JP5979082B2 - Vapor deposition tablet and manufacturing method thereof - Google Patents

Vapor deposition tablet and manufacturing method thereof Download PDF

Info

Publication number
JP5979082B2
JP5979082B2 JP2013112634A JP2013112634A JP5979082B2 JP 5979082 B2 JP5979082 B2 JP 5979082B2 JP 2013112634 A JP2013112634 A JP 2013112634A JP 2013112634 A JP2013112634 A JP 2013112634A JP 5979082 B2 JP5979082 B2 JP 5979082B2
Authority
JP
Japan
Prior art keywords
sintered
powder
tablet
oxide
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013112634A
Other languages
Japanese (ja)
Other versions
JP2014231626A (en
Inventor
正和 ▲桑▼原
正和 ▲桑▼原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013112634A priority Critical patent/JP5979082B2/en
Publication of JP2014231626A publication Critical patent/JP2014231626A/en
Application granted granted Critical
Publication of JP5979082B2 publication Critical patent/JP5979082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、低抵抗の透明導電膜を真空蒸着法で製造する際に使用される酸化物焼結体から成る蒸着材料に係り、特に、高いパワーの電子ビーム(EB)や高出力のプラズマを照射しても破損が起こり難い酸化錫系の蒸着用タブレットとその製造方法に関するものである。   The present invention relates to a vapor deposition material comprising an oxide sintered body used when a low resistance transparent conductive film is manufactured by a vacuum vapor deposition method, and in particular, a high power electron beam (EB) or a high output plasma. The present invention relates to a tin oxide-based vapor deposition tablet that hardly breaks even when irradiated and a method for producing the same.

透明導電膜は、一般的に高い導電性と可視光領域での高い透過率を有している。このため、太陽電池や液晶表示素子、その他各種受光素子の電極等に利用されていると共に、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケース等の防曇用の透明発熱体としても利用されている。   The transparent conductive film generally has high conductivity and high transmittance in the visible light region. For this reason, it is used for electrodes of solar cells, liquid crystal display elements, and other various light receiving elements, and transparent heating elements for anti-fogging such as automobile windows, heat ray reflective films for buildings, antistatic films, refrigeration showcases, etc. It is also used as.

そして、上記透明導電膜としては、従来、ドーパント(α)を含む酸化インジウム系(In23+α)の透明導電膜、酸化亜鉛系(ZnO+α)の透明導電膜、および、酸化錫系(SnO2+α)の透明導電膜が広く知られている。最も多く使用されている透明導電膜は酸化インジウム系で、その中でも酸化錫をドーパントとして含む酸化インジウムは、ITO(Indium Tin Oxide)膜と称され、低抵抗の透明導電膜が容易に得られることから、広く利用されている。 Conventionally, as the transparent conductive film, an indium oxide-based (In 2 O 3 + α) transparent conductive film containing a dopant (α), a zinc oxide-based (ZnO + α) transparent conductive film, and a tin oxide-based (SnO) 2 + α) transparent conductive films are widely known. The most commonly used transparent conductive film is based on indium oxide. Among them, indium oxide containing tin oxide as a dopant is called an ITO (Indium Tin Oxide) film, and a low resistance transparent conductive film can be easily obtained. Widely used.

他方、酸化錫系(SnO2+α)の透明導電膜も、酸化インジウム系(In23+α)の透明導電膜に較べて若干透明性に優れていること、および、化学的、熱的に安定であること等の理由から、太陽電池を中心にフラットパネルディスプレイやタッチパネル等の広い用途に使用されている。 On the other hand, the tin oxide (SnO 2 + α) transparent conductive film is also slightly more transparent than the indium oxide (In 2 O 3 + α) transparent conductive film, and chemically and thermally. For reasons such as stability, it is used for a wide range of applications such as flat panel displays and touch panels centering on solar cells.

ところで、上記酸化錫系(SnO2+α)の透明導電膜は、工業的にはスプレー方式等の湿式法やCVD方式等により成膜されるのが主流とされている。しかし、上記湿式法やCVD等の方式は、透明導電膜の膜厚を大面積に均一化することには適しておらず、成膜プロセスの制御も困難で、かつ、成膜時には汚染物質である塩素系ガスを発生する。このため、湿式法やCVD等の方式とは異なる乾式法での成膜が望まれている。 By the way, the tin oxide (SnO 2 + α) transparent conductive film is industrially formed mainly by a wet method such as a spray method, a CVD method, or the like. However, the above-described wet methods and CVD methods are not suitable for uniformizing the film thickness of the transparent conductive film over a large area, and it is difficult to control the film formation process. A certain chlorinated gas is generated. For this reason, film formation by a dry method different from a method such as a wet method or CVD is desired.

上記乾式法での成膜に用いられる酸化錫系焼結体として、従来、Nb等がドーピングされ、その焼結体密度が最大で6.79g/cm3である酸化錫系のスパッタリングターゲットが知られている(特許文献1参照)。しかし、近年、スパッタリング法と較べて透明導電膜の生産性に優れる真空蒸着法による成膜が主流になっており、真空蒸着法に利用できる酸化錫系焼結体(タブレット)が要望されている。 Conventionally, as a tin oxide-based sintered body used for film formation by the dry method, a tin oxide-based sputtering target doped with Nb or the like and having a sintered body density of 6.79 g / cm 3 at maximum is known. (See Patent Document 1). However, in recent years, film formation by a vacuum evaporation method, which is superior in productivity of a transparent conductive film as compared with a sputtering method, has become mainstream, and a tin oxide-based sintered body (tablet) that can be used for the vacuum evaporation method has been demanded. .

ところが、上記酸化錫系のスパッタリングターゲットを応用して製造された酸化錫系焼結体(タブレット)を電子ビーム(EB)やイオンプレーティング等の真空蒸着法に用いた場合、製造された酸化錫系焼結体(タブレット)の密度が低過ぎると、電子ビームや高出力プラズマを照射した際に、材料が表面から蒸発していくのと同時にタブレットの焼結が急激に起こり、部分的なタブレットの収縮によりタブレットが破損するという問題があった。反対に、製造された酸化錫系焼結体(タブレット)の密度が高過ぎると、電子ビーム等を照射した際にタブレットの表面と内部に温度差が生じ、熱膨張の違いによりタブレットの破損(熱衝撃による破損)が発生するという問題があり、酸化錫系のスパッタリングターゲットを応用して製造された既存の酸化錫系焼結体(タブレット)は十分なものになっていない。   However, when the tin oxide-based sintered body (tablet) manufactured by applying the tin oxide-based sputtering target is used in vacuum deposition methods such as electron beam (EB) and ion plating, the manufactured tin oxide If the density of the sintered body (tablet) is too low, when the electron beam or high-power plasma is irradiated, the material evaporates from the surface, and at the same time, the tablet sinters rapidly, and the partial tablet There was a problem that the tablet was damaged by the shrinkage of the tablet. On the other hand, if the density of the manufactured tin oxide-based sintered body (tablet) is too high, a temperature difference occurs between the surface and the inside of the tablet when irradiated with an electron beam, etc., and the tablet breaks due to the difference in thermal expansion ( There is a problem that damage due to thermal shock occurs, and existing tin oxide-based sintered bodies (tablets) manufactured by applying a tin oxide-based sputtering target are not sufficient.

このような技術的背景の下、本出願人は、酸化錫系と種類を異にする酸化インジウム系の焼結体(タブレット)ではあるが、蒸着中に破損されることのない蒸着用タブレットを既に提案している(特許文献2参照)。   Under such a technical background, the applicant of the present invention is an indium oxide-based sintered body (tablet) that is different from the tin oxide-based type, but a deposition tablet that is not damaged during vapor deposition. It has already been proposed (see Patent Document 2).

すなわち、酸化インジウム系焼結体から成る特許文献2に記載の蒸着用タブレットは、セリウムをドーパントとして含む酸化インジウム焼結体により構成され、かつ、相対密度が50%以上80%以下であり、上記酸化インジウム焼結体の破断面に現れる結晶粒についてその粒径とその個数を掛け合わせて得られる結晶粒量の分布における最大ピークを構成する粒径の結晶粒の占める比率(最多結晶粒量比率)が20%以下であることを特徴とし、例えば、以下の第一工程〜第三工程を経て製造されるものであった。
(第一工程)酸化インジウム粉末と酸化セリウム粉末とを1300℃以上1550℃以下で熱処理しかつ粉砕して仮焼粉末を得る工程と、
(第二工程)得られた仮焼粉末に、未仮焼の酸化インジウム粉末および/または酸化セリウム粉末を上記仮焼粉末の割合が50質量%以上80質量%以下となるように混合し、かつ、造粒して造粒粉末を得る工程と、
(第三工程)得られた造粒粉末を成形して成形体とし、この成形体を、1100℃以上1350℃以下でかつ上記第一工程における仮焼粉末の熱処理温度より200℃以上低い温度で焼結してセリウムをドーパントとして含む酸化インジウムの焼結体を得る工程。
That is, the evaporation tablet described in Patent Document 2 made of an indium oxide-based sintered body is composed of an indium oxide sintered body containing cerium as a dopant, and has a relative density of 50% or more and 80% or less. The ratio of the grains constituting the maximum peak in the distribution of the grain size obtained by multiplying the grain size by the number of grains appearing on the fracture surface of the indium oxide sintered body (the ratio of the most polycrystalline grains) ) Is 20% or less, and is manufactured through the following first to third steps, for example.
(1st process) The process which heat-processes indium oxide powder and cerium oxide powder at 1300 degreeC or more and 1550 degrees C or less and grind | pulverizes, and obtains calcining powder,
(Second step) To the obtained calcined powder, uncalcined indium oxide powder and / or cerium oxide powder is mixed so that the ratio of the calcined powder is 50% by mass or more and 80% by mass or less, and A step of granulating to obtain a granulated powder;
(Third step) The obtained granulated powder is molded into a molded body, and this molded body is 1100 ° C. or higher and 1350 ° C. or lower and at a temperature 200 ° C. or lower than the heat treatment temperature of the calcined powder in the first step. A step of sintering to obtain a sintered body of indium oxide containing cerium as a dopant.

