WO2015125588A1 - Ito sputtering target material and method for producing same - Google Patents

Ito sputtering target material and method for producing same Download PDF

Info

Publication number
WO2015125588A1
WO2015125588A1 PCT/JP2015/052688 JP2015052688W WO2015125588A1 WO 2015125588 A1 WO2015125588 A1 WO 2015125588A1 JP 2015052688 W JP2015052688 W JP 2015052688W WO 2015125588 A1 WO2015125588 A1 WO 2015125588A1
Authority
WO
WIPO (PCT)
Prior art keywords
ito
sintered body
firing
powder
target material
Prior art date
Application number
PCT/JP2015/052688
Other languages
French (fr)
Japanese (ja)
Inventor
享祐 寺村
朋哉 武内
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN201580000974.2A priority Critical patent/CN105308002A/en
Priority to KR1020157033563A priority patent/KR101583693B1/en
Priority to JP2015526439A priority patent/JP5816394B1/en
Publication of WO2015125588A1 publication Critical patent/WO2015125588A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The present invention provides: an ITO sintered body which has an Sn content of 2.5-10.0% by mass in terms of SnO2, while comprising an In2O3 matrix and an In4Sn3O12 phase that is present at the grain boundary of the In2O3 matrix, and which has a relative density of 98.0% or more, an average grain size of the In2O3 matrix of 17 μm or less, and an area ratio of the In4Sn3O12 phase in a cross-section of the ITO sintered body of 0.4% or more; and an ITO sputtering target material which is formed of this ITO sintered body. An ITO sintered body according to the present invention is not susceptible to the occurrence of cracks or deformation during a processing step. An ITO sputtering target material according to the present invention is not susceptible to the occurrence of cracks or deformation during a step for bonding to a base. Consequently, the ITO sintered body and the ITO sputtering target material according to the present invention are able to improve production yield.

