WO2015127610A1 - 一种功率放大的方法及功率放大器 - Google Patents

一种功率放大的方法及功率放大器 Download PDF

Info

Publication number
WO2015127610A1
WO2015127610A1 PCT/CN2014/072584 CN2014072584W WO2015127610A1 WO 2015127610 A1 WO2015127610 A1 WO 2015127610A1 CN 2014072584 W CN2014072584 W CN 2014072584W WO 2015127610 A1 WO2015127610 A1 WO 2015127610A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
power
order filter
power transistor
matching network
Prior art date
Application number
PCT/CN2014/072584
Other languages
English (en)
French (fr)
Inventor
庞竞舟
王彦辉
王强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480054428.2A priority Critical patent/CN105637759A/zh
Priority to PCT/CN2014/072584 priority patent/WO2015127610A1/zh
Publication of WO2015127610A1 publication Critical patent/WO2015127610A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a power amplification method and a power amplifier.
  • Dohe rty technology is one of the main technologies to improve the efficiency of RF power amplifiers.
  • Doherty power amplifiers can be used in the entire retreat area due to their certain power peak-to-average ratio. Achieve higher efficiency, so it is suitable as the final stage power amplifier in the base station to improve the average efficiency of the power amplifier.
  • the Dohe rty power amplifier generally includes a power splitter, a carrier power transistor, a peak power transistor, a first output matching network, a second output matching network, and a power synthesis network
  • the power synthesis network includes a first impedance converter and a second impedance converter
  • the power splitter is respectively connected to the input end of the carrier power transistor and the peak power transistor, and an output end of the carrier power transistor is connected to an input end of the first output matching network
  • the first An output of the output matching network is coupled to an input of the second impedance converter via a first impedance converter
  • an output of the peak power transistor being coupled to an input of the second output matching network
  • the second output matching an output of the network Connected to the input end of the second impedance converter, the output of the second impedance converter outputs a signal to the load
  • the first impedance converter and the second impedance converter use a quarter-wavelength transmission line .
  • the quarter-wavelength transmission line can be used as an impedance converter only at a specific operating frequency, that is, the parameter of the quarter-wavelength transmission line as an impedance converter is fixed, so the matching bandwidth cannot be at design time.
  • Making adjustments, thus limiting the bandwidth of the Doherty power amplifier in addition, since the first output matching network and the second output matching network are close to the amplifier, and the power combining network is close to the load, thus, in the first output matching network and the second When the load of the output matching network changes, the Doherty power amplifier cannot follow the trend of its load over the entire matching bandwidth. Therefore, it also limits the working bandwidth of the traditional Doherty power amplifier.
  • Embodiments of the present invention provide a method of power amplification and a power amplifier to increase the operating bandwidth of a power amplifier.
  • a power amplifier including: a power divider, a carrier power transistor, a peak power transistor, a first low order filter and a second low order filter, and an impedance matching network, wherein the power splitter is respectively connected to the carrier An input end of the power transistor and the peak power transistor, an output end of the carrier power transistor is connected to an input end of the first low-order filter, and an input end of the peak power transistor is connected to the second low-order filter, the first An output of a low-order filter is coupled to an input of the impedance matching network, an output of the second low-order filter is coupled to an input of the impedance matching network, and a load is coupled to an output of the impedance matching network;
  • the first low-order filter and the second low-order filter are respectively used to perform matching with the impedance of the input end of the impedance matching network by impedance transformation;
  • the impedance matching network is configured to match the impedance of the impedance matching network input to the characteristic impedance of the load.
  • the power amplifier further includes: a compensation line, wherein an output end of the second low-order filter passes through the compensation line and an input end of the impedance matching network Connected
  • the compensation line is configured to adjust the electrical length of the compensation line to completely output the output power of the carrier power transistor to the load when the peak power transistor is not turned on.
  • the first low order filter and the second low order filter comprise a second order low pass filter, a second order high pass filter or a second order band pass filter.
  • a method of power amplification including:
  • the split input signal is respectively input to the carrier power transistor and the peak power transistor through the power splitter;
  • the synthesized signal is transmitted to the load through the impedance matching network.
  • the first low order filter and the second low order filter comprise a second order low pass filter, a second order high pass filter or a second order band pass filter.
  • a base station comprising the power amplifier described in the first aspect.
  • Embodiments of the present invention provide a power amplification method and a power amplifier, the power amplifier including: a power divider, a carrier power transistor, a peak power transistor, a first low order filter and a second low order filter, and an impedance matching network.