尚、上記「相対密度」とは、蒸着材料の出発原料である各混合粉末の真密度から求めた計算真密度に対する焼結体密度(蒸着材料の密度)の比率(%)のことで、(焼結体密度/計算真密度)×100=焼結体の相対密度(%)という式により求められる値である。また、上記「計算真密度」は、ITOであれば、計算真密度=100/{[酸化インジウムの配合比(質量%)/酸化インジウムの真密度]+[酸化錫の配合比(質量%)/酸化錫の真密度]}で計算される。   The “relative density” refers to the ratio (%) of the sintered body density (deposition material density) to the calculated true density obtained from the true density of each mixed powder that is the starting material of the deposition material. Sintered body density / calculated true density) × 100 = a value obtained by the formula of relative density (%) of sintered body. Moreover, the above-mentioned “calculated true density” is calculated true density = 100 / {[mixing ratio of indium oxide (mass%) / true density of indium oxide] + [mixing ratio of tin oxide (mass%) if ITO is ITO. / True density of tin oxide]}.

そして、特許文献2に記載の技術手法を応用して製造された酸化錫系焼結体(タブレット)は、長時間の電子ビーム(EB)蒸着やイオンプレーティングを連続して行なった場合でも蒸着中に破損され難いため、蒸着効率が改善されて透明導電膜等の生産性を著しく向上させることが可能になった。   The tin oxide-based sintered body (tablet) manufactured by applying the technical method described in Patent Document 2 is deposited even when long-time electron beam (EB) deposition or ion plating is continuously performed. Since it is difficult to be damaged, the deposition efficiency is improved and the productivity of transparent conductive films and the like can be remarkably improved.

特開2000-273622号公報JP 2000-273622 A 国際公開2011/016297号公報International Publication 2011/016297

ところで、蒸着効率の更なる改善と透明導電膜等の量産を目指し、蒸着用タブレットに対して、蒸着の初期段階から高いパワーの電子ビーム(EB)をいきなり照射しなければならない場合があった。また、イオンプレーティングにおいては、通常、50A〜100Aの放電電流にて発生させたプラズマにより成膜を行うことが多いが、量産性を高めるために150A以上の放電電流にて発生させたプラズマにより成膜することが一般的となってきている。   By the way, with the aim of further improving the deposition efficiency and mass production of transparent conductive films and the like, there has been a case where a high power electron beam (EB) has to be suddenly irradiated to the deposition tablet from the initial stage of the deposition. In ion plating, film formation is usually performed with plasma generated at a discharge current of 50 A to 100 A. In order to improve mass productivity, plasma is generated at a discharge current of 150 A or more. Film formation has become common.

そして、蒸着の初期段階から高いパワーの電子ビーム(EB)や高出力プラズマをいきなり照射した場合、例え特許文献2の手法を応用して得られた酸化錫系焼結体(タブレット)を適用しても破損してしまうことがあった。   When a high-power electron beam (EB) or high-power plasma is suddenly irradiated from the initial stage of vapor deposition, for example, a tin oxide-based sintered body (tablet) obtained by applying the technique of Patent Document 2 is applied. Even if it was damaged.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、酸化錫を主原料とする酸化錫系焼結体により構成され、例え蒸着の初期段階から高いパワーの電子ビーム(EB)や高出力のプラズマを照射したり、長時間の電子ビーム(EB)蒸着やイオンプレーティングを連続して行なった場合でも、破損し難い蒸着用タブレットとその製造方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that it is composed of a tin oxide-based sintered body mainly composed of tin oxide, and has high power from the initial stage of vapor deposition. Provided is a deposition tablet that is difficult to break even when it is irradiated with an electron beam (EB) or high-power plasma, or when a long-time electron beam (EB) deposition or ion plating is continuously performed, and a method for manufacturing the same. There is.

そこで、上記課題を解決するため、特許文献2における上記第一工程の仮焼粉末について平均粒径が4μm以上20μm以下となるように調合した場合、蒸着の初期段階からいきなり高いパワーの電子ビーム(EB)や高出力のラズマを照射したり、長時間の電子ビーム(EB)蒸着やイオンプレーティングを連続して行なっても、破損され難い蒸着用タブレットが得られることを見出すに至った。   Therefore, in order to solve the above-mentioned problem, when the average particle size of the calcined powder in the first step in Patent Document 2 is adjusted to 4 μm or more and 20 μm or less, a high-power electron beam (from the initial stage of vapor deposition ( It has been found that even when irradiation with EB) or high-powered plasma is performed, or when long-time electron beam (EB) vapor deposition or ion plating is continuously performed, a vapor deposition tablet that is not easily damaged can be obtained.

そして、この蒸着用タブレットは以下の工程を経て得られるものであった。   And this tablet for vapor deposition was obtained through the following processes.

まず、仮焼された第一原料粉末を得る工程:すなわち、酸化錫を主原料とした混合粉末を1300℃以上1600℃以下の仮焼温度で焼結した後、篩がけを行い平均粒径が4μm以上20μm以下の仮焼された第一原料粉末を得る。   First, a step of obtaining a calcined first raw material powder: That is, after sintering a mixed powder containing tin oxide as a main raw material at a calcining temperature of 1300 ° C. or higher and 1600 ° C. or lower, sieving is performed and the average particle size is A calcined first raw material powder of 4 μm or more and 20 μm or less is obtained.

次に、上記第一原料粉末と未仮焼の第二原料粉末から造粒粉末を得る工程:すなわち、酸化錫粉末を主原料とした未仮焼の第二原料粉末を、上記第一原料粉末に対して、第一原料粉末の混合割合が50質量%以上75質量%以下となるように混合し、その後造粒して造粒粉末を得る。   Next, a step of obtaining a granulated powder from the first raw material powder and the uncalcined second raw material powder: In other words, the uncalcined second raw material powder containing tin oxide powder as a main raw material is converted into the first raw material powder. The first raw material powder is mixed so that the mixing ratio of the first raw material powder is 50% by mass or more and 75% by mass or less, and then granulated to obtain a granulated powder.

更に、上記造粒粉末から酸化錫を主原料とした焼結体を得る工程:すなわち、上記造粒粉末を成形して成形体とし、この成形体を1100℃以上かつ仮焼温度より200℃以上低い温度で焼結して酸化錫焼結体を得る。   Further, a step of obtaining a sintered body containing tin oxide as a main raw material from the granulated powder: That is, the granulated powder is molded into a molded body, and the molded body is 1100 ° C. or higher and 200 ° C. or higher from the calcining temperature. Sinter at a low temperature to obtain a tin oxide sintered body.

そして、このような工程を経て完成された酸化錫を主原料とした焼結体の破断面に現れる結晶粒の分布を観察したところ、大きな結晶粒から小さな結晶粒まで適度に分布していることが確認され、更に、仮焼した第一原料粉末に由来する第一焼結粒の平均粒径をD1とし、第二原料粉末に由来する第二焼結粒の平均粒径をD2としたとき、第一焼結粒の平均粒径D1に対する第二焼結粒の平均粒径D2の粒径比率[(D2/D1)×100(%)]が4%以上14%以下になっていることを見出すに至った。本発明はこのような技術的発見により完成されている。   And when the distribution of the crystal grains appearing on the fracture surface of the sintered body made of tin oxide as a main raw material completed through such a process was observed, it was found that it was moderately distributed from large crystal grains to small crystal grains. When the average particle size of the first sintered grains derived from the calcined first raw material powder is D1, and the average particle size of the second sintered particles derived from the second raw material powder is D2. The particle size ratio [(D2 / D1) × 100 (%)] of the average particle size D2 of the second sintered particles to the average particle size D1 of the first sintered particles is 4% or more and 14% or less. I came to find. The present invention has been completed by such technical discovery.

すなわち、請求項1に係る発明は、
亜鉛、タングステン、タンタル、セリウム、ガリウム、インジウムから選択される少なくとも1種をドーパントとして含有する酸化錫焼結体により構成されると共に、相対密度が50%以上70%以下である蒸着用タブレットにおいて、
上記酸化錫焼結体を構成しかつ当該酸化錫焼結体の破断面に現れる仮焼された第一原料粉末に由来する第一焼結粒の平均粒径をD1とし、上記酸化錫焼結体を構成しかつ当該酸化錫焼結体の破断面に現れる未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径をD2としたとき、第一焼結粒の平均粒径D1に対する第二焼結粒の平均粒径D2の粒径比率[すなわち(D2/D1)×100(%)]が4%以上14%以下であることを特徴とするものである。
That is, the invention according to claim 1
In the tablet for vapor deposition which is composed of a tin oxide sintered body containing at least one selected from zinc, tungsten, tantalum, cerium, gallium and indium as a dopant and whose relative density is 50% or more and 70% or less,
The average particle diameter of the first sintered grains constituting the tin oxide sintered body and derived from the calcined first raw material powder appearing on the fracture surface of the tin oxide sintered body is D1, and the tin oxide sintered body The average grain size of the first sintered grains is D2 when the average grain size of the second sintered grains derived from the uncalcined second raw material powder appearing on the fracture surface of the tin oxide sintered body is D2 The particle size ratio [that is, (D2 / D1) × 100 (%)] of the average particle diameter D2 of the second sintered grains to the diameter D1 is 4% or more and 14% or less .

次に、請求項に係る発明は、
請求項1に記載の蒸着用タブレットの製造方法において、
酸化亜鉛、酸化タングステン、酸化タンタル、酸化セリウム、酸化ガリウム、酸化インジウムから選択される少なくとも1種のドーパント用酸化物粉末と酸化錫粉末とを混合し、1300℃以上1600℃以下の仮焼温度で熱処理した後、篩がけを行い、平均粒径が4μm以上20μm以下の仮焼された第一原料粉末を得る第一工程と、
酸化亜鉛、酸化タングステン、酸化タンタル、酸化セリウム、酸化ガリウム、酸化インジウムから選択される少なくとも1種のドーパント用酸化物粉末および酸化錫粉末から成る未仮焼の第二原料粉末を、仮焼された上記第一原料粉末に対して、第一原料粉末の混合割合が50質量%以上75質量%以下となるように混合し、かつ、造粒して造粒粉末を得る第二工程と、
得られた造粒粉末を成形して成形体とし、この成形体を1100℃以上かつ第一工程における上記仮焼温度より200℃以上低い温度で焼結して、亜鉛、タングステン、タンタル、セリウム、ガリウム、インジウムから選択される少なくとも1種をドーパントとして含有する酸化錫の焼結体を得る第三工程、
の各工程を具備することを特徴とするものである。
Next, the invention according to claim 2
In the manufacturing method of the tablet for vapor deposition of Claim 1,
At least one kind of dopant oxide powder selected from zinc oxide, tungsten oxide, tantalum oxide, cerium oxide, gallium oxide, and indium oxide is mixed with a tin oxide powder at a calcining temperature of 1300 ° C. or higher and 1600 ° C. or lower. A first step of obtaining a calcined first raw material powder having an average particle size of 4 μm or more and 20 μm or less after sieving after heat treatment;
An uncalcined second raw material powder comprising at least one dopant oxide powder selected from zinc oxide, tungsten oxide, tantalum oxide, cerium oxide, gallium oxide, and indium oxide and tin oxide powder was calcined A second step of mixing the first raw material powder so that the mixing ratio of the first raw material powder is 50% by mass or more and 75% by mass or less, and granulating to obtain a granulated powder;
The obtained granulated powder is molded into a molded body, and the molded body is sintered at a temperature of 1100 ° C. or higher and 200 ° C. or lower than the calcining temperature in the first step, and zinc, tungsten, tantalum, cerium, A third step of obtaining a sintered body of tin oxide containing at least one selected from gallium and indium as a dopant;
It comprises each process of these.