Description

ITOスパッタリングターゲット材およびその製造方法ITO sputtering target material and manufacturing method thereof
 本発明は、ITOスパッタリングターゲット材およびその製造方法に関する。 The present invention relates to an ITO sputtering target material and a manufacturing method thereof.
 回転式マグネトロンカソードスパッタリング装置は、円筒形ターゲットの内側に磁場発生装置を有し、ターゲットの内側から冷却しつつ、ターゲットを回転させながらスパッタリングを行う装置であり、ターゲット材の全面がエロージョンとなり均一に削られる。このため、平板型マグネトロンスパッタリング装置ではターゲット材の使用効率が通常20~30%であるのに対し、回転式マグネトロンカソードスパッタリング装置ではターゲット材の使用効率を70%以上にすることができ、格段に高い使用効率が得られる。さらに、回転式マグネトロンカソードスパッタリング装置では、ターゲットを回転させることで、従来の平板型マグネトロンスパッタリング装置に比べて単位面積当り大きなパワーを投入できることから高い成膜速度が得られる。 A rotary magnetron cathode sputtering device has a magnetic field generator inside a cylindrical target and performs sputtering while rotating the target while cooling from the inside of the target. The entire surface of the target material becomes eroded and becomes uniform. It is shaved. For this reason, the use efficiency of the target material is usually 20 to 30% in the flat plate type magnetron sputtering apparatus, whereas the use efficiency of the target material can be increased to 70% or more in the rotary magnetron cathode sputtering apparatus. High usage efficiency can be obtained. Further, in the rotary magnetron cathode sputtering apparatus, by rotating the target, a larger power can be input per unit area than in the conventional flat plate type magnetron sputtering apparatus, so that a high deposition rate can be obtained.
 このような回転カソードスパッタリング方式は、円筒形状へ加工が容易で機械的強度が強い金属ターゲット材では広く普及している。しかし、セラミックスは、強度が低く脆いので、円筒形状に加工すると製造中や基材への接合時などに割れや変形などが発生しやすい。このため、セラミックスパッタリングターゲットについては回転カソードスパッタリング方式への普及は十分でないのが実情である。 Such a rotating cathode sputtering method is widely used for metal target materials that can be easily processed into a cylindrical shape and have high mechanical strength. However, since ceramics are low in strength and brittle, when processed into a cylindrical shape, cracks and deformations are likely to occur during manufacture and when bonded to a substrate. For this reason, it is a fact that ceramic sputtering targets are not sufficiently spread to the rotary cathode sputtering method.
 ITO(Indium-Tin-Oxide)膜は高い透過性と電気伝導性を有することから、フラットパネルディスプレイの透明電極として広く利用されている。ITO膜は、一般にITOスパッタリングターゲットをスパッタリングすることにより形成される。ITO膜は、通常SnO2を10質量%程度含有するITOスパッタリングターゲットを用いて成膜されているが、タッチパネル用途などにおいて、フィルム基板などの各種基板にITO膜を成膜する際にはSnO2を3質量%程度含有するITOスパッタリングターゲットが使用されている。 An ITO (Indium-Tin-Oxide) film is widely used as a transparent electrode of a flat panel display because it has high permeability and electrical conductivity. The ITO film is generally formed by sputtering an ITO sputtering target. The ITO film is usually formed by using an ITO sputtering target containing about 10% by mass of SnO 2. However, when the ITO film is formed on various substrates such as a film substrate in a touch panel application or the like, SnO 2 is formed. An ITO sputtering target containing about 3% by mass is used.
 SnO2の含有量が少ないITO材料、たとえばSnO2の含有量が7質量%以下であるITO材料は脆く、割れやすいことが知られている。特に、SnO2の含有量が5質量%以下であるITO材料は、脆く、割れやすい。このようなSnO2の含有量が少ないITO材料を、回転カソードスパッタリング方式のターゲット材に利用するために円筒形状にすると、さらに割れが生じやすい。また、上記のようなSnO2の含有量が少ないITO円筒形スパッタリングターゲット材は基材に接合するときにも割れが生じやすい。 ITO material contains less SnO 2, for example, ITO material content of SnO 2 is less than 7 mass% is brittle, it is known that easily broken. In particular, an ITO material having a SnO 2 content of 5% by mass or less is brittle and easily cracked. If such an ITO material with a low SnO 2 content is used in a cylindrical shape for use as a target material for a rotating cathode sputtering system, cracking is more likely to occur. Further, the ITO cylindrical sputtering target material having a small SnO 2 content as described above is likely to be cracked when bonded to a substrate.
 このため、SnO2の含有量が少ないITO円筒形スパッタリングターゲット材に対しては、加工などの製造時および接合時に、通常のセラミックスパッタリングターゲット材よりもさらに高度な割れ防止技術が必要となる。 For this reason, an ITO cylindrical sputtering target material having a small SnO 2 content requires a more advanced crack prevention technology than a normal ceramic sputtering target material at the time of manufacturing and bonding.
 特許文献1には、密度が98%以上のセラミックス円筒形ターゲット材の偏芯を0.2mm以下にすることにより、熱膨張を均一にして円筒形基材と接合する際の割れを抑制する技術が開示されている。しかし、この技術においては、実施例1にもあるように、密度が98%以上であって円筒形ターゲット材の偏芯が0.2mm以下であっても割れが発生している。これは、接合に使用する低融点半田の厚みや加熱するヒーターとの距離に差ができることによって熱膨張率が変わってくるためであると考えられる。 Patent Document 1 discloses a technique for suppressing cracking when joining a cylindrical base material with uniform thermal expansion by setting the eccentricity of a ceramic cylindrical target material having a density of 98% or more to 0.2 mm or less. Is disclosed. However, in this technique, as in Example 1, cracks are generated even when the density is 98% or more and the eccentricity of the cylindrical target material is 0.2 mm or less. This is presumably because the coefficient of thermal expansion changes due to the difference in the thickness of the low melting point solder used for bonding and the distance from the heater to be heated.
 特許文献2には、SnO2濃度が10%未満だと焼成による異常な粒成長により、強度が下がり、クラックが発生することが記述されており、SnO2の含有量が2.5~5.2質量%のITOスパッタリングターゲットにおいて密度を7.1g/cm3以上にすることにより、焼成体に発生するクラックを低減し、割れやノジュールの発生を抑制する技術が開示されている。しかし、この技術では、密度が7.1g/cm3以下のITOターゲットについては割れを防止できず、7.1g/cm3以上であっても使用効率が高い円筒形状のITOターゲットでは割れが発生する場合がある。 Patent Document 2 describes that when the SnO 2 concentration is less than 10%, the strength decreases due to abnormal grain growth due to firing and cracks occur, and the SnO 2 content is 2.5 to 5. A technique is disclosed in which cracks generated in a fired body are reduced and generation of cracks and nodules is suppressed by setting the density to 7.1 g / cm 3 or more in a 2% by mass ITO sputtering target. However, this technology cannot prevent cracking for ITO targets with a density of 7.1 g / cm 3 or less, and cracks are generated with a cylindrical ITO target with high use efficiency even with a density of 7.1 g / cm 3 or more. There is a case.
特開2005-281862号公報JP 2005-281862 A 特開2012-126937号公報JP 2012-126937 A
 本発明の目的は、割れなどが発生しやすい円筒形状であっても、加工工程において割れや変形などが発生しにくいITO焼結体、接合工程において割れや変形などが発生しにくいITOスパッタリングターゲット材、およびITOスパッタリングターゲット、ならびに前記ITO焼結体およびITOスパッタリングターゲット材の製造方法を提供することである。 The object of the present invention is an ITO sintered body that is less likely to be cracked or deformed in the machining process, even if it has a cylindrical shape that is liable to crack, and an ITO sputtering target material that is less likely to crack or deform in the joining process. And an ITO sputtering target, and a method for producing the ITO sintered body and the ITO sputtering target material.
 本発明のITO焼結体は、Snの含有量がSnO2量換算で2.5~10.0質量%であり、In23母相と該In23母相の粒界に存在するIn4Sn312相とを有するITO焼結体であって、
 相対密度が98.0%以上であり、前記In23母相の平均粒径が17μm以下であり、該ITO焼結体の断面における前記In4Sn312相の面積率が0.4%以上である。
ITO sintered body of the present invention, the content of Sn is 2.5 to 10.0 mass% in the amount of SnO 2 terms present in the grain boundaries of the In 2 O 3 matrix and the In 2 O 3 matrix An ITO sintered body having an In 4 Sn 3 O 12 phase,
The relative density is 98.0% or more, the average particle size of the In 2 O 3 matrix is 17 μm or less, and the area ratio of the In 4 Sn 3 O 12 phase in the cross section of the ITO sintered body is 0.00. 4% or more.
 本発明のITO焼結体は円筒形にすることができる。 The ITO sintered body of the present invention can be cylindrical.
 本発明のITOスパッタリングターゲット材は前記ITO焼結体からなる。 The ITO sputtering target material of the present invention comprises the ITO sintered body.
 本発明のITOスパッタリングターゲットは、前記ITOスパッタリングターゲット材を基材に接合材によって接合してなる。 The ITO sputtering target of the present invention is formed by bonding the ITO sputtering target material to a base material with a bonding material.
 本発明のITO焼結体の製造方法は、
 ITO原料粉末から作製されるITO成形体を焼成する焼成工程、および前記焼成工程で得られた焼成物を冷却する冷却工程を含み、
 前記冷却工程において、1200~1350℃の範囲であって、かつ前記ITO成形体を焼成する焼成温度以下の温度範囲における冷却を降温速度25℃/h以下で行う。
The method for producing the ITO sintered body of the present invention is as follows.
Including a firing step of firing the ITO molded body produced from the ITO raw material powder, and a cooling step of cooling the fired product obtained in the firing step,
In the cooling step, cooling is performed at a temperature falling rate of 25 ° C./h or less in a temperature range of 1200 to 1350 ° C. and below a firing temperature for firing the ITO molded body.
 本発明の他のITO焼結体の製造方法は、
 ITO原料粉末から作製されるITO成形体を焼成する焼成工程、および前記焼成工程で得られた焼成物を冷却する冷却工程を含み、
 前記冷却工程において、1200~1500℃の範囲であって、かつ前記焼成温度以下の温度範囲における冷却を降温速度25℃/h以下で行う。
The method for producing another ITO sintered body of the present invention is as follows.
Including a firing step of firing the ITO molded body produced from the ITO raw material powder, and a cooling step of cooling the fired product obtained in the firing step,
In the cooling step, cooling in a temperature range of 1200 to 1500 ° C. and lower than the firing temperature is performed at a temperature drop rate of 25 ° C./h or less.
 前記ITO焼結体の製造方法において、前記ITO成形体およびITO焼結体は円筒形にすることができる。 In the manufacturing method of the ITO sintered body, the ITO molded body and the ITO sintered body can be cylindrical.
 本発明のITOターゲット材の製造方法は、前記の製造方法によってITO焼結体を製造し、得られたITO焼結体を加工してターゲット材を製造する。 The manufacturing method of the ITO target material of the present invention manufactures an ITO sintered body by the manufacturing method described above, and processes the obtained ITO sintered body to manufacture a target material.
 本発明のITO焼結体は、割れなどが発生しやすい円筒形状であっても、加工工程において割れや変形などが発生しにくい。本発明のITOスパッタリングターゲット材は、割れなどが発生しやすい円筒形状であっても、基材への接合工程において割れや変形などが発生しにくい。このため、本発明のITO焼結体およびITOスパッタリングターゲット材は、製造歩留を向上させることができる。 Even if the ITO sintered body of the present invention has a cylindrical shape in which cracks and the like are likely to occur, cracks and deformations are unlikely to occur in the processing process. Even if the ITO sputtering target material of the present invention has a cylindrical shape in which cracking and the like are likely to occur, cracking and deformation are not likely to occur in the bonding process to the base material. For this reason, the ITO sintered compact and ITO sputtering target material of this invention can improve a manufacturing yield.
 本発明のITO焼結体の製造方法は、前記ITO焼結体を効率的に製造することができる。 The method for producing an ITO sintered body of the present invention can produce the ITO sintered body efficiently.
図1は、本発明のITO焼結体およびITOスパッタリングターゲット材の組織概略図である。FIG. 1 is a schematic diagram of the structure of an ITO sintered body and an ITO sputtering target material according to the present invention.
 以下、本発明に係るITO焼結体、ITOスパッタリングターゲット材およびITOスパッタリングターゲットならびにITO焼結体およびITOスパッタリングターゲット材の製造方法について詳述する。本発明に含まれるITO焼結体およびITOスパッタリングターゲット材の形状は、平板形および円筒形など特に制限はないが、特に割れや変形が発生しやすい円筒形において大きな効果が得られる。
<ITO焼結体>
 本発明のITO焼結体は、Snの含有量がSnO2量換算で2.5~10.0質量%であり、In23母相とIn23母相の粒界に存在するIn4Sn312相とを有するITO焼結体であって、相対密度が98.0%以上であり、前記In23母相の平均粒径が17μm以下であり、該ITO焼結体の断面における前記In4Sn312相の面積率が0.4%以上である。
Hereinafter, the ITO sintered body, the ITO sputtering target material and the ITO sputtering target according to the present invention, and the method for producing the ITO sintered body and the ITO sputtering target material will be described in detail. The shapes of the ITO sintered body and the ITO sputtering target material included in the present invention are not particularly limited, such as a flat plate shape and a cylindrical shape, but a great effect can be obtained particularly in a cylindrical shape in which cracking and deformation are likely to occur.
<ITO sintered body>
ITO sintered body of the present invention, the content of Sn is 2.5 to 10.0 mass% in the amount of SnO 2 conversion, present in the grain boundary of the In 2 O 3 matrix and In 2 O 3 matrix An ITO sintered body having an In 4 Sn 3 O 12 phase, having a relative density of 98.0% or more, an average particle diameter of the In 2 O 3 matrix being 17 μm or less, and the ITO sintered body The area ratio of the In 4 Sn 3 O 12 phase in the cross section of the body is 0.4% or more.
 図1に、本発明のITO焼結体およびITOスパッタリングターゲット材の組織概略図を示す。図1は、本発明のITO焼結体およびITOスパッタリングターゲット材の断面を走査型電子顕微鏡で観察して得られた組織画像を模式的に示した図である。図1において、符号1がIn23母相であり、符号2がIn4Sn312相である。In4Sn312相2は、In23母相1の粒界に存在している。本発明においてIn23母相とは、In23にSnO2が一部固溶して形成されたIn23相をいう。 In FIG. 1, the structure schematic of the ITO sintered compact and ITO sputtering target material of this invention is shown. FIG. 1 is a diagram schematically showing a structure image obtained by observing a cross section of an ITO sintered body and an ITO sputtering target material of the present invention with a scanning electron microscope. In Figure 1, reference numeral 1 is In 2 O 3 matrix, reference numeral 2 is In 4 Sn 3 O 12 phase. The In 4 Sn 3 O 12 phase 2 is present at the grain boundary of the In 2 O 3 matrix 1. The In 2 O 3 matrix in the present invention, In 2 O 3 to SnO 2 refers to a part solute to In 2 O 3 phase formed by.
 本発明のITO焼結体においては、In23母相の平均粒径が17μm以下であり、好ましくは3~15μm、より好ましくは5~15μmである。ここでIn23母相の粒径は、前記組織画像上で水平フェレ径として求められる。水平フェレ径は、上記走査型電子顕微鏡観察における粒子解析により求められる値である。In23母相の平均粒径は、走査型電子顕微鏡を用いて倍率1000倍で100μm×130μmの視野を無作為に10視野観察し、視野ごとにその視野に含まれるすべてのIn23母相について求めた水平フィレ径の値を平均して視野ごとの平均水平フィレ径を算出し、さらにすべての視野において得られた平均水平フィレ径を平均したものである。前記In23母相の平均粒径が17μm以下であると、ITO焼結体が加工工程で割れにくくなり、さらにそのITO焼結体から得られるITOスパッタリングターゲット材は、基材への接合工程において割れや変形などが発生しにくくなる。一方、平均粒径が小さいと粒界が多くなり抵抗が高くなる場合があることからIn23母相の平均粒径は3μm以上であることが好ましい。 In the ITO sintered body of the present invention, the average particle size of the In 2 O 3 matrix is 17 μm or less, preferably 3 to 15 μm, more preferably 5 to 15 μm. Here, the particle diameter of the In 2 O 3 matrix is obtained as a horizontal ferret diameter on the tissue image. The horizontal ferret diameter is a value obtained by particle analysis in the scanning electron microscope observation. The average particle diameter of the In 2 O 3 matrix was determined by randomly observing 10 fields of view of 100 μm × 130 μm at a magnification of 1000 using a scanning electron microscope, and every In 2 O contained in each field of view. The average horizontal fillet diameter for each visual field is calculated by averaging the values of the horizontal fillet diameters obtained for the three parent phases, and the average horizontal fillet diameters obtained in all visual fields are averaged. When the average particle diameter of the In 2 O 3 matrix is 17 μm or less, the ITO sintered body is difficult to break in the processing step, and the ITO sputtering target material obtained from the ITO sintered body is bonded to the substrate. Cracks and deformation are less likely to occur in the process. On the other hand, if the average particle size is small, the grain boundary increases and the resistance may increase, so that the average particle size of the In 2 O 3 matrix is preferably 3 μm or more.
 本発明のITO焼結体においては、その断面におけるIn4Sn312相の面積率が0.4%以上であり、好ましくは0.5~5%、より好ましくは0.5~2.5%である。ここでIn4Sn312相の面積率は、本ITO焼結体の断面において、走査型電子顕微鏡を用いて倍率3000倍で33μm×43μmの視野を無作為に10視野観察し、各視野におけるIn4Sn312相の総面積の、視野面積(33×43μm2)に対する百分率の値を求め、さらにすべての視野において得られた前記百分率の値を平均して得られた数値である。 In the ITO sintered body of the present invention, the area ratio of the In 4 Sn 3 O 12 phase in the cross section is 0.4% or more, preferably 0.5 to 5%, more preferably 0.5 to 2. 5%. Here, the area ratio of the In 4 Sn 3 O 12 phase was determined by observing 10 visual fields of 33 μm × 43 μm at random using a scanning electron microscope in a cross section of the ITO sintered body. This is a numerical value obtained by calculating the percentage value of the total area of the In 4 Sn 3 O 12 phase in the visual field area (33 × 43 μm 2 ) and averaging the percentage values obtained in all visual fields. .
 前記In23母相の平均粒径が17μm以下であり、さらに前記面積率が0.4%以上であると、In4Sn312相が粒界に広面積で存在することによって靱性が高くなり割れに強くなるので、よりITO焼結体が加工工程で割れにくくなり、さらにそのITO焼結体から得られるITOスパッタリングターゲット材は、基材への接合工程において割れや変形などが発生しにくくなる。一方、In4Sn312相がスパッタリング中のアーキングやノジュールの発生の原因となる可能性が低くなるという観点からは前記面積率が5%以下であることが好ましい。 When the average particle size of the In 2 O 3 matrix is 17 μm or less and the area ratio is 0.4% or more, the In 4 Sn 3 O 12 phase is present in a large area at the grain boundary, so that the toughness is increased. Since it becomes higher and more resistant to cracking, the ITO sintered body becomes more difficult to break in the processing process, and the ITO sputtering target material obtained from the ITO sintered body is cracked and deformed in the bonding process to the base material It becomes difficult to do. On the other hand, the area ratio is preferably 5% or less from the viewpoint that the In 4 Sn 3 O 12 phase is less likely to cause arcing and nodules during sputtering.
 本発明のITO焼結体は、Snの含有量がSnO2量換算で2.5~10.0質量%である。Snの含有量が前記範囲内であると、スパッタリングターゲット材として有効に利用でき、さらに加工、基材への接合において割れや変形などが発生しにくい。特にSnの含有量がSnO2量換算で2.5~6.0質量%であると、本発明のITO焼結体から、フラットパネルディスプレイやタッチパネルの透明電極等を作製するためのITOスパッタリングターゲット材を製造することができる。また、前述のとおり、Snの含有量がSnO2量換算で2.5~6.0質量%である従来のITO焼結体は脆く、割れやすいが、本発明のITO焼結体は、Snの含有量が前記範囲であっても割れにくい。さらに、Snの含有量がSnO2量換算で3.0~5.0質量%であると、有用な前記ITOスパッタリングターゲット材を製造することができ、また加工、基材への接合における割れや変形などを効果的に防止できる。 The ITO sintered body of the present invention has a Sn content of 2.5 to 10.0% by mass in terms of SnO 2 content. When the Sn content is within the above range, it can be effectively used as a sputtering target material, and cracking and deformation are less likely to occur during processing and bonding to a substrate. In particular, when the Sn content is 2.5 to 6.0% by mass in terms of SnO 2, an ITO sputtering target for producing a transparent electrode of a flat panel display or a touch panel from the ITO sintered body of the present invention. The material can be manufactured. As described above, the conventional ITO sintered body having a Sn content of 2.5 to 6.0% by mass in terms of SnO 2 is brittle and easy to break, but the ITO sintered body of the present invention is Sn Even if the content of is in the above range, it is difficult to break. Further, when the Sn content is 3.0 to 5.0% by mass in terms of SnO 2 , a useful ITO sputtering target material can be produced, and cracks in processing and bonding to the substrate Deformation can be effectively prevented.
 本発明のITO焼結体は、相対密度が98.0%以上であり、好ましくは98.5%以上、より好ましくは99.0%以上である。相対密度が98.0%より小さいと、強度が不十分となり、割れやすくなる。 The ITO sintered body of the present invention has a relative density of 98.0% or more, preferably 98.5% or more, more preferably 99.0% or more. When the relative density is less than 98.0%, the strength becomes insufficient and the film tends to crack.
 すなわち、前記In23母相の平均粒径、前記面積率および相対密度の要件が満たされることにより、本発明のITO焼結体は加工工程で割れが十分に抑制され、さらにそのITO焼結体から得られるITOスパッタリングターゲット材は基材への接合工程において割れや変形などが十分に抑制される。 That is, by satisfying the requirements of the average particle diameter of the In 2 O 3 matrix, the area ratio, and the relative density, the ITO sintered body of the present invention is sufficiently suppressed from cracking in the processing step, and further the ITO firing is further suppressed. The ITO sputtering target material obtained from the bonded body is sufficiently suppressed from being cracked or deformed in the bonding step to the base material.
 従来の円筒形状を有するITO焼結体は、前述のとおり、割れや変形が生じやすかったが、本発明のITO焼結体は、円筒形状であっても加工工程において割れや変形などが発生しにくい。このため、円筒形状の本ITO焼結体から円筒形状のITO製品、たとえばITO円筒形スパッタリングターゲット材などを好適に製造することができる。 As described above, the conventional ITO sintered body having a cylindrical shape was likely to be cracked or deformed, but the ITO sintered body of the present invention was cracked or deformed in the processing step even if it was cylindrical. Hateful. For this reason, a cylindrical ITO product, for example, an ITO cylindrical sputtering target material can be suitably manufactured from the cylindrical ITO sintered body.
 本発明のITO焼結体は、その大きさには特に制限はない。ITO円筒形焼結体がスパッタリングターゲット材に加工される場合には、その大きさは、概ね外径140~170mm、内径110~140mm、長さ50mm以上である。長さは用途に応じて適宜決定される。
<ITOスパッタリングターゲット材>
 本発明のITOスパッタリングターゲット材は、前記ITO焼結体からなる。本発明のITOスパッタリングターゲット材は、前記ITO焼結体に適宜加工、たとえば切削加工等を施すことにより作製される。
The size of the ITO sintered body of the present invention is not particularly limited. When the ITO cylindrical sintered body is processed into a sputtering target material, its size is approximately an outer diameter of 140 to 170 mm, an inner diameter of 110 to 140 mm, and a length of 50 mm or more. The length is appropriately determined according to the application.
<ITO sputtering target material>
The ITO sputtering target material of this invention consists of the said ITO sintered compact. The ITO sputtering target material of the present invention is produced by appropriately processing the ITO sintered body, for example, cutting.
 したがって、本発明のITOスパッタリングターゲット材は、前記ITO焼結体が満たしているSnの含有量、相対密度、In23母相の平均粒径およびIn4Sn312相の面積率に関する条件をすべて満たしている。本発明のITOスパッタリングターゲット材におけるこれら条件についての説明は、前記ITO焼結体において述べたこれら条件についての説明と同様である。 Therefore, the ITO sputtering target material of the present invention relates to the Sn content, the relative density, the average particle size of the In 2 O 3 matrix, and the area ratio of the In 4 Sn 3 O 12 phase that the ITO sintered body satisfies. All conditions are met. The description of these conditions in the ITO sputtering target material of the present invention is the same as the description of these conditions described in the ITO sintered body.
 本発明のITOスパッタリングターゲット材は、上記条件を満たすことから強度が高く、割れや変形を生じにくく、円筒形であっても割れや変形を生じにくい。 Since the ITO sputtering target material of the present invention satisfies the above conditions, it has high strength and is not easily cracked or deformed.
 ITOスパッタリングターゲット材は、スパッタリングに供される場合、通常チタン製等の基材に半田を用いて接合される。ITO円筒形スパッタリングターゲット材の場合、この接合は通常、ターゲット材および円筒形基材を加熱し、ターゲット材の内周面および円筒形基材の外周面に半田を塗布し、ターゲット材の空洞内に円筒形基材を挿入し、両者の半田層を合わせた後、冷却することにより行われる。この冷却の際、ターゲット材と基材との熱膨張係数の差に起因してターゲット材に応力が発生する。従来のITO円筒形スパッタリングターゲット材は前記応力に抗しきれず、接合工程において割れることが多かった。これに対し、本発明のITOスパッタリングターゲット材は、前述のとおり強度が高いことから、円筒形であっても、接合工程において前記応力が発生しても割れや変形を起こしにくい。
<ITOスパッタリングターゲット>
 本発明のITOスパッタリングターゲットは、前記ITOスパッタリングターゲット材を基材に接合材によって接合してなる。
When the ITO sputtering target material is used for sputtering, it is usually joined to a base material made of titanium or the like using solder. In the case of an ITO cylindrical sputtering target material, this bonding usually involves heating the target material and the cylindrical base material, applying solder to the inner peripheral surface of the target material and the outer peripheral surface of the cylindrical base material, and in the cavity of the target material. A cylindrical base material is inserted into the two, and the two solder layers are combined, and then cooled. During this cooling, stress is generated in the target material due to the difference in thermal expansion coefficient between the target material and the base material. The conventional ITO cylindrical sputtering target material could not resist the stress and was often cracked in the joining process. On the other hand, since the ITO sputtering target material of the present invention has high strength as described above, even if it is cylindrical, it is difficult to cause cracking or deformation even if the stress is generated in the joining process.
<ITO sputtering target>
The ITO sputtering target of the present invention is formed by bonding the ITO sputtering target material to a base material with a bonding material.
 前記基材は、通常、スパッタリングターゲット材を接合しうる平板状または円筒形状を有する。基材の種類には特に制限はなく、従来使用されている基材から適宜選択して使用することができる。基材の材料としては、たとえばステンレス、チタン等を挙げることができる。 The substrate usually has a flat plate shape or a cylindrical shape to which a sputtering target material can be bonded. There is no restriction | limiting in particular in the kind of base material, It can select from the base material used conventionally and can be used. Examples of the base material include stainless steel and titanium.
 前記接合材の種類にも特に制限はなく、従来使用されている接合材から適宜選択して使用することができる。接合材としては、たとえばインジウム製の半田等が挙げられる。 The type of the bonding material is not particularly limited, and can be appropriately selected from conventionally used bonding materials. Examples of the bonding material include indium solder.
 スパッタリングターゲット材は、1個の基材に複数個接合されていてもよい。たとえば、ITO円筒形スパッタリングターゲット材は、1本の基材の外側に、1本接合されてもよく、2本以上を同一軸線上に並べて接合されてもよい。2本以上を並べて接合する場合、各ITO円筒形スパッタリングターゲット材間の隙間、つまり分割部の長さは通常0.05~0.5mmである。分割部の長さが短いほどスパッタリング時にアーキングが発生しにくいが、0.05mm未満だと接合工程やスパッタリング中の熱膨張によりターゲット材同士がぶつかり、割れることがある。 A plurality of sputtering target materials may be bonded to one base material. For example, one ITO cylindrical sputtering target material may be bonded to the outside of a single substrate, or two or more may be aligned and bonded on the same axis. When two or more are joined side by side, the gap between the ITO cylindrical sputtering target materials, that is, the length of the divided portion is usually 0.05 to 0.5 mm. As the length of the divided portion is shorter, arcing is less likely to occur during sputtering, but if it is less than 0.05 mm, the target materials may collide with each other due to thermal expansion during the joining process or sputtering.
 接合方法にも特に制限はなく、従来のITOスパッタリングターゲットと同様の方法を採用することができる。
<ITO焼結体の製造方法>
 本発明の前記ITO焼結体の製造方法は、ITO成形体を焼成する焼成工程、および前記焼成工程で得られた焼成物を冷却する工程を含み、第一の態様は、前記冷却工程において、1200~1500℃の範囲であって、かつ前記ITO成形体を焼成する温度以下の温度範囲における冷却を降温速度25℃/h以下で行い、第二の態様は、前記冷却工程において、1200~1350℃の範囲であって、かつ前記ITO成形体を焼成する温度以下の温度範囲における冷却を降温速度25℃/h以下で行う。
There is no restriction | limiting in particular also in the joining method, The method similar to the conventional ITO sputtering target is employable.
<Method for producing ITO sintered body>
The manufacturing method of the ITO sintered body of the present invention includes a firing step of firing the ITO molded body, and a step of cooling the fired product obtained in the firing step, and the first aspect is the cooling step, Cooling in a temperature range of 1200 to 1500 ° C. and below the temperature at which the ITO molded body is fired is performed at a temperature drop rate of 25 ° C./h or less, and the second aspect is 1200 to 1350 in the cooling step. Cooling is performed at a temperature lowering rate of 25 ° C./h or less in a temperature range of 0 ° C. and below the temperature at which the ITO molded body is fired.
 具体的には、以下の製造方法により、前記本発明のITO焼結体を、割れや変形などを発生させないで効率的に製造することができるが、本発明のITO焼結体の製造方法は、上記製造条件を除いては制限されず、以下の製造方法に限定されるものではない。 Specifically, by the following manufacturing method, the ITO sintered body of the present invention can be efficiently manufactured without generating cracks or deformations, but the manufacturing method of the ITO sintered body of the present invention is as follows. The manufacturing conditions are not limited except for the manufacturing conditions described above, and are not limited to the following manufacturing methods.
 本発明のITO焼結体の製造方法における好適な態様は、原料粉末および有機添加物を含有するスラリーから顆粒を調製する工程1、前記顆粒をCIP成形して成形体を作製する工程2、前記成形体を脱脂する工程3、前記脱脂された成形体を焼成する工程4、および前記焼成工程で得られた焼成物を冷却する工程5を含む。
(工程1)
 工程1では、原料粉末および有機添加物を含有するスラリーから顆粒を調製する。
A preferred embodiment of the method for producing an ITO sintered body according to the present invention includes a step 1 of preparing a granule from a slurry containing a raw material powder and an organic additive, a step 2 of producing a molded body by CIP molding the granule, Step 3 includes degreasing the molded body, Step 4 for firing the degreased molded body, and Step 5 for cooling the fired product obtained in the firing step.
(Process 1)
In step 1, granules are prepared from a slurry containing raw material powder and organic additives.
 原料粉末および有機添加物から顆粒を調製し、その顆粒を工程2のCIP成形に供することにより、原料の充填性が向上し、高密度の成形体を得ることができる。また、充填むらが生じにくくなり、均一な充填が可能になる。プレスむらも生じにくくなる。 By preparing granules from the raw material powder and the organic additive and subjecting the granules to the CIP molding in Step 2, the filling property of the raw materials is improved, and a high-density molded body can be obtained. Further, uneven filling is less likely to occur, and uniform filling is possible. Uneven press is less likely to occur.
 原料粉末として、In23粉末およびSnO2粉末の混合粉末を使用でき、ITO粉末を単独で、またはIn23粉末およびSnO2粉末と混合して用いてもよい。本発明において、顆粒の調製に供されるこれら原料粉末の混合粉末、およびITO粉末が単独で用いられる場合にはそのITO粉末をITO原料粉末ともいう。In23粉末、SnO2粉末およびITO粉末は、BET(Brunauer-Emmett-Teller)法で測定した比表面積がそれぞれ通常1~40m2/gである。In23粉末、SnO2粉末およびITO粉末の混合比率は、本焼結体における構成元素の含有量が前述の範囲内になるように適宜決定される。たとえば、最終的に得られる焼結体におけるSnO2量換算でのSnの含有量が5.0質量%である場合には、焼結体におけるSnO2量換算でのSnの含有量が5.0質量%になるように、ITO原料粉末に含まれる各原料粉末の比率が決定される。 As the raw material powder, a mixed powder of In 2 O 3 powder and SnO 2 powder can be used, and the ITO powder may be used alone or mixed with In 2 O 3 powder and SnO 2 powder. In the present invention, when a powder mixture of these raw material powders used for preparing granules and an ITO powder are used alone, the ITO powder is also referred to as an ITO raw material powder. In 2 O 3 powder, SnO 2 powder and ITO powder each have a specific surface area of usually 1 to 40 m 2 / g measured by BET (Brunauer-Emmett-Teller) method. The mixing ratio of the In 2 O 3 powder, the SnO 2 powder, and the ITO powder is appropriately determined so that the content of the constituent elements in the sintered body is within the aforementioned range. For example, when the Sn content in terms of SnO 2 in the finally obtained sintered body is 5.0 mass%, the Sn content in terms of SnO 2 in the sintered body is 5. The ratio of each raw material powder contained in ITO raw material powder is determined so that it may become 0 mass%.
 本製造方法においては、In23粉末およびSnO2粉末の混合粉末をITO原料粉末として使用する場合、ITO原料粉末におけるSnO2粉末の含有量(質量%)が、最終的に得られる焼結体およびターゲット材におけるSnO2量換算でのSnの含有量(質量%)と同視できることが確認されている。また、ITO原料粉末がITO粉末を含む場合には、ITO原料粉末におけるSnO2粉末の含有量(質量%)とITO粉末におけるSnO2量換算でのSnの含有量(質量%)との合計が、最終的に得られる焼結体およびターゲット材におけるSnO2量換算でのSnの含有量(質量%)と同視できることが確認されている。 In this production method, when a mixed powder of In 2 O 3 powder and SnO 2 powder is used as the ITO raw material powder, the content (mass%) of the SnO 2 powder in the ITO raw material powder is finally obtained. It has been confirmed that it can be equated with the Sn content (mass%) in terms of SnO 2 in the body and the target material. Further, when the ITO raw material powder containing the ITO powder, the total content of SnO 2 powder in the ITO raw material powder and (mass%) the content of Sn in the amount of SnO 2 in terms of ITO powder and (mass%) It has been confirmed that it can be equated with the Sn content (mass%) in terms of SnO 2 in the finally obtained sintered body and target material.
 粉末の混合方法には特に制限はなく、たとえば、各粉末およびジルコニアボールをポットに入れ、ボールミル混合することができる。 There is no particular limitation on the method of mixing the powder. For example, each powder and zirconia balls can be put in a pot and mixed by ball mill.
 前記有機添加物は、スラリーや成形体の性状を好適に調整するために添加される物質である。有機添加物としては、バインダ、分散剤および可塑剤等を挙げることができる。 The organic additive is a substance added to suitably adjust the properties of the slurry and the molded body. Examples of the organic additive include a binder, a dispersant, and a plasticizer.
 工程1において、有機添加物の量はITO原料粉末の量に対して0.3~2.0質量%が好ましい。有機添加物の前記配合量が2.0質量%より多いと、脱媒中の成形体の強度低下が大きくなり、脱脂割れしやすくなったり、脱脂後に成形体中に空孔が多くなり、高密度化しにくくなったりする場合がある。有機添加物の前記配合量が0.3質量%より少ないと、各成分の十分な効果が得られない場合がある。有機添加物の配合量を前記範囲内にすると、相対密度が98.0%以上であるITO焼結体を製造することができる。 In step 1, the amount of the organic additive is preferably 0.3 to 2.0 mass% with respect to the amount of the ITO raw material powder. When the blending amount of the organic additive is more than 2.0% by mass, the strength of the molded body during the removal of the solvent is greatly reduced, and degreasing cracks easily occur. It may be difficult to increase the density. When the said compounding quantity of an organic additive is less than 0.3 mass%, sufficient effect of each component may not be acquired. When the blending amount of the organic additive is within the above range, an ITO sintered body having a relative density of 98.0% or more can be produced.
 バインダは、成形体においてITO原料粉末をバインドし、成形体の強度を高めるために添加される。バインダとしては、公知の粉末焼結法において成形体を得るときに通常使用されるバインダを使用することができる。 The binder is added to bind the ITO raw material powder in the molded body and increase the strength of the molded body. As a binder, the binder normally used when obtaining a molded object in the well-known powder sintering method can be used.
 分散剤は、スラリー中の原料粉末およびバインダの分散性を高めるために添加される。分散剤としては、たとえばポリカルボン酸アンモニウム、ポリアクリル酸アンモニウム等を挙げることができる。 Dispersant is added to increase the dispersibility of the raw material powder and binder in the slurry. Examples of the dispersant include ammonium polycarboxylate and ammonium polyacrylate.
 可塑剤は、成形体の可塑性を高めるために添加される。可塑剤としては、たとえば、ポリエチレングリコール(PEG)、エチレングリコール(EG)等を挙げることができる。 The plasticizer is added to increase the plasticity of the molded body. Examples of the plasticizer include polyethylene glycol (PEG) and ethylene glycol (EG).
 原料粉末および有機添加物を含有するスラリーを調製する際に使用する分散媒には特に制限はなく、目的に応じて、水、アルコール等から適宜選択して使用することができる。 The dispersion medium used when preparing the slurry containing the raw material powder and the organic additive is not particularly limited, and can be appropriately selected from water, alcohol and the like according to the purpose.
 原料粉末および有機添加物を含有するスラリーを調製する方法には特に制限はなく、たとえば、原料粉末、有機添加物および分散媒をポットに入れ、ボールミル混合する方法が使用できる。 The method for preparing the slurry containing the raw material powder and the organic additive is not particularly limited, and for example, a method in which the raw material powder, the organic additive, and the dispersion medium are placed in a pot and ball mill mixed can be used.
 スラリーから顆粒を調製する方法には、特に制限はなく、たとえばスプレードライ法、転動造粒法、押出し造粒法等を使用することができる。これらのうちで、顆粒の流動性が高く、成形時に潰れやすい顆粒を作製しやすいなどの点で、スプレードライ法が好ましい。スプレードライ法の条件には特に制限はなく、ITO原料粉末の造粒に通常使用される条件を適宜選択して実施することができる。
(工程2)
 工程2では、工程1で調製された顆粒をCIP成形(Cold Isostatic Pressing(冷間等方圧成形))して成形体を作製する。成形体の形状を平板形にすればITO平板形焼結体が得られ、円筒形にすればITO円筒形焼結体が得られる。
There is no restriction | limiting in particular in the method of preparing a granule from a slurry, For example, a spray-drying method, a rolling granulation method, an extrusion granulation method etc. can be used. Of these, the spray-drying method is preferable because the granules have high fluidity and are easy to produce granules that are easily crushed during molding. There are no particular limitations on the conditions of the spray drying method, and the conditions usually used for granulation of the ITO raw material powder can be appropriately selected and carried out.
(Process 2)
In step 2, the granule prepared in step 1 is CIP-molded (Cold Isostatic Pressing) to produce a molded body. If the shape of the molded body is flat, an ITO flat sintered body is obtained, and if it is cylindrical, an ITO cylindrical sintered body is obtained.
 CIP成形時の圧力は、通常800kgf/cm2以上である。圧力が高いほど、顆粒を緻密に成形でき、成形体を高密度化および高強度化できる。
(工程3)
 工程3では、工程2で作製された成形体を脱脂する。脱脂は成形体を加熱することにより行われる。
The pressure during CIP molding is usually 800 kgf / cm 2 or more. The higher the pressure, the denser the granules can be made, and the compact can be densified and strengthened.
(Process 3)
In step 3, the molded body produced in step 2 is degreased. Degreasing is performed by heating the compact.
 脱脂温度は、通常600~800℃、好ましくは700~800℃、より好ましくは750~800℃である。脱脂温度が高いほど成形体の強度が高くなるが、800℃を超えると成形体の収縮が起こるので、800℃以下で脱脂することが好ましい。
(工程4)
 工程4すなわち焼成工程では、工程3で脱脂された成形体を焼成する。
The degreasing temperature is usually 600 to 800 ° C, preferably 700 to 800 ° C, more preferably 750 to 800 ° C. The higher the degreasing temperature, the higher the strength of the molded body. However, when the temperature exceeds 800 ° C, shrinkage of the molded body occurs.
(Process 4)
In step 4, that is, the firing step, the molded body degreased in step 3 is fired.
 焼成炉には特に制限はなく、ITO焼結体の製造に従来使用されている焼成炉を使用することができる。 The firing furnace is not particularly limited, and a firing furnace conventionally used for manufacturing an ITO sintered body can be used.
 焼成温度は、通常1450~1700℃、好ましくは1500~1650℃、より好ましくは1500~1600℃である。焼成温度が高いほど高密度の焼結体が得られるが、高すぎると焼結体の焼結組織が肥大化して割れやすくなる。焼成時間は、通常3~30時間、好ましくは5~20時間、より好ましくは8~16時間である。焼成時間が長いほど焼結体が高密度化しやすいが、長すぎると焼結体の焼結組織が肥大化して割れやすくなる。 The firing temperature is usually 1450 to 1700 ° C., preferably 1500 to 1650 ° C., more preferably 1500 to 1600 ° C. The higher the firing temperature is, the higher the density of the sintered body is obtained. However, when the firing temperature is too high, the sintered structure of the sintered body becomes enlarged and easily cracked. The firing time is usually 3 to 30 hours, preferably 5 to 20 hours, more preferably 8 to 16 hours. The longer the firing time, the more easily the sintered body is densified. However, when the firing time is too long, the sintered structure of the sintered body is enlarged and easily broken.
 昇温速度は通常100~500℃/hである。 The heating rate is usually 100 to 500 ° C./h.
 焼成の雰囲気は通常、酸素雰囲気である。
(工程5)
 工程5では、工程4で得られた焼成物を冷却する。工程5すなわち冷却工程においては、温度は低下するか、または一定に維持される。
The firing atmosphere is usually an oxygen atmosphere.
(Process 5)
In step 5, the fired product obtained in step 4 is cooled. In step 5, the cooling step, the temperature is lowered or kept constant.
 本発明のITO焼結体の製造方法の第一の態様においては、得られた焼成物を冷却するときの降温速度を、1200℃~1500℃の範囲であって、かつ前記焼成温度以下の温度範囲(以下、特定温度範囲ともいう)において25℃/h以下、好ましくは20℃/h以下、より好ましくは15℃/h以下、さらに好ましくは10℃/h以下にする。つまり、成形体の焼成温度が1500℃以上の場合には、1200℃~1500℃の温度範囲における降温速度を25℃/h以下にする。成形体の焼成温度が1500℃より低い場合には、1200℃からその焼成温度までの温度範囲における降温速度を25℃/h以下にする。たとえば、成形体の焼成温度が1450℃の場合には、1200~1450℃の温度範囲における降温速度を25℃/h以下にする。 In the first aspect of the method for producing an ITO sintered body according to the present invention, the cooling rate when cooling the obtained fired product is in a range of 1200 ° C. to 1500 ° C. and not more than the firing temperature. In a range (hereinafter also referred to as a specific temperature range), it is 25 ° C./h or less, preferably 20 ° C./h or less, more preferably 15 ° C./h or less, and further preferably 10 ° C./h or less. That is, when the firing temperature of the molded body is 1500 ° C. or higher, the temperature lowering rate in the temperature range of 1200 ° C. to 1500 ° C. is set to 25 ° C./h or lower. When the firing temperature of the molded body is lower than 1500 ° C., the temperature lowering rate in the temperature range from 1200 ° C. to the firing temperature is set to 25 ° C./h or less. For example, when the firing temperature of the compact is 1450 ° C., the rate of temperature decrease in the temperature range of 1200 to 1450 ° C. is set to 25 ° C./h or less.
 焼成により得られた焼成物を冷却すると、ある温度でIn23母相に固溶したSnO2がIn4Sn312相として析出する。In4Sn312が析出する温度付近をゆっくり冷却することにより、In4Sn312相の面積を大きくすることができ、前記面積率を得ることができる。またその結果、In23母相の粒径が過大化するのを抑制することができ、前記In23母相の平均粒径を得ることができる。In4Sn312が析出する温度は通常前記特定温度範囲に含まれる。つまり、前記特定温度範囲でIn23母相に固溶したSnO2がIn4Sn312相として析出する。このため、前記特定温度範囲の降温速度を25℃/h以下にすることにより、In4Sn312相の面積率、およびIn23母相の粒径を制御することができる。前記特定温度範囲における降温速度は小さいほど、In4Sn312相の面積を大きくすることができ、In23母相の粒径の過大化を抑制できるので好ましく、その下限値に制限はない。 When the fired product obtained by firing is cooled, SnO 2 solid-solved in the In 2 O 3 matrix at a certain temperature precipitates as an In 4 Sn 3 O 12 phase. By slowly cooling around the temperature at which In 4 Sn 3 O 12 precipitates, the area of the In 4 Sn 3 O 12 phase can be increased, and the area ratio can be obtained. The result can be the particle size of the In 2 O 3 matrix phase can be prevented from becoming too high to obtain an average particle size of the In 2 O 3 matrix. The temperature at which In 4 Sn 3 O 12 precipitates is usually included in the specific temperature range. That is, SnO 2 solid-dissolved in the In 2 O 3 matrix in the specific temperature range is precipitated as an In 4 Sn 3 O 12 phase. Therefore, the area ratio of the In 4 Sn 3 O 12 phase and the particle size of the In 2 O 3 matrix can be controlled by setting the temperature lowering rate in the specific temperature range to 25 ° C./h or less. The lower the temperature decrease rate in the specific temperature range, the larger the area of the In 4 Sn 3 O 12 phase can be increased, and the excessive increase in the particle size of the In 2 O 3 matrix can be suppressed. There is no.
 特定温度範囲における降温速度は一定である必要はなく、25℃/h以下の範囲内で変動してもよく、また特定温度範囲において降温速度が0℃/hになる時間があっても構わない。 The temperature decrease rate in the specific temperature range does not need to be constant, and may vary within a range of 25 ° C./h or less, and there may be time for the temperature decrease rate to be 0 ° C./h in the specific temperature range. .
 前記特定温度範囲以外の温度範囲、つまり成形体の焼成温度が1500℃より高い場合にはその焼成温度から1500℃までの温度範囲および1200℃より低い温度範囲、成形体の焼成温度が1500℃以下の場合には、1200℃より低い温度範囲において、降温速度は通常10~100℃/h、好ましくは20~70℃/h、より好ましくは20~50℃/hである。降温速度が小さいほど熱応力差による割れが起こりにくくなるが、10℃/hより小さくしても熱応力差は通常変わらない。 A temperature range other than the specific temperature range, that is, when the firing temperature of the molded body is higher than 1500 ° C, a temperature range from the firing temperature to 1500 ° C and a temperature range lower than 1200 ° C, and a firing temperature of the molded body is 1500 ° C or less. In this case, in the temperature range lower than 1200 ° C., the rate of temperature decrease is usually 10 to 100 ° C./h, preferably 20 to 70 ° C./h, more preferably 20 to 50 ° C./h. Cracks due to thermal stress differences are less likely to occur as the rate of temperature drop is smaller, but the thermal stress difference does not normally change even when the temperature is lower than 10 ° C./h.
 本発明のITO焼結体の製造方法の第二の態様においては、得られた焼成物を冷却するときの降温速度を、1200℃~1350℃の範囲であって、かつ前記焼成温度以下の温度範囲において25℃/h以下、好ましくは20℃/h以下、より好ましくは15℃/h以下、さらに好ましくは10℃/h以下にする。第二の態様は、前記第一の態様をより効率的に実施するものである。つまり、第二の態様は、工程にかかる所要時間をより短縮でき、あるいは特に組織形成に重要な1200℃~1350℃の温度範囲における冷却速度をより精密に制御し、所望の組織を得ることができるものである。第二の態様の実施条件は、降温速度を規定する温度範囲以外、前記第一の態様と同様である。 In the second aspect of the method for producing an ITO sintered body according to the present invention, the cooling rate when cooling the obtained fired product is in the range of 1200 ° C. to 1350 ° C. and lower than the firing temperature. In the range, 25 ° C./h or less, preferably 20 ° C./h or less, more preferably 15 ° C./h or less, and further preferably 10 ° C./h or less. In the second aspect, the first aspect is more efficiently implemented. In other words, in the second aspect, the time required for the process can be further shortened, or the cooling rate in the temperature range of 1200 ° C. to 1350 ° C., which is particularly important for tissue formation, can be controlled more precisely to obtain a desired structure. It can be done. The implementation conditions of the second aspect are the same as those of the first aspect except for the temperature range that regulates the temperature drop rate.
 冷却の雰囲気は通常、酸素雰囲気である。 The cooling atmosphere is usually an oxygen atmosphere.
 前記焼成物を冷却することによってITO焼結体が得られる。 The ITO sintered body is obtained by cooling the fired product.
 上記ITO焼結体の製造方法により、上述の本発明のITO焼結体を効率的に製造することができる。
<ITO円筒形ターゲット材の製造方法>
 本発明のITOターゲット材の製造方法は、上述のITO焼結体の製造方法によってITO焼結体を製造し、得られたITO焼結体を加工してITOターゲット材を製造する。通常、焼結体の形状が平板形であればITO平板形ターゲット材が製造され、円筒形であればITO円筒形ターゲット材が製造される。
The above-described ITO sintered body of the present invention can be efficiently manufactured by the above-mentioned ITO sintered body manufacturing method.
<Method for producing ITO cylindrical target material>
The manufacturing method of the ITO target material of this invention manufactures an ITO sintered compact with the manufacturing method of the above-mentioned ITO sintered compact, processes the obtained ITO sintered compact, and manufactures an ITO target material. Usually, if the shape of the sintered body is flat, an ITO flat target material is manufactured, and if it is cylindrical, an ITO cylindrical target material is manufactured.
 ITO焼結体の加工方法は、目的とするITOターゲット材に応じて適宜選択される。前記加工方法としては、たとえば切削加工等を挙げることができる。 The processing method of the ITO sintered body is appropriately selected according to the target ITO target material. Examples of the processing method include cutting.
 以下、本発明を実施例に基づいてさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically based on examples.
 実施例および比較例において得られたITO焼結体およびITOスパッタリングターゲット材の評価方法は以下のとおりである。
1.相対密度
 ITO焼結体の相対密度はアルキメデス法に基づき測定した。具体的には、ITO焼結体の空中重量を体積(ITO焼結体の水中重量/計測温度における水比重)で除し、下記式(X)に基づく理論密度ρ(g/cm3)に対する百分率の値を相対密度(単位:%)とした。
The evaluation methods of the ITO sintered body and the ITO sputtering target material obtained in the examples and comparative examples are as follows.
1. Relative density The relative density of the ITO sintered body was measured based on the Archimedes method. Specifically, the air weight of the ITO sintered body is divided by the volume (the weight of the ITO sintered body in water / the specific gravity of water at the measurement temperature), and the theoretical density ρ (g / cm 3 ) based on the following formula (X) The percentage value was defined as the relative density (unit:%).
Figure JPOXMLDOC01-appb-M000001
 式(X)中、C1~Ciはそれぞれ焼結体の構成物質の含有量(重量%)を示し、ρ1~ρiはC1~Ciに対応する各構成物質の密度(g/cm3)を示す。
2.ITO焼結体およびITOスパッタリングターゲット材の割れ
 ITO焼結体およびITOスパッタリングターゲット材を目視で観察し、ITO焼結体を加工したときの該焼結体の割れ(以下、加工割れともいう)およびITOスパッタリングターゲット材を接合したときの該ターゲット材の割れ(以下、接合割れともいう)の有無を確認した。
3.In23母相の平均粒径
 In23母相の平均粒径すなわち水平フェレ径の平均値は、以下のようにして求めた。ITO焼結体をダイヤモンドカッターにより切断して得られた切断面を、エメリー紙#170、#320、#800、#1500、#2000を用いて段階的に研磨し、最後にバフ研磨して鏡面に仕上げた後、40℃のエッチング液(硝酸(60~61%水溶液、関東化学(株)製、硝酸1.38 鹿1級 製品番号28161-03)、塩酸(35.0~37.0%水溶液、関東化学(株)製、塩酸 鹿1級 製品番号18078-01)および純水を体積比でHCl:H2O:HNO3=1:1:0.08の割合で混合)に9分間浸漬してエッチングを行い、現れた面を走査型電子顕微鏡(JXA-8800-R、JEOL社製)を用いて観察した。無作為に選んだ10視野にて倍率1000倍で写真撮影を行い、100μm×130μmの組織画像を得た。
Figure JPOXMLDOC01-appb-M000001
In the formula (X), C 1 to C i indicate the content (% by weight) of the constituent material of the sintered body, and ρ 1 to ρ i are the density (g of each constituent material corresponding to C 1 to C i ). / Cm 3 ).
2. Cracking of ITO sintered body and ITO sputtering target material Observation of ITO sintered body and ITO sputtering target material visually, cracking of the sintered body when the ITO sintered body was processed (hereinafter also referred to as processing crack) and The presence or absence of cracks in the target material (hereinafter also referred to as “joint crack”) when the ITO sputtering target material was joined was confirmed.
3. In 2 O 3 Average particle diameter: average value of the horizontal Feret's diameter of the average particle diameter of In 2 O 3 matrix of the matrix phase, was determined as follows. The cut surface obtained by cutting the ITO sintered body with a diamond cutter is polished step by step using emery paper # 170, # 320, # 800, # 1500, # 2000, and finally buffed to give a mirror surface. After finishing, the etching solution at 40 ° C. (nitric acid (60-61% aqueous solution, manufactured by Kanto Chemical Co., Inc., nitric acid 1.38 deer grade 1 product number 28161-03), hydrochloric acid (35.0-37.0% Aqueous solution, manufactured by Kanto Chemical Co., Ltd., deer hydrochloric acid grade 1 product number 18078-01) and pure water in a volume ratio of HCl: H 2 O: HNO 3 = 1: 1: 0.08)) for 9 minutes Etching was performed by immersion, and the surface that appeared was observed using a scanning electron microscope (JXA-8800-R, manufactured by JEOL). Photographs were taken at a magnification of 1000 in 10 randomly selected fields of view to obtain a tissue image of 100 μm × 130 μm.
 粒子解析ソフト(粒子解析Version3.0、住友金属テクノロジー株式会社製)を用い、まず各相のSEM像をトレースしてスキャナで画像認識させ、この画像を二値化した。この際、1画素がμm単位で表示されるように換算値を設定した。次いで、計測項目として水平フェレ径を選択することにより、In23母相の水平方向の全画素数より水平フェレ径(μm)を算出した。10視野において算出された水平フェレ径の平均値を本発明におけるIn23母相の平均粒径とした。
4.In4Sn312相の面積率
 ITO焼結体に対し上記「3.In23母相の平均粒径」と同様の処理を行い、切断面を走査型電子顕微鏡(JXA-8800-R、JEOL社製)にて観察した。無作為に選んだ10視野にて倍率3000倍で写真撮影を行い、33μm×43μmの組織画像を得た。
Using particle analysis software (Particle Analysis Version 3.0, manufactured by Sumitomo Metal Technology Co., Ltd.), SEM images of each phase were first traced and image recognition was performed with a scanner, and this image was binarized. At this time, the conversion value was set so that one pixel was displayed in units of μm. Next, the horizontal ferret diameter (μm) was calculated from the total number of pixels in the horizontal direction of the In 2 O 3 matrix by selecting the horizontal ferret diameter as a measurement item. The average value of the horizontal ferret diameter calculated in 10 fields of view was used as the average particle diameter of the In 2 O 3 matrix in the present invention.
4). Area ratio of In 4 Sn 3 O 12 phase The ITO sintered body was treated in the same manner as in “ 3. Average particle diameter of In 2 O 3 matrix”, and the cut surface was scanned with a scanning electron microscope (JXA-8800- R, manufactured by JEOL). Photographs were taken at a magnification of 3000 in 10 randomly selected fields of view to obtain a 33 μm × 43 μm tissue image.
 粒子解析ソフト(粒子解析Version3.0、住友金属テクノロジー株式会社製)を用い、まず結晶粒のSEM像をトレースしてスキャナで画像認識させ、この画像を二値化した。この際、1画素がμm単位で表示されるように換算値を設定した。In4Sn312相の面積を求め、視野面積(33×43μm2)に対する百分率の値を面積率として求めた。10視野において得られた面積率の平均値をITO焼結体におけるIn4Sn312相の面積率とした。
[実施例1]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が2.5質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
Using particle analysis software (particle analysis version 3.0, manufactured by Sumitomo Metal Technology Co., Ltd.), first, an SEM image of a crystal grain was traced and image recognition was performed with a scanner, and this image was binarized. At this time, the conversion value was set so that one pixel was displayed in units of μm. The area of the In 4 Sn 3 O 12 phase was determined, and the percentage value with respect to the visual field area (33 × 43 μm 2 ) was determined as the area ratio. The average value of the area ratio obtained in 10 fields of view was taken as the area ratio of the In 4 Sn 3 O 12 phase in the ITO sintered body.
[Example 1]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 2 It mix | blended so that it might become 5 mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このポットに、バインダとして、ITO原料粉末に対して0.3質量%のポリビニルアルコール、分散剤として、ITO原料粉末に対して0.2質量%のポリカルボン酸アンモニウム、可塑剤として、ITO原料粉末に対して0.5質量%のポリエチレングリコール、および分散媒として、ITO原料粉末に対して50質量%の水を加え、ボールミル混合してスラリーを調製した。 In this pot, as a binder, 0.3% by weight polyvinyl alcohol with respect to the ITO raw material powder, as a dispersant, 0.2% by weight ammonium polycarboxylate with respect to the ITO raw material powder, as a plasticizer, with ITO raw material powder As a dispersion medium, 0.5% by mass of polyethylene glycol and 50% by mass of water were added to the ITO raw material powder, followed by ball mill mixing to prepare a slurry.
 このスラリーをスプレードライ装置に供給し、アトマイズ回転数14,000rpm、入口温度200℃、出口温度80℃の条件でスプレードライを行い、顆粒を調製した。 The slurry was supplied to a spray drying apparatus, and spray drying was performed under the conditions of an atomizing rotation speed of 14,000 rpm, an inlet temperature of 200 ° C., and an outlet temperature of 80 ° C. to prepare granules.
 前記顆粒を300mm×500mmの金型に充填し、200kgf/cm2の圧力でコールドプレス法による成型し、平板状の仮成形体を作製した。 The granules were filled in a 300 mm × 500 mm mold and molded by a cold press method at a pressure of 200 kgf / cm 2 to produce a flat temporary molded body.
 前記仮成型体を真空パックし、800kgf/cm2の圧力でCIP成形して、平板状の成形体を作製した。 The temporary molded body was vacuum-packed and CIP molded at a pressure of 800 kgf / cm 2 to produce a flat molded body.
 この成形体を加熱脱脂した。脱脂温度は600℃、脱脂時間は10時間、昇温速度は、400℃までの温度範囲では20℃/h、400℃より高い温度範囲では50℃/hとした。 The molded body was heat degreased. The degreasing temperature was 600 ° C., the degreasing time was 10 hours, and the heating rate was 20 ° C./h in the temperature range up to 400 ° C., and 50 ° C./h in the temperature range higher than 400 ° C.
 脱脂された成形体を、酸素雰囲気中で、焼成温度1500℃、焼成時間12時間、昇温速度300℃/hの条件で焼成した。1500℃~1200℃の温度範囲における降温速度を10℃/h、前記温度範囲以外での降温速度を50℃/hとして、得られた焼成物を冷却した。得られた焼結体の相対密度は98.6%、In23母相の平均粒径は7.0μm、In4Sn312相の面積率は0.8%であった。 The degreased compact was fired in an oxygen atmosphere under conditions of a firing temperature of 1500 ° C., a firing time of 12 hours, and a heating rate of 300 ° C./h. The fired product obtained was cooled at a temperature lowering rate of 10 ° C./h in a temperature range of 1500 ° C. to 1200 ° C. and a temperature lowering rate outside the temperature range of 50 ° C./h. The relative density of the obtained sintered body was 98.6%, the average particle size of the In 2 O 3 mother phase was 7.0 μm, and the area ratio of the In 4 Sn 3 O 12 phase was 0.8%.
 得られた焼結体を切削加工し、短辺200mm、長辺350mm、厚さ9mmのITO平板スパッタリングターゲット材を30枚製造した。上記加工により30枚中1枚も割れは発生しなかった。 The obtained sintered body was cut to produce 30 ITO flat plate sputtering target materials having a short side of 200 mm, a long side of 350 mm, and a thickness of 9 mm. No cracks occurred in 1 of 30 sheets by the above processing.
 銅製バッキングプレートに前記ターゲット材9枚を、隣り合うターゲット材の長辺部が対向するように一列にIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合は、ターゲット材およびバッキングプレートを150℃に加熱し、ターゲット材およびバッキングプレートの接合面にインジウム半田を塗布し、両者の半田層を合わせた後、冷却することによって実施した。 The nine target materials were joined to a copper backing plate in a row with In solder so that the long sides of the adjacent target materials face each other, thereby producing an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. The joining was performed by heating the target material and the backing plate to 150 ° C., applying indium solder to the joining surfaces of the target material and the backing plate, matching the solder layers of both, and then cooling.
 接合後のターゲット材を確認したところ、1枚も割れは発生していなかった。 When the target material after joining was confirmed, no cracks occurred.
 製造条件、焼結体の相対密度In23母相の平均粒径、In4Sn312相の面積率、加工割れおよび接合割れの結果を表1に示した。 The production conditions, the relative density of the sintered body, the average particle size of the In 2 O 3 matrix, the area ratio of the In 4 Sn 3 O 12 phase, the results of work cracks and joint cracks are shown in Table 1.
 以下の実施例2~12、比較例1~5についても製造条件、焼結体の相対密度In23母相の平均粒径、In4Sn312相の面積率、加工割れおよび接合割れの結果を表1に示した。なお、表1において、加工割れおよび接合割れについての「X/Y」という表記は、試験に供した試験体Y個のうちX個に割れが生じたことを示す。たとえば、加工割れについての「1/30」との表記は、試験に供した焼結体30個のうち1個に割れが生じたことを示す。
[実施例2]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が3質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
Also in the following Examples 2 to 12 and Comparative Examples 1 to 5, the production conditions, the relative density of the sintered body, the average particle diameter of the In 2 O 3 matrix, the area ratio of the In 4 Sn 3 O 12 phase, work cracks and bonding The results of cracking are shown in Table 1. In Table 1, the notation “X / Y” for work cracks and joint cracks indicates that cracks occurred in X of Y specimens subjected to the test. For example, the notation “1/30” for a work crack indicates that one of the 30 sintered bodies subjected to the test had a crack.
[Example 2]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 3 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例1と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 1.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1500℃、焼成時間12時間、昇温速度300℃/hとした。降温は1500℃から1200℃までの降温速度を20℃/h、前記温度範囲以外での降温速度を50℃/hとした。得られた焼成体の密度は98.8%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ9.5μm、0.5%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1500 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate from 1500 ° C. to 1200 ° C. was 20 ° C./h, and the temperature lowering rate outside the above temperature range was 50 ° C./h. The density of the obtained fired body was 98.8%, the average particle diameter of the In 2 O 3 parent phase and the area ratio of the In 4 Sn 3 O 12 phase were 9.5 μm and 0.5%, respectively.
 得られた焼結体を切削加工し、短辺200mm、長辺350mm、厚さ9mmのITO平板スパッタリングターゲット材を30枚製造した。上記加工により30枚中1枚も割れは発生しなかった。 The obtained sintered body was cut to produce 30 ITO flat plate sputtering target materials having a short side of 200 mm, a long side of 350 mm, and a thickness of 9 mm. No cracks occurred in 1 of 30 sheets by the above processing.
 実施例1と同様に 銅製バッキングプレートに、前記ターゲット材9枚をIn半田により接合し、ITOターゲットを作製した。接合後のターゲット材を確認したところ、1枚も割れは発生していなかった。
[実施例3]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が5質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 1, nine target materials were joined to a copper backing plate with In solder to produce an ITO target. When the target material after joining was confirmed, no cracks were generated.
[Example 3]
And In 2 O 3 powder, which is the ratio measured specific surface area by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 5 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例1と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 1.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1500℃、焼成時間12時間、昇温速度300℃/hとした。降温は1500℃から1200℃までの降温速度を15℃/h、前記温度範囲以外での降温速度を50℃/hとした。得られた焼成体の密度は99.2%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ11.5μm、0.7%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1500 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate from 1500 ° C. to 1200 ° C. was 15 ° C./h, and the temperature lowering rate outside the above temperature range was 50 ° C./h. The density of the obtained fired body was 99.2%, the average particle size of the In 2 O 3 matrix and the area ratio of the In 4 Sn 3 O 12 phase were 11.5 μm and 0.7%, respectively.
 得られた焼結体を切削加工し、短辺200mm、長辺350mm、厚さ9mmのITO平板スパッタリングターゲット材を30枚製造した。上記加工により30枚中1枚も割れは発生しなかった。 The obtained sintered body was cut to produce 30 ITO flat plate sputtering target materials having a short side of 200 mm, a long side of 350 mm, and a thickness of 9 mm. No cracks occurred in 1 of 30 sheets by the above processing.
 実施例1と同様に 銅製バッキングプレートに、前記ターゲット材9枚をIn半田により接合し、ITOターゲットを作製した。接合後のターゲット材を確認したところ、1枚も割れは発生していなかった。
[実施例4]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が2.5質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 1, nine target materials were joined to a copper backing plate with In solder to produce an ITO target. When the target material after joining was confirmed, no cracks were generated.
[Example 4]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 2 It mix | blended so that it might become 5 mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このポットに、バインダとして、ITO原料粉末に対して0.3質量%のポリビニルアルコール、分散剤として、ITO原料粉末に対して0.2質量%のポリカルボン酸アンモニウム、可塑剤として、ITO原料粉末に対して0.5質量%のポリエチレングリコール、および分散媒として、ITO原料粉末に対して50質量%の水を加え、ボールミル混合してスラリーを調製した。 In this pot, as a binder, 0.3% by weight polyvinyl alcohol with respect to the ITO raw material powder, as a dispersant, 0.2% by weight ammonium polycarboxylate with respect to the ITO raw material powder, as a plasticizer, with ITO raw material powder As a dispersion medium, 0.5% by mass of polyethylene glycol and 50% by mass of water were added to the ITO raw material powder, followed by ball mill mixing to prepare a slurry.
 このスラリーをスプレードライ装置に供給し、アトマイズ回転数14,000rpm、入口温度200℃、出口温度80℃の条件でスプレードライを行い、顆粒を調製した。 The slurry was supplied to a spray drying apparatus, and spray drying was performed under the conditions of an atomizing rotation speed of 14,000 rpm, an inlet temperature of 200 ° C., and an outlet temperature of 80 ° C. to prepare granules.
 外径150mmの円柱状の中子(心棒)を有する内径220mm(肉厚10mm)、長さ450mmの円筒形状のウレタンゴム型に、前記顆粒をタッピングさせながら充填し、ゴム型を密閉後、800kgf/cm2の圧力でCIP成形して、円筒形の成形体を作製した。 A cylindrical urethane rubber mold having an inner diameter of 220 mm (thickness 10 mm) having a cylindrical core (mandrel) with an outer diameter of 150 mm and a length of 450 mm is filled while tapping the granules, and after sealing the rubber mold, 800 kgf CIP molding was performed at a pressure of / cm 2 to produce a cylindrical molded body.
 この成形体を加熱脱脂した。脱脂温度は600℃、脱脂時間は10時間、昇温速度は、400℃までの温度範囲では20℃/h、400℃より高い温度範囲では50℃/hとした。 The molded body was heat degreased. The degreasing temperature was 600 ° C., the degreasing time was 10 hours, and the heating rate was 20 ° C./h in the temperature range up to 400 ° C., and 50 ° C./h in the temperature range higher than 400 ° C.
 脱脂された成形体を、酸素雰囲気中で、焼成温度1500℃、焼成時間12時間、昇温速度300℃/hの条件で焼成した。1500℃~1200℃の温度範囲における降温速度を10℃/h、前記温度範囲以外での降温速度を50℃/hとして、得られた焼成物を冷却した。 The degreased molded body was fired in an oxygen atmosphere under conditions of a firing temperature of 1500 ° C., a firing time of 12 hours, and a heating rate of 300 ° C./h. The fired product obtained was cooled at a temperature lowering rate of 10 ° C./h in a temperature range of 1500 ° C. to 1200 ° C. and a temperature lowering rate outside the temperature range of 50 ° C./h.
 得られた焼結体の相対密度は98.8%、In23母相の平均粒径は6.6μm、In4Sn312相の面積率は0.9%であった。 The relative density of the obtained sintered body was 98.8%, the average particle size of the In 2 O 3 mother phase was 6.6 μm, and the area ratio of the In 4 Sn 3 O 12 phase was 0.9%.
 得られた焼結体を切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。切削加工は、砥石を用いて外径を加工し、外径を冶具にて保持して内径を加工した後、内径を冶具にて保持して外径の仕上げ加工をすることにより行った。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中1本も割れは発生しなかった。 The obtained sintered body was cut to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. The cutting was performed by processing the outer diameter using a grindstone, holding the outer diameter with a jig and processing the inner diameter, and then holding the inner diameter with a jig and finishing the outer diameter. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. The crack did not generate | occur | produce in 1 out of 30 by the said process.
 外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合は、ターゲット材および円筒形基材を150℃に加熱し、ターゲット材の内周面および円筒形基材の外周面にインジウム半田を塗布し、ターゲット材の空洞内に円筒形基材を挿入し、両者の半田層を合わせた後、冷却することによって実施した。 Nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. For joining, heat the target material and cylindrical base material to 150 ° C, apply indium solder to the inner peripheral surface of the target material and the outer peripheral surface of the cylindrical base material, and insert the cylindrical base material into the cavity of the target material Then, the two solder layers were combined and then cooled.
 接合後のターゲット材を確認したところ、1本も割れは発生していなかった。
[実施例5]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が3質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
When the target material after joining was confirmed, no cracks were generated.
[Example 5]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 3 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1470℃、焼成時間12時間、昇温速度300℃/hとした。降温は1470℃から1200℃までの降温速度を10℃/h、前記温度範囲以外での降温速度を50℃/hとした。得られた焼成体の密度は98.1%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ4.2μm、0.8%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1470 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate from 1470 ° C. to 1200 ° C. was 10 ° C./h, and the temperature lowering rate outside the above temperature range was 50 ° C./h. The density of the obtained fired body was 98.1%, the average particle diameter of the In 2 O 3 parent phase and the area ratio of the In 4 Sn 3 O 12 phase were 4.2 μm and 0.8%, respectively.
 得られた焼結体を切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中1本に割れが発生した。 The obtained sintered body was cut to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. A crack occurred in 1 of 30 pieces by the above processing.
 外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、割れは1本も発生していなかった。
[実施例6]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が3質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
The nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, no cracks were generated.
[Example 6]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 3 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1520℃、焼成時間12時間、昇温速度300℃/hとした。降温は1500℃から1200℃までの降温速度を10℃/h、前記温度範囲以外での降温速度を50℃/hとした。得られた焼成体の密度は98.5%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ10.8μm、0.9%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1520 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate from 1500 ° C. to 1200 ° C. was 10 ° C./h, and the temperature lowering rate outside the above temperature range was 50 ° C./h. The density of the obtained fired body was 98.5%, the average particle diameter of the In 2 O 3 matrix and the area ratio of the In 4 Sn 3 O 12 phase were 10.8 μm and 0.9%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中割れは1本も発生しなかった。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. None of the 30 cracks occurred by the above processing.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、割れは1本も発生していなかった。
[実施例7]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が3質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, no cracks were generated.
[Example 7]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 3 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1500℃、焼成時間12時間、昇温速度300℃/hとした。降温は1500℃から1200℃までの降温速度を20℃/h、前記温度範囲以外での降温速度を50℃/hとした。得られた焼成体の密度は98.4%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ9.2μm、0.4%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1500 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate from 1500 ° C. to 1200 ° C. was 20 ° C./h, and the temperature lowering rate outside the above temperature range was 50 ° C./h. The density of the obtained fired body was 98.4%, the average particle diameter of the In 2 O 3 matrix and the area ratio of the In 4 Sn 3 O 12 phase were 9.2 μm and 0.4%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中2本に割れが発生した。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. Cracks occurred in 2 out of 30 pieces by the above processing.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、1本に割れが発生していた。
[実施例8]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が3質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, one crack was generated.
[Example 8]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 3 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1550℃、焼成時間12時間、昇温速度300℃/hとした。降温は1500℃から1200℃までの降温速度を10℃/h、前記温度範囲以外での降温速度を50℃/hとした。得られた焼成体の密度は99.2%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ13.1μm、1.0%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1550 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate from 1500 ° C. to 1200 ° C. was 10 ° C./h, and the temperature lowering rate outside the above temperature range was 50 ° C./h. The density of the obtained fired body was 99.2%, and the average particle size of the In 2 O 3 mother phase and the area ratio of the In 4 Sn 3 O 12 phase were 13.1 μm and 1.0%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中割れは1本も発生しなかった。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. None of the 30 cracks occurred by the above processing.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、割れは1本も発生していなかった。
[実施例9]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が5質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, no cracks were generated.
[Example 9]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 5 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1470℃、焼成時間12時間、昇温速度300℃/hとした。降温は1470℃から1200℃までの降温速度を10℃/h、前記温度範囲以外での降温速度を50℃/hとした。得られた焼成体の密度は98.2%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ5.3μm、2.2%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1470 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate from 1470 ° C. to 1200 ° C. was 10 ° C./h, and the temperature lowering rate outside the above temperature range was 50 ° C./h. The density of the obtained fired body was 98.2%, the average particle diameter of the In 2 O 3 matrix and the area ratio of the In 4 Sn 3 O 12 phase were 5.3 μm and 2.2%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中割れは1本も発生しなかった。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. None of the 30 cracks occurred by the above processing.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、割れは1本も発生していなかった。
[実施例10]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が5質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, no cracks were generated.
[Example 10]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 5 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1520℃、焼成時間12時間、昇温速度300℃/hとした。降温は1500℃から1200℃までの降温速度を10℃/h、前記温度範囲以外での降温速度を50℃/hとした。得られた焼成体の密度は99.2%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ11.3μm、1.8%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1520 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate from 1500 ° C. to 1200 ° C. was 10 ° C./h, and the temperature lowering rate outside the above temperature range was 50 ° C./h. The density of the obtained fired body was 99.2%, the average particle diameter of the In 2 O 3 mother phase and the area ratio of the In 4 Sn 3 O 12 phase were 11.3 μm and 1.8%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中割れは1本も発生しなかった。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. None of the 30 cracks occurred by the above processing.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、割れは1本も発生していなかった。
[実施例11]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が5質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, no cracks were generated.
[Example 11]
And In 2 O 3 powder, which is the ratio measured specific surface area by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 5 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1500℃、焼成時間12時間、昇温速度300℃/hとした。降温は1500℃から1200℃までの降温速度を15℃/h、前記温度範囲以外での降温速度を50℃/hとした。得られた焼成体の密度は99.0%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ12.1μm、0.5%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1500 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate from 1500 ° C. to 1200 ° C. was 15 ° C./h, and the temperature lowering rate outside the above temperature range was 50 ° C./h. The density of the obtained fired body was 99.0%, the average particle size of the In 2 O 3 parent phase, and the area ratio of the In 4 Sn 3 O 12 phase were 12.1 μm and 0.5%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中割れは1本も発生しなかった。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. None of the 30 cracks occurred by the above processing.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、割れは1本も発生していなかった。
[実施例12]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が5質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, no cracks were generated.
[Example 12]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 5 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1600℃、焼成時間12時間、昇温速度300℃/hとした。降温は1500℃から1200℃までの降温速度を10℃/h、前記温度範囲以外での降温速度を50℃/hとした。得られた焼成体の密度は99.5%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ14.9μm、1.3%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1600 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate from 1500 ° C. to 1200 ° C. was 10 ° C./h, and the temperature lowering rate outside the above temperature range was 50 ° C./h. The density of the obtained fired body was 99.5%, the average particle diameter of the In 2 O 3 matrix and the area ratio of the In 4 Sn 3 O 12 phase were 14.9 μm and 1.3%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中割れは1本も発生しなかった。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. None of the 30 cracks occurred by the above processing.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、割れは1本も発生していなかった。
[比較例1]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が3質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, no cracks were generated.
[Comparative Example 1]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 3 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例1と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 1.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1500℃、焼成時間12時間、昇温速度300℃/hとした。降温速度はすべての温度範囲で降温速度50℃/hとした。得られた焼成体の密度は98.5%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ15.1μm、0.1%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1500 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The cooling rate was 50 ° C./h in all temperature ranges. The density of the obtained fired body was 98.5%, the average particle size of the In 2 O 3 matrix and the area ratio of the In 4 Sn 3 O 12 phase were 15.1 μm and 0.1%, respectively.
 得られた焼結体を切削加工し、短辺200mm、長辺350mm、厚さ9mmのITO平板スパッタリングターゲット材を30枚製造した。上記加工により30枚中、9枚に割れが発生した。 The obtained sintered body was cut to produce 30 ITO flat plate sputtering target materials having a short side of 200 mm, a long side of 350 mm, and a thickness of 9 mm. Nine out of 30 sheets were cracked by the above processing.
 実施例1と同様に 銅製バッキングプレートに、前記ターゲット材9枚をIn半田により接合し、ITOターゲットを作製した。接合後のターゲット材を確認したところ、3枚に割れが発生していた。
[比較例2]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が3質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、原ITO料粉末を調製した。
In the same manner as in Example 1, nine target materials were joined to a copper backing plate with In solder to produce an ITO target. When the target material after joining was confirmed, cracks occurred in the three sheets.
[Comparative Example 2]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 3 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and the raw | natural ITO material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1550℃、焼成時間12時間、昇温速度300℃/hとした。降温速度はすべての温度範囲で降温速度50℃/hとした。得られた焼成体の密度は98.6%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ17.7μm、0.1%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1550 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The cooling rate was 50 ° C./h in all temperature ranges. The density of the obtained fired body was 98.6%, the average particle diameter of the In 2 O 3 matrix and the area ratio of the In 4 Sn 3 O 12 phase were 17.7 μm and 0.1%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中12本に割れが発生した。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. Due to the above processing, cracks occurred in 12 out of 30 pieces.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、4本に割れが発生していた。
[比較例3]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が3質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, cracks occurred in four.
[Comparative Example 3]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 3 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1400℃、焼成時間12時間、昇温速度300℃/hとした。降温速度はすべての温度範囲で降温速度50℃/hとした。得られた焼成体の密度は97.6%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ11.6μm、0.2%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1400 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The cooling rate was 50 ° C./h in all temperature ranges. The density of the obtained fired body was 97.6%, the average particle diameter of the In 2 O 3 parent phase and the area ratio of the In 4 Sn 3 O 12 phase were 11.6 μm and 0.2%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中、8本に割れが発生した。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. By the above processing, cracks occurred in 8 out of 30 pieces.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、2本に割れが発生していた。
[比較例4]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が3質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、原ITO料粉末を調製した。
In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, cracks were generated in two pieces.
[Comparative Example 4]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 3 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and the raw | natural ITO material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1400℃、焼成時間12時間、昇温速度300℃/hとした。降温速度はすべての温度範囲で降温速度20℃/hとした。得られた焼成体の密度は97.7%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ6.3μm、0.5%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1400 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate was 20 ° C./h in all temperature ranges. The density of the obtained fired body was 97.7%, the average particle size of the In 2 O 3 matrix and the area ratio of the In 4 Sn 3 O 12 phase were 6.3 μm and 0.5%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中、4本に割れが発生した。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. Due to the above processing, cracks occurred in 4 out of 30 pieces.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、1本に割れが発生していた。
[比較例5]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が3質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, one crack was generated.
[Comparative Example 5]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 3 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1520℃、焼成時間12時間、昇温速度300℃/hとした。降温速度はすべての温度範囲で降温速度30℃/hとした。得られた焼成体の密度は98.6%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ18.1μm、0.3%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1520 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The temperature lowering rate was 30 ° C./h in all temperature ranges. The density of the obtained fired body was 98.6%, the average particle diameter of the In 2 O 3 parent phase and the area ratio of the In 4 Sn 3 O 12 phase were 18.1 μm and 0.3%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中、6本に割れが発生した。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. By the above processing, cracks occurred in 6 out of 30 pieces.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、2本に割れが発生していた。
[比較例6]
 BET法により測定された比表面積が5m2/gであるSnO2粉末とBET法により測定された比表面積が5m2/gであるIn23粉末とを、SnO2粉末の含有量が5質量%になるように配合し、ポット中でジルコニアボールによりボールミル混合して、ITO原料粉末を調製した。
In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm, to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, cracks were generated in two pieces.
[Comparative Example 6]
And In 2 O 3 powder, which is the ratio specific surface area measured by the BET method was measured by SnO 2 powder and the BET method is 5 m 2 / g surface area of 5 m 2 / g, the content of SnO 2 powder 5 It mix | blended so that it might become mass%, and ball mill mixing was carried out with the zirconia ball | bowl in the pot, and ITO raw material powder was prepared.
 このITO原料粉末を用いて実施例4と同様の方法で、脱脂された成形体を作製した。 Using this ITO raw material powder, a degreased compact was produced in the same manner as in Example 4.
 脱脂された成形体を焼成して、焼結体を作製した。焼成は、酸素雰囲気中で、焼成温度1550℃、焼成時間12時間、昇温速度300℃/hとした。降温速度はすべての温度範囲で降温速度50℃/hとした。得られた焼成体の密度は98.6%であり、In23母相の平均粒径、In4Sn312相の面積率はそれぞれ18.3μm、0.3%であった。 The degreased molded body was fired to produce a sintered body. Firing was performed in an oxygen atmosphere at a firing temperature of 1550 ° C., a firing time of 12 hours, and a temperature increase rate of 300 ° C./h. The cooling rate was 50 ° C./h in all temperature ranges. The density of the obtained fired body was 98.6%, the average particle diameter of the In 2 O 3 parent phase and the area ratio of the In 4 Sn 3 O 12 phase were 18.3 μm and 0.3%, respectively.
 得られた焼結体を実施例4と同様に切削加工し、外径153mm、内径135mm、長さ300mmのITO円筒形スパッタリングターゲット材を製造した。同様の操作により、30本のITO円筒形スパッタリングターゲット材の製造を実施した。上記加工により30本中9本に割れが発生した。 The obtained sintered body was cut in the same manner as in Example 4 to produce an ITO cylindrical sputtering target material having an outer diameter of 153 mm, an inner diameter of 135 mm, and a length of 300 mm. By the same operation, 30 ITO cylindrical sputtering target materials were manufactured. Nine out of 30 cracks were generated by the above processing.
 実施例4と同様に外径133mm、内径123mm、長さ3200mmのチタン製バッキングチューブに、前記ターゲット材9本をIn半田により接合し、ITOターゲットを作製した。各ターゲット材間の間隔(分割部の長さ)は0.5mmとした。接合後のターゲット材を確認したところ、3本に割れが発生した。 In the same manner as in Example 4, nine target materials were joined with In solder to a titanium backing tube having an outer diameter of 133 mm, an inner diameter of 123 mm, and a length of 3200 mm to produce an ITO target. The interval between the target materials (the length of the divided portion) was 0.5 mm. When the target material after joining was confirmed, cracks occurred in three pieces.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1 In23母相
2 In4Sn312
1 In 2 O 3 matrix 2 In 4 Sn 3 O 12 phase

Claims (8)

  1.  Snの含有量がSnO2量換算で2.5~10.0質量%であり、In23母相と該In23母相の粒界に存在するIn4Sn312相とを有するITO焼結体であって、
     相対密度が98.0%以上であり、前記In23母相の平均粒径が17μm以下であり、該ITO焼結体の断面における前記In4Sn312相の面積率が0.4%以上であるITO焼結体。
    The Sn content is 2.5 to 10.0 mass% in terms of SnO 2 , and the In 2 O 3 parent phase and the In 4 Sn 3 O 12 phase present at the grain boundaries of the In 2 O 3 parent phase An ITO sintered body having
    The relative density is 98.0% or more, the average particle size of the In 2 O 3 matrix is 17 μm or less, and the area ratio of the In 4 Sn 3 O 12 phase in the cross section of the ITO sintered body is 0.00. ITO sintered body of 4% or more.
  2.  円筒形である請求項1に記載のITO焼結体。 The ITO sintered body according to claim 1, which has a cylindrical shape.
  3.  請求項1または2に記載のITO焼結体からなるITOスパッタリングターゲット材。 An ITO sputtering target material comprising the ITO sintered body according to claim 1 or 2.
  4.  請求項3に記載のITOスパッタリングターゲット材を基材に接合材によって接合してなるITOスパッタリングターゲット。 An ITO sputtering target obtained by bonding the ITO sputtering target material according to claim 3 to a substrate with a bonding material.
  5.  ITO原料粉末から作製されるITO成形体を焼成する焼成工程、および前記焼成工程で得られた焼成物を冷却する冷却工程を含み、
     前記冷却工程において、1200~1350℃の範囲であって、かつ前記ITO成形体を焼成する焼成温度以下の温度範囲における冷却を降温速度25℃/h以下で行う請求項1に記載のITO焼結体の製造方法。
    Including a firing step of firing the ITO molded body produced from the ITO raw material powder, and a cooling step of cooling the fired product obtained in the firing step,
    The ITO sintering according to claim 1, wherein in the cooling step, cooling in a temperature range of 1200 to 1350 ° C and lower than a firing temperature for firing the ITO molded body is performed at a temperature lowering rate of 25 ° C / h or less. Body manufacturing method.
  6.  ITO原料粉末から作製されるITO成形体を焼成する焼成工程、および前記焼成工程で得られた焼成物を冷却する冷却工程を含み、
     前記冷却工程において、1200~1500℃の範囲であって、かつ前記ITO成形体を焼成する焼成温度以下の温度範囲における冷却を降温速度25℃/h以下で行う請求項1に記載のITO焼結体の製造方法。
    Including a firing step of firing the ITO molded body produced from the ITO raw material powder, and a cooling step of cooling the fired product obtained in the firing step,
    The ITO sintering according to claim 1, wherein in the cooling step, cooling in a temperature range of 1200 to 1500 ° C and lower than a firing temperature for firing the ITO molded body is performed at a temperature lowering rate of 25 ° C / h or less. Body manufacturing method.
  7.  前記ITO成形体およびITO焼結体が円筒形である請求項5または6に記載の、ITO焼結体の製造方法。 The method for producing an ITO sintered body according to claim 5 or 6, wherein the ITO molded body and the ITO sintered body are cylindrical.
  8.  請求項5~7のいずれかに記載の製造方法によってITO焼結体を製造し、得られたITO焼結体を加工してターゲット材を製造するITOターゲット材の製造方法。 A method for producing an ITO target material, comprising producing an ITO sintered body by the production method according to any one of claims 5 to 7 and processing the obtained ITO sintered body to produce a target material.
PCT/JP2015/052688 2014-02-18 2015-01-30 Ito sputtering target material and method for producing same WO2015125588A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580000974.2A CN105308002A (en) 2014-02-18 2015-01-30 Ito sputtering target material and method for producing same
KR1020157033563A KR101583693B1 (en) 2014-02-18 2015-01-30 Ito sputtering target material and method for producing same
JP2015526439A JP5816394B1 (en) 2014-02-18 2015-01-30 ITO sputtering target material and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-028543 2014-02-18
JP2014028543 2014-02-18

Publications (1)

Publication Number Publication Date
WO2015125588A1 true WO2015125588A1 (en) 2015-08-27

Family

ID=53878100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052688 WO2015125588A1 (en) 2014-02-18 2015-01-30 Ito sputtering target material and method for producing same

Country Status (5)

Country Link
JP (1) JP5816394B1 (en)
KR (1) KR101583693B1 (en)
CN (2) CN105308002A (en)
TW (1) TWI522332B (en)
WO (1) WO2015125588A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072441A1 (en) * 2014-11-07 2016-05-12 Jx金属株式会社 Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
JP2017190523A (en) * 2016-04-12 2017-10-19 三菱マテリアル株式会社 Cylindrical sputtering target

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250426A (en) * 2015-04-30 2017-10-13 三井金属矿业株式会社 ITO sputtering target materials
CN107236934A (en) * 2016-03-28 2017-10-10 Jx金属株式会社 Cylinder type sputtering target and its manufacture method
JP2018178251A (en) * 2017-04-07 2018-11-15 三菱マテリアル株式会社 Cylindrical sputtering target and manufacturing method of the same
CN113149614A (en) * 2021-05-28 2021-07-23 通威太阳能(合肥)有限公司 Sintered body, target material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166341A (en) * 1993-12-14 1995-06-27 Hitachi Metals Ltd Target for sputtering for indium-tin oxide film and production thereof
JP2007231381A (en) * 2006-03-01 2007-09-13 Tosoh Corp Ito sputtering target and production method therefor
WO2009020091A1 (en) * 2007-08-06 2009-02-12 Mitsui Mining & Smelting Co., Ltd. Ito sintered body and ito sputtering target
JP2010150611A (en) * 2008-12-25 2010-07-08 Tosoh Corp Sintered compact for transparent conductive film, sputtering target, and method for producing the sintered compact for transparent conductive film
JP2011080116A (en) * 2009-10-07 2011-04-21 Mitsui Mining & Smelting Co Ltd Ito sputtering target and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961672B2 (en) 2004-03-05 2012-06-27 東ソー株式会社 Cylindrical sputtering target, ceramic sintered body, and manufacturing method thereof
JP2012126937A (en) 2010-12-13 2012-07-05 Sumitomo Metal Mining Co Ltd Ito sputtering target and manufacturing method thereof
CN102718499B (en) * 2012-07-10 2014-02-26 国家钽铌特种金属材料工程技术研究中心 Manufacturing method of ITO (Indium Tin Oxide) sputtering target comprising In4Sn3O12 phases

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166341A (en) * 1993-12-14 1995-06-27 Hitachi Metals Ltd Target for sputtering for indium-tin oxide film and production thereof
JP2007231381A (en) * 2006-03-01 2007-09-13 Tosoh Corp Ito sputtering target and production method therefor
WO2009020091A1 (en) * 2007-08-06 2009-02-12 Mitsui Mining & Smelting Co., Ltd. Ito sintered body and ito sputtering target
JP2010150611A (en) * 2008-12-25 2010-07-08 Tosoh Corp Sintered compact for transparent conductive film, sputtering target, and method for producing the sintered compact for transparent conductive film
JP2011080116A (en) * 2009-10-07 2011-04-21 Mitsui Mining & Smelting Co Ltd Ito sputtering target and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072441A1 (en) * 2014-11-07 2016-05-12 Jx金属株式会社 Ito sputtering target and method for manufacturing same, ito transparent electroconductive film, and method for manufacturing ito transparent electroconductive film
JPWO2016072441A1 (en) * 2014-11-07 2017-04-27 Jx金属株式会社 ITO sputtering target, method for producing the same, ITO transparent conductive film, and method for producing ITO transparent conductive film
JP2017190523A (en) * 2016-04-12 2017-10-19 三菱マテリアル株式会社 Cylindrical sputtering target

Also Published As

Publication number Publication date
TW201534572A (en) 2015-09-16
TWI522332B (en) 2016-02-21
CN105308002A (en) 2016-02-03
JP5816394B1 (en) 2015-11-18
JPWO2015125588A1 (en) 2017-03-30
CN107253855A (en) 2017-10-17
KR20150139623A (en) 2015-12-11
KR101583693B1 (en) 2016-01-08

Similar Documents

Publication Publication Date Title
JP5816394B1 (en) ITO sputtering target material and manufacturing method thereof
JP5750060B2 (en) Ceramic cylindrical sputtering target material and manufacturing method thereof
JP5887819B2 (en) Zinc oxide sintered body, sputtering target comprising the same, and zinc oxide thin film
JP6264846B2 (en) Oxide sintered body, sputtering target and manufacturing method thereof
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
JP2012126937A (en) Ito sputtering target and manufacturing method thereof
TWI573890B (en) Method for making a target material for sputtering target and claw member
TWI491580B (en) Tablet for vapor depositing and method for producing the same
JP5218032B2 (en) Method for producing sintered body for transparent conductive film
JP6412439B2 (en) Method for manufacturing ceramic target material and method for manufacturing cylindrical sputtering target
JP5784849B2 (en) Ceramic cylindrical sputtering target material and manufacturing method thereof
JP2014125422A (en) Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
JP5979082B2 (en) Vapor deposition tablet and manufacturing method thereof
WO2016140021A1 (en) Hollow cylindrical ceramic target material, and hollow cylindrical sputtering target
JP2011080116A (en) Ito sputtering target and method for producing the same
TW201734239A (en) Cylindrical ceramic-based sputtering target material and cylindrical ceramic-based sputtering target configured by joining one or more cylindrical ceramic-based sputtering target materials to backing tube
WO2016136088A1 (en) Cylindrical target material manufacturing method, cylindrical sputtering target, and baking jig
JP2015089966A (en) Sputtering target material and its manufacturing method
KR20170142169A (en) ITO sputtering target material
JP2010255022A (en) Ito sputtering target, and method for producing the same
JP7480439B2 (en) Oxide sintered body, its manufacturing method, and sputtering target material
JP2003055759A (en) METHOD FOR MANUFACTURING Mg-CONTAINING ITO SPUTTERING TARGET
JP2016014191A (en) Ceramic cylindrical type sputtering target material, and method of manufacturing the same
TWI755648B (en) Sintered oxide body, sputtering target and method for producing oxide thin film
TW202325683A (en) Oxide sintered body, method for producing same, and sputtering target material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580000974.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015526439

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157033563

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15751274

Country of ref document: EP

Kind code of ref document: A1