  • the power splitter is respectively connected to the carrier power transistor and the input end of the peak power transistor, and the output end of the carrier power transistor is connected to the input end of the first low-order filter, and the input end of the peak power transistor and the second a low-order filter connection, an output of the first low-order filter is coupled to an input of the impedance matching network, and an output of the second low-order filter is coupled to an input of the impedance matching network to match the impedance
  • the output of the network is connected to the load.
  • the low-order filter and the second low-order filter are respectively placed close to the carrier amplifier and the peak is placed Is, the impedance matching network is provided close to the load, so that the power amplifier can follow to circumvent the conventional power amplifier matching network change of load matching bandwidth in the whole, to further improve the operating bandwidth of the power amplifier.
  • FIG. 1 is a schematic structural diagram of a power amplifier according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another power amplifier according to an embodiment of the present invention
  • FIG. 3b is a schematic diagram of a power amplifier of the present invention provided by an embodiment of the present invention Impedance characteristic curve;
  • FIG. 4 is a diagram showing changes in power additional efficiency of a power amplifier with a backoff amount in an operating frequency according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a method for power amplification according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • An embodiment of the present invention provides a power amplifier, as shown in FIG. 1, including: a power splitter 11, a carrier power transistor 12, a peak power transistor 13, a first low order filter 14 and a second low order filter 15, and an impedance.
  • a matching network 16 the power splitter 11 is connected to the input end of the carrier power transistor 12 and the peak power transistor 13 respectively, and the output end of the carrier power transistor 12 is connected to the input end of the first low-order filter 14 , the peak An input of the power transistor 13 is connected to the second low-order filter 15, and an output of the first low-order filter 14 is connected to an input of the impedance matching network 16, and an output of the second low-order filter 15 Connected to the input of the impedance matching network 16, and connected to the output of the impedance matching network 16.
  • the first low-order filter 14 and the second low-order filter 15 are respectively used to perform matching with the impedance of the input end of the impedance matching network 16 by impedance transformation.
  • the impedance matching network 16 is used to complete the matching of the impedance of the input of the impedance matching network 16 with the characteristic impedance of the load.
  • the characteristic impedance of the load can be 50 ohms.
  • the junction of the output of the first low-order filter and the output of the second low-order filter is referred to as a power combining point, and the power amplifier performs load modulation at the power combining point.
  • the peak power transistor is not turned on, the carrier The power transistor is turned on.
  • the impedance of the power combining point is R
  • the impedance of the output of the first low-order filter is also R
  • the impedance matching network completes the broadband matching of the characteristic impedance of the load and R.
  • the peak power transistor turns on and the carrier power transistor is saturated.
  • the impedance of the power combining point is R
  • the impedance presented at the input of the first low-order filter and the impedance exhibited by the output of the second low-order filter become 2 R
  • the first low-order filter is Inverse impedance transformation is implemented in a wide working bandwidth, so that the impedance of the input end of the first low-order filter (ie, the transistor end face of the carrier power transistor) becomes smaller, the output power of the carrier power transistor is expanded, and the second low-order filter is passed.
  • the matching of the input end of the second low-order filter ie, the transistor end face of the peak power transistor
  • the impedance of the power combining point is matched with the characteristic impedance of the load through the impedance matching network.
  • the peak power transistor when the peak power transistor is not conducting, its output should be an open circuit, but the impedance actually seen by the carrier power transistor is a low impedance, which causes a part of the output power of the carrier power transistor to leak. To the branch of the peak power transistor, this greatly deteriorates the gain and efficiency of the power amplifier.
  • the power amplifier further includes: a compensation line 17, wherein an output end of the second low-order filter is connected to an input end of the impedance matching network through the compensation line;
  • the compensation line 17 is used to adjust the electrical length of the compensation line to completely output the output power of the carrier power transistor to the load when the peak power transistor is not turned on.
  • the compensation line is approximately open, thereby preventing the power of the carrier power transistor from leaking to the branch where the peak power transistor is located.
  • the first low order filter and the second low order filter comprise a second order low pass filter, a second order high pass filter or a second order band pass filter.
  • the power amplifier in the embodiment of the present invention may be a Doherty power amplification crying port.
  • Figure 3a provides a schematic diagram of the impedance characteristic of a conventional power amplifier
  • Figure 3b provides a schematic diagram of the impedance characteristic of the power amplifier of the present invention, as shown in Figures 3a and 3b
  • the abscissa indicates The operating frequency of the power amplifier (in GHz)
  • the ordinate indicates the impedance (in ohms) at the input of the first low-order filter
  • the A line in the figure is the impedance characteristic when the impedance of the power combining point is 18 ohms.
  • the B line in the figure is the impedance characteristic curve when the impedance of the power combining point is 36 ohms; it can be clearly seen by comparing Fig. 3a and Fig. 3b that the monotonic characteristics of the A and B lines in Fig. 3b are more obvious, then the power is The bandwidth of the amplifier is significantly expanded.
  • Figure 4 provides a schematic diagram of the power efficiency of the power amplifier in the wideband in the present invention.
  • the abscissa indicates the operating frequency (in GHz) of the power amplifier, and the ordinate indicates the power added efficiency ( % )
  • the line A in the figure indicates the efficiency of the saturation point (ie, the carrier power transistor and the peak power transistor are saturated).
  • the B line in the figure indicates the efficiency when the power is backed off by 3 db.
  • the line C in the figure indicates the efficiency when the power is backed off by 8 db.
  • the power added efficiency can reach more than 38%, thus ensuring a higher power retraction. Power added efficiency.
  • the power amplifier in the embodiment of the present invention can improve the operating bandwidth of the power amplifier by replacing the conventional quarter-wavelength transmission line with a low-order filter, and further, the first low-order filter and the second low-order
  • the filters are placed close to the carrier amplifier and the peak amplifier respectively, and the impedance matching network is placed close to the load, so that the power amplifier avoids the variation trend of the conventional power amplifier that cannot follow the load of the matching network in the entire matching bandwidth, further improving the power amplifier.
  • the embodiment of the present invention further provides a method for power amplification, as shown in FIG. 5, in the embodiment of the present invention, the power amplifier may be a Doherty power amplifier, and the method Includes:
  • the power amplifier respectively inputs the shunt input signal into the carrier power transistor and the peak power transistor through the power splitter.
  • the power amplifier inputs the amplified signal to the first low-order filter through the carrier power transistor; and inputs the amplified signal by using the peak power transistor. To the second low-order filter.
  • the power amplifier combines the signals output by the first low-order filter and the second low-order filter, and transmits the synthesized signal to an impedance matching network.
  • connection between the output end of the first low-order filter of the power amplifier and the output end of the second low-order filter is referred to as a power synthesis point, and the power amplifier is completed at the power synthesis point.
  • Load modulation is referred to as a power synthesis point
  • the power amplifier transmits the synthesized signal to the load through the impedance matching network.
  • the peak power transistor in the power amplifier is not turned on, and the carrier power transistor is turned on.
  • the impedance of the power combining point is R
  • the first low order filter of the power amplifier is The output presents an impedance of R, which is matched by the impedance matching network to the broadband impedance of the characteristic impedance of the load.
  • the peak power transistor in the power amplifier is turned on, and the carrier power transistor is in a saturated state.
  • the impedance of the power combining point is R
  • the impedance presented by the input of the first low-order filter of the power amplifier and the impedance of the output of the second low-order filter become 2 R
  • the filter implements an inverse impedance transform over a wide operating bandwidth such that the impedance of the input of the first low-order filter (ie, the transistor end face of the carrier power transistor) becomes smaller, the output power of the carrier power transistor is expanded, and the second pass
  • the low-order filter completes the matching of the peak power transistors, and finally the impedance of the power combining point is matched with the characteristic impedance of the load through the impedance matching network.
  • the peak power transistor in the power amplifier when the peak power transistor in the power amplifier is not conducting, its output should be open, but the impedance actually seen by the carrier power transistor is a low impedance, which leads to the output of the carrier power transistor. Some of the power will leak to the branch of the peak power transistor, which will greatly deteriorate the gain and efficiency of the power amplifier.
  • the output power of the carrier power transistor can be completely output to the load by adjusting the electrical length of the compensation line of the power amplifier.
  • the compensation line is approximately open, thereby preventing the power of the carrier power transistor from leaking to the branch where the peak power transistor is located.
  • the first low-order filter and the second low-order filter of the power amplifier include a second-order low-pass filter, a second-order high-pass filter, or a second-order band-pass filter.
  • the operating bandwidth of the power amplifier can be improved, and the power amplifier can avoid the variation trend of the load of the matching network in the entire matching bandwidth by the conventional power amplifier, thereby further improving the operating bandwidth of the power amplifier.
  • an embodiment of the present invention provides a base station.
  • the base station includes the power amplifier described in the foregoing embodiments corresponding to FIG. 1 and FIG.
  • the power amplifier can be a D ohe r t y power amplifier.

Abstract

一种功率放大的方法及功率放大器,涉及无线通信技术领域,以提高功率放大器的工作带宽,该功率放大器包括:功分器、载波功率晶体管、峰值功率晶体管、第一低阶滤波器和第二低阶滤波器以及阻抗匹配网络,该功分器分别连接该载波功率晶体管和该峰值功率晶体管的输入端,该载波功率晶体管的输出端与该第一低阶滤波器的输入端连接,该峰值功率晶体管的输入端与该第二低阶滤波器连接,该第一低阶滤波器的输出端与该阻抗匹配网络的输入端连接,该第二低阶滤波器的输出端与该阻抗匹配网络的输入端连接,与该阻抗匹配网络的输出端连接负载,该功率放大器用于输入信号的功率放大。

Description

一种功率放大的方法及功率放大器
技术领域
本发明涉及无线通信技术领域, 尤其涉及一种功率放大的方法 及功率放大器。
背景技术
多赫蒂 ( Dohe r t y )技术是目前提高射频功率放大器效率的主要 技术之一, 特别是针对未来无线通信信号, 由于其具有一定的功率 峰均比, Dohe r t y功率放大器在整个回退区内能够实现较高的效率, 因此适合作为基站中的末级功率放大器, 来提高功放的平均效率。
现有技术中, Dohe r t y 功率放大器一般包括功分器、 载波功率 晶体管、 峰值功率晶体管、 第一输出匹配网络、 第二输出匹配网络 和功率合成网络, 该功率合成网络包括第一阻抗变换器以及第二阻 抗变换器, 其中, 所述功分器分别连接所述载波功率晶体管和所述 峰值功率晶体管的输入端, 该载波功率晶体管的输出端连接第一输 出匹配网络的输入端, 该第一输出匹配网络的输出端通过第一阻抗 变换器连接至第二阻抗变换器的输入端, 该峰值功率晶体管的输出 端连接该第二输出匹配网络的输入端, 该第二输出匹配网络的输出 端连接至第二阻抗变换器的输入端, 该第二阻抗变换器的输出端输 出信号至负载, 需要说明的是, 该第一阻抗变换器和第二阻抗变换 器釆用四分之一波长传输线。
但是, 由于四分之一波长传输线只有在特定的工作频率下才可 以作为阻抗变换器使用, 即该四分之一波长传输线作为阻抗变换器 时的参数是固定的, 故匹配带宽无法在设计时作出调整, 因此限制 了该 Dohe r t y 功率放大器的带宽, 另外, 由于第一输出匹配网络和 第二输出匹配网络靠近放大器, 而功率合成网络靠近负载, 这样, 在上述第一输出匹配网络和第二输出匹配网络的负载发生变化时, Dohe r t y功率放大器不能在整个匹配带宽内跟随其负载的变化趋势, 故也会限制传统 Dohe r t y功率放大器的工作带宽。
发明内容
本发明的实施例提供一种功率放大的方法及功率放大器, 以提 高功率放大器的工作带宽。
第一方面, 提供一种功率放大器, 包括: 功分器、 载波功率晶 体管、 峰值功率晶体管、 第一低阶滤波器和第二低阶滤波器以及阻 抗匹配网络, 该功分器分别连接该载波功率晶体管和该峰值功率晶 体管的输入端, 该载波功率晶体管的输出端与该第一低阶滤波器的 输入端连接, 该峰值功率晶体管的输入端与该第二低阶滤波器连接, 该第一低阶滤波器的输出端与该阻抗匹配网络的输入端连接, 该第 二低阶滤波器的输出端与该阻抗匹配网络的输入端连接, 与该阻抗 匹配网络的输出端连接负载; 其中, 该第一低阶滤波器和该第二低 阶滤波器, 分别用于通过阻抗变换完成与该阻抗匹配网络输入端的 阻抗的匹配;
该阻抗匹配网络, 用于完成该阻抗匹配网络输入端的阻抗与该 负载的特性阻抗的匹配。
在第一方面第一种可能的实现方式中, 所述功率放大器还包括: 补偿线, 其中, 所述第二低阶滤波器的输出端通过所述补偿线与所 述阻抗匹配网络的输入端相连;
所述补偿线用于, 在所述峰值功率晶体管未开启时, 通过调整 所述补偿线的电长度, 使得所述载波功率晶体管的输出功率完全输 出至负载。
结合第一方面或第一种可能的实现方式, 所述第一低阶滤波器 和第二低阶滤波器包括二阶低通滤波器、 二阶高通滤波器或者二阶 带通滤波器。
第二方面, 提供一种功率放大的方法, 包括:
通过功分器分别将分路后的输入信号输入载波功率晶体管和峰 值功率晶体管;
通过所述载波功率晶体管将放大后的信号输入至第一低阶滤波 器; 通过所述峰值功率晶体管将放大后的信号输入至第二低阶滤波 器;
将所述第一低阶滤波器和所述第二低阶滤波器输出的信号进行 合成, 并将合成后的信号传输至阻抗匹配网络;
通过所述阻抗匹配网络将所述合成后的信号传输至负载。
在第二方面第一种可能的实现方式中, 所述第一低阶滤波器和 第二低阶滤波器包括二阶低通滤波器、 二阶高通滤波器或者二阶带 通滤波器。
第三方面, 提供一种基站, 包括第一方面描述的功率放大器。 本发明实施例提供一种功率放大的方法及功率放大器, 该功率 放大器包括: 功分器、 载波功率晶体管、 峰值功率晶体管、 第一低 阶滤波器和第二低阶滤波器以及阻抗匹配网络, 该功分器分别连接 该载波功率晶体管和该峰值功率晶体管的输入端, 该载波功率晶体 管的输出端与该第一低阶滤波器的输入端连接, 该峰值功率晶体管 的输入端与该第二低阶滤波器连接, 该第一低阶滤波器的输出端与 该阻抗匹配网络的输入端连接, 该第二低阶滤波器的输出端与该阻 抗匹配网络的输入端连接, 与该阻抗匹配网络的输出端连接负载, 这样, 由于低阶滤波器不限定工作频率, 因此通过釆用低阶滤波器 替换传统的四分之一波长传输线, 能够提高功率放大器的工作带宽, 另外, 将第一低阶滤波器和第二低阶滤波器分别设置在靠近载波放 大器和峰值放大器, 将阻抗匹配网络设置在靠近负载, 从而使得功 率放大器规避传统功率放大器不能在整个匹配带宽内跟随匹配网络 的负载的变化趋势, 进一步提高了该功率放大器的工作带宽。
附图说明
图 1 为本发明实施例提供的一种功率放大器的结构示意图; 图 2为本发明实施例提供的另一种功率放大器的结构示意图; 图 3 a 为本发明实施例提供的一种釆用传统功率放大器的阻抗 特性曲线图;
图 3 b 为为本发明实施例提供的一种釆用本发明功率放大器的 阻抗特性曲线图;
图 4 为本发明实施例提供的一种功率放大器在工作频率内功率 附加效率随回退量的变化图;
图 5为本发明实施例提供的一种功率放大的方法示意图; 图 6为本发明实施例提供的一种基站的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明实施例提供一种功率放大器, 如图 1 所示, 包括: 功分 器 11、 载波功率晶体管 12、 峰值功率晶体管 13、 第一低阶滤波器 14和第二低阶滤波器 15 以及阻抗匹配网络 16, 该功分器 11分别连 接该载波功率晶体管 12 和该峰值功率晶体管 13 的输入端, 该载波 功率晶体管 12 的输出端与该第一低阶滤波器 14 的输入端连接, 该 峰值功率晶体管 13 的输入端与该第二低阶滤波器 15 连接, 该第一 低阶滤波器 14 的输出端与该阻抗匹配网络 16 的输入端连接, 该第 二低阶滤波器 15 的输出端与该阻抗匹配网络 16 的输入端连接, 与 该阻抗匹配网络 16 的输出端连接负载。
其中, 该第一低阶滤波器 14 和该第二低阶滤波器 15, 分别用 于通过阻抗变换完成与该阻抗匹配网络 16输入端的阻抗的匹配。
该阻抗匹配网络 16, 用于完成该阻抗匹配网络 16 输入端的阻 抗与该负载的特性阻抗的匹配。
其中, 负载的特性阻抗可以为 50欧姆。
在本发明实施例中, 将第一低阶滤波器的输出端和该第二低阶 滤波器的输出端的连接处称为功率合成点, 该功率放大器在该功率 合成点处完成负载调制。
具体地, 在低功率信号输入时, 峰值功率晶体管不导通, 载波 功率晶体管开启, 此时, 若功率合成点的阻抗为 R , 则第一低阶滤 波器输出端呈现的阻抗也为 R , 阻抗匹配网络完成由负载的特性阻 抗与 R的宽带匹配。
在高功率信号输入时, 峰值功率晶体管导通, 载波功率晶体管 处于饱和状态。 此时, 若功率合成点的阻抗为 R , 则第一低阶滤波 器输入端呈现的阻抗和第二低阶滤波器输出端呈现的阻抗变为 2 R , 而第一低阶滤波器在较宽的工作带宽内实现阻抗逆变换, 使得第一 低阶滤波器的输入端 ( 即载波功率晶体管的晶体管端面 ) 呈现的阻 抗变小, 载波功率晶体管输出功率扩大, 并通过第二低阶滤波器完 成第二低阶滤波器的输入端 ( 即峰值功率晶体管的晶体管端面 ) 的 匹配, 最终通过阻抗匹配网络完成功率合成点的阻抗与负载的特性 阻抗的匹配。
需要说明的是, 峰值功率晶体管在不导通时, 其输出端应该表 现为开路, 但实际由载波功率晶体管看过去的阻抗为一个低阻抗, 这就导致载波功率晶体管的输出功率有一部分会泄露到峰值功率晶 体管的支路上, 这会极大的恶化功率放大器的增益和效率。
因此, 进一步地, 如图 2 所示, 该功率放大器还包括: 补偿线 1 7 , 其中, 该第二低阶滤波器的输出端通过该补偿线与该阻抗匹配 网络的输入端相连;
该补偿线 1 7用于, 在该峰值功率晶体管未开启时, 通过调整该 补偿线的电长度, 使得该载波功率晶体管的输出功率完全输出至负 载。
这样, 通过调整补偿线的电长度, 使该补偿线近似开路, 从而 防止载波功率晶体管的功率泄漏到峰值功率晶体管所在的支路上。
在本发明一种可能的实现方式中, 该第一低阶滤波器和第二低 阶滤波器包括二阶低通滤波器、 二阶高通滤波器或者二阶带通滤波 器。
另外, 本发明实施例中的功率放大器可以是 Dohe r t y 功率放大 哭口。 图 3a 提供了一种釆用传统的功率放大器的阻抗特性曲线示意 图, 图 3b提供了一种釆用本发明中功率放大器的阻抗特性曲线示意 图, 如图 3a和图 3b所示, 横坐标表示该功率放大器的工作频率(单 位为 GHz ), 纵坐标表示该第一低阶滤波器输入端的阻抗 (单位为欧 姆), 图中的 A线为功率合成点的阻抗为 18欧姆时的阻抗特性曲线 , 图中的 B线为功率合成点的阻抗为 36欧姆时的阻抗特性曲线; 通过 对比图 3a和图 3b可明显看出, 图 3b 中的 A线和 B线的单调特性更 加明显, 则该功率放大器的带宽明显扩展。
图 4 提供了一种釆用本发明中功率放大器在宽带内功率附加效 率的仿真示意图, 如图所示, 横坐标表示该功率放大器的工作频率 (单位为 GHz ), 纵坐标表示功率附加效率 (% ), 图中 A线表示饱和 点 ( 即载波功率晶体管和峰值功率晶体管饱和) 的效率, 图中 B 线 表示功率回退 3db时的效率, 图中 C线表示功率回退 8db时的效率, 由图中可以明显看出, 在 1. 7GHz-2. 7GHz 的工作频率内, 在输出功 率回退量大于 8dB 时, 功率附加效率能够达到 38%以上, 从而保证 了在功率回退时较高的功率附加效率。
因此, 本发明实施例中的功率放大器, 通过釆用低阶滤波器替 换传统的四分之一波长传输线, 能够提高功率放大器的工作带宽, 另外, 将第一低阶滤波器和第二低阶滤波器分别设置在靠近载波放 大器和峰值放大器, 将阻抗匹配网络设置在靠近负载, 从而使得功 率放大器规避传统功率放大器不能在整个匹配带宽内跟随匹配网络 的负载的变化趋势, 进一步提高了该功率放大器的工作带宽。
相应地, 针对上述实施例中描述的功率放大器, 本发明实施例 还提供一种功率放大的方法, 如图 5 所示, 在本发明实施例中, 该 功率放大器可以是 Doherty功率放大器, 该方法包括:
S501、 该功率放大器通过功分器分别将分路后的输入信号输入 载波功率晶体管和峰值功率晶体管。
S502、 该功率放大器通过该载波功率晶体管将放大后的信号输 入至第一低阶滤波器; 通过该峰值功率晶体管将放大后的信号输入 至第二低阶滤波器。
S 5 03、 该功率放大器将该第一低阶滤波器和该第二低阶滤波器 输出的信号进行合成, 并将合成后的信号传输至阻抗匹配网络。
在本发明实施例中, 将该功率放大器的第一低阶滤波器的输出 端和该第二低阶滤波器的输出端的连接处称为功率合成点, 该功率 放大器在该功率合成点处完成负载调制。
S 5 04、 该功率放大器通过该阻抗匹配网络将该合成后的信号传 输至负载。
具体地, 在低功率信号输入时, 该功率放大器中的峰值功率晶 体管不导通, 载波功率晶体管开启, 此时, 若功率合成点的阻抗为 R , 则该功率放大器的第一低阶滤波器输出端呈现的阻抗也为 R , 该 功率放大器通过阻抗匹配网络完成由负载的特性阻抗与 R 的宽带匹 配。
在高功率信号输入时, 该功率放大器中的峰值功率晶体管导通, 载波功率晶体管处于饱和状态。 此时, 若功率合成点的阻抗为 R , 则该功率放大器的第一低阶滤波器输入端呈现的阻抗和第二低阶滤 波器输出端呈现的阻抗变为 2 R , 而第一低阶滤波器在较宽的工作带 宽内实现阻抗逆变换, 使得第一低阶滤波器的输入端 ( 即载波功率 晶体管的晶体管端面 ) 呈现的阻抗变小, 载波功率晶体管输出功率 扩大, 并通过第二低阶滤波器完成峰值功率晶体管的匹配, 最终通 过阻抗匹配网络完成功率合成点的阻抗与负载的特性阻抗的匹配。
需要说明的是, 该功率放大器中的峰值功率晶体管在不导通时, 其输出端应该表现为开路, 但实际由载波功率晶体管看过去的阻抗 为一个低阻抗, 这就导致载波功率晶体管的输出功率有一部分会泄 露到峰值功率晶体管的支路上, 这会极大的恶化功率放大器的增益 和效率。
因此, 在本发明一种可能的实现方式中, 可以通过调整该功率 放大器的补偿线的电长度, 使得该载波功率晶体管的输出功率完全 输出至负载。 这样, 通过调整补偿线的电长度, 使该补偿线近似开路, 从而 防止载波功率晶体管的功率泄漏到峰值功率晶体管所在的支路上。
需要说明的是, 该功率放大器的第一低阶滤波器和第二低阶滤 波器包括二阶低通滤波器、 二阶高通滤波器或者二阶带通滤波器。
通过釆用上述方法, 能够提高功率放大器的工作带宽, 并使得 功率放大器规避传统功率放大器不能在整个匹配带宽内跟随匹配网 络的负载的变化趋势, 进一步提高了该功率放大器的工作带宽。
进一步地, 本发明实施例提供一种基站, 如图 6 所示, 该基站 包括上述图 1和图 2对应的实施例描述的功率放大器。
其中, 该功率放大器可以是 D ohe r t y功率放大器。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种功率放大器, 其特征在于, 包括: 功分器、 载波功率晶 体管、 峰值功率晶体管、 第一低阶滤波器和第二低阶滤波器以及阻抗 匹配网络, 所述功分器分别连接所述载波功率晶体管和所述峰值功率 晶体管的输入端, 所述载波功率晶体管的输出端与所述第一低阶滤波 器的输入端连接, 所述峰值功率晶体管的输入端与所述第二低阶滤波 器连接, 所述第一低阶滤波器的输出端与所述阻抗匹配网络的输入端 连接, 所述第二低阶滤波器的输出端与所述阻抗匹配网络的输入端连 接, 与所述阻抗匹配网络的输出端连接负载; 其中, 所述第一低阶滤 波器和所述第二低阶滤波器, 分别用于通过阻抗变换完成与所述阻抗 匹配网络输入端的阻抗的匹配;
所述阻抗匹配网络, 用于完成所述阻抗匹配网络输入端的阻抗与 所述负载的特性阻抗的匹配。
2、 根据权利要求 1 所述的功率放大器, 其特征在于, 所述功率 放大器还包括: 补偿线, 其中, 所述第二低阶滤波器的输出端通过所 述补偿线与所述阻抗匹配网络的输入端相连;
所述补偿线用于, 在所述峰值功率晶体管未开启时, 通过调整所 述补偿线的电长度, 使得所述载波功率晶体管的输出功率完全输出至 负载。
3、 根据权利要求 1 或 2 所述的功率放大器, 其特征在于, 所述 第一低阶滤波器和第二低阶滤波器包括二阶低通滤波器、 二阶高通滤 波器或者二阶带通滤波器。
4、 一种功率放大的方法, 其特征在于, 包括:
通过功分器分别将分路后的输入信号输入载波功率晶体管和峰 值功率晶体管;
通过所述载波功率晶体管将放大后的信号输入至第一低阶滤波 器; 通过所述峰值功率晶体管将放大后的信号输入至第二低阶滤波 器;
将所述第一低阶滤波器和所述第二低阶滤波器输出的信号进行 合成, 并将合成后的信号传输至阻抗匹配网络;
通过所述阻抗匹配网络将所述合成后的信号传输至负载。
5、 根据权利要求 4 所述的方法, 其特征在于, 所述第一低阶滤 波器和第二低阶滤波器包括二阶低通滤波器、二阶高通滤波器或者二 阶带通滤波器。
6、 一种基站, 其特征在于, 包括权利要求 1 至 3任一项所述的 功率放大器。
PCT/CN2014/072584 2014-02-26 2014-02-26 一种功率放大的方法及功率放大器 WO2015127610A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480054428.2A CN105637759A (zh) 2014-02-26 2014-02-26 一种功率放大的方法及功率放大器
PCT/CN2014/072584 WO2015127610A1 (zh) 2014-02-26 2014-02-26 一种功率放大的方法及功率放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072584 WO2015127610A1 (zh) 2014-02-26 2014-02-26 一种功率放大的方法及功率放大器

Publications (1)

Publication Number Publication Date
WO2015127610A1 true WO2015127610A1 (zh) 2015-09-03

Family

ID=54008130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072584 WO2015127610A1 (zh) 2014-02-26 2014-02-26 一种功率放大的方法及功率放大器

Country Status (2)

Country Link
CN (1) CN105637759A (zh)
WO (1) WO2015127610A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233483B2 (en) 2017-02-02 2022-01-25 Macom Technology Solutions Holdings, Inc. 90-degree lumped and distributed Doherty impedance inverter
CN110785927B (zh) * 2017-04-24 2024-03-08 麦克姆技术解决方案控股有限公司 效率提高的对称多尔蒂功率放大器
US11050389B2 (en) 2017-04-24 2021-06-29 Macom Technology Solutions Holdings, Inc. Inverted Doherty power amplifier with large RF and instantaneous bandwidths
US11283410B2 (en) 2017-10-02 2022-03-22 Macom Technology Solutions Holdings, Inc. No-load-modulation, high-efficiency power amplifier
CN109905092B (zh) * 2017-12-11 2022-02-25 华为技术有限公司 一种功率放大装置及信号处理方法
EP3861633A1 (en) 2018-10-05 2021-08-11 MACOM Technology Solutions Holdings, Inc. Low-load-modulation power amplifier
WO2021137951A1 (en) 2019-12-30 2021-07-08 Macom Technology Solutions Holdings, Inc. Low-load-modulation broadband amplifier

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231278A1 (en) * 2002-08-19 2005-10-20 Koninklijke Philips High power doherty amplifier
CN1820408A (zh) * 2003-06-13 2006-08-16 赛普拉有限公司 放大器阻抗匹配
CN1893259A (zh) * 2005-07-05 2007-01-10 株式会社日立制作所 功率放大器以及使用了该放大器的发射器
CN102332875A (zh) * 2011-08-11 2012-01-25 电子科技大学 一种宽带高效率Doherty功率放大器
CN102355198A (zh) * 2011-08-01 2012-02-15 深圳大学 多路非对称Doherty功率放大器
CN102694507A (zh) * 2011-03-01 2012-09-26 英飞凌科技股份有限公司 宽带多赫蒂放大器电路
CN103415993A (zh) * 2011-03-16 2013-11-27 科锐 增强型多尔蒂放大器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102801387A (zh) * 2012-09-13 2012-11-28 电子科技大学 一种双模双带高效率Doherty功率放大器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231278A1 (en) * 2002-08-19 2005-10-20 Koninklijke Philips High power doherty amplifier
CN1820408A (zh) * 2003-06-13 2006-08-16 赛普拉有限公司 放大器阻抗匹配
CN1893259A (zh) * 2005-07-05 2007-01-10 株式会社日立制作所 功率放大器以及使用了该放大器的发射器
CN102694507A (zh) * 2011-03-01 2012-09-26 英飞凌科技股份有限公司 宽带多赫蒂放大器电路
CN103415993A (zh) * 2011-03-16 2013-11-27 科锐 增强型多尔蒂放大器
CN102355198A (zh) * 2011-08-01 2012-02-15 深圳大学 多路非对称Doherty功率放大器
CN102332875A (zh) * 2011-08-11 2012-01-25 电子科技大学 一种宽带高效率Doherty功率放大器

Also Published As

Publication number Publication date
CN105637759A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2015127610A1 (zh) 一种功率放大的方法及功率放大器
KR102618439B1 (ko) 선형의 효율적인 광대역 전력 증폭기들에 관한 시스템들 및 방법들
WO2017008512A1 (zh) Doherty功放电路
US9698731B2 (en) Power amplifier, transceiver, and base station
WO2012079542A1 (zh) Doherty功率放大器
WO2015135267A1 (zh) 功放电路、功率放大装置及其宽带匹配方法
CN106374860A (zh) 一种基于电压合成结构的Doherty功率放大器
JP5958309B2 (ja) 無線通信装置、ドハティ増幅器及び無線通信装置の制御方法
WO2023045542A1 (zh) 应用于5g通信系统的射频功率放大器及射频前端架构
WO2023045544A1 (zh) 宽带Doherty功率放大器和实现方法
JP7009711B2 (ja) ドハティアンプ
JP2009182635A (ja) ドハティ増幅器
JP6904506B2 (ja) ドハティ型増幅器
JP5035846B2 (ja) ドハティ増幅回路
US11411540B2 (en) Power amplifier and radio frequency device comprising the same
Piazzon et al. A method for designing broadband Doherty power amplifiers
WO2022041286A1 (zh) 一种Doherty功率放大器、印刷电路板及基站
WO2015180064A1 (zh) 多赫蒂功率放大器和发射机
CN104270104A (zh) 一种采用apd技术的高互调功率放大器
WO2016149904A1 (zh) 功率放大设备
WO2012002407A1 (ja) 高周波電力増幅器
WO2023005458A1 (zh) 多尔蒂功率放大器及射频前端模块
JP6834094B2 (ja) ドハティ型増幅器
CN210327509U (zh) 一种新型的反向doherty放大器
CN107634724A (zh) 一种Doherty功率放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883997

Country of ref document: EP

Kind code of ref document: A1