亜鉛、タングステン、タンタル、セリウム、ガリウム、インジウムから選択される少なくとも1種をドーパントとして含有する酸化錫焼結体により構成されると共に、相対密度が50%以上70%以下に設定されている本発明の蒸着用タブレットによれば、
上記酸化錫焼結体を構成しかつ当該酸化錫焼結体の破断面に現れる仮焼された第一原料粉末に由来する第一焼結粒の平均粒径をD1とし、上記酸化錫焼結体を構成しかつ当該酸化錫焼結体の破断面に現れる未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径をD2としたとき、
第一焼結粒の平均粒径D1に対する第二焼結粒の平均粒径D2の粒径比率[すなわち(D2/D1)×100(%)]が4%以上14%以下になっているため、いきなり高いパワーの電子ビーム(EB)や高出力のプラズマを蒸着用タブレットへ照射しても破損することがない。
The present invention is composed of a tin oxide sintered body containing at least one selected from zinc, tungsten, tantalum, cerium, gallium, and indium as a dopant, and the relative density is set to 50% to 70%. According to the deposition tablet of
The average particle diameter of the first sintered grains derived from the first raw material powders calcined appearing on fracture surface constitute the tin oxide sintered body and the tin oxide sintered body as D1, the tin oxide sintered When the average particle diameter of the second sintered grains derived from the uncalcined second raw material powder constituting the body and appearing on the fracture surface of the tin oxide sintered body is D2,
The particle size ratio [that is, (D2 / D1) × 100 (%)] of the average particle size D2 of the second sintered particles to the average particle size D1 of the first sintered particles is 4% or more and 14% or less. Even if suddenly a high-power electron beam (EB) or high-power plasma is irradiated onto the deposition tablet, it will not be damaged.

このため、高いパワーの電子ビーム(EB)や高出力のプラズマを長時間継続して蒸着用タブレットへ照射させることが可能となることから、透明導電膜等の量産性を著しく改善させる効果を有している。   For this reason, it is possible to continuously irradiate the deposition tablet with a high-power electron beam (EB) or high-power plasma for a long period of time, which has the effect of significantly improving the mass productivity of transparent conductive films and the like. doing.

実施例1に係る蒸着用TTO焼結体タブレットの破断面におけるSEM(走査型電子顕微鏡)撮像図。FIG. 3 is an SEM (scanning electron microscope) imaging diagram at a fracture surface of a TTO sintered tablet for vapor deposition according to Example 1;

本発明の実施の形態について図1のSEM撮像図(実施例1に係る蒸着用TTO焼結体タブレットの破断面におけるSEM撮像図)を用いて具体的に説明する。   The embodiment of the present invention will be specifically described with reference to the SEM imaging diagram of FIG. 1 (SEM imaging diagram of the fracture surface of the TTO sintered tablet for vapor deposition according to Example 1).

(1)本発明に係る蒸着用タブレットの製造方法
「第一工程:仮焼された第一原料粉末を得る工程」
酸化亜鉛、酸化タングステン、酸化タンタル、酸化セリウム、酸化ガリウム、酸化インジウムから選択される少なくとも1種のドーパント用酸化物粉末と酸化錫粉末とを混合し、酸化物原料粉を所望の組成となるように配合した後、水、分散剤、必要に応じてバインダー(バインダーとしては、加熱により消失または気化する公知のバインダーであれば限定されず、ポリビニルアルコール等が使用可能である)を加え混合攪拌を行い、スプレードライヤーを用い噴霧乾燥して混合粉末を得る。次に、得られた混合粉末を1300℃〜1600℃範囲の仮焼温度で熱処理(焼結)を行なった後、篩がけを行なって仮焼された第一原料粉末を得る。
(1) Manufacturing method of the tablet for vapor deposition which concerns on this invention "1st process: The process of obtaining the calcined 1st raw material powder"
At least one dopant oxide powder selected from zinc oxide, tungsten oxide, tantalum oxide, cerium oxide, gallium oxide, and indium oxide is mixed with tin oxide powder so that the oxide raw material powder has a desired composition. After mixing, water, a dispersant, and optionally a binder (the binder is not limited as long as it is a known binder that disappears or vaporizes by heating, and polyvinyl alcohol or the like can be used) and mixed and stirred. And spray dried using a spray dryer to obtain a mixed powder. Next, the obtained mixed powder is heat treated (sintered) at a calcining temperature in the range of 1300 ° C. to 1600 ° C., and then sieved to obtain a calcined first raw material powder.

尚、仮焼温度が1300℃未満の場合、後述の「第三工程」で得られる酸化錫焼結体の密度や寸法のばらつきが大きくなるという不都合がある。他方、仮焼温度が1600℃を超えると、酸化錫が蒸発して組成コントロールが困難となり、所望の焼結体組織を得ることができなくなる不都合がある。従って、仮焼温度は、1300℃以上1600℃以下、より好ましくは1350℃〜1550℃とし、仮焼時間は15〜25時間とするのが好ましい。   Incidentally, when the calcining temperature is lower than 1300 ° C., there is a disadvantage that the variation in density and size of the tin oxide sintered body obtained in the “third step” described later becomes large. On the other hand, when the calcining temperature exceeds 1600 ° C., tin oxide evaporates, making it difficult to control the composition, and there is a disadvantage that a desired sintered body structure cannot be obtained. Therefore, the calcination temperature is preferably 1300 ° C. or more and 1600 ° C. or less, more preferably 1350 ° C. to 1550 ° C., and the calcination time is preferably 15 to 25 hours.

「第二工程:造粒粉末を得る工程」
次に、酸化亜鉛、酸化タングステン、酸化タンタル、酸化セリウム、酸化ガリウム、酸化インジウムから選択される少なくとも1種のドーパント用酸化物粉末および酸化錫粉末から成る未仮焼の第二原料粉末を、上記「第一工程」で調製した第一原料粉末に対して所望の組成となるように配合した後、混合攪拌を行い、スプレードライヤー等を用い造粒して造粒粉末を得る。
"Second step: Step of obtaining granulated powder"
Next, an uncalcined second raw material powder composed of at least one dopant oxide powder selected from zinc oxide, tungsten oxide, tantalum oxide, cerium oxide, gallium oxide, and indium oxide, and tin oxide powder, After blending the first raw material powder prepared in the “first step” so as to have a desired composition, the mixture is stirred and granulated using a spray dryer or the like to obtain a granulated powder.

ここで、仮焼された第一原料粉末と未仮焼の第二原料粉末との割合として、仮焼された第一原料粉末が50質量%以上75質量%以下、好ましくは55質量%〜70質量%となるように配合する。仮焼された第一原料粉末の割合が75質量%を超えて多い場合、スラリー作成の際に第一原料粉末の沈降が早く生じて未仮焼の第二原料粉末と分離してしまい、造粒時に組成ズレを引き起こす原因となる。また、後述する「第三工程」における焼結での密度収縮の制御が困難となる。更に、密度が低いため強度が低く、このため、所望の焼結体の作製が困難となる。また、仮焼された第一原料粉末の割合が50質量%未満と少ない場合、未仮焼の第二原料粉末が多くなることに起因し、後述する焼結工程において、粒成長が進み易くなり、粒同士のネック成長が促進されて焼結体自身の強度は増すことになるが、その反面、タブレット使用時に最表面と内部とに温度差が生じ易くなり、熱膨張の違いによりタブレットの破損が発生し易くなってしまう。このことから、仮焼された第一原料粉末を50質量%以上75質量%以下の条件で配合することにより、焼結時における収縮のコントロールを容易に行なうことができ、安定した強度が得られ、所望の密度を有する焼結体を得ることが可能となる。   Here, as a ratio of the calcined first raw material powder and the uncalcined second raw material powder, the calcined first raw material powder is 50 mass% to 75 mass%, preferably 55 mass% to 70 mass%. It mix | blends so that it may become mass%. When the ratio of the calcined first raw material powder exceeds 75% by mass, sedimentation of the first raw material powder occurs early during the slurry preparation and separates from the uncalcined second raw material powder. Causes compositional deviation at the time of graining. In addition, it becomes difficult to control density shrinkage during sintering in the “third step” described later. Furthermore, since the density is low, the strength is low, which makes it difficult to produce a desired sintered body. Moreover, when the ratio of the calcined first raw material powder is as low as less than 50% by mass, the amount of uncalcined second raw material powder increases, and in the sintering process described later, grain growth is likely to proceed. However, the neck growth between grains is promoted and the strength of the sintered body itself is increased, but on the other hand, a temperature difference tends to occur between the outermost surface and the inside during tablet use, and the tablet breaks due to the difference in thermal expansion. Is likely to occur. Thus, by blending the calcined first raw material powder under the conditions of 50% by mass or more and 75% by mass or less, the shrinkage during sintering can be easily controlled, and a stable strength can be obtained. Thus, a sintered body having a desired density can be obtained.

また、仮焼された第一原料粉末と未仮焼の第二原料粉末を混合する方法としては、混合時において粉末が粉砕され難い攪拌機による攪拌が好ましい。更に、混合の際、水、バインダー、分散剤、および、金型プレス時に潤滑材として機能するステアリン酸を0.5〜1質量%添加するとよい。   In addition, as a method of mixing the calcined first raw material powder and the uncalcined second raw material powder, stirring by a stirrer in which the powder is not easily pulverized during mixing is preferable. Furthermore, at the time of mixing, 0.5 to 1% by mass of water, a binder, a dispersant, and stearic acid that functions as a lubricant during die pressing may be added.

「第三工程:造粒粉末を成形して成形体とする成形工程」
次に、「第二工程」で得られた造粒粉末を成形して成形体とする。造粒粉末の成形は金型プレスにて行う。この際、仮焼された第一原料粉末の配合割合、後工程の焼結温度の設定条件により焼結による収縮がコントロールされているため、タブレットの寸法はこの成形時にほぼ決定される。上述したように仮焼された第一原料粉末の割合が多いと寸法制御が困難になり、少ない場合でも同様である。そして、仮焼された第一原料粉末の混合割合は、上述したように50質量%以上75質量%以下、好ましくは55質量%〜70質量%である。
"Third process: Molding process by forming granulated powder into a compact"
Next, the granulated powder obtained in the “second step” is molded into a molded body. The granulated powder is molded by a mold press. Under the present circumstances, since shrinkage | contraction by sintering is controlled by the setting conditions of the mixing ratio of the calcined 1st raw material powder and the sintering temperature of a post process, the dimension of a tablet is substantially determined at the time of this shaping | molding. As described above, when the ratio of the first raw material powder that has been calcined is large, dimensional control becomes difficult, and the same is true even when the ratio is small. The mixing ratio of the calcined first raw material powder is 50% by mass or more and 75% by mass or less, preferably 55% by mass to 70% by mass as described above.

「第三工程:成形体を焼結して酸化錫焼結体を得る焼結工程」
次に、上記成形体の焼結時における雰囲気は、酸素、大気、真空中のいずれでもよいが、大気中での焼結が安価にでき最も好ましい。
“Third step: Sintering step to obtain a tin oxide sintered body by sintering the compact”
Next, the atmosphere during sintering of the molded body may be any of oxygen, air, and vacuum, but is most preferable because it can be inexpensively sintered in air.

まず、得られた成形体を焼結炉内に配置し、かつ、炉内容積1m3当たり100L(リットル)/分の割合で焼結炉内に酸素を導入し、焼結雰囲気の酸素濃度を30%以上(体積比)として大気中(酸素量21%)よりも酸素濃度を高めに設定し、200〜800℃で20時間以上の加熱(脱バインダ)を行う。 First, the obtained molded body was placed in a sintering furnace, and oxygen was introduced into the sintering furnace at a rate of 100 L (liter) / minute per 1 m 3 of the furnace volume, and the oxygen concentration in the sintering atmosphere was adjusted. 30% or more (volume ratio) is set so that the oxygen concentration is higher than that in the atmosphere (oxygen amount 21%), and heating (debinding) is performed at 200 to 800 ° C. for 20 hours or more.

その後、焼結温度は、1100℃以上かつ第一工程における仮焼温度より200℃以上低い温度とする。1100℃未満では十分に焼結しないため、得られる焼結体の強度が低く、焼結体の取り扱い中に割れや欠けが発生してしまう。更に、焼結時の収縮が完了していないため、密度や寸法のばらつきも大きくなる。   Thereafter, the sintering temperature is set to 1100 ° C. or higher and 200 ° C. or lower than the calcining temperature in the first step. Since the sintered body is not sufficiently sintered at a temperature lower than 1100 ° C., the strength of the obtained sintered body is low, and cracks and chips occur during handling of the sintered body. Furthermore, since the shrinkage at the time of sintering is not completed, the variation in density and size also increases.

そして、焼結温度を1100℃以上かつ第一工程における上記仮焼温度より200℃以上低い温度とすれば相対密度が50〜70%の焼結体が得られる。しかし、焼結温度が仮焼温度に近すぎると、相対密度が50〜70%に収まっても高いパワーのビーム照射中に割れが発生してしまう。このため、焼結温度は、1100℃以上で第一工程における上記仮焼温度より200℃以上低い温度にすることを要する。   If the sintering temperature is 1100 ° C. or higher and 200 ° C. or lower than the calcining temperature in the first step, a sintered body having a relative density of 50 to 70% is obtained. However, if the sintering temperature is too close to the calcination temperature, cracks will occur during irradiation with a high-power beam even if the relative density is 50 to 70%. For this reason, the sintering temperature is required to be 1100 ° C. or higher and 200 ° C. or lower than the calcining temperature in the first step.

また、上記焼結は15〜25時間行われるのが好ましいが、最も好ましい時間は17〜23時間である。この範囲内であると、焼結時間の短縮(電力の使用量減)と高い生産性を実現しつつ、高品質な酸化錫系蒸着用タブレットを得ることができる。   The sintering is preferably performed for 15 to 25 hours, but the most preferable time is 17 to 23 hours. Within this range, it is possible to obtain a high-quality tin oxide-based deposition tablet while realizing a reduction in sintering time (reduction in power consumption) and high productivity.

そして、本発明に係る酸化錫系蒸着用タブレットについては、例えば、直径10〜50mmで高さ5〜60mmの円柱形状タブレット若しくはペレット形状で使用することが可能である。   And about the tablet for tin oxide type vapor deposition which concerns on this invention, it is possible to use it with a cylindrical tablet or pellet shape of 10-60 mm in diameter and 5-60 mm in height, for example.

(2)本発明の蒸着用タブレット
上記工程を経て製造された蒸着用タブレットの破断面は、例えば、図1のSEM撮像図(タンタルをドーパントとして含む実施例1に係る蒸着用TTO焼結体タブレットのSEM撮像図)に示すような構造を有している。
(2) Vapor deposition tablet of the present invention The fracture surface of the vapor deposition tablet produced through the above steps is, for example, the SEM image of FIG. 1 (TTO sintered body tablet for vapor deposition according to Example 1 containing tantalum as a dopant). (SEM imaging diagram).

図1のSEM撮像図において「粒1」の粒体は、上記「第一工程」の仮焼された第一原料粉末に由来する第一焼結粒を示しており、また、「粒2」の粒体は、上記「第二工程」で混合された未仮焼の第二原料粉末に由来する第二焼結粒を示している。   In the SEM imaging diagram of FIG. 1, the “grain 1” grains indicate the first sintered grains derived from the first raw material powder calcined in the “first step”, and “grain 2”. This granule indicates the second sintered grain derived from the uncalcined second raw material powder mixed in the “second step”.

そして、図1のSEM撮像図から確認できるように、「粒1」で示される第一焼結粒は第二焼結粒より粒径が大きい複数の粒体群で構成され、また、「粒2」で示される第二焼結粒は第一焼結粒より粒径が小さい複数の粒体群で構成され、第一焼結粒と第二焼結粒が適度に混ざり合った状態で存在している。尚、第一焼結粒が、粒径の大きい粒体群で構成されて第一焼結粒自体の成長が抑制されているのは、「第一工程」において1300℃以上1600℃以下の仮焼温度で熱処理した後、篩がけを行い、平均粒径が4μm以上20μm以下の第一原料粉末を調製していることによるものと思われる。上記熱処理後、篩がけを行なうことで、「第三工程」の焼結処理(但し、焼結温度は、後述するように1100℃以上かつ「第一工程」の仮焼温度より200℃以上低い温度に設定)の際、第一焼結粒同士の成長を分散させる効果が生じ、この効果により、第一焼結粒同士の結合と成長が抑制されていると考えられる。尚、第一焼結粒と第二焼結粒の粒径に大きな差異をつけることで、適度な空孔もできることから、熱を分散させる効果も生じる。   As can be confirmed from the SEM image of FIG. 1, the first sintered grain indicated by “grain 1” is composed of a plurality of grain groups having a grain size larger than that of the second sintered grain. The second sintered grain indicated by “2” is composed of a plurality of particle groups having a particle diameter smaller than that of the first sintered grain, and the first sintered grain and the second sintered grain are present in a properly mixed state. doing. Note that the first sintered grains are composed of large particle groups and the growth of the first sintered grains themselves is suppressed in the “first step” when the temperature is 1300 ° C. or higher and 1600 ° C. or lower. This is presumably because the first raw material powder having an average particle diameter of 4 μm or more and 20 μm or less is prepared after heat treatment at the firing temperature. By performing sieving after the above heat treatment, the sintering process of “third step” (however, the sintering temperature is 1100 ° C. or higher and 200 ° C. lower than the calcining temperature of “first step” as described later) When the temperature is set), an effect of dispersing the growth of the first sintered grains occurs, and it is considered that the bonding and the growth of the first sintered grains are suppressed by this effect. In addition, since an appropriate void | hole can be made by making a big difference in the particle size of a 1st sintered grain and a 2nd sintered grain, the effect which disperse | distributes heat also arises.

そして、本発明の蒸着用タブレットにおいては、上記第一焼結粒の平均粒径をD1、第二焼結粒の平均粒径をD2としたとき、第一焼結粒の平均粒径D1に対する第二焼結粒の平均粒径D2の粒径比率[(D2/D1)×100(%)]が4%以上14%以下であることを要件とする。このため、上記粒径比率が4%以上14%以下となるように「第三工程」において仮焼した第一原料粉末を極力成長させてはならず、上述したように「第三工程」の焼結温度を1100℃以上かつ「第一工程」の仮焼温度より200℃以上低い温度に設定することが必要となる。これを無視して「第一工程」の仮焼温度より高温での焼結、仮焼温度近辺での焼結、および、焼結時間を長くすると、「粒1」で示される第一焼結粒同士が成長してしまう。第一焼結粒同士が成長することで強度が増す反面、蒸着用タブレットに対して高いパワーの電子ビーム(EB)や高出力プのラズマを照射したとき、タブレットの表面と内部に温度差が生じ、かつ、「粒1」で示される第一焼結粒と「粒2」で示される第二焼結粒との間にも温度差が生じるため、割れが発生する。このような蒸着用タブレットは、量産を目指して、いきなり高いパワーの電子ビーム(EB)や高出力プラズマが照射される用途には向いていない。   And in the tablet for vapor deposition of this invention, when the average particle diameter of the said 1st sintered grain is set to D1 and the average particle diameter of the 2nd sintered grain is set to D2, with respect to the average particle diameter D1 of a 1st sintered grain. It is a requirement that the particle size ratio [(D2 / D1) × 100 (%)] of the average particle size D2 of the second sintered particles is 4% or more and 14% or less. For this reason, the first raw material powder calcined in the “third step” so that the particle size ratio is 4% or more and 14% or less should not be grown as much as possible. It is necessary to set the sintering temperature to 1100 ° C. or higher and 200 ° C. or lower than the calcining temperature in the “first step”. Ignoring this, sintering at a temperature higher than the calcining temperature in the “first step”, sintering near the calcining temperature, and longer sintering time, the first sintering indicated by “grain 1” The grains grow. While the strength increases due to the growth of the first sintered grains, when a high power electron beam (EB) or high power plasma is applied to the evaporation tablet, there is a temperature difference between the tablet surface and the inside. Since a temperature difference also occurs between the first sintered grains indicated by “grain 1” and the second sintered grains indicated by “grain 2”, cracks occur. Such a tablet for vapor deposition is not suitable for an application in which high-power electron beam (EB) or high-power plasma is irradiated suddenly for mass production.

ところで、図1のSEM撮像図(実施例1に係る蒸着用TTO焼結体タブレットの破断面におけるSEM撮像図)を用いて、第一焼結粒の平均粒径D1と第二焼結粒の平均粒径D2を求めるには、例えば、以下のような方法が挙げられる。   By the way, using the SEM image of FIG. 1 (SEM image of the fracture surface of the TTO sintered body tablet for vapor deposition according to Example 1), the average particle diameter D1 of the first sintered particles and the second sintered particles In order to obtain the average particle diameter D2, for example, the following method may be mentioned.

まず、図1に示すSEM撮像図上の任意箇所に、SEM撮像図の一方の端縁から他方の端縁に向けて複数本の直線を引く。ここで、直線の数は4本以上とすることが定量精度の観点から望ましく、また、直線の引き方は井桁状や放射状とすることができる。   First, a plurality of straight lines are drawn from one edge of the SEM image to the other edge at an arbitrary location on the SEM image shown in FIG. Here, it is desirable that the number of straight lines is four or more from the viewpoint of quantitative accuracy, and the straight line drawing method can be a cross-beam shape or a radial shape.

次に、SEM撮像図上に引いた直線に存在する「第一焼結粒」や「第二焼結粒」の粒界部分で区切られた数nを測定し、以下の数式(1)から平均粒径dを求め、かつ、複数の直線から求めたそれぞれの平均粒径dから平均値を求めるものである。
d=L/n/m (1)
[数式(1)中、dは1本の直線から求めた平均粒径、Lは1本の直線の長さ、nは1本の直線上に存在する粒界の個数、mは電子顕微鏡の倍率を示す]
Next, the number n divided by the grain boundary portions of the “first sintered grains” and the “second sintered grains” present on the straight line drawn on the SEM image is measured, and the following formula (1) is obtained. The average particle diameter d is obtained, and the average value is obtained from each average particle diameter d obtained from a plurality of straight lines.
d = L / n / m (1)
[In Formula (1), d is an average particle diameter obtained from one straight line, L is the length of one straight line, n is the number of grain boundaries existing on one straight line, and m is an electron microscope. Show magnification]

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

[実施例1]
平均粒径が0.6μmの酸化錫粉末中に、平均粒径2.0μm以下の酸化タンタル粉末(ドーパント用酸化物粉末)を、酸化タンタル(ドーパント用酸化物)が5質量%となるように配合し、60質量%の水、0.5質量%の分散剤(ポリカルボン酸アンモニウム塩)、および、0.5質量%のバインダー(PVA)を添加した後、攪拌機で混合し、スプレードライヤーを用いて仮焼前粉末を作製した。その後、大気中にて1500℃で20時間の仮焼を行った後、篩がけを行い、平均粒径が10μmの仮焼粉(仮焼された第一原料粉末)を得た。
[Example 1]
In the tin oxide powder having an average particle size of 0.6 μm, the tantalum oxide powder (the oxide powder for dopant) having an average particle size of 2.0 μm or less is set to 5% by mass of the tantalum oxide (oxide for dopant). Mix and add 60% by weight of water, 0.5% by weight of dispersant (polycarboxylic acid ammonium salt) and 0.5% by weight of binder (PVA), and then mix with a stirrer. The powder before calcination was used to prepare it. Then, after calcining at 1500 ° C. for 20 hours in the air, sieving was performed to obtain calcined powder (calcined first raw material powder) having an average particle size of 10 μm.

次に、酸化錫粉末中に酸化タンタルが5質量%となるように上記酸化タンタル粉末を配合した未仮焼粉末(未仮焼の第二原料粉末)を、上記仮焼粉(仮焼された第一原料粉末)に対し、仮焼粉の混合割合が60質量%となるように配合し、0.5質量%の上記バインダーと0.5質量%の上記分散剤、および、0.5質量%のステアリン酸(潤滑材)を添加した後、攪拌機で12時間以上攪拌し、スプレードライヤーを用いて造粒粉末を得た。   Next, the uncalcined powder (uncalcined second raw material powder) in which the tantalum oxide powder was blended so that the tantalum oxide was 5% by mass in the tin oxide powder was converted into the calcined powder (calcined). 1st raw material powder) is mixed so that the mixing ratio of the calcined powder is 60% by mass, 0.5% by mass of the binder, 0.5% by mass of the dispersant, and 0.5% by mass. % Of stearic acid (lubricant) was added, and the mixture was stirred with a stirrer for 12 hours or more, and granulated powder was obtained using a spray dryer.

更に、得られた造粒粉末を、一軸プレス機を用いて90kNの圧力で成形し、直径20.5mm、高さ7.5mmの成形体を得た後、この成形体を焼結させた。   Further, the obtained granulated powder was molded at a pressure of 90 kN using a uniaxial press to obtain a molded body having a diameter of 20.5 mm and a height of 7.5 mm, and then the molded body was sintered.

焼結工程は、室温から500℃までを15時間かけて昇温させ、800℃まで11時間かけて温度上昇させた。そして、1250℃にて20時間保持し、蒸着用TTO焼結体タブレットを得た。   In the sintering process, the temperature was raised from room temperature to 500 ° C. over 15 hours, and the temperature was raised to 800 ° C. over 11 hours. And it hold | maintained at 1250 degreeC for 20 hours, and obtained the TTO sintered compact tablet for vapor deposition.

得られた蒸着用TTO焼結体タブレットの相対密度は61%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したが、蒸着中におけるTTO焼結体タブレットの割れは確認されなかった。   The relative density of the obtained TTO sintered tablet for vapor deposition is 61%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is applied to this TTO sintered tablet for vapor deposition for mass production. Although suddenly irradiated, cracking of the TTO sintered body tablet during vapor deposition was not confirmed.

ところで、実施例1と同―条件でサンプル用TTO焼結体タブレット(実施例1に係る蒸着用TTO焼結体タブレットと同一)を製造し、かつ、サンプル用TTO焼結体タブレットを破断しその破断面のSEM(走査型電子顕微鏡)撮像図(図1参照)を求め、このSEM撮像図から、上記数式(1)を用いた上述の方法に従い、仮焼された第一原料粉末に由来する第一焼結粒(図1において「粒1」と図示)の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒(図1において「粒2」と図示)の平均粒径D2をそれぞれ求めた。そして、平均粒径D1(10μm)と平均粒径D2(0.8μm)から「粒1」と「粒2」の粒径比率[(D2/D1)×100(%)]を計算したところ「8%」であり、「4%〜14%」の範囲内にあることが確認された。   By the way, the TTO sintered body tablet for samples (same as the TTO sintered body tablet for vapor deposition according to Example 1) was manufactured under the same conditions as in Example 1, and the TTO sintered body tablet for samples was fractured. A SEM (scanning electron microscope) image (see FIG. 1) of the fractured surface is obtained, and the SEM image is derived from the calcined first raw material powder according to the above-described method using the formula (1). Average grain size D1 of the first sintered grains (shown as “grain 1” in FIG. 1) and second sintered grains derived from the uncalcined second raw material powder (shown as “grain 2” in FIG. 1) The average particle diameter D2 was determined. Then, the particle size ratio [(D2 / D1) × 100 (%)] of “grain 1” and “grain 2” was calculated from the average particle diameter D1 (10 μm) and the average particle diameter D2 (0.8 μm). 8% ", and it was confirmed that it was in the range of" 4% to 14% ".

尚、以下に述べる他の実施例と比較例についても、実施例1と同様にして「サンプル用焼結体タブレット」を製造し、実施例1と同様にして上述の「粒径比率」を求めている。   For other examples and comparative examples described below, a “sintered tablet for sample” was produced in the same manner as in Example 1, and the above-mentioned “particle size ratio” was obtained in the same manner as in Example 1. ing.

そして、以下の表1に、実施例1〜10、比較例1〜9の「ドーパント」「ドーパント用酸化物の濃度(質量%)」「仮焼温度T1(℃)」「仮焼粉の平均粒径(μm)」「仮焼粉の割合(質量%)」「焼結温度T2(℃)」および「T1−T2(℃)」をまとめて示し、また、以下の表2に、実施例1〜10、比較例1〜9の「相対密度(%)」「平均粒径D1(μm)」「平均粒径D2(μm)」「粒径比率D2/D1(%)」および「EB蒸着後における割れの有無」をまとめて示す。   And in the following Table 1, "Dopant" of Examples 1 to 10 and Comparative Examples 1 to 9, "Dopant oxide concentration (% by mass)", "Calcination temperature T1 (° C)", and "Calcined powder average" “Particle size (μm)” “Proportion of calcined powder (% by mass)” “Sintering temperature T2 (° C.)” and “T1-T2 (° C.)” are shown together, and Table 2 below shows examples. 1-10, “relative density (%)”, “average particle size D1 (μm)”, “average particle size D2 (μm)”, “particle size ratio D2 / D1 (%)” and “EB deposition” in Comparative Examples 1-9 The “presence or absence of cracks after” is shown together.

[実施例2]
仮焼温度(T1)が1600℃である点と、得られた仮焼粉(仮焼された第一原料粉末)の平均粒径が20μmである点を除き、実施例1と同様にして、実施例2に係る蒸着用TTO焼結体タブレットを得た。
[Example 2]
Except for the point that the calcining temperature (T1) is 1600 ° C. and the average particle diameter of the obtained calcined powder (calcined first raw material powder) is 20 μm, the same as in Example 1, A TTO sintered body tablet for vapor deposition according to Example 2 was obtained.

得られた蒸着用TTO焼結体タブレットの相対密度は59%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したが、蒸着中におけるTTO焼結体タブレットの割れは確認されなかった。   The relative density of the obtained TTO sintered tablet for vapor deposition is 59%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is applied to this TTO sintered tablet for vapor deposition for mass production. Although suddenly irradiated, cracking of the TTO sintered body tablet during vapor deposition was not confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(20μm)と平均粒径D2(0.8μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「4%」であり「4%〜14%」の範囲内にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was obtained, and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (20 μm) and the average particle diameter D2 (0.8 μm). Yes, it was confirmed to be within the range of “4% to 14%”.

[実施例3]
仮焼温度(T1)が1300℃である点と、得られた仮焼粉(仮焼された第一原料粉末)の平均粒径が5μmである点、および、焼結温度(T2)が1100℃である点を除き、実施例1と同様にして、実施例3に係る蒸着用TTO焼結体タブレットを得た。
[Example 3]
The point that the calcining temperature (T1) is 1300 ° C., the average particle diameter of the obtained calcined powder (calcined first raw material powder) is 5 μm, and the sintering temperature (T2) is 1100. A TTO sintered body tablet for vapor deposition according to Example 3 was obtained in the same manner as in Example 1 except that the temperature was ° C.

得られた蒸着用TTO焼結体タブレットの相対密度は58%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したが、蒸着中におけるTTO焼結体タブレットの割れは確認されなかった。   The relative density of the obtained TTO sintered tablet for vapor deposition is 58%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is applied to this TTO sintered tablet for vapor deposition for mass production. Although suddenly irradiated, cracking of the TTO sintered body tablet during vapor deposition was not confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(5μm)と平均粒径D2(0.7μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「14%」であり、「4%〜14%」の範囲内にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was obtained and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (5 μm) and the average particle diameter D2 (0.7 μm). Yes, it was confirmed that it was within the range of “4% to 14%”.

[実施例4]
仮焼粉(仮焼された第一原料粉末)に対して未仮焼粉末(未仮焼の第二原料粉末)を仮焼粉の混合割合が50質量%となるように配合した点を除き、実施例1と同様にして、実施例4に係る蒸着用TTO焼結体タブレットを得た。
[Example 4]
Except for the point that the uncalcined powder (uncalcined second raw material powder) is blended with the calcined powder (calcined first raw material powder) so that the mixing ratio of the calcined powder is 50% by mass. In the same manner as in Example 1, a TTO sintered body tablet for vapor deposition according to Example 4 was obtained.

得られた蒸着用TTO焼結体タブレットの相対密度は60%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したが、蒸着中におけるTTO焼結体タブレットの割れは確認されなかった。   The relative density of the obtained TTO sintered tablet for vapor deposition is 60%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is applied to this TTO sintered tablet for vapor deposition for mass production. Although suddenly irradiated, cracking of the TTO sintered body tablet during vapor deposition was not confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(10μm)と平均粒径D2(0.7μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「7%」であり、「4%〜14%」の範囲内にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was calculated and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (10 μm) and the average particle diameter D2 (0.7 μm). Yes, it was confirmed that it was within the range of “4% to 14%”.

[実施例5]
仮焼粉(仮焼された第一原料粉末)に対して未仮焼粉末(未仮焼の第二原料粉末)を仮焼粉の混合割合が70質量%となるように配合した点を除き、実施例1と同様にして、実施例5に係る蒸着用TTO焼結体タブレットを得た。
[Example 5]
Except for the point that the uncalcined powder (uncalcined second raw material powder) is mixed with the calcined powder (calcined first raw material powder) so that the mixing ratio of the calcined powder becomes 70% by mass. In the same manner as in Example 1, a TTO sintered body tablet for vapor deposition according to Example 5 was obtained.

得られた蒸着用TTO焼結体タブレットの相対密度は55%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したが、蒸着中におけるTTO焼結体タブレットの割れは確認されなかった。   The relative density of the obtained TTO sintered tablet for vapor deposition is 55%, and an electron beam (EB) of high power (acceleration voltage 15 kV, output 24 kW) is applied to this TTO sintered tablet for vapor deposition for mass production. Although suddenly irradiated, cracking of the TTO sintered body tablet during vapor deposition was not confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(10μm)と平均粒径D2(0.8μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「8%」であり、「4%〜14%」の範囲内にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was calculated and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (10 μm) and the average particle diameter D2 (0.8 μm). Yes, it was confirmed that it was within the range of “4% to 14%”.

[実施例6]
平均粒径2.0μm以下の酸化タンタル粉末の変わりに、平均粒径2.0μm以下の酸化亜鉛粉末をドーパント用酸化物粉末に適用したこと以外、実施例1と同様にして、実施例6に係る蒸着用TZO焼結体タブレットを得た。
[Example 6]
Example 6 was carried out in the same manner as in Example 1 except that a zinc oxide powder having an average particle size of 2.0 μm or less was applied to the oxide powder for dopant instead of the tantalum oxide powder having an average particle size of 2.0 μm or less. The TZO sintered compact tablet for vapor deposition which concerns was obtained.

得られた蒸着用TZO焼結体タブレットの相対密度は62%で、この蒸着用TZO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したが、蒸着中におけるTZO焼結体タブレットの割れは確認されなかった。   The relative density of the obtained TZO sintered compact tablet for vapor deposition is 62%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is applied to this TZO sintered compact tablet for vapor deposition for mass production. Although suddenly irradiated, cracking of the TZO sintered compact tablet during vapor deposition was not confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(10μm)と平均粒径D2(0.7μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「7%」であり、「4%〜14%」の範囲内にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was calculated and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (10 μm) and the average particle diameter D2 (0.7 μm). Yes, it was confirmed that it was within the range of “4% to 14%”.

[実施例7]
平均粒径2.0μm以下の酸化タンタル粉末の変わりに、平均粒径2.0μm以下の酸化タングステン粉末をドーパント用酸化物粉末に適用した点と、得られた仮焼粉(仮焼された第一原料粉末)の平均粒径が9μmである点を除き、実施例1と同様にして、実施例7に係る蒸着用TWO焼結体タブレットを得た。
[Example 7]
Instead of tantalum oxide powder having an average particle size of 2.0 μm or less, tungsten oxide powder having an average particle size of 2.0 μm or less was applied to the oxide powder for dopant, and the obtained calcined powder (preliminary calcined first powder) A TWO sintered compact tablet for vapor deposition according to Example 7 was obtained in the same manner as in Example 1 except that the average particle diameter of one raw material powder was 9 μm.

得られた蒸着用TWO焼結体タブレットの相対密度は58.0%で、この蒸着用TWO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したが、蒸着中におけるTWO焼結体タブレットの割れは確認されなかった。   The relative density of the obtained TWO sintered tablet for vapor deposition was 58.0%, and the electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) was aimed at mass production with respect to this TWO sintered tablet for vapor deposition. ) Was suddenly irradiated, but no cracks were observed in the TWO sintered compact tablet during vapor deposition.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(9μm)と平均粒径D2(0.8μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「8.9%」であり、「4%〜14%」の範囲内にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was determined, and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (9 μm) and the average particle diameter D2 (0.8 μm). It was confirmed that it was in the range of “4% to 14%”.

[実施例8]
平均粒径2.0μm以下の酸化タンタル粉末の変わりに、平均粒径2.0μm以下の酸化セリウム粉末をドーパント用酸化物粉末に適用した点と、得られた仮焼粉(仮焼された第一原料粉末)の平均粒径が9μmである点を除き、実施例1と同様にして、実施例8に係る蒸着用TCO焼結体タブレットを得た。
[Example 8]
In place of the tantalum oxide powder having an average particle size of 2.0 μm or less, a cerium oxide powder having an average particle size of 2.0 μm or less was applied to the dopant oxide powder, and the obtained calcined powder (calcined first powder) A vapor deposition TCO sintered body tablet according to Example 8 was obtained in the same manner as in Example 1 except that the average particle size of one raw material powder was 9 μm.

得られた蒸着用TCO焼結体タブレットの相対密度は60.3%で、この蒸着用TCO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したが、蒸着中におけるTCO焼結体タブレットの割れは確認されなかった。   The obtained TCO sintered tablet for vapor deposition has a relative density of 60.3%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) for mass production of this TCO sintered tablet for vapor deposition. ) Was suddenly irradiated, but no cracks were observed in the TCO sintered compact tablet during vapor deposition.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(9μm)と平均粒径D2(0.8μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「8.9%」であり、「4%〜14%」の範囲内にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was determined, and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (9 μm) and the average particle diameter D2 (0.8 μm). It was confirmed that it was in the range of “4% to 14%”.

[実施例9]
平均粒径2.0μm以下の酸化タンタル粉末の変わりに、平均粒径2.0μm以下の酸化ガリウム粉末をドーパント用酸化物粉末に適用した点を除き、実施例1と同様にして、実施例9に係る蒸着用TGO焼結体タブレットを得た。
[Example 9]
Example 9 was carried out in the same manner as Example 1 except that gallium oxide powder having an average particle size of 2.0 μm or less was applied to the oxide powder for dopant instead of tantalum oxide powder having an average particle size of 2.0 μm or less. The TGO sintered compact tablet for vapor deposition concerning this was obtained.

得られた蒸着用TGO焼結体タブレットの相対密度は59%で、この蒸着用TGO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したが、蒸着中におけるTGO焼結体タブレットの割れは確認されなかった。   The relative density of the obtained TGO sintered tablet for vapor deposition is 59%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is applied to this TGO sintered tablet for vapor deposition for mass production. Although suddenly irradiated, the crack of the TGO sintered compact tablet during vapor deposition was not confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(10μm)と平均粒径D2(0.9μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「9%」であり、「4%〜14%」の範囲内にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was obtained, and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (10 μm) and the average particle diameter D2 (0.9 μm). Yes, it was confirmed that it was within the range of “4% to 14%”.

[実施例10]
平均粒径2.0μm以下の酸化タンタル粉末の変わりに、平均粒径2.0μm以下の酸化インジウム粉末をドーパント用酸化物粉末に適用した点と、得られた仮焼粉(仮焼された第一原料粉末)の平均粒径が11μmである点を除き、実施例1と同様にして、実施例10に係る蒸着用TIO焼結体タブレットを得た。
[Example 10]
Instead of tantalum oxide powder having an average particle size of 2.0 μm or less, indium oxide powder having an average particle size of 2.0 μm or less was applied to the oxide powder for dopant, and the obtained calcined powder (calcined first powder) A TIO sintered body tablet for vapor deposition according to Example 10 was obtained in the same manner as in Example 1 except that the average particle size of one raw material powder) was 11 μm.

得られた蒸着用TIO焼結体タブレットの相対密度は63%で、この蒸着用TIO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したが、蒸着中におけるTIO焼結体タブレットの割れは確認されなかった。   The relative density of the obtained TIO sintered tablet for vapor deposition is 63%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is applied to this TIO sintered tablet for vapor deposition for mass production. Although suddenly irradiated, the crack of the TIO sintered compact tablet during vapor deposition was not confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(11μm)と平均粒径D2(0.9μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「8.2%」であり、「4%〜14%」の範囲内にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder When the average particle diameter D2 was determined and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (11 μm) and the average particle diameter D2 (0.9 μm), “8.2% It was confirmed that it was in the range of “4% to 14%”.

[比較例1]
仮焼粉(仮焼された第一原料粉末)に対して未仮焼粉末(未仮焼の第二原料粉末)を仮焼粉の混合割合が45質量%となるように配合した点と、焼結温度(T2)が1500℃である点を除き、実施例1と同様にして、比較例1に係る蒸着用TTO焼結体タブレットを得た。
[Comparative Example 1]
The point which mix | blended uncalcined powder (non-calcined 2nd raw material powder) with respect to calcined powder (calcined 1st raw material powder) so that the mixing ratio of calcined powder might be 45 mass%, A TTO sintered body tablet for vapor deposition according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the sintering temperature (T2) was 1500 ° C.

得られた蒸着用TTO焼結体タブレットの相対密度は64%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したところ、TTO焼結体タブレットの割れが確認された。   The relative density of the obtained TTO sintered tablet for vapor deposition is 64%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is applied to this TTO sintered tablet for vapor deposition for mass production. When suddenly irradiated, cracks in the TTO sintered tablet were confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(10μm)と平均粒径D2(6.5μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「65%」であり、「4%〜14%」の範囲外にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was obtained, and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (10 μm) and the average particle diameter D2 (6.5 μm). Yes, it was confirmed to be outside the range of “4% to 14%”.

[比較例2]
仮焼粉(仮焼された第一原料粉末)に対して未仮焼粉末(未仮焼の第二原料粉末)を仮焼粉の混合割合が45質量%となるように配合した点と、焼結温度(T2)が1550℃である点を除き、実施例1と同様にして、比較例2に係る蒸着用TTO焼結体タブレットを得た。
[Comparative Example 2]
The point which mix | blended uncalcined powder (non-calcined 2nd raw material powder) with respect to calcined powder (calcined 1st raw material powder) so that the mixing ratio of calcined powder might be 45 mass%, A vapor deposition TTO sintered compact tablet according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the sintering temperature (T2) was 1550 ° C.

得られた蒸着用TTO焼結体タブレットの相対密度は67%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したところ、TTO焼結体タブレットの割れが確認された。   The obtained TTO sintered tablet for vapor deposition has a relative density of 67%, and with respect to this TTO sintered tablet for vapor deposition, an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is aimed at mass production. When suddenly irradiated, cracks in the TTO sintered tablet were confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(10μm)と平均粒径D2(9μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「90%」であり、「4%〜14%」の範囲外にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle size D2 was determined, and the particle size ratio [(D2 / D1) × 100 (%)] was calculated from the average particle size D1 (10 μm) and the average particle size D2 (9 μm), which was “90%”. It was confirmed that it was outside the range of “4% to 14%”.

[比較例3]
仮焼温度(T1)が1400℃である点と、得られた仮焼粉(仮焼された第一原料粉末)の平均粒径が5μmである点、仮焼粉(仮焼された第一原料粉末)に対して未仮焼粉末(未仮焼の第二原料粉末)を仮焼粉の混合割合が45質量%となるように配合した点、および、焼結温度(T2)が1400℃である点を除き、実施例1と同様にして、比較例3に係る蒸着用TTO焼結体タブレットを得た。
[Comparative Example 3]
The point that the calcining temperature (T1) is 1400 ° C., the average particle size of the obtained calcined powder (calcined first raw material powder) is 5 μm, the calcined powder (first calcined first) The raw calcined powder (un calcined second raw material powder) was blended so that the mixing ratio of the calcined powder was 45% by mass, and the sintering temperature (T2) was 1400 ° C. The TTO sintered compact tablet for vapor deposition which concerns on the comparative example 3 was obtained like Example 1 except the point which is.

得られた蒸着用TTO焼結体タブレットの相対密度は60%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したところ、TTO焼結体タブレットの割れが確認された。   The relative density of the obtained TTO sintered tablet for vapor deposition is 60%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is applied to this TTO sintered tablet for vapor deposition for mass production. When suddenly irradiated, cracks in the TTO sintered tablet were confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(6μm)と平均粒径D2(5μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「83.3%」であり、「4%〜14%」の範囲外にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was obtained, and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (6 μm) and the average particle diameter D2 (5 μm). Yes, it was confirmed to be outside the range of “4% to 14%”.

[比較例4]
仮焼温度(T1)が1400℃である点と、得られた仮焼粉(仮焼された第一原料粉末)の平均粒径が5μmである点、未仮焼粉末(未仮焼の第二原料粉末)を仮焼粉の混合割合が45質量%となるように配合した点、および、焼結温度(T2)が1500℃である点を除き、実施例1と同様にして、比較例4に係る蒸着用TTO焼結体タブレットを得た。
[Comparative Example 4]
The point that the calcination temperature (T1) is 1400 ° C., the average particle diameter of the obtained calcination powder (calcined first raw material powder) is 5 μm, the uncalcined powder (the uncalcined first powder) Comparative Example 2 as in Example 1 except that the two raw material powders) were blended so that the mixing ratio of the calcined powder was 45% by mass and the sintering temperature (T2) was 1500 ° C. The TTO sintered compact tablet for vapor deposition concerning 4 was obtained.

得られた蒸着用TTO焼結体タブレットの相対密度は63.5%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したところ、TTO焼結体タブレットの割れが確認された。   The obtained TTO sintered tablet for vapor deposition has a relative density of 63.5%, and with respect to this TTO sintered tablet for vapor deposition, an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is aimed at mass production. ) Was suddenly irradiated, and cracking of the TTO sintered body tablet was confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(5μm)と平均粒径D2(6.5μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「130%」であり、「4%〜14%」の範囲外にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was obtained, and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (5 μm) and the average particle diameter D2 (6.5 μm). Yes, it was confirmed to be outside the range of “4% to 14%”.

[比較例5]
仮焼温度(T1)が1400℃である点と、得られた仮焼粉(仮焼された第一原料粉末)の平均粒径が5μmである点、仮焼粉(仮焼された第一原料粉末)に対して未仮焼粉末(未仮焼の第二原料粉末)を仮焼粉の混合割合が80質量%となるように配合した点、および、焼結温度(T2)が1300℃である点を除き、実施例1と同様にして、比較例5に係る蒸着用TTO焼結体タブレットを得た。
[Comparative Example 5]
The point that the calcining temperature (T1) is 1400 ° C., the average particle size of the obtained calcined powder (calcined first raw material powder) is 5 μm, the calcined powder (first calcined first) The raw calcined powder (un calcined second raw material powder) was blended so that the mixing ratio of the calcined powder was 80% by mass, and the sintering temperature (T2) was 1300 ° C. The TTO sintered compact tablet for vapor deposition which concerns on the comparative example 5 was obtained like Example 1 except the point which is.

得られた蒸着用TTO焼結体タブレットの相対密度は55%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したところ、TTO焼結体タブレットの割れが確認された。   The relative density of the obtained TTO sintered tablet for vapor deposition is 55%, and an electron beam (EB) of high power (acceleration voltage 15 kV, output 24 kW) is applied to this TTO sintered tablet for vapor deposition for mass production. When suddenly irradiated, cracks in the TTO sintered tablet were confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(5μm)と平均粒径D2(2μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「40%」であり、「4%〜14%」の範囲外にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was determined, and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (5 μm) and the average particle diameter D2 (2 μm). It was confirmed that it was outside the range of “4% to 14%”.

[比較例6]
焼結温度(T2)が1500℃である点を除き、実施例1と同様にして、比較例6に係る蒸着用TTO焼結体タブレットを得た。
[Comparative Example 6]
A vapor deposition TTO sintered body tablet according to Comparative Example 6 was obtained in the same manner as in Example 1 except that the sintering temperature (T2) was 1500 ° C.

得られた蒸着用TTO焼結体タブレットの相対密度は61.5%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したところ、TTO焼結体タブレットの割れが確認された。   The obtained TTO sintered tablet for vapor deposition has a relative density of 61.5%, and with respect to this TTO sintered tablet for vapor deposition, an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) for mass production. ) Was suddenly irradiated, and cracking of the TTO sintered body tablet was confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(10μm)と平均粒径D2(6.5μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「65%」であり、「4%〜14%」の範囲外にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was obtained, and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (10 μm) and the average particle diameter D2 (6.5 μm). Yes, it was confirmed to be outside the range of “4% to 14%”.

[比較例7]
仮焼温度(T1)が1400℃である点と、得られた仮焼粉(仮焼された第一原料粉末)の平均粒径が5μmである点、焼結温度(T2)が1500℃である点を除き、実施例1と同様にして、比較例7に係る蒸着用TTO焼結体タブレットを得た。
[Comparative Example 7]
The point that the calcining temperature (T1) is 1400 ° C., the average particle size of the obtained calcined powder (calcined first raw material powder) is 5 μm, and the sintering temperature (T2) is 1500 ° C. Except for a certain point, a TTO sintered body tablet for vapor deposition according to Comparative Example 7 was obtained in the same manner as in Example 1.

得られた蒸着用TTO焼結体タブレットの相対密度は62%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したところ、TTO焼結体タブレットの割れが確認された。   The relative density of the obtained TTO sintered tablet for vapor deposition is 62%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is applied to this TTO sintered tablet for vapor deposition for mass production. When suddenly irradiated, cracks in the TTO sintered tablet were confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(5μm)と平均粒径D2(6.5μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「130%」であり、「4%〜14%」の範囲外にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was obtained, and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (5 μm) and the average particle diameter D2 (6.5 μm). Yes, it was confirmed to be outside the range of “4% to 14%”.

[比較例8]
仮焼温度(T1)が1400℃である点と、得られた仮焼粉(仮焼された第一原料粉末)の平均粒径が5μmである点、仮焼粉(仮焼された第一原料粉末)に対して未仮焼粉末(未仮焼の第二原料粉末)を仮焼粉の混合割合が50質量%となるように配合した点、および、焼結温度(T2)が1400℃である点を除き、実施例1と同様にして、比較例8に係る蒸着用TTO焼結体タブレットを得た。
[Comparative Example 8]
The point that the calcining temperature (T1) is 1400 ° C., the average particle size of the obtained calcined powder (calcined first raw material powder) is 5 μm, the calcined powder (first calcined first) The raw calcined powder (un calcined second raw material powder) is blended so that the mixing ratio of the calcined powder is 50% by mass, and the sintering temperature (T2) is 1400 ° C. The TTO sintered compact tablet for vapor deposition which concerns on the comparative example 8 was obtained like Example 1 except the point which is.

得られた蒸着用TTO焼結体タブレットの相対密度は60.5%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したところ、TTO焼結体タブレットの割れが確認された。   The obtained TTO sintered tablet for vapor deposition has a relative density of 60.5%, and the electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) for mass production of this TTO sintered tablet for vapor deposition. ) Was suddenly irradiated, and cracks in the TTO sintered tablet were confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(5μm)と平均粒径D2(5μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「100%」であり、「4%〜14%」の範囲外にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was determined, and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (5 μm) and the average particle diameter D2 (5 μm). It was confirmed that it was outside the range of “4% to 14%”.

[比較例9]
仮焼温度(T1)が1300℃である点と、得られた仮焼粉(仮焼された第一原料粉末)の平均粒径が4μmである点を除き、実施例1と同様にして、比較例9に係る蒸着用TTO焼結体タブレットを得た。
[Comparative Example 9]
Except for the point that the calcining temperature (T1) is 1300 ° C. and the average particle diameter of the obtained calcined powder (calcined first raw material powder) is 4 μm, the same as in Example 1, A TTO sintered tablet for vapor deposition according to Comparative Example 9 was obtained.

得られた蒸着用TTO焼結体タブレットの相対密度は59%で、この蒸着用TTO焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビーム(EB)をいきなり照射したところ、TTO焼結体タブレットの割れが確認された。   The relative density of the obtained TTO sintered tablet for vapor deposition is 59%, and an electron beam (EB) with high power (acceleration voltage 15 kV, output 24 kW) is applied to this TTO sintered tablet for vapor deposition for mass production. When suddenly irradiated, cracks in the TTO sintered tablet were confirmed.

そして、実施例1と同様にして、仮焼された第一原料粉末に由来する第一焼結粒の平均粒径D1と、未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径D2をそれぞれ求め、平均粒径D1(4μm)と平均粒径D2(0.8μm)から粒径比率[(D2/D1)×100(%)]を計算したところ「20%」であり、「4%〜14%」の範囲外にあることが確認された。   Then, in the same manner as in Example 1, the average particle diameter D1 of the first sintered particles derived from the calcined first raw material powder and the second sintered particles derived from the uncalcined second raw material powder The average particle diameter D2 was determined and the particle diameter ratio [(D2 / D1) × 100 (%)] was calculated from the average particle diameter D1 (4 μm) and the average particle diameter D2 (0.8 μm). Yes, it was confirmed to be outside the range of “4% to 14%”.

Figure 0005979082
Figure 0005979082

Figure 0005979082
Figure 0005979082

上述した条件で製造方法された本発明の蒸着用焼結体タブレットによれば、高いパワーの電子ビームや高出力のプラズマが照射されても破損されないため、長時間安定した放電が可能であり、透明導電膜を製造する際の蒸着用焼結体タブレットとして利用される産業上の利用可能性を有している。   According to the sintered sintered tablet for vapor deposition of the present invention manufactured under the conditions described above, since it is not damaged even when irradiated with a high-power electron beam or high-power plasma, stable discharge is possible for a long time, It has industrial applicability to be used as a sintered compact tablet for vapor deposition when producing a transparent conductive film.

Claims (2)

亜鉛、タングステン、タンタル、セリウム、ガリウム、インジウムから選択される少なくとも1種をドーパントとして含有する酸化錫焼結体により構成されると共に、相対密度が50%以上70%以下である蒸着用タブレットにおいて、
上記酸化錫焼結体を構成しかつ当該酸化錫焼結体の破断面に現れる仮焼された第一原料粉末に由来する第一焼結粒の平均粒径をD1とし、上記酸化錫焼結体を構成しかつ当該酸化錫焼結体の破断面に現れる未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径をD2としたとき、第一焼結粒の平均粒径D1に対する第二焼結粒の平均粒径D2の粒径比率[すなわち(D2/D1)×100(%)]が4%以上14%以下であることを特徴とする蒸着用タブレット。
In the tablet for vapor deposition which is composed of a tin oxide sintered body containing at least one selected from zinc, tungsten, tantalum, cerium, gallium and indium as a dopant and whose relative density is 50% or more and 70% or less,
The average particle diameter of the first sintered grains constituting the tin oxide sintered body and derived from the calcined first raw material powder appearing on the fracture surface of the tin oxide sintered body is D1, and the tin oxide sintered body The average grain size of the first sintered grains is D2 when the average grain size of the second sintered grains derived from the uncalcined second raw material powder appearing on the fracture surface of the tin oxide sintered body is D2 A vapor deposition tablet, wherein a particle diameter ratio [that is, (D2 / D1) × 100 (%)] of an average particle diameter D2 of the second sintered grains to a diameter D1 is 4% or more and 14% or less.
請求項1に記載の蒸着用タブレットの製造方法において、
酸化亜鉛、酸化タングステン、酸化タンタル、酸化セリウム、酸化ガリウム、酸化インジウムから選択される少なくとも1種のドーパント用酸化物粉末と酸化錫粉末とを混合し、1300℃以上1600℃以下の仮焼温度で熱処理した後、篩がけを行い、平均粒径が4μm以上20μm以下の仮焼された第一原料粉末を得る第一工程と、
酸化亜鉛、酸化タングステン、酸化タンタル、酸化セリウム、酸化ガリウム、酸化インジウムから選択される少なくとも1種のドーパント用酸化物粉末および酸化錫粉末から成る未仮焼の第二原料粉末を、仮焼された上記第一原料粉末に対して、第一原料粉末の混合割合が50質量%以上75質量%以下となるように混合し、かつ、造粒して造粒粉末を得る第二工程と、
得られた造粒粉末を成形して成形体とし、この成形体を1100℃以上かつ第一工程における上記仮焼温度より200℃以上低い温度で焼結して、亜鉛、タングステン、タンタル、セリウム、ガリウム、インジウムから選択される少なくとも1種をドーパントとして含有する酸化錫の焼結体を得る第三工程、
の各工程を具備することを特徴とする蒸着用タブレットの製造方法。
In the manufacturing method of the tablet for vapor deposition of Claim 1,
At least one kind of dopant oxide powder selected from zinc oxide, tungsten oxide, tantalum oxide, cerium oxide, gallium oxide, and indium oxide is mixed with a tin oxide powder at a calcining temperature of 1300 ° C. or higher and 1600 ° C. or lower. A first step of obtaining a calcined first raw material powder having an average particle size of 4 μm or more and 20 μm or less after sieving after heat treatment;
An uncalcined second raw material powder comprising at least one dopant oxide powder selected from zinc oxide, tungsten oxide, tantalum oxide, cerium oxide, gallium oxide, and indium oxide and tin oxide powder was calcined A second step of mixing the first raw material powder so that the mixing ratio of the first raw material powder is 50% by mass or more and 75% by mass or less, and granulating to obtain a granulated powder;
The obtained granulated powder is molded into a molded body, and the molded body is sintered at a temperature of 1100 ° C. or higher and 200 ° C. or lower than the calcining temperature in the first step, and zinc, tungsten, tantalum, cerium, A third step of obtaining a sintered body of tin oxide containing at least one selected from gallium and indium as a dopant;
The manufacturing method of the tablet for vapor deposition characterized by comprising each process of these.
JP2013112634A 2013-05-29 2013-05-29 Vapor deposition tablet and manufacturing method thereof Expired - Fee Related JP5979082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013112634A JP5979082B2 (en) 2013-05-29 2013-05-29 Vapor deposition tablet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013112634A JP5979082B2 (en) 2013-05-29 2013-05-29 Vapor deposition tablet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014231626A JP2014231626A (en) 2014-12-11
JP5979082B2 true JP5979082B2 (en) 2016-08-24

Family

ID=52125204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013112634A Expired - Fee Related JP5979082B2 (en) 2013-05-29 2013-05-29 Vapor deposition tablet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5979082B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117610A (en) * 2014-12-19 2016-06-30 住友金属鉱山株式会社 Tin oxide-based sintered body tablet and oxide transparent conductive film
JP6468158B2 (en) * 2015-10-15 2019-02-13 住友金属鉱山株式会社 ZnO-Ga2O3-based oxide sintered tablet for vapor deposition and method for producing the same
JP7112854B2 (en) * 2018-02-19 2022-08-04 住友化学株式会社 tin oxide powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730204B2 (en) * 2006-05-24 2011-07-20 住友金属鉱山株式会社 Oxide sintered compact target and method for producing oxide transparent conductive film using the same
WO2007142330A1 (en) * 2006-06-08 2007-12-13 Asahi Glass Company, Limited Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
JP5686067B2 (en) * 2011-08-05 2015-03-18 住友金属鉱山株式会社 Zn-Sn-O-based oxide sintered body and method for producing the same

Also Published As

Publication number Publication date
JP2014231626A (en) 2014-12-11

Similar Documents

Publication Publication Date Title
US8569192B2 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JP5764828B2 (en) Oxide sintered body and tablet processed the same
JP2017145185A (en) Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME
KR101440712B1 (en) Sintered zinc oxide tablet and process for producing same
JP5472655B2 (en) Vapor deposition tablet and manufacturing method thereof
JP5979082B2 (en) Vapor deposition tablet and manufacturing method thereof
JP5772667B2 (en) Vapor deposition tablet and manufacturing method thereof
JP6677058B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JP2008214169A (en) ITiO SINTERED COMPACT FOR VACUUM VAPOR DEPOSITION AND ITS PRODUCTION METHOD
JP5018831B2 (en) Method for producing zinc oxide-based sintered body for sputtering target
JP2007119805A (en) Method for manufacturing sputtering target
JP6414527B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JP5967016B2 (en) Vapor deposition tablet and manufacturing method thereof
JP6468158B2 (en) ZnO-Ga2O3-based oxide sintered tablet for vapor deposition and method for producing the same
JP2010255022A (en) Ito sputtering target, and method for producing the same
JP6551683B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
WO2017086016A1 (en) SINTERED Sn-Zn-O OXIDE AND PROCESS FOR PRODUCING SAME
WO2021019854A1 (en) Method for manufacturing vacuum deposition tablet, oxide transparent conductive film, and tin-oxide-based sintered body
JP5239222B2 (en) Method for producing ZnO vapor deposition material and method for producing ZnO film
JP2016117610A (en) Tin oxide-based sintered body tablet and oxide transparent conductive film
JP5203113B2 (en) Magnesium oxide sintered body with special structure and vapor deposition material for PDP protective film
JP5392342B2 (en) Method for producing ZnO vapor deposition material and method for producing ZnO film
JP2008255481A (en) Vapor deposition material
WO2017149882A1 (en) Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING SAME
JP2006045631A (en) Method for manufacturing sputtering target containing indium oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5979082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees