lower ends of the fuel rod 13 and the water rod 14, and allows the cooling water to pass in a predetermined flow direction.
  • An enclosed cooling water receiving chamber 25 is formed.
  • An opening 28 is formed in the nozzle portion 21, and a foreign matter filter 27 provided with hundreds of holes 26 having a small diameter of several millimeters is attached to the lower surface of the mesh portion 23. Foreign matter contained in the cooling water in the cooling water receiving chamber 25 is captured by the foreign matter filter 27 according to the hole size of the hole 26, and only the cooling water from which the foreign matter has been removed is downstream (upper tie plate 11). Side).
  • FIG. 3 is a schematic cross-sectional perspective view showing the fuel cladding tube in the full length fuel rod 13 shown in FIG. 1, and FIGS. 4 and 5 are schematic cross-sectional perspective views showing the cladding tube of the water rod 14.
  • the fuel cladding tube 31 shown in FIG. 3 uses a SiC / SiC composite as a base material, and an appropriate environment-resistant shielding coating is applied to the surface.
  • the end plug 34 is made of a sintered ceramic made of SiC reinforced fiber or a Zr alloy.
  • the fuel cladding tube 31 has an outer diameter of about 11 mm and a tube thickness of about 1 mm.
  • the end plug 34 is a solid bar.
  • a fuel pellet 32 is accommodated in the fuel cladding tube 31, and one end plug 34 held on the upper tie plate 11 has one end connected to the bottom of the end plug 34 and the other end connected to the fuel cladding tube 31.
  • a plenum spring 33 is provided so as to suppress the uppermost portion of the fuel pellet 32 accommodated therein.
  • the water rod 14 shown in FIG. 4 includes a hollow tube 41 through which cooling water flows, an end plug 43 held by the lower tie plate 12 and the upper tie plate 11, and the hollow tube 41 at the center in the axial direction. It has the area
  • the hollow tube 41 uses a SiC / SiC composite material as a base material, and an appropriate environmental shielding coating is applied to the surface.
  • the end plug 43 is made of a sintered ceramic made of SiC reinforcing fiber or a Zr alloy.
  • the water rod 14 shown in FIG. 5 has a shape in which the diameter of the hollow tube 41 is uniform between the two end plugs 43
  • the fuel assembly 10 is supported in a standing position in the nuclear reactor or the fuel storage pool as shown in FIG. At the time of transfer, it is filled in a transfer container in a standing position and sealed, and fixed to the trailer base by tilting it by 90 °.
  • the impact received by the fuel assembly 10 due to a drop or the like is based on the longitudinal direction of the fuel assembly as a reference, a vertical drop in which acceleration parallel to the longitudinal direction is applied, and a horizontal drop in which acceleration perpendicular to the longitudinal direction is applied. And is broadly classified.
  • the maximum stress is applied to the fuel cladding tube 31 of the fuel rod 13 and the hollow tube 41 of the water rod 14 in the vicinity of the mesh portion 23 of the tie plate portion on the dropping surface side.
  • the weight of the tie plate thereon is added to the fuel rods 13.
  • the weight of the channel box 16 is also added.
  • what contributes to the destruction of the fuel cladding tube 31 of the fuel rod 13 is a bending stress generated along with the deformation of the mesh portion 23 of the lower tie plate 12 when dropped vertically.
  • the maximum bending stress is generated at the position of the support grid 15 where the fuel rods 13 are bundled, in the vicinity of the mesh portion 23 of the lower tie plate 12, or at the center position between the fuel support grids 15.
  • the fuel assembly 10 is extracted from the core in a state where water is filled in the fuel storage pool, and is stored in a standing position in the transfer container. Then, it is placed on the trailer frame by a crane or the like.
  • a drop from a maximum height of 9 m is assumed, and a minimum of 0.3 m is assumed.
  • the acceleration due to the drop on the fuel assembly 10 in the transfer container depends on the buffer structure in the transfer container, when falling from a height of 9 m, it reaches 60 G for vertical drop and 55 G for horizontal drop. Then it is evaluated.
  • the acceleration is supposed to be 30 G for vertical drops and 20 G for horizontal drops. Therefore, in the following, the maximum assumed acceleration is evaluated conservatively, and is referred to as a special drop condition, which is a fall acceleration 70G during vertical drop and a drop acceleration 60G during horizontal drop. Furthermore, the acceleration when falling from a height of 0.3 m that occurs during daily handling is assumed to be a fall acceleration 30G at the time of vertical fall and a fall acceleration 20G at the time of horizontal fall, which will be referred to as a general fall condition.
  • the fuel pellets 32 in the fuel rods 13 generate heat, while water of about 288 ° C. flows outside the fuel rods 13 to cool the fuel rods 13. It is assumed that the temperature of the fuel cladding tube 31 is originally distributed but is about 343 ° C. In the state accommodated in the transfer container, the temperature rises in the range from 150 ° C. to 300 ° C. depending on the heat radiation design due to the heat from the fuel pellets 32 due to the decay heat.
  • FIG. 6 shows a partially enlarged view of the cross section of the mesh portion 23 of the lower plate 12 of the fuel assembly 10.
  • FIG. 1 shows a case of a 9 ⁇ 9 square lattice
  • an 8 ⁇ 8 square lattice is shown here.
  • the end plugs 34 of the full length fuel rod 13 and the partial length fuel rod 17 and the end plug 43 of the water rod 14 are held at the 8 ⁇ 8 square lattice position.
  • an opening is formed between each square lattice, and a foreign matter filter 27 shown in FIG.
  • each square lattice position is defined in the width direction and the diagonal direction in the direction from the center of one side of the mesh portion 23 toward the central portion of the cross section.
  • FIG. 7 shows the relationship between the deformation of the mesh portion 23 shown in FIG. 6 and the drop acceleration.
  • the horizontal grid position is taken on the horizontal axis
  • the displacement from the unloaded position is taken on the vertical axis
  • the drop accelerations during vertical fall are 8.2 G, 31.4 G, and 40.5 G, respectively.
  • the displacement is shown.
  • the amount of displacement from the no-load position is small at the fall acceleration of 8.2 G
  • the maximum is at the center of the mesh portion 23 (width direction position 0 mm).
  • the fall acceleration of 31.4G the amount of displacement is maximized at the center, and is displaced about 0.7 mm from the unloaded position.
  • the maximum displacement is shown at the center even at the drop acceleration of 40.5G, which is about 1.4 mm from the unloaded position.
  • FIG. 8 shows the relationship between deformation and drop acceleration in the mesh part 23 shown in FIG.
  • the horizontal grid indicates the diagonal square lattice position
  • the vertical axis indicates the displacement from the unloaded position
  • the fall accelerations during vertical fall are 8.2G, 31.4G, and 40.5G.
  • the displacement is shown.
  • the fall acceleration is 8.2G, but the displacement is small, but the maximum is shown at the center (diagonal position 0mm), and the fall acceleration is 31.4G, the displacement is maximum at the center and exceeds 0.7mm.
  • the drop acceleration of 40.5G shows the maximum displacement at the center and exceeds 1.4 mm.
  • FIG. 9 shows the relationship between the amount of displacement at the center of the mesh portion and the drop acceleration.
  • the horizontal axis represents the fall acceleration at the time of vertical drop, and the vertical axis represents the displacement amount (deflection amount) in the center portion of the mesh portion 23.
  • the deflection of the mesh portion 23 causes a bending stress to be generated in the fuel rod 13 supported by inserting the end plug portion 34 into the mesh portion 23.
  • the portion of the fuel cladding 31 near the mesh portion 23 has the largest stress, and there is a possibility that the fuel cladding tube 31 may be damaged if it exceeds the damage avoidable region. In order to prevent the fuel rod 13 from being damaged, it is necessary to suppress the deformation of the mesh portion 23 which causes the bending stress.
  • the amount of deflection becomes larger than expected from deformation due to elastic deformation alone, and exceeds the elastic deformation region and enters the plastic deformation region. In other words, entering the region of plastic deformation makes it easier to deform than elastic deformation and increases the amount of deflection.
  • the apparent Young's modulus E may be increased or the height h of the mesh portion 23 may be increased.
  • FIG. 10 shows the relationship between the height h of the mesh portion 23 shown in FIG. 6 and the apparent Young's modulus E.
  • the height h of the mesh part 23 is taken on the horizontal axis and the apparent Young's modulus E is taken on the vertical axis, and the relationship at the drop accelerations 70G and 30G is shown.
  • the height h of the mesh portion is 15 mm, so that the fuel cladding tube 31 of the fuel rod 13 can be prevented from being damaged.
  • the height h of the mesh portion is about 14 mm, so that damage to the fuel cladding tube 31 can be avoided.
  • the maximum tresker stress can be made 100 MPa or less (the area where damage to the cladding tube 31 can be avoided) by setting the deflection amount ⁇ at the center of the mesh portion 23 shown in the formula (1) to 0.56 mm or less, the formula Based on (1), the apparent Young's modulus E is derived by the following equation (2).
  • FIG. 11 shows the relationship between the correlation between the solid ratio and the height of the mesh portion shown in FIG. 6 and the yield strength for suppressing plastic deformation.
  • the horizontal axis represents the correlation between the solid ratio and the height of the mesh portion 23
  • the vertical axis represents the yield strength capable of suppressing the plastic deformation of the mesh portion 23, and shows the relationship at the drop accelerations 70G and 30G. .
  • a proof stress ⁇ 0.2 capable of suppressing plastic deformation is derived by the following equation (3).
  • ⁇ 0.2 > ( ⁇ / A 0 ) ⁇ ⁇ / ⁇ ( ⁇ / ⁇ 0 ) ⁇ (h / h 0 ) ⁇ (3)
  • the yield strength ⁇ is 178 MPa
  • the drop acceleration A 0 is 12.2 G
  • the mesh part solid ratio ⁇ / ⁇ 0
  • the mesh part height ratio h / h 0 , ⁇ 0, and h 0 are respectively solid of the above model.
  • the rate is the height of the mesh part.
  • ( ⁇ / ⁇ 0) ⁇ (h / h 0 ) is assumed to be 2.0 or less as a range of change in the height of the mesh portion 23 or the solid rate ⁇ .
  • ( ⁇ / ⁇ 0) ⁇ (h / h 0 ) is 2.0, and the proof stress ⁇ 0.2 capable of suppressing plastic deformation is 490 MPa.
  • FIG. 12 shows the relationship between the temperature of each constituent material of the mesh portion and the 0.2% proof stress ( ⁇ 0.2 ) shown in Equation (3), and FIG. The relationship with the rate is shown.
  • FIG. 12 shows the temperature dependence of the 0.2% proof stress of each constituent material
  • FIG. 13 shows the temperature dependence of the Young's modulus of each constituent material.
  • the fuel assembly is accommodated in the transfer container and the temperature at the time of transfer is in the range of 150 ° C. to 300 ° C., and the temperature loaded in the core and in operation is about 343 ° C.
  • a constituent material of the mesh portion as a nickel-based alloy, Inco. X-750, Inco.
  • the 0.2% proof stress shows a decreasing tendency as the temperature rises, although the fluctuation is small in any of the constituent materials.
  • the comparative material does not reach 490 MPa in any temperature region, and plastic deformation of the mesh portion 23 cannot be suppressed.
  • the Young's modulus is highly temperature dependent, and the Young's modulus tends to decrease as the temperature rises.
  • the comparative material does not reach 196 GPa in any temperature region, and the plastic deformation of the mesh portion 23 cannot be suppressed.
  • any constituent material that has a Young's modulus of 196 GPa or more in at least the temperature range of 150 ° C. or higher during transfer to 343 ° C. during operation can be adopted as the constituent material.
  • FIG. 14 shows the number of fuel support grids 15 for bundling fuel rods, and the relationship between drop acceleration and stress during horizontal drop.
  • Acceleration in the fuel assembly width direction in the case where seven fuel support grids 15 are arranged at predetermined intervals in the longitudinal direction of the full length fuel rod 13 having a total length of about 4 m and in the case where eleven fuel support grids 15 are arranged.
  • the maximum bending stress is generated at the center position between the adjacent fuel support grids 15 during horizontal fall.
  • the crack initiation stress of the fuel cladding 31 using the SiC / SiC composite as a base material is set to 100 MPa.
  • the fuel assembly width direction acceleration at the time of horizontal drop from a height of 0.3 m is 20 G, and the acceleration at the time of horizontal drop from a height of 9 m is 60 G.
  • the fuel support grid 15 has a number of arrangements of 100 MPa or less in both cases of 7 and 11, but at the acceleration 60G, the fuel support grid 15 of 7 arrangements exceeds 100 MPa.
  • a crack may occur in the cladding tube 31.
  • the number of the fuel support grids 15 is 11, the pressure is less than 100 MPa, and the generation of cracks in the fuel cladding tube 31 due to the horizontal drop can be suppressed. Therefore, if at least eleven fuel support grids 15 are arranged in the axial direction, it is possible to prevent cracks from occurring in the fuel cladding tube 31 at the time of horizontal drop.
  • the deformation of the mesh portion is suppressed by using a constituent material having a room temperature proof stress of 490 MPa or more when the solid ratio and height of the mesh portion are vertically dropped.
  • produces in the fuel cladding tube 31 which uses a SiC / SiC composite material as a base material is reduced, and possibility that a fuel rod will be damaged can be reduced significantly.
  • the possibility of breakage of the fuel rod can be reduced by using a constituent material having a room temperature Young's modulus of 196 GPa or more.
  • the rigidity of the mesh part can be increased, and the possibility that the fuel rod is damaged can be reduced.
  • the height combined with the foreign matter filter is made larger than 15 mm, so that the rigidity can be increased without greatly changing the height direction dimension. Can be increased.
  • the arrangement interval in the axial direction of the fuel support lattice that bundles and supports the fuel cladding tube is reduced, and the number of support lattices is set to 11 or more for the fuel rod length of about 4 m.
  • the bending stress that occurs when the fuel assembly is dropped sideways (at the time of horizontal dropping) is suppressed, greatly increasing the possibility of damage to the fuel rods Can be reduced.
  • the mesh portion of the upper tie plate or the lower tie plate described above does not have to reduce the hole area ratio in the cross section of the mesh portion, so that it is possible to sufficiently pass the cooling water for cooling the fuel rods during operation. it can.
  • the area ratio of the holes is the reciprocal of the solid ratio of the mesh part.
  • SCS24, SCS31, SCS32 and SCS33 are used as precipitation hardening type stainless cast steel, and NCF625, NCF718 and NCF750 are used as nickel base alloy for mesh portion 23 in upper tie plate 11 or lower tie plate 12. It was.
  • FIG. 16 shows the heat treatment conditions and material properties at room temperature of the constituent materials shown in FIG.
  • the SCS 24 has a room temperature yield strength of 702 MPa and a room temperature Young's modulus of 196 GPa, which satisfies the above-described conditions.
  • SCS31 has room temperature yield strength of 596 MPa, room temperature Young's modulus 196 GPa, SCS32 has room temperature yield strength of 520 MPa, room temperature Young's modulus 196 GPa, and SCS33 has room temperature yield strength of 530 MPa and room temperature Young's modulus 196 GPa, both satisfying the above conditions.
  • NCF625 which is a nickel-based alloy, has a room temperature yield strength of 520 MPa, a room temperature Young's modulus of 207 GPa
  • NCF718 has a room temperature yield of 1065 MPa
  • NCF750 has a room temperature yield strength of 680 MPa and a room temperature Young's modulus of 214 GPa. The condition is met.
  • the lower tie plate When using NCF718 which is a precipitation hardening type stainless cast steel or nickel base alloy shown in FIG. 15, the lower tie plate can be manufactured by integral molding by casting. Further, when a plate material or a rolled material is used, the mesh portion 23 is formed by machining. A foreign matter filter 27 is added to the mesh portion 23 on the handle 18 made of stainless cast steel having a yield strength of about 200 MPa such as SCS13, SCS13a, SCS14, and SCS14a, and the nozzle portion 21 and the peripheral side wall 24 of the lower tie plate 12.
  • the upper tie plate 11 and the lower tie plate 12 were produced by fastening or welding. In this case, since the handle 18 or the nozzle part 21 is deformed in advance with respect to the mesh part 23 due to a load caused by dropping, a cushioning structure is exhibited.
  • ⁇ Load applied during vertical drop is large when falling to the lower tie plate. Therefore, the relationship between the apparent Young's modulus of the mesh portion that does not cause plastic deformation of the mesh portion 23 and the height of the mesh portion 23 when falling to the lower tie plate side is within the range shown in FIG.
  • the mesh portion 23 of the present embodiment does not cause plastic deformation until the vertical drop acceleration 70G. That is, plastic deformation can be suppressed.
  • the deformation of the mesh portion 23 is only elastic deformation, and the stress generated at the time of vertical drop is suppressed within the allowable stress (100 to 200 MPa) of the fuel cladding tube 31 based on the SiC / SiC composite material.
  • the possibility of breakage of the rod 13 could be greatly reduced.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • DESCRIPTION OF SYMBOLS 10 ... Fuel assembly, 11 ... Upper tie plate, 12 ... Lower tie plate, 13 ... Fuel rod, 14 ... Water rod, 15 ... Fuel support grid, 16 ... Channel box, 17 ... Partial length fuel rod, 18 ... Handle, DESCRIPTION OF SYMBOLS 20 ... Cooling water inlet, 21 ... Nozzle part, 22 ... Outlet opening, 23 ... Mesh part, 24 ... Ambient side wall, 25 ... Cooling water receiving chamber, 26 ... Hole, 27 ... Foreign matter filter, 28 ... Opening, 31 ... Fuel coating Pipe, 32 ... Fuel pellet, 33 ... Plenum spring, 34, 43 ... End plug, 41 ... Hollow pipe, 42 ... Area

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Metallurgy (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

 低強度被覆管材料を用いた燃料棒の場合においても、移送時における万が一の落下に対して安全性の高い燃料集合体を提供することにある。燃料ペレットを収容する複数の燃料棒13を角筒状のチャンネルボックス16内に格子状に配列し、複数の燃料棒13の上下端部をそれぞれ上部タイプレート11及び下部タイプレート12にて支持する燃料集合体10において、燃料棒13を構成する燃料被覆管を低強度材料で構成し、下部タイプレート12に形成され冷却水を通流可能とする複数の開口を備えたメッシュ部を、室温耐力が490MPa以上の構成材料で形成し、且つ、前記メッシュ部の軸方向高さを15mm以上とする。

Description

燃料集合体
 本発明は、原子炉の炉心に装荷される燃料集合体に係り、特に、燃料集合体の移送時において万が一の落下による燃料集合体内の燃料棒の破損を防止可能な燃料集合体に関する。
 一般に、沸騰水型原子炉(BWR)の炉心内には、多数の燃料集合体が装荷されている。従来、ジルコニウム合金製燃料被覆管を対象として、地震や落下といった衝撃に対して、燃料の破損を防止するため、燃料集合体を構成する下部タイプレートの緩衝又は補強構造を有するものが知られている。下部タイプレートは、オーステナイト系ステンレス鋳鋼で製造されており、その格子部において燃料棒を支持するとともに、冷却水を本体部内部から格子部の孔を介して燃料棒同士の間隙に流しだす役割をもつ。
 このような緩衝構造を備えた燃料集合体として、特許文献1には、下部タイプレート本体上部角筒部分における四隅に切欠き部を設け、燃料集合体に落下衝撃がかかった際にこの下部タイプレートの本体部が先立って塑性変形する緩衝構造が開示されている。また、特許文献2には、下部タイプレートに直接機械的に締結されているために曲げ応力が大きくなる傾向にある結合燃料棒に対して、下部タイプレートにある支持部のうち、最外周燃料棒を支持する支持部の軸方向の肉厚を中央部よりも大きくすることで、落下衝撃に伴う変形を他の部位に分散させる補強構造が開示されている。衝撃に対する補強を意図していないものの、特許文献3には、下部タイプレートの格子部が格子下部において異物フィルタと一体とする構造が開示されている。
 移送時においては、燃料集合体は緩衝構造を設けた移送用容器に収納され、万が一の落下においても燃料棒が破損しないように設計されている。
特開昭60-1592号公報 特開昭58-176574号公報 特開平7-302628号公報
 高燃焼度化によってもたらされる経済性又は事故時の水素発生に対する安全性の高いSiC/SiC複合材などのセラミックスを被覆管などの燃料棒の材料として用いるためには、その機械的特性を考慮した燃料集合体構造が必要である。SiC/SiC複合材などのセラミックスは、高温まで強度を維持できる一方、常温から400℃に至る使用温度範囲では従来のジルコニウム合金又はステンレス鋼のような延靭性は期待できず、構造材料として使用するには許容強度を低く見積もって設計することが求められる。特に、移送時において万が一の落下によって破損し、臨界に至らないように注意が必要である。
 特許文献1ないし特許文献3に記載される燃料集合体の構造では、ジルコニウム合金製の燃料被覆管の延靭性や強度が前提とされている。そのため、落下の衝撃により、燃料集合体を構成する上部及び下部タイプレートが変形し、それによって燃料棒が湾曲して応力が発生したとしても、ジルコニウム合金製の燃料被覆管の許容応力を超えることはない。換言すれば、燃料棒の変形も許容して、燃料集合体全体で衝撃を吸収している。
 ところが、SiC/SiC複合材などのセラミックスを燃料棒に用いた場合、許容応力が小さいために、上述のような湾曲によって発生した応力は許容応力を超えてしまい、破壊してしまう可能性がでてくる。
 落下の衝撃による変形を抑えるためには、部材の厚さや幅を大きくすることで構造的な強度を高めることができるものの、燃料集合体はその核特性及び冷却性能を維持するために、寸法上制約がある。燃料棒を支持する上部及び下部タイプレートには、燃料棒を冷却するために、十分な冷却水を供給できるように低圧損の構造とする必要があり、下部タイプレートに形成されたメッシュ部における冷却孔の断面積を適切に確保しなければならない。すなわち、構造強度向上のためメッシュ部の中実率を低減するには制約があり、大幅な寸法変更による構造強度の向上は困難である。
 移送時には、燃料集合体は緩衝構造を設けた移送用容器に収納される。衝撃の程度が小さい場合でも上述のように燃料が破損する可能性がある場合は、移送用容器の緩衝機能を大幅に強化する必要がある。そのため、移送用容器の寸法を大きくする、又は、収納する燃料集合体の数を減らす必要があるため、運搬可能な車両、道路などの移動手動の制約の増大、又は、運搬効率低下による運搬費用の増大が危惧される。
 本発明は、低強度被覆管材料を用いた燃料棒の場合においても、移送時における万が一の落下に対して安全性の高い燃料集合体を提供することにある。
 上記課題を解決するため、本発明の燃料集合体は、燃料ペレットを収容する複数の燃料棒を、角筒状のチャンネルボックス内に格子状に配列し、前記複数の燃料棒の上下端部をそれぞれ上部タイプレート及び下部タイプレートにて支持してなる燃料集合体であって、 前記燃料棒を構成する燃料被覆管は低強度材料で構成され、前記下部タイプレートに形成され冷却水を通流可能とする複数の開口を備えたメッシュ部を、室温耐力が490MPa以上の構成材料で形成し、且つ、前記メッシュ部の軸方向高さを15mm以上とすることを特徴とする。
 本発明によれば、低強度被覆管材料を用いた燃料棒の場合においても、移送時における万が一の落下に対して安全性の高い燃料集合体を提供することができる。
 例えば、本発明によれば、下部タイプレートに形成されるメッシュ部の剛性が高くなることにより、万が一の落下衝撃によるメッシュ部の変形が抑制され、その結果、下部タイプレートのメッシュ部に支持される燃料棒に発生する曲げ応力を抑制することができる。これにより、許容応力の低い材料、例えば、SiC/SiC複合材などのセラミックスを、燃料被覆管に用いた場合であっても、燃料棒が破損する可能性を大幅に低減できる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施形態による燃料集合体の縦断面図である。 図1(a)のA―A横断面図である。 図1に示す燃料集合体の下部タイプレート付近の拡大縦断面図である。 図1に示す燃料棒における燃料被覆管を示す断面斜視模式図である。 図1に示すウォータロッドの被覆管を示す断面斜視模式図である。 図4に示すウォータロッドと異なる管径を有するウォータロッドを示す断面斜視模式図である。 図1に示す燃料集合体の下部タイプレートの部分拡大横断面図である。 図6に示す下部タイプレートにおけるメッシュ部の変形と落下加速度の関係を示す図である。 図6に示す下部タイプレートにおけるメッシュ部の変形と落下加速度の関係を示す図である。 図6に示すメッシュ部中央部での変形量と落下加速度の関係を示す図である。 図6に示すメッシュ部の高さとみかけのヤング率との関係を示す図である。 図6に示すメッシュ部の中実率及び高さの相関と塑性変形を抑制する耐力との関係を示す図である。 メッシュ部における塑性変形を抑制する耐力と温度との関係を示す図である。 メッシュ部におけるヤング率と温度との関係を示す図である。 燃料棒を束ねる燃料支持格子と水平落下時における燃料集合体幅方向加速度と応力との関係を示す図である。 本発明の一実施例に係る上部タイプレート又は下部タイプレートのメッシュ部に用いた材料の化学成分を示す図である。 図15に示す材料の熱処理条件と室温の材料特性を示す図である。
 図1(a)に本発明の一実施形態による燃料集合体の縦断面図を示し、図1(b)に図1(a)のA-A横断面図を示す。図1(a)に示すように、沸騰水型原子炉(BWR)に採用されている燃料集合体10は、上部タイプレート11、下部タイプレート12、これらのタイプレートに両端が保持されている複数の燃料棒13、ウォータロッド14、これらの燃料棒を束ねる燃料支持格子(スペーサ)15、及び、燃料支持格子15により束ねられている燃料棒束を取り囲み上部タイプレート11に取り付けられたチャンネルボックス16を備えている。上部タイプレート11にはハンドル18が締結されており、ハンドル18を吊り上げると、燃料集合体10全体を引き上げることができる。燃料棒としては、その一部に高さが上部タイプレート11まで達しない部分長燃料棒17が採用される場合がある。すなわち、部分長燃料棒17は、上部タイプレート11へ達する全長燃料棒13よりも内部に充填される燃料有効長が短い燃料棒である。
 図1(b)に示すように、横断面角筒状のチャンネルボックス16内に、全長燃料棒13、部分長燃料棒17及びウォータロッド14が正方格子状に束ねて収容されている。ここでは、チャンネルボックス16の横断面略中央部に2本のウォータロッド14を配し、各ウォータロッド14を4本の全長燃料棒13が配置可能な格子領域に配置した例を示している。
 原子炉の炉心には上記構成の燃料集合体10が格子状に装荷され、4体の燃料集合体10の中央部に横断面が略十字状の制御棒が配設されるとともに、中性子束を検出するために複数個の局部出力領域モニタが配置されている。原子炉の炉心において、燃料集合体10は、図示しない炉心支持板及び上部格子板で支持され、円筒形の炉心シュラウドに囲まれている。冷却水は、下方より、燃料支持金具のオリフィス及び燃料集合体10の下部タイプレート12を経由して角筒状のチャンネルボックス16内に流入し、燃料棒13により熱せられて、沸騰により蒸気を発生し、気液二相流となる。現在の商用沸騰水型原子炉(BWR)で用いられる全長燃料棒13は、燃料有効長が約3.7m、全長が約4mである。
 図2に図1に示す燃料集合体の下部タイプレート付近の拡大縦断面図を示す。図2に示すように、燃料集合体10の内部に異物が侵入することを防ぐことを目的に、全長燃料棒13、部分長燃料棒17及びウォータロッド14の下端を支持する下部タイプレート12のメッシュ部23の下面に、異物フィルタ27を付加することにより、燃料の健全性の向上が図られている。下部タイプレート12は、冷却水入口開口20から下流側に向かって次第に流路が拡大するノズル部21と、燃料棒13とウォータロッド14の下端を支持し、冷却水を所定の流れ方向に通すことが可能な複数の出口開口22を有するメッシュ部23と、ノズル部21とメッシュ部23とを連結する周囲側壁24とを有し、ノズル部21とメッシュ部23との間に周囲側壁24により取り囲まれた冷却水受入室25が形成されている。ノズル部21には開口28が形成され、また、メッシュ部23の下面に、数mmの小口径の孔26が数百個設けられた異物フィルタ27が取り付けられている。冷却水受入室25内の冷却水に含まれる異物は、孔26の孔径サイズに応じて異物フィルタ27に捕捉され、異物が除去された冷却水のみが出口開口22より下流側(上部タイプレート11側)へと通流する。
 図3に図1に示す全長燃料棒13における燃料被覆管を示す断面斜視模式図を示し、図4及び図5にウォータロッド14の被覆管を示す断面斜視模式図を示す。図3に示す燃料被覆管31はSiC/SiC複合材を基材とし、表面には適切な耐環境遮蔽被覆が施されている。端栓34はSiC強化繊維からなる焼結セラミックス、もしくはZr合金で作製されている。燃料被覆管31は、外径が11mm程度、管の厚さが1mm程度である。端栓34は中実の棒である。燃料被覆管31内には、燃料ペレット32が収容され、上部タイプレート11に保持される一方の端栓34側には、一端が当該端栓34の底部に接続され他端が燃料被覆管31内に収容される燃料ペレット32の最上部を抑えるよう配置されたプレナムスプリング33が備えられている。また、図4に示すウォータロッド14は、冷却水をその内部に通流する中空管41、下部タイプレート12及び上部タイプレート11に保持される端栓43、中空管41は軸方向中央部の径より小さい径となる領域42を有する。中空管41はSiC/SiC複合材を基材とし、表面には適切な耐環境遮蔽被覆が施されている。端栓43はSiC強化繊維からなる焼結セラミックス、もしくはZr合金で作製されている。また、図5に示すウォータロッド14は、中空管41の径が2つの端栓43の間で一様となる形状を有している。
 燃料集合体10は、原子炉又は燃料貯蔵プール内で図1のとおり立位で支持されている。移送時は、移送用容器内に立位で装填後封入され、トレーラの架台には90°倒して固定される。落下等により燃料集合体10が受ける衝撃は、燃料集合体の長手方向を基準に、この長手方向に平行な加速度が付加される垂直落下と、この長手方向に垂直な加速度が付加される水平落下とに大きく分類される。垂直落下時には、落下面側にあるタイプレート部のメッシュ部23近傍にある燃料棒13の燃料被覆管31やウォータロッド14の中空管41に最大の応力が付与される。燃料棒13には、燃料ペレット32を含む燃料棒だけでなく、その上のタイプレートの重量が付加される。下部タイプレート12側に落下した場合は、チャネルボックス16の重量も付加される。しかし、燃料棒13の燃料被覆管31の破壊に寄与するのは、垂直落下時に下部タイプレート12のメッシュ部23の変形に伴い発生する曲げ応力である。一方、水平落下時には、燃料棒13を束ねる支持格子15の位置、下部タイプレート12のメッシュ部23付近、又は燃料支持格子15間の中央位置に最大の曲げ応力が発生する。なお、上述のとおり、燃料集合体の移送又は輸送時、例えば燃料貯蔵プール内で水が満たされた状態で燃料集合体10が炉心より抜き取られ、移送用容器内に立位にて収容され、その後クレーン等によりトレーラの架台に載置される。通常、移送用容器の落下については、クレーンによる架台への積み込み時又はクレーンにより船積み時、最大で9mの高さからの落下が想定され、最小で0.3mが想定される。移送用容器内の燃料集合体10にかかる落下による加速度は、移送用容器内の緩衝構造に依存するものの、9mの高さから落下した場合には垂直落下で60Gに、水平落下で55Gに達すると評価されている。最小の0.3mの高さから落下した場合でも、加速度は垂直落下で30Gに、水平落下で20Gになるとされている。そこで、以下では、想定される最大の加速度を保守的に評価して、垂直落下時における落下加速度70G、水平落下時における落下加速度60Gとし、特別落下条件と呼ぶ。さらに、日常の取扱の中で生じる0.3mの高さから落下する場合の加速度を、垂直落下時における落下加速度30G、水平落下時におおける落下加速度20Gとし、一般落下条件と呼ぶことにする。
 燃料集合体10が炉心に装荷された運転中では、燃料棒13の中の燃料ペレット32が発熱する一方、燃料棒13の外側を約288℃の水が流れて燃料棒13を冷却しており、燃料被覆管31の温度は、本来分布をもつが、約343℃にあるとする。移送用容器に収容された状態では、崩壊熱による燃料ペレット32からの熱により、放熱設計に依存するが150℃から300℃までの範囲に温度が上昇する。
 図6に燃料集合体10の下部プレート12のメッシュ部23の横断面の部分拡大図を示す。図1では9×9の正方格子の場合を示したが、ここでは、8×8の正方格子を示している。メッシュ部23の横断面図に示されるように、8×8の正方格子位置には、全長燃料棒13及び部分長燃料棒17の端栓34、ウォータロッド14の端栓43が保持される。また、各正方格子間は開口され、その下部に図2に示す異物フィルタ27が配置されている。図6に示すように、各正方格子位置を、メッシュ部23の1つの辺中央より横断面中央部へ向かう方向を幅方向、また、対角線方向でそれぞれの正方格子位置を定義する。
 垂直落下時における下部タイプレートメッシュ部23の変形を以下に示す。図7に、図6に示すメッシュ部23の変形と落下加速度の関係を示す。図7において、横軸に幅方向の正方格子位置を、縦軸に無負荷時位置からの変位をとり、垂直落下時における落下加速度が8.2G、31.4G及び40.5Gのそれぞれの場合の変位を示している。落下加速度8.2Gでは無負荷時位置からの変位量は小さいものの、メッシュ部23の中央部(幅方向の位置0mm)で最大となっている。また、落下加速度31.4Gでは同様に中央部でその変位量は最大となり無負荷時位置より約0.7mm変位している。また、落下加速度40.5Gにおいても中央部で最大の変位を示し、無負荷時位置より約1.4mmとなる。
 また、図8に、図6に示すメッシュ部23に変形と落下加速度の関係を示す。図8において、横軸に対角線方向の正方格子位置を、縦軸に無負荷時位置からの変位をとり、垂直落下時における落下加速度8.2G、31.4G及び40.5Gのそれぞれの場合の変位を示している。図7と同様に、落下加速度8.2Gでは変位量は小さいものの中央部(対角線方向の位置0mm)で最大を示し、落下加速度31.4Gでは中央部で変位量は最大となり0.7mmを超えている。また、落下加速度40.5Gでも同様に中央部で最大変位量を示し1.4mmを超えている。
 図7及び図8より、垂直落下時におけるメッシュ部23の変位量は中央部が最大となることがわかる。図9にメッシュ部中央部での変位量と落下加速度の関係を示す。横軸に垂直落下時における落下加速度を、縦軸にメッシュ部23に中央部における変位量(たわみ量)をとっている。メッシュ部23のたわみは、メッシュ部23に端栓部34を挿入して支持される燃料棒13に曲げ応力を生じさせる。燃料被覆管31のメッシュ部23付近の部位が最も応力が大きくなり、破損回避可能領域を超えると破損する可能性がある。燃料棒13の破損を防ぐには曲げ応力を生じる原因であるメッシュ部23の変形を抑制する必要がある。
 図9に示されるように、落下加速度が約10Gを超えると、たわみ量は弾性変形のみによる変形から予想されるよりも大きくなり、弾性変形の領域を超え塑性変形の領域に入っている。言い換えれば、塑性変形の領域に入ったことにより、弾性変形よりも変形しやすくなり、たわみ量が大きくなっている。たわみ量を低減するには、まず塑性変形を起こさないように、メッシュ部23の剛性を高くする、もしくは材料の耐力を高くする必要がある。
 ここで、メッシュ部23が塑性変形せずに弾性変形のみ変形する場合を考える。図6に示すメッシュ部23において、みかけのヤング率Eは、メッシュ部23の中実率η、メッシュ部23を構成する材料のヤング率E’としたとき、E=η×E’の関係にある。また、図6に示すメッシュ部23の横断面の面積S、中実率η、荷重F、メッシュ部23の高さh、垂直落下時における一様荷重負荷時のメッシュ部23の中央部のたわみ量ωとすると以下の式(1)の関係を満たす。
 ω=0.045×(F×S)/(E×h) ・・・(1)
 ここで、面積S=127.84×127.84、中実率ηを39%、メッシュ部23の高さhを12.86mm、荷重F=279.54kg×落下加速度αとする。
 式(1)に示すように、たわみ量ωを低減するためには、みかけのヤング率Eを高くする又はメッシュ部23の高さhを高くすればよい。
 図10に図6に示すメッシュ部23の高さhとみかけのヤング率Eとの関係を示す。図10では、横軸にメッシュ部23の高さhを、縦軸にみかけのヤング率Eをとり、落下加速度70G及び30Gでの関係を示している。図10より、落下加速度70Gではメッシュ部23の中実率ηを39%のときメッシュ部の高さhが15mmで燃料棒13の燃料被覆管31の破損を回避でき、中実率η53%ではメッシュ部の高さhは14mm余りで燃料被覆管31の破損を回避できる。図10では、式(1)に示すメッシュ部23中央部でのたわみ量ωを0.56mm以下とすることで最大トレスカ応力を100MPa以下(被覆管31の破損回避可能領域)にできることから、式(1)に基づき以下の式(2)にて、みかけのヤング率Eを導出したものである。
 E=0.045×(F×S)/(ω×h) ・・・(2)
 ここで、面積S=127.84×127.84、メッシュ部23の中央部でのたわみ量ωを0.56mm、荷重F=279.54kg×落下加速度αとしている。
 次に、図11に図6に示すメッシュ部の中実率及び高さの相関と塑性変形を抑制する耐力との関係を示す。図11では、横軸にメッシュ部23の中実率と高さの相関を、縦軸にメッシュ部23の塑性変形を抑制可能な耐力をとり、落下加速度70G及び30Gでの関係を示している。落下加速度12.2G及びメッシュ部23の耐力178MPaで塑性変形抑制可能なモデルを想定し、以下の式(3)により塑性変形抑制可能な耐力σ0.2を導出する。
 σ0.2>(β/A)×α/{(η/η0)×(h/h)}  ・・・(3)
 ここで、耐力βを178MPa、落下加速度Aを12.2G、メッシュ部中実率比η/η、メッシュ部高さ比h/h、η及びhはそれぞれ上記モデルの中実率、メッシュ部の高さとしている。
 メッシュ部23の高さ又は中実率ηは、冷却水の熱流体的観点から設計されているため、燃料集合体そのものの設計を大きく見直さない限り、大きな変更を施すのは困難である。そこで、メッシュ部23の高さ又は中実率ηの変更の範囲として、(η/η0)×(h/h)を2.0以下と想定した。図11に示すように、落下加速度70Gでは、(η/η0)×(h/h)が2.0で塑性変形抑制可能な耐力σ0.2は490MPaとなる。
 図12に、メッシュ部の各構成材料における温度と式(3)に示す0.2%耐力( σ0.2)との関係を示し、図13に、メッシュ部の各構成材料における温度とヤング率との関係を示す。図12では、各構成材料の0.2%耐力における温度依存性を示し、図13では各構成材料のヤング率における温度依存性を示している。上述のとおり、燃料集合体を移送容器に収容し移送時における温度を150℃から300℃の範囲、炉心に装荷され運転中での温度を約343℃と想定している。また、メッシュ部の構成材料として、ニッケル基合金として、Inco.X-750、Inco.718及びInco.625、析出硬化型ステンレス鋼として、SUS630及びSUS631、二相ステンレス鋼としてSUS329J、比較材料としてステンレス鋳鋼(SCS13、SCS14)の場合も合わせて示している。図12に示されるように、いずれの構成材料ともに変動は小さいものの温度の上昇に伴い0.2%耐力は減少傾向を示している。図11に示した落下加速度70Gにおける塑性変形抑制可能な0.2%耐力490MPa以上を示す構成材料であれば、メッシュ部23の構成材料として採用できる。比較材料ではいずれの温度領域においても490MPaに至らずメッシュ部23の塑性変形を抑制することはできない。また、図13ではヤング率の温度依存性は高く、温度上昇に伴いヤング率は減少傾向を示す。比較材料では、いずれの温度領域においても196GPaに至らずメッシュ部23の塑性変形を抑制することはできない。図13において、少なくとも移送時における温度150℃以上から運転中での温度343℃の温度領域においてヤング率196GPa以上となる構成材料であれば、構成材料として採用できる。
 これまでは、移送用容器の垂直落下時におけるSiC/SiC複合材を基材とする燃料被覆管31の破損防止を可能とするメッシュ部23の構成について説明した。以下では、移送用容器が水平落下する場合を想定し説明する。
 図14に燃料棒を束ねる燃料支持格子15の配置数と、水平落下時における落下加速度と応力の関係を示す。全長約4mの全長燃料棒13の長手方向に所定の間隔にて7個の燃料支持格子15を配置した場合と、11個の燃料支持格子15を配置した場合のそれぞれにおける燃料集合体幅方向加速度と応力の関係を示している。ここでは、水平落下時に隣接する燃料支持格子15間の中央位置に最大の曲げ応力が発生することを想定している。また、SiC/SiC複合材を基材とする燃料被覆管31のき裂発生応力は100MPaとしている。0.3mの高さからの水平落下時における燃料集合体幅方向加速度は20G、9mの高さからの水平落下時における加速度は60Gとなる。加速度20Gの場合は、燃料支持格子15に配置数が7個及び11個のいずれの場合においても100MPa以下の範囲であるものの、加速度60Gでは燃料支持格子15の配置数7個では100MPaを超え燃料被覆管31にき裂が発生する可能性がある。一方、燃料支持格子15の配置数11個では100MPa未満となり、水平落下による燃料被覆管31へのき裂発生を抑制することができる。このことから、少なくとも、軸方向に11個の燃料支持格子15を配置すれば、水平落下時における燃料被覆管31へのき裂発生を防止できる。
 また、以上のとおり、本実施形態では、メッシュ部の中実率と高さの相関が垂直落下時における室温耐力が490MPa以上の構成材料を用いることで、メッシュ部の変形が抑制される。これにより、SiC/SiC複合材を基材とする燃料被覆管31に発生する曲げ応力が低減され、燃料棒が破損する可能性を大幅に低減できる。
 また、更に、室温ヤング率を196GPa以上の構成材料とすることで燃料棒が破損する可能性を低減できる。
 更に、また、メッシュ部の軸方向高さを15mm以上とすることで、メッシュ部の剛性を高くでき、燃料棒が破損する可能性を低減できる。なお、下部タイプレートにおいて、メッシュ部と異物フィルタとを接続又は一体化することにより、異物フィルタと合わせた高さを15mmより大きくすることによって、高さ方向の寸法を大きく変更しないで、剛性を高めることができる。メッシュ部を、異物フィルタ部とともに、ノズル部に溶接して組み立てることにより、材質の異なる各部をメッシュ部と異物フィルタとを接続又は一体化することができる。
 また、燃料集合体において、燃料被覆管を束ねて支持する燃料支持格子の軸方向の配置間隔を小さくし、約4mの燃料棒長さに対して支持格子数を11個以上とすることで、落下時における個々の燃料棒の動揺を一体化できるとともに、燃料集合体を横に倒した状態で落下した場合(水平落下時)に生じる曲げ応力を抑制し、燃料棒が破損する可能性を大幅に低減できる。
 上述の上部タイプレート又は下部タイプレートのメッシュ部は、メッシュ部横断面における孔の面積率を小さくしなくてよいので、運転中は燃料棒を冷却するための冷却水を十分に通過させることができる。なお、上記孔の面積率は上述のメッシュ部の中実率の逆数となる。
 以下、本発明の実施例について図面を用いて説明する。
 以下では、上述の本発明の実施形態における上部プレート又は下部タイプレートのメッシュ部の構成材料として適用可能な材料について説明する。
 図15に示すように、析出硬化型のステンレス鋳鋼として、SCS24、SCS31、SCS32及びSCS33、ニッケル基合金として、NCF625、NCF718及びNCF750を、上部タイプレート11または下部タイプレート12にメッシュ部23に用いた。
 図16に図15に示す構成材料の熱処理条件と室温の材料特性を示す。図16に示すように、SCS24は、室温耐力702MPaであり、また、室温ヤング率は196GPaであり上述の条件を満たす材料である。
 SCS31は、室温耐力596MPa、室温ヤング率196GPa、SCS32は、室温耐力520MPa、室温ヤング率196GPa、SCS33は室温耐力530MPa、室温ヤング率196GPaであり、いずれも上述の条件を満たしている。
 また、ニッケル基合金であるNCF625は、室温耐力520MPa、室温ヤング率207GPa、NCF718は、室温1065MPa、室温ヤング率200GPa、また、NCF750は、室温耐力680MPa、室温ヤング率214GPaであり、いずれも上述の条件を満たしている。
 図15に示す析出硬化型のステンレス鋳鋼あるいはニッケル基合金であるNCF718を用いる場合は、下部タイプレートを鋳造により一体成形で製造することが可能である。また、板材や圧延材を用いる場合は、機械加工によりメッシュ部23を成形する。そのメッシュ部23に、SCS13、SCS13a、SCS14、SCS14a等の耐力が200MPa程度のステンレス鋳鋼によって作製したハンドル18、また、下部タイプレート12のノズル部21及び周囲側壁24に、異物フィルタ27を加えて、締結、又は溶接することで、上部タイプレート11及び下部タイプレート12を作製した。この場合、メッシュ部23に対して、落下による荷重によりハンドル18又はノズル部21が先立って変形するため、緩衝構造を呈する。
 垂直落下時にかかる荷重は下部タイプレート側に落下した場合が大きい。そこで、下部タイプレート側に落下した場合に、メッシュ部23を塑性変形させないメッシュ部の見かけのヤング率とメッシュ部23の高さとの関係について、上述の図10に示す範囲とした。従来のメッシュ部では、垂直落下加速度が大きくなると塑性変形が生じ、変形が大きくなるが、本実施例のメッシュ部23では垂直落下加速度70Gまで塑性変形を生じさせない。すなわち、塑性変形を抑制できる。その結果、メッシュ部23の変形は弾性変形のみとなり、垂直落下時に発生する応力をSiC/SiC複合材を基材とする燃料被覆管31の許容応力(100~200 MPa)内に抑制し、燃料棒13が破損する可能性を大幅に低減できた。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。
10…燃料集合体、11…上部タイプレート、12…下部タイプレート、13…燃料棒、14…ウォータロッド、15…燃料支持格子、16…チャンネルボックス、17…部分長燃料棒、18…ハンドル、20…冷却水入口、21…ノズル部、22…出口開口、23…メッシュ部、24…周囲側壁、25…冷却水受入室、26…孔、27…異物フィルタ、28…開口、31…燃料被覆管、32…燃料ペレット、33…プレナムスプリング、34、43…端栓、41…中空管、42…領域

Claims (7)

  1.  燃料ペレットを収容する複数の燃料棒を、角筒状のチャンネルボックス内に格子状に配列し、前記複数の燃料棒の上下端部をそれぞれ上部タイプレート及び下部タイプレートにて支持してなる燃料集合体であって、
     前記燃料棒を構成する燃料被覆管は低強度材料で構成され、
     前記下部タイプレートに形成され冷却水を通流可能とする複数の開口を備えたメッシュ部を、室温耐力が490MPa以上の構成材料で形成し、且つ、前記メッシュ部の軸方向高さが15mm以上とすることを特徴とする燃料集合体。
  2.  請求項1に記載の燃料集合体において、
     前記メッシュ部を形成する構成材料は、室温ヤング率が196GPa以上の材料であることを特徴とする燃料集合体。
  3.  請求項1または請求項2に記載の燃料集合体において、
     前記燃料被覆管は、SiC複合材を基材として形成されることを特徴とする燃料集合体。
  4.  請求項1または請求項2に記載の燃料集合体において、
     前記メッシュ部の下面に、前記複数の開口よりも口径が小さい複数の孔を有する異物フィルタを備え、
     前記異物フィルタの下面から前記メッシュ部の上面までの軸方向高さが15mm以上であることを特徴とする燃料集合体。
  5.  請求項3に記載の燃料集合体において、
     前記メッシュ部は、析出硬化型のステンレス鋼又はニッケル基合金にて形成されることを特徴とする燃料集合体。
  6.  請求項5に記載の燃料集合体において、
     前記メッシュ部は、SCS24、SCS31、SCS32、SCS33、NCF625、NCF718及びNCFG750のうちいずれかにより形成されることを特徴とする燃料集合体。
  7.  請求項1または請求項2に記載の燃料集合体において、
     前記燃料棒の軸方向に所定の間隔で配置され、前記複数の燃料棒を束ねる燃料支持格子を備え、
     前記燃料支持格子の軸方向配置数を11個以上とすることを特徴とする燃料集合体。
PCT/JP2014/054608 2014-02-26 2014-02-26 燃料集合体 WO2015128950A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054608 WO2015128950A1 (ja) 2014-02-26 2014-02-26 燃料集合体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054608 WO2015128950A1 (ja) 2014-02-26 2014-02-26 燃料集合体

Publications (1)

Publication Number Publication Date
WO2015128950A1 true WO2015128950A1 (ja) 2015-09-03

Family

ID=54008322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054608 WO2015128950A1 (ja) 2014-02-26 2014-02-26 燃料集合体

Country Status (1)

Country Link
WO (1) WO2015128950A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223478A (ja) * 2016-06-14 2017-12-21 株式会社グローバル・ニュークリア・フュエル・ジャパン 燃料棒および燃料集合体
JP2019527337A (ja) * 2016-06-21 2019-09-26 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Zr合金ライナーを施したSiC複合材燃料被覆管の製造方法
CN113424272A (zh) * 2018-11-20 2021-09-21 西屋电气有限责任公司 进行涂层和表面改性以使在轻水反应器运行期间的SiC包壳降损

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384495A (ja) * 1989-08-29 1991-04-10 Nuclear Fuel Ind Ltd 燃料集合体
JP2008501977A (ja) * 2004-06-07 2008-01-24 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 原子力発電所における燃料格納容器障壁等に使用される多層セラミックチューブ
JP2009210266A (ja) * 2008-02-29 2009-09-17 Ibiden Co Ltd 管状体
JP2009282048A (ja) * 2009-09-01 2009-12-03 Global Nuclear Fuel-Japan Co Ltd 燃料集合体の下部タイプレート及び燃料集合体
JP4755121B2 (ja) * 2006-02-16 2011-08-24 シーオーアイ・セラミックス・インコーポレーテッド 原子力用途のための炭化ケイ素材料、前駆体及びその形成方法、及び材料を含む構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384495A (ja) * 1989-08-29 1991-04-10 Nuclear Fuel Ind Ltd 燃料集合体
JP2008501977A (ja) * 2004-06-07 2008-01-24 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 原子力発電所における燃料格納容器障壁等に使用される多層セラミックチューブ
JP4755121B2 (ja) * 2006-02-16 2011-08-24 シーオーアイ・セラミックス・インコーポレーテッド 原子力用途のための炭化ケイ素材料、前駆体及びその形成方法、及び材料を含む構造
JP2009210266A (ja) * 2008-02-29 2009-09-17 Ibiden Co Ltd 管状体
JP2009282048A (ja) * 2009-09-01 2009-12-03 Global Nuclear Fuel-Japan Co Ltd 燃料集合体の下部タイプレート及び燃料集合体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223478A (ja) * 2016-06-14 2017-12-21 株式会社グローバル・ニュークリア・フュエル・ジャパン 燃料棒および燃料集合体
JP2019527337A (ja) * 2016-06-21 2019-09-26 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Zr合金ライナーを施したSiC複合材燃料被覆管の製造方法
CN113424272A (zh) * 2018-11-20 2021-09-21 西屋电气有限责任公司 进行涂层和表面改性以使在轻水反应器运行期间的SiC包壳降损
JP2022508196A (ja) * 2018-11-20 2022-01-19 ウェスティングハウス エレクトリック カンパニー エルエルシー 軽水炉運転中のSiC被覆管を沈静化させるための被膜及び表面改質
JP7367020B2 (ja) 2018-11-20 2023-10-23 ウェスティングハウス エレクトリック カンパニー エルエルシー 軽水炉運転中のSiC被覆管を沈静化させるための被膜及び表面改質

Similar Documents

Publication Publication Date Title
JP4865789B2 (ja) リサイクル燃料集合体収納用バスケット及びリサイクル燃料集合体収納容器
JPS63285497A (ja) 使用済核燃料輸送用キャスク
EP3010024A1 (en) Tubular body and method for manufacturing tubular body
JP4638537B2 (ja) 燃料集合体の衝撃吸収装置及び燃料集合体収納容器
WO2015128950A1 (ja) 燃料集合体
JP2012194120A (ja) 炉心溶融物の保持装置
JP6666072B2 (ja) 燃料棒および燃料集合体
JP2019158398A (ja) 使用済み燃料収納容器
JP2011033499A (ja) 燃料集合体収納容器
JPH0836095A (ja) 原子燃料体運搬用燃料収納容器
JP6498989B2 (ja) コアキャッチャ及びそれを備えた原子炉
CN108140435B (zh) 其壳配有刚度提高的隔离板片的钠冷快堆型核反应堆的组件
JP6382685B2 (ja) 高速炉用燃料要素、高速炉用燃料集合体および高速炉炉心
JP6933593B2 (ja) 使用済核燃料の支持構造物、支持構造物の製造方法及び使用済核燃料容器
KR101527558B1 (ko) 방사성폐기물 운반 및 저장 용기
JP6073555B2 (ja) 初装荷炉心
TWI820584B (zh) 通道盒以及燃料集合體
JP6691000B2 (ja) 燃料棒および燃料集合体
JP5986802B2 (ja) 沸騰水型原子炉用の燃料集合体
KR102299271B1 (ko) 손상 저항성 핵연료
JP7506041B2 (ja) 放射性物質収納容器の緩衝体
JP3154950B2 (ja) 沸騰水型原子炉用燃料体の輸送方法
RU2252458C1 (ru) Тепловыделяющая сборка ядерного реактора
JP4397020B2 (ja) 沸騰水型原子炉用燃料集合体
JP2013217762A (ja) 核燃料要素および燃料集合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP