JP6468158B2 - ZnO-Ga2O3-based oxide sintered tablet for vapor deposition and method for producing the same - Google Patents

ZnO-Ga2O3-based oxide sintered tablet for vapor deposition and method for producing the same Download PDF

Info

Publication number
JP6468158B2
JP6468158B2 JP2015203469A JP2015203469A JP6468158B2 JP 6468158 B2 JP6468158 B2 JP 6468158B2 JP 2015203469 A JP2015203469 A JP 2015203469A JP 2015203469 A JP2015203469 A JP 2015203469A JP 6468158 B2 JP6468158 B2 JP 6468158B2
Authority
JP
Japan
Prior art keywords
zno
sintered
oxide
tablet
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015203469A
Other languages
Japanese (ja)
Other versions
JP2017075363A (en
Inventor
夏樹 早津
夏樹 早津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015203469A priority Critical patent/JP6468158B2/en
Publication of JP2017075363A publication Critical patent/JP2017075363A/en
Application granted granted Critical
Publication of JP6468158B2 publication Critical patent/JP6468158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、低抵抗の透明導電膜を真空蒸着法で製造する際に使用されるZnO−Ga23系酸化物焼結体タブレットに係り、特に、高いパワーの電子ビーム(EB)や高出力のプラズマを照射しても破損が起こり難い蒸着用ZnO−Ga23系酸化物焼結体タブレットとその製造方法に関するものである。 The present invention relates to a ZnO-Ga 2 O 3 type oxide-sintered-body tablets for use in producing the transparent conductive film of low resistance by a vacuum deposition method, in particular, high power of the electron beam (EB) or high The present invention relates to a ZnO—Ga 2 O 3 based oxide sintered body tablet for vapor deposition that hardly breaks even when irradiated with output plasma and a manufacturing method thereof.

液晶ディスプレイや太陽電池等の電極材として用いられる透明導電膜には、比抵抗が低いことから、In23−SnO2系(以下、ITOと略称する)膜やZnO−Al23系(以下、AZOと略称する)膜が多く使われるようになってきている。そして、これ等の透明導電膜は、スパッタリングターゲットを原料とし、加熱した基板上にスパッタリング法によって形成されている。 A transparent conductive film used as an electrode material for liquid crystal displays, solar cells, and the like has a low specific resistance. Therefore, an In 2 O 3 —SnO 2 (hereinafter abbreviated as ITO) film or a ZnO—Al 2 O 3 system is used. A film (hereinafter abbreviated as AZO) is increasingly used. These transparent conductive films are formed by sputtering on a heated substrate using a sputtering target as a raw material.

ところで、液晶ディスプレイや太陽電池等の最近における低コスト化傾向により、上記ITOにおいては、主成分であるIn23が高価であるためコスト面で問題があった。また、AZOにおいては、原料粉末が安価であるためコスト面での問題はないが、低抵抗の膜を得るための最適な成膜条件の範囲が狭いため生産性に問題があった。 By the way, due to the recent trend toward lower costs such as liquid crystal displays and solar cells, the above ITO has a problem in terms of cost because In 2 O 3 as a main component is expensive. In AZO, since the raw material powder is inexpensive, there is no problem in terms of cost, but there is a problem in productivity because the range of optimum film formation conditions for obtaining a low resistance film is narrow.

このため、上記ITO膜やAZO膜に代わって、コスト面や生産性に問題がなくかつ低抵抗で高耐久性を有するZnO−Ga23系(以下、GZOと略称する)の透明導電膜が見出され、このGZO膜を形成するためのZnO−Ga23系スパッタリングターゲットが注目されつつある(特許文献1参照)。 Therefore, instead of the ITO film or AZO film, a transparent conductive film of ZnO—Ga 2 O 3 (hereinafter abbreviated as GZO) having no problem in cost and productivity and having high resistance and low durability. And a ZnO—Ga 2 O 3 -based sputtering target for forming this GZO film is drawing attention (see Patent Document 1).

また、近年においては上記スパッタリング法に較べ透明導電膜の生産性に優れる真空蒸着法による成膜が主流になっており、真空蒸着法に利用できるZnO−Ga23系焼結体(タブレット)が要望されている。 Further, in recent years, film formation by a vacuum evaporation method, which is superior in productivity of a transparent conductive film compared to the above sputtering method, has become the mainstream, and a ZnO-Ga 2 O 3 based sintered body (tablet) that can be used for the vacuum evaporation method. Is desired.

しかし、上記ZnO−Ga23系スパッタリングターゲットを応用して製造されたZnO−Ga23系焼結体(タブレット)を電子ビーム(EB)やイオンプレーティング等の真空蒸着法に適用した場合、製造されたZnO−Ga23系焼結体(タブレット)の密度が低過ぎると、電子ビームや高出力のプラズマを照射した際、材料が表面から蒸発していくのと同時にタブレットの焼結が急激に起こり、部分的なタブレットの収縮によりタブレットが破損するという問題があった。反対に、製造されたZnO−Ga23系焼結体(タブレット)の密度が高過ぎると、電子ビーム等を照射した際にタブレットの表面と内部に温度差が生じ、熱膨張の違いによりタブレットの破損(熱衝撃による破損)が発生するという問題があり、ZnO−Ga23系のスパッタリングターゲットを応用して製造された既存のZnO−Ga23系焼結体(タブレット)は十分なものになっていない。 However, the ZnO—Ga 2 O 3 -based sintered body (tablet) manufactured by applying the ZnO—Ga 2 O 3 -based sputtering target was applied to vacuum deposition methods such as electron beam (EB) and ion plating. In this case, if the density of the manufactured ZnO—Ga 2 O 3 sintered body (tablet) is too low, when the electron beam or high-power plasma is irradiated, the material evaporates from the surface, and at the same time There was a problem that sintering occurred suddenly and the tablet was damaged by partial shrinkage of the tablet. Conversely, if the density of the manufactured ZnO—Ga 2 O 3 sintered body (tablet) is too high, a temperature difference occurs between the surface and the inside of the tablet when irradiated with an electron beam or the like, and due to the difference in thermal expansion. There is a problem that tablet breakage (breakage due to thermal shock) occurs, and an existing ZnO—Ga 2 O 3 sintered body (tablet) manufactured by applying a ZnO—Ga 2 O 3 based sputtering target is used. It is not enough.

このような技術的背景の下、本出願人は、上記ZnO−Ga23系と種類を異にする酸化錫系の焼結体(タブレット)ではあるが、蒸着の初期段階から高いパワーの電子ビーム(EB)や高出力のプラズマが照射されても蒸着中に破損し難い蒸着用タブレットを既に提案している(特許文献2参照)。 Under such technical background, the present applicant is a tin oxide-based sintered body (tablet) of a different type from the ZnO—Ga 2 O 3 system, but has high power from the initial stage of vapor deposition. There has already been proposed a vapor deposition tablet that is not easily damaged during vapor deposition even when irradiated with an electron beam (EB) or high-power plasma (see Patent Document 2).

すなわち、特許文献2に記載の蒸着用タブレットは、亜鉛等をドーパントとして含む酸化錫系焼結体により構成されかつ相対密度が50%以上70%以下である蒸着用タブレットにおいて、上記酸化錫焼結体を構成しかつ第一原料粉末に由来する第一焼結粒の平均粒径をD1とし、上記酸化錫焼結体を構成しかつ第二原料粉末に由来する第二焼結粒の平均粒径をD2としたとき、第一焼結粒の平均粒径D1に対する第二焼結粒の平均粒径D2の粒径比率[すなわち(D2/D1)×100(%)]が4%以上14%以下であることを特徴とし、例えば、以下の第一工程〜第三工程を経て製造されるものであった。
(第一工程)酸化亜鉛等のドーパント用酸化物粉末と酸化錫粉末とを混合し、1300℃以上1600℃以下の仮焼温度で熱処理した後、篩がけを行い、平均粒径が4μm以上20μm以下の仮焼された第一原料粉末を得る工程と、
(第二工程)上記ドーパント用酸化物粉末および酸化錫粉末から成る未仮焼の第二原料粉末を、仮焼された上記第一原料粉末に対して、第一原料粉末の混合割合が50質量%以上75質量%以下となるように混合し、かつ、造粒して造粒粉末を得る工程と、
(第三工程)得られた造粒粉末を成形して成形体とし、この成形体を1100℃以上かつ第一工程における上記仮焼温度より200℃以上低い温度で焼結して、亜鉛等をドーパントとして含有する酸化錫の焼結体を得る工程。
That is, the vapor deposition tablet described in Patent Document 2 is a vapor deposition tablet composed of a tin oxide-based sintered body containing zinc or the like as a dopant and having a relative density of 50% to 70%. The average particle diameter of the first sintered grains constituting the body and derived from the first raw material powder is D1, and the average particle diameter of the second sintered grains constituting the tin oxide sintered body and derived from the second raw material powder When the diameter is D2, the ratio of the average particle size D2 of the second sintered particles to the average particle size D1 of the first sintered particles [ie (D2 / D1) × 100 (%)] is 4% or more and 14 % Or less, for example, manufactured through the following first to third steps.
(First step) Oxide powder for dopant such as zinc oxide and tin oxide powder are mixed and heat-treated at a calcining temperature of 1300 ° C. or higher and 1600 ° C. or lower, followed by sieving, and an average particle size of 4 μm or more and 20 μm. Obtaining the following calcined first raw material powder;
(Second step) The mixing ratio of the first raw material powder is 50 masses of the uncalcined second raw material powder composed of the dopant oxide powder and the tin oxide powder with respect to the calcined first raw material powder. % And 75% by mass or less, and granulating to obtain a granulated powder,
(Third step) The obtained granulated powder is molded into a molded body, and the molded body is sintered at a temperature of 1100 ° C. or higher and 200 ° C. or lower than the calcining temperature in the first step to obtain zinc or the like. A step of obtaining a sintered body of tin oxide contained as a dopant.

そして、特許文献2に記載された酸化錫系焼結体(タブレット)は、高いパワーの電子ビーム(EB)や高出力のプラズマを長時間継続して照射しても蒸着中に破損され難いため、透明導電膜等の量産性を著しく向上させることが可能になった。   The tin oxide-based sintered body (tablet) described in Patent Document 2 is difficult to be damaged during vapor deposition even when irradiated with a high-power electron beam (EB) or high-power plasma continuously for a long time. It has become possible to significantly improve the mass productivity of transparent conductive films and the like.

特開平10−306367号公報Japanese Patent Laid-Open No. 10-306367 特開2014−231626号公報JP 2014-231626 A

ところで、酸化錫系の焼結体(タブレット)に係る特許文献2に記載の手法を応用して製造されたZnO−Ga23系焼結体(タブレット)においては、上述した従前のZnO−Ga23系焼結体(タブレット)と比較し、高いパワーの電子ビーム(EB)や高出力プラズマが照射されても確かに破損され難くはなったが、その反面、電子ビーム等の加熱が継続すると蒸着による成膜が不安定となり、これに起因して膜特性が経時的に悪化し、あるいは、蒸着中にタブレットの部分破損が発生する等の別な問題が確認されている。 Incidentally, in the sintered body (tablets) in accordance patent document 2 applied to manufactured ZnO-Ga 2 O 3 oxide sintered procedures described in the tin oxide (tablets), above the previous ZnO- Compared to Ga 2 O 3 based sintered body (tablet), it was certainly hard to be damaged even when irradiated with high power electron beam (EB) or high power plasma, but on the other hand, heating of electron beam etc. If the film continues, film formation by vapor deposition becomes unstable, resulting in deterioration of film characteristics over time, or other problems such as partial tablet breakage during vapor deposition have been confirmed.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、電子ビーム等による加熱が継続しても、安定した成膜が可能となる蒸着用ZnO−Ga23系酸化物焼結体タブレットとその製造方法を提供することにある。 The present invention has been made paying attention to such problems, and the problem is that ZnO—Ga 2 O for vapor deposition that enables stable film formation even when heating by an electron beam or the like is continued. The object is to provide a three- system oxide sintered tablet and a method for producing the same.

上記課題を解決するため本発明者が継続して研究を行った結果、特許文献2に記載の手法を用いて製造されたZnO−Ga23系焼結体(タブレット)にはZnGa24で表される高抵抗のスピネル構造化合物が含まれていることが確認され、上記スピネル構造化合物の存在が安定した蒸着を困難にさせていることが分かった。 As a result of continuous research conducted by the inventor in order to solve the above problems, ZnO-Ga 2 O 3 -based sintered bodies (tablets) manufactured by using the technique described in Patent Document 2 have ZnGa 2 O. It was confirmed that the high resistance spinel structure compound represented by 4 was included, and it was found that the presence of the spinel structure compound made stable vapor deposition difficult.

本発明はこのような技術的発見に基づき完成されたものである。   The present invention has been completed based on such technical findings.

すなわち、第1の発明は、
Zn(亜鉛)、Ga(ガリウム)、In(インジウム)および酸素(O)で構成される蒸着用ZnO−Ga23系酸化物焼結体タブレットにおいて、
(1)ZnとGaとInの原子数割合(%)が下記式を満たし、
1.75≦Ga/(Zn+Ga+In)×100≦3.54
1.25≦In/(Zn+Ga+In)×100≦2.54
(2)焼結密度が2.9g/cm3以上4.0g/cm3以下、かつ、体積抵抗率が70Ω・cm以下であり、
(3)上記酸化物焼結体タブレットの破断面に現れる仮焼された酸化亜鉛粉末から成る第一原料粉末に由来する第一焼結粒の平均結晶粒径が10μm以上20μm以下、かつ、上記酸化物焼結体タブレットの破断面に現れる未仮焼の酸化亜鉛粉末、酸化ガリウム粉末および酸化インジウム粉末から成る第二原料粉末に由来する第二焼結粒の平均結晶粒径が1μm以上3μm以下であり、
(4)上記酸化物焼結体が、ZnOとInGaO3(ZnO)m(m=1〜10)で表されるホモロガス構造化合物を含有し、Ga23とZnGa24で表されるスピネル構造化合物を含有していないことを特徴とし、
第2の発明は、
第1の発明に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットにおいて、
InGaO3(ZnO)mで表されるホモロガス構造化合物の上記mが5であることを特徴とするものである。
That is, the first invention is
In a ZnO—Ga 2 O 3 oxide sintered body tablet for vapor deposition composed of Zn (zinc), Ga (gallium), In (indium) and oxygen (O),
(1) The atomic ratio (%) of Zn, Ga and In satisfies the following formula:
1.75 ≦ Ga / (Zn + Ga + In) × 100 ≦ 3.54
1.25 ≦ In / (Zn + Ga + In) × 100 ≦ 2.54
(2) The sintered density is 2.9 g / cm 3 or more and 4.0 g / cm 3 or less, and the volume resistivity is 70 Ω · cm or less,
(3) The oxide sintered body calcined by an average grain size of the first sintering particle derived from the first raw material powder consisting of zinc oxide powder were appearing on the fracture surface of the tablet is 10μm or 20μm or less, and, the The average grain size of the second sintered grains derived from the second raw material powder composed of uncalcined zinc oxide powder, gallium oxide powder and indium oxide powder appearing on the fracture surface of the sintered oxide tablet is 1 μm or more and 3 μm or less And
(4) The oxide sintered body contains a homologous structure compound represented by ZnO and InGaO 3 (ZnO) m (m = 1 to 10), and is represented by Ga 2 O 3 and ZnGa 2 O 4. It does not contain a spinel structure compound,
The second invention is
In the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to the first invention,
In the homologous structure compound represented by InGaO 3 (ZnO) m, the above m is 5.

次に、第3の発明は、
第1の発明または第2の発明に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法において、
酸化亜鉛粉末を1000℃以上1400℃以下の仮焼温度で熱処理した後、篩がけを行い、平均粒径が10μm以上50μm以下の仮焼された第一原料粉末を得る第一工程と、
平均粒径が0.1μm以上1.5μm以下の酸化亜鉛粉末、酸化ガリウム粉末および酸化インジウム粉末から成る未仮焼の第二原料粉末を、仮焼された上記第一原料粉末に対して、第一原料粉末の混合割合が40重量%以上80重量%以下となるように混合し、かつ、造粒して造粒粉末を得る第二工程と、
得られた造粒粉末を成形して成形体とし、この成形体を800℃以上かつ第一工程における仮焼温度より200℃以上低い温度で焼結してZnO−Ga23系酸化物焼結体を得る第三工程、
の各工程を具備することを特徴とするものである。
Next, the third invention is:
In the manufacturing method of the first invention or the second evaporation ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to the invention,
A first step of heat treating the zinc oxide powder at a calcining temperature of 1000 ° C. or higher and 1400 ° C. or lower, followed by sieving to obtain a calcined first raw material powder having an average particle size of 10 μm or more and 50 μm or less;
An uncalcined second raw material powder composed of zinc oxide powder, gallium oxide powder and indium oxide powder having an average particle size of 0.1 μm or more and 1.5 μm or less is compared with the first calcined first raw material powder. Mixing so that the mixing ratio of one raw material powder is 40 wt% or more and 80 wt% or less, and granulating to obtain a granulated powder;
The obtained granulated powder is molded into a molded body, and this molded body is sintered at a temperature of 800 ° C. or higher and 200 ° C. or lower than the calcining temperature in the first step to burn ZnO—Ga 2 O 3 oxide. The third step of obtaining the union,
It comprises each process of these.

また、第4の発明は、
第3の発明に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法において、
上記第二工程における第二原料粉末が、酸化インジウム粉末を2重量%以上4重量%以下含有し、かつ、酸化ガリウム粉末を2重量%以上4重量%以下含有することを特徴とし、
第5の発明は、
第3の発明に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法において、
上記第三工程における800℃以上の焼結温度までの昇温速度が0.2℃/分以上1.0℃/分以下であることを特徴とし、
第6の発明は、
第3の発明に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法において、
上記第三工程における焼結温度の保持時間が15時間以上25時間以上であることを特徴とし、
第7の発明は、
第3の発明に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法において、
上記第三工程の焼結処理が終了した後、室温に戻し、還元処理を行うことを特徴とし、
第8の発明は、
第7の発明に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法において、
上記還元処理は、室温から還元温度である600℃以上1000℃以下まで1〜10℃/分の昇温速度で昇温した後、還元炉内を真空状態にして1〜6時間保持して行うことを特徴とするものである。
In addition, the fourth invention is
In the method for producing a ZnO—Ga 2 O 3 -based oxide sintered tablet for vapor deposition according to the third invention,
The second raw material powder in the second step contains indium oxide powder in an amount of 2% by weight to 4% by weight and contains gallium oxide powder in an amount of 2% by weight to 4% by weight,
The fifth invention is:
In the method for producing a ZnO—Ga 2 O 3 -based oxide sintered tablet for vapor deposition according to the third invention,
In the third step, the rate of temperature increase to a sintering temperature of 800 ° C. or higher is 0.2 ° C./min or more and 1.0 ° C./min or less,
The sixth invention is:
In the method for producing a ZnO—Ga 2 O 3 -based oxide sintered tablet for vapor deposition according to the third invention,
The holding time of the sintering temperature in the third step is 15 hours or more and 25 hours or more,
The seventh invention
In the method for producing a ZnO—Ga 2 O 3 -based oxide sintered tablet for vapor deposition according to the third invention,
After completion of the sintering process in the third step, the temperature is returned to room temperature, and a reduction process is performed.
The eighth invention
In the method for manufacturing a deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to the seventh invention,
The reduction treatment is performed by raising the temperature from room temperature to a reduction temperature of 600 ° C. or more and 1000 ° C. or less at a rate of temperature increase of 1 to 10 ° C./min and then holding the inside of the reduction furnace in a vacuum state for 1 to 6 hours. It is characterized by this.

本発明に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットによれば、
焼結密度が2.9g/cm3以上4.0g/cm3以下(要件2)であり、酸化物焼結体タブレットの破断面に現れる仮焼された酸化亜鉛粉末から成る第一原料粉末に由来する第一焼結粒の平均結晶粒径が10μm以上20μm以下、かつ、上記酸化物焼結体タブレットの破断面に現れる未仮焼の酸化亜鉛粉末、酸化ガリウム粉末および酸化インジウム粉末から成る第二原料粉末に由来する第二焼結粒の平均結晶粒径が1μm以上3μm以下(要件3)になっているため、高いパワーの電子ビームや高出力のプラズマを照射してもタブレットの破損を回避することが可能となる。
According to the ZnO—Ga 2 O 3 based oxide sintered body tablet for vapor deposition according to the present invention,
A first raw material powder comprising a calcined zinc oxide powder having a sintered density of 2.9 g / cm 3 or more and 4.0 g / cm 3 or less (requirement 2) and appearing on the fracture surface of the oxide sintered body tablet. The first sintered grains derived from the first sintered grains have a mean grain size of 10 μm or more and 20 μm or less, and are formed of uncalcined zinc oxide powder, gallium oxide powder and indium oxide powder appearing on the fracture surface of the oxide sintered body tablet . Because the average grain size of the second sintered grains derived from the two raw powders is 1 μm or more and 3 μm or less (Requirement 3), the tablet may be damaged even when irradiated with a high-power electron beam or high-power plasma. It can be avoided.

また、ZnとGaとInの原子数割合(%)が下記式を満たし(要件1)、
1.75≦Ga/(Zn+Ga+In)×100≦3.54
1.25≦In/(Zn+Ga+In)×100≦2.54
タブレットを構成する酸化物焼結体が、ZnOとInGaO3(ZnO)m(m=1〜10)で表されるホモロガス構造化合物を含有し、高抵抗のGa23とZnGa24で表されるスピネル構造化合物を含有していない(要件4)ことから、
体積抵抗率が70Ω・cm以下(要件2)になるため、
電子ビーム等による加熱を継続しても安定した成膜が可能となる。
Further, the atomic ratio (%) of Zn, Ga, and In satisfies the following formula (requirement 1),
1.75 ≦ Ga / (Zn + Ga + In) × 100 ≦ 3.54
1.25 ≦ In / (Zn + Ga + In) × 100 ≦ 2.54
The oxide sintered body constituting the tablet contains a homologous structure compound represented by ZnO and InGaO 3 (ZnO) m (m = 1 to 10), and is a high-resistance Ga 2 O 3 and ZnGa 2 O 4 Because it does not contain the represented spinel structure compound (Requirement 4),
Since the volume resistivity is 70 Ω · cm or less (Requirement 2),
Even if heating with an electron beam or the like is continued, stable film formation is possible.

従って、高いパワーの電子ビームや高出力のプラズマを長時間継続して蒸着用タブレットへ照射させることができるため、透明導電膜等の量産性を著しく改善させることが可能となる効果を有する。   Accordingly, the deposition tablet can be irradiated with a high-power electron beam or high-power plasma continuously for a long time, so that the mass productivity of a transparent conductive film or the like can be remarkably improved.

実施例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの破断面におけるSEM(走査型電子顕微鏡)撮像図。SEM (scanning electron microscope) imaging view in fracture surface of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to Example 1. 実施例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回折チャート図。X-ray diffraction chart of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to Example 1. 比較例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回折チャート図。X-ray diffraction chart of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets of Comparative Example 1.

以下、本発明に係る実施の形態について詳細に説明する。   Hereinafter, embodiments according to the present invention will be described in detail.

(I)蒸着用ZnO−Ga 2 3 系酸化物焼結体タブレット
Zn(亜鉛)、Ga(ガリウム)、In(インジウム)および酸素(O)で構成される本発明に係る蒸着用ZnO−Ga2O3系酸化物焼結体タブレットは、
(1)ZnとGaとInの原子数割合(%)が下記式を満たし、
1.75≦Ga/(Zn+Ga+In)×100≦3.54
1.25≦In/(Zn+Ga+In)×100≦2.54
(2)焼結密度が2.9g/cm3以上4.0g/cm3以下、かつ、体積抵抗率が70Ω・cm以下であり、
(3)上記酸化物焼結体タブレットの破断面に現れる仮焼された酸化亜鉛粉末から成る第一原料粉末に由来する第一焼結粒の平均結晶粒径が10μm以上20μm以下、かつ、上記酸化物焼結体タブレットの破断面に現れる未仮焼の酸化亜鉛粉末、酸化ガリウム粉末および酸化インジウム粉末から成る第二原料粉末に由来する第二焼結粒の平均結晶粒径が1μm以上3μm以下であり、
(4)上記酸化物焼結体が、ZnOとInGaO3(ZnO)m(m=1〜10)で表されるホモロガス構造化合物を含有し、Ga23とZnGa24で表されるスピネル構造化合物を含有していないことを特徴とするものである。
(I) ZnO—Ga 2 O 3 oxide sintered body tablet for vapor deposition ZnO—Ga 2 O 3 for vapor deposition according to the present invention composed of Zn (zinc), Ga (gallium), In (indium) and oxygen (O) Based oxide sintered tablets
(1) The atomic ratio (%) of Zn, Ga and In satisfies the following formula:
1.75 ≦ Ga / (Zn + Ga + In) × 100 ≦ 3.54
1.25 ≦ In / (Zn + Ga + In) × 100 ≦ 2.54
(2) The sintered density is 2.9 g / cm 3 or more and 4.0 g / cm 3 or less, and the volume resistivity is 70 Ω · cm or less,
(3) The oxide sintered body calcined by an average grain size of the first sintering particle derived from the first raw material powder consisting of zinc oxide powder were appearing on the fracture surface of the tablet is 10μm or 20μm or less, and, the The average grain size of the second sintered grains derived from the second raw material powder composed of uncalcined zinc oxide powder, gallium oxide powder and indium oxide powder appearing on the fracture surface of the sintered oxide tablet is 1 μm or more and 3 μm or less And
(4) The oxide sintered body contains a homologous structure compound represented by ZnO and InGaO 3 (ZnO) m (m = 1 to 10), and is represented by Ga 2 O 3 and ZnGa 2 O 4. It does not contain a spinel structure compound.

[ホモロガス構造化合物]
ホモロガス結晶構造は、異なる物質の結晶層を何層か重ね合わせた長周期を有する「自然超格子」構造から成る結晶構造で、結晶周期または各薄膜層の厚さがナノメーター程度の場合、ホモロガス結晶構造化合物は、各層の化学組成や層の厚さの組み合わせによって単一の物質あるいは各層を均一に混ぜ合わせた混晶の性質とは異なる固有の特性を示すことができる。
[Homologous structural compounds]
A homologous crystal structure is a crystal structure consisting of a “natural superlattice” structure with a long period of several crystal layers of different materials, and if the crystal period or thickness of each thin film layer is on the order of nanometers, homologous The crystal structure compound can exhibit unique characteristics different from the properties of a single substance or a mixed crystal obtained by uniformly mixing the layers depending on the combination of the chemical composition of each layer and the thickness of the layers.

ホモロガス結晶構造をとる酸化物結晶としては、RAO3(MO)mで表される酸化物結晶が挙げられる。ここで、Rは正三価の金属元素であり、例えば、In、Ga、Al、Fe、Bが挙げられる。Aは正三価の金属元素であり、例えば、Ga、Al、Feが挙げられる。Mは正二価の金属元素であり、例えば、Zn、Mgが挙げられる。また、mは、好ましくは1〜10であり、より好ましくは3〜7であり、更に好ましくは5である。 Examples of the oxide crystal having a homologous crystal structure include an oxide crystal represented by RAO 3 (MO) m. Here, R is a positive trivalent metal element, and examples thereof include In, Ga, Al, Fe, and B. A is a positive trivalent metal element, and examples thereof include Ga, Al, and Fe. M is a positive divalent metal element, and examples thereof include Zn and Mg. Moreover, m is preferably 1 to 10, more preferably 3 to 7, and further preferably 5.

そして、本発明に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットに含まれるホモロガス構造化合物は、RがInであって、AがGaで、MがZnの場合である。 Then, homologous structure compound contained in the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to the present invention is a R is In, the A is Ga, the case M is Zn.

尚、上記InGaO3(ZnO)m(m=1〜10)で表されるホモロガス構造化合物は、1種単独または2種以上の混合物であってもよい。 The homologous structural compound represented by InGaO 3 (ZnO) m (m = 1 to 10) may be a single type or a mixture of two or more types.

また、ターゲットに含まれるホモロガス構造化合物はX線回折により確認することができ、例えば、ターゲットを粉砕したパウダーのX線回折パターンが、組成比から想定されるホモロガス相の結晶構造X線回折パターンと一致することから確認できる。   Moreover, the homologous structure compound contained in the target can be confirmed by X-ray diffraction. For example, the X-ray diffraction pattern of the powder obtained by pulverizing the target is a homologous phase crystal structure X-ray diffraction pattern assumed from the composition ratio. This can be confirmed by matching.

具体的には、JCPDS(Joint Committee of Powder Diffraction Standards)カード、あるいは、ICSD(The Inorganic Crystal Structure Database)から得られるホモロガス相の結晶構造X線回折パターンと一致することで確認することができる。   Specifically, it can be confirmed by matching with a crystal structure X-ray diffraction pattern of a homologous phase obtained from a JCPDS (Joint Committee of Powder Diffraction Standards) card or ICSD (The Inorganic Crystal Structure Database).

[高抵抗のGa23とZnGa24で表されるスピネル構造化合物]
本発明に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットは、上述したように高抵抗のGa23とZnGa24で表されるスピネル構造化合物を含まない(要件4)。
[Spinel structure compound represented by high resistance Ga 2 O 3 and ZnGa 2 O 4 ]
The ZnO—Ga 2 O 3 oxide sintered body tablet for vapor deposition according to the present invention does not contain a spinel structure compound represented by high resistance Ga 2 O 3 and ZnGa 2 O 4 as described above (Requirement 4). ).

蒸着用ZnO−Ga23系酸化物焼結体タブレットが、ZnO相と上記InGaO3(ZnO)m(m=1〜10)で表されるホモロガス構造化合物を含むことにより、高抵抗のGa23とZnGa24で表されるスピネル構造化合物が酸化物焼結体タブレット中に現れることを防止でき、タブレットが高抵抗になることを防ぐことができる。 The ZnO—Ga 2 O 3 based oxide sintered body tablet for vapor deposition contains a ZnO phase and a homologous structure compound represented by the above InGaO 3 (ZnO) m (m = 1 to 10), whereby high resistance Ga spinel structure compound shown by 2 O 3 and ZnGa 2 O 4 can be prevented from appearing in the oxide-sintered-body tablet, it is possible to prevent the tablet becomes high resistance.

スピネル構造は「ウエスト固体化学入門」(講談社サイエンティフィク)に詳細に記載されており、以下のような構造である。   The spinel structure is described in detail in “Introduction to West Solid Chemistry” (Kodansha Scientific), and has the following structure.

スピネル構造はAB24の組成式を有し、AイオンとBイオンの配位状態によって分類すると、正スピネル構造、逆スピネル構造、両者の中間構造に分けられる。 The spinel structure has a composition formula of AB 2 O 4 , and can be classified into a normal spinel structure, an inverse spinel structure, and an intermediate structure between the two when classified according to the coordination state of A ions and B ions.

正スピネル構造は、O2−が形成する立体面心格子の四面体隙間の8分の1にAが充填され、八面体隙間の2分の1にBが充填された構造を有する。逆スピネル構造は、四面体隙間の8分の1にBが充填され八面体隙間の2分の1にAおよびBが充填された構造を有する。 The regular spinel structure has a structure in which A is filled in one-eighth of the tetrahedral gap of the three-dimensional face-centered lattice formed by O 2 − and B is filled in one-half of the octahedral gap. The reverse spinel structure has a structure in which one-eighth of the tetrahedral gap is filled with B and half of the octahedral gap is filled with A and B.

スピネル構造は、一般的に立方晶であるが、中には歪んだ立方晶もある。   The spinel structure is generally cubic, but some are distorted.

タブレット中のZnGa24で表されるスピネル構造化合物は、X線回折測定によりスピネル構造化合物のピークを観察することにより確認できる。 The spinel structure compound represented by ZnGa 2 O 4 in the tablet can be confirmed by observing the peak of the spinel structure compound by X-ray diffraction measurement.

[ZnとGaとInの原子数割合(%)]
本発明に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットにおいて、
ZnとGaとInの原子数割合(%)は下記式を満たすことを要する(要件1)。
1.75≦Ga/(Zn+Ga+In)×100≦3.54
1.25≦In/(Zn+Ga+In)×100≦2.54
(In、Ga、Znはタブレット中における各元素の原子数比を示す。)
[Atom ratio of Zn, Ga and In (%)]
In the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to the present invention,
The atomic ratio (%) of Zn, Ga, and In must satisfy the following formula (Requirement 1).
1.75 ≦ Ga / (Zn + Ga + In) × 100 ≦ 3.54
1.25 ≦ In / (Zn + Ga + In) × 100 ≦ 2.54
(In, Ga, and Zn indicate the atomic ratio of each element in the tablet.)

上記式を満たさない場合、InGaO3(ZnO)m(m=1〜10)で表されるホモロガス構造化合物が生成されず、これに起因して高抵抗のGa23またはZnGa24で表されるスピネル構造化合物が生成されてタブレットが高抵抗となる(比較例1および比較例3参照)。 When the above formula is not satisfied, a homologous structure compound represented by InGaO 3 (ZnO) m (m = 1 to 10) is not generated, and due to this, high resistance Ga 2 O 3 or ZnGa 2 O 4 The spinel structure compound represented is produced | generated, and a tablet becomes high resistance (refer the comparative example 1 and the comparative example 3).

すなわち、酸化亜鉛、酸化ガリウム、酸化インジウムの各成分が上記式の条件を満たすよう設定されることで、ZnO相とInGaO3(ZnO)m(m=1〜10)で表されるホモロガス構造化合物を含み、高抵抗のGa23とZnGa24で表されるスピネル構造化合物を含まないZnO−Ga23系酸化物焼結体が焼成され、体積抵抗率が70Ω・cm以下の蒸着用ZnO−Ga23系酸化物焼結体タブレットが得られる。 That is, a homologous structure compound represented by a ZnO phase and InGaO 3 (ZnO) m (m = 1 to 10) by setting each component of zinc oxide, gallium oxide, and indium oxide so as to satisfy the conditions of the above formula. A ZnO—Ga 2 O 3 based oxide sintered body containing no spinel structure compound represented by high resistance Ga 2 O 3 and ZnGa 2 O 4 is fired and has a volume resistivity of 70 Ω · cm or less. A ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition is obtained.

更に、酸化インジウムを添加することにより、焼結時におけるZnOの蒸発が抑制されてZnO粉末の焼結挙動を改善することが可能となる。   Furthermore, by adding indium oxide, evaporation of ZnO during sintering can be suppressed and the sintering behavior of the ZnO powder can be improved.

(II)蒸着用タブレットの破断面におけるSEM(走査型電子顕微鏡)撮像図
以下に述べる製造方法で得られた蒸着用ZnO−Ga23系酸化物焼結体タブレットの破断面は、例えば、図1のSEM撮像図に示すような構造を有している。
(II) SEM (Scanning Electron Microscope) imaging diagram at the fracture surface of the tablet for vapor deposition The fracture surface of the ZnO-Ga 2 O 3 oxide sintered body tablet for vapor deposition obtained by the production method described below is, for example, It has a structure as shown in the SEM imaging diagram of FIG.

図1のSEM撮像図において「粒1」の粒体は、下記「第一工程」の仮焼された第一原料粉末に由来する第一焼結粒を示しており、また、「粒2」の粒体は、下記「第二工程」で混合された未仮焼の第二原料粉末に由来する第二焼結粒を示している。   In the SEM imaging diagram of FIG. 1, the “grain 1” grains indicate the first sintered grains derived from the first raw material powder calcined in the following “first step”, and “grain 2”. This granule indicates the second sintered grain derived from the uncalcined second raw material powder mixed in the following “second step”.

そして、図1のSEM撮像図から確認できるように、「粒1」で示される第一焼結粒は第二焼結粒より粒径が大きい複数の粒体群で構成され、また、「粒2」で示される第二焼結粒は第一焼結粒より粒径が小さい複数の粒体群で構成され、第一焼結粒と第二焼結粒が適度に混ざり合った状態で存在している。尚、第一焼結粒が、粒径の大きい粒体群で構成されて第一焼結粒自体の成長が抑制されているのは、「第一工程」において1000℃以上1400℃以下の仮焼温度で熱処理した後、篩がけを行い、平均粒径が10μm以上50μm以下の第一原料粉末を調製していることによるものと思われる。上記熱処理後、篩がけを行なうことで、下記「第三工程」の焼結処理(但し、焼結温度は、後述するように800℃以上かつ「第一工程」の仮焼温度より200℃以上低い温度に設定)の際、第一焼結粒同士の成長を分散させる効果が生じ、この効果により、第一焼結粒同士の結合と成長が抑制されていると考えられる。尚、第一焼結粒と第二焼結粒の粒径に大きな差異をつけることで、適度な空孔もできることから、熱を分散させる効果も生じる。   As can be confirmed from the SEM image of FIG. 1, the first sintered grain indicated by “grain 1” is composed of a plurality of grain groups having a grain size larger than that of the second sintered grain. The second sintered grain indicated by “2” is composed of a plurality of particle groups having a particle diameter smaller than that of the first sintered grain, and the first sintered grain and the second sintered grain are present in a properly mixed state. doing. The first sintered grains are composed of large particle groups and the growth of the first sintered grains themselves is suppressed in the “first step” at a temperature of 1000 ° C. to 1400 ° C. This is probably because the first raw material powder having an average particle size of 10 μm or more and 50 μm or less is prepared after heat treatment at the firing temperature. By performing sieving after the above heat treatment, sintering treatment of the following “third step” (however, the sintering temperature is 800 ° C. or higher and 200 ° C. or higher than the calcining temperature of “first step” as described later) When the temperature is set to a low temperature, an effect of dispersing the growth of the first sintered grains is generated, and it is considered that the bonding and the growth of the first sintered grains are suppressed by this effect. In addition, since an appropriate void | hole can be made by making a big difference in the particle size of a 1st sintered grain and a 2nd sintered grain, the effect which disperse | distributes heat also arises.

そして、本発明に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットにおいて、上記仮焼された第一原料粉末に由来する第一焼結粒の平均粒径が10μm以上20μm以下、上記未仮焼の第二原料粉末に由来する第二焼結粒の平均粒径が1μm以上3μm以下であることを要件(要件3)とする。このため、上記粒径となるように「第三工程」において仮焼した第一原料粉末を極力成長させてはならず、上述したように「第三工程」の焼結温度を800℃以上かつ「第一工程」の仮焼温度より200℃以上低い温度に設定することが必要となる。これを無視して「第一工程」の仮焼温度より高温での焼結、仮焼温度近辺での焼結、および、焼結時間を長くすると、「粒1」で示される第一焼結粒同士が成長してしまう。第一焼結粒同士が成長することで強度が増す反面、蒸着用タブレットに対して高いパワーの電子ビーム(EB)や高出力プのラズマを照射したとき、タブレットの表面と内部に温度差が生じ、かつ、「粒1」で示される第一焼結粒と「粒2」で示される第二焼結粒との間にも温度差が生じるため、割れが発生する。このような蒸着用タブレットは、量産を目指して、いきなり高いパワーの電子ビーム(EB)や高出力プラズマが照射される用途には向いていない。 Then, the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to the present invention, the calcined was first sintered grains having an average particle diameter of 10μm or more 20μm derived from the first raw material powder or less, The requirement (requirement 3) is that the average particle size of the second sintered grains derived from the uncalcined second raw material powder is 1 μm or more and 3 μm or less. For this reason, the first raw material powder calcined in the “third step” so as to have the above particle size should not be grown as much as possible. As described above, the sintering temperature in the “third step” is 800 ° C. or higher. It is necessary to set the temperature at 200 ° C. or more lower than the calcining temperature in the “first step”. Ignoring this, sintering at a temperature higher than the calcining temperature in the “first step”, sintering near the calcining temperature, and longer sintering time, the first sintering indicated by “grain 1” The grains grow. While the strength increases due to the growth of the first sintered grains, when a high power electron beam (EB) or high power plasma is applied to the evaporation tablet, there is a temperature difference between the tablet surface and the inside. Since a temperature difference also occurs between the first sintered grains indicated by “grain 1” and the second sintered grains indicated by “grain 2”, cracks occur. Such a tablet for vapor deposition is not suitable for an application in which high-power electron beam (EB) or high-power plasma is irradiated suddenly for mass production.

ところで、図1のSEM撮像図(実施例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの破断面におけるSEM撮像図)を用いて、第一焼結粒の平均粒径と第二焼結粒の平均粒径を求めるには、例えば、以下のような方法が挙げられる。 By the way, using the SEM image of FIG. 1 (SEM image of the fracture surface of the ZnO—Ga 2 O 3 oxide sintered body tablet for vapor deposition according to Example 1), the average particle size of the first sintered particles For example, the following method can be used to obtain the average particle size of the second sintered grains.

まず、図1に示すSEM撮像図上の任意箇所に、SEM撮像図の一方の端縁から他方の端縁に向けて複数本の直線を引く。ここで、直線の数は4本以上とすることが定量精度の観点から望ましく、また、直線の引き方は井桁状や放射状とすることができる。   First, a plurality of straight lines are drawn from one edge of the SEM image to the other edge at an arbitrary location on the SEM image shown in FIG. Here, it is desirable that the number of straight lines is four or more from the viewpoint of quantitative accuracy, and the straight line drawing method can be a cross-beam shape or a radial shape.

次に、SEM撮像図上に引いた直線に存在する「第一焼結粒」や「第二焼結粒」の粒界部分で区切られた数nを測定し、以下の数式(1)から平均粒径dを求め、かつ、複数の直線から求めたそれぞれの平均粒径dから平均値を求めるものである。
d=L/n/m (1)
[数式(1)中、dは1本の直線から求めた平均粒径、Lは1本の直線の長さ、nは1本の直線上に存在する粒界の個数、mは電子顕微鏡の倍率を示す]
Next, the number n divided by the grain boundary portions of the “first sintered grains” and the “second sintered grains” present on the straight line drawn on the SEM image is measured, and the following formula (1) is obtained. The average particle diameter d is obtained, and the average value is obtained from each average particle diameter d obtained from a plurality of straight lines.
d = L / n / m (1)
[In Formula (1), d is an average particle diameter obtained from one straight line, L is the length of one straight line, n is the number of grain boundaries existing on one straight line, and m is an electron microscope. Show magnification]

(III)本発明に係る蒸着用ZnO−Ga 2 3 系酸化物焼結体タブレットの製造方法
「第一工程:仮焼された第一原料粉末を得る工程」
酸化亜鉛粉末中に、水、分散剤、必要に応じてバインダー(バインダーとしては、加熱により消失または気化する公知のバインダーであれば限定されず、ポリビニルアルコール等が使用可能である)を添加した後、攪拌機で混合し、スプレードライヤーを用い噴霧乾燥して混合粉末を得る。
(III) The present invention in accordance with the deposition ZnO-Ga 2 O 3 system manufacturing method of the oxide-sintered-body tablets "First step: calcination is to obtain a first raw material powder"
After adding water, a dispersing agent, and a binder as needed (the binder is not limited as long as it is a known binder that disappears or vaporizes by heating, and polyvinyl alcohol can be used) in the zinc oxide powder Mix with a stirrer and spray dry using a spray dryer to obtain a mixed powder.

次に、得られた混合粉末を1000℃以上1400℃以下の仮焼温度で熱処理(焼結)を行なった後、篩がけを行なって平均粒径が10μm以上50μm以下の仮焼された第一原料粉末を得る。   Next, the obtained mixed powder was heat-treated (sintered) at a calcining temperature of 1000 ° C. or higher and 1400 ° C. or lower, and then sieved to obtain a calcined first powder having an average particle size of 10 μm or more and 50 μm or less. A raw material powder is obtained.

尚、仮焼温度が1000℃未満の場合、以下の「第三工程」で得られるZnO−Ga23系酸化物焼結体の密度や寸法のばらつきが大きくなるという不都合がある。他方、仮焼温度が1400℃を超えると、酸化亜鉛が蒸発して組成コントロールが困難となり、所望の焼結体組織を得ることができなくなる不都合がある。従って、仮焼温度は1000℃以上1400℃以下とすることを要する。 When the calcining temperature is lower than 1000 ° C., there is a disadvantage that the density and dimensional variations of the ZnO—Ga 2 O 3 oxide sintered body obtained in the “third process” below increase. On the other hand, when the calcining temperature exceeds 1400 ° C., zinc oxide evaporates, making it difficult to control the composition, and there is a disadvantage that a desired sintered body structure cannot be obtained. Therefore, the calcination temperature needs to be 1000 ° C. or higher and 1400 ° C. or lower.

「第二工程:造粒粉末を得る工程」
次に、平均粒径が0.1μm以上1.5μm以下の酸化亜鉛粉末、酸化ガリウム粉末および酸化インジウム粉末から成る未仮焼の第二原料粉末を、上記「第一工程」で調製した第一原料粉末に対して下記組成となるように配合した後、混合攪拌を行い、スプレードライヤー等を用い造粒して造粒粉末を得る。
"Second step: Step of obtaining granulated powder"
Next, an uncalcined second raw material powder composed of zinc oxide powder, gallium oxide powder and indium oxide powder having an average particle size of 0.1 μm or more and 1.5 μm or less was prepared in the above “first step”. After blending so that it may become the following composition with respect to raw material powder, mixing and stirring are performed, and it granulates using a spray dryer etc. and obtains granulated powder.

ここで、仮焼された第一原料粉末と未仮焼の第二原料粉末との割合については、仮焼された第一原料粉末が40重量%以上80重量%以下となるように配合することを必要とし、好ましくは50重量%〜70重量%となるように配合する。仮焼された第一原料粉末の割合が80重量%を超えて多い場合、スラリー作成の際に第一原料粉末の沈降が早く生じて未仮焼の第二原料粉末と分離してしまい、造粒時に組成ズレを引き起こす原因となる。また、後述する「第三工程」における焼結での密度収縮の制御が困難となる。更に、密度が低いため強度が低く、このため、所望の焼結体の作製が困難となる。また、仮焼された第一原料粉末の割合が40重量%未満と少ない場合、未仮焼の第二原料粉末が多くなることに起因し、後述する焼結工程において、粒成長が進み易くなり、粒同士のネック成長が促進されて焼結体自身の強度は増すことになるが、その反面、タブレット使用時に最表面と内部とに温度差が生じ易くなり、熱膨張の違いによりタブレットの破損が発生し易くなってしまう。このことから、仮焼された第一原料粉末を40重量%以上80重量%以下の条件で配合することにより、焼結時における収縮のコントロールを容易に行なうことができ、安定した強度が得られ、所望の密度を有する焼結体を得ることが可能となる。   Here, about the ratio of the calcined 1st raw material powder and the uncalcined 2nd raw material powder, it mix | blends so that the calcined 1st raw material powder may be 40 to 80 weight% Is preferably blended so as to be 50% to 70% by weight. When the ratio of the first raw material powder that has been calcined is more than 80% by weight, the first raw material powder is quickly settled during slurry preparation, and separated from the uncalcined second raw material powder. Causes compositional deviation at the time of graining. In addition, it becomes difficult to control density shrinkage during sintering in the “third step” described later. Furthermore, since the density is low, the strength is low, which makes it difficult to produce a desired sintered body. Moreover, when the ratio of the calcined first raw material powder is as low as less than 40% by weight, the amount of uncalcined second raw material powder increases, and in the sintering process described later, grain growth is likely to proceed. However, the neck growth between grains is promoted and the strength of the sintered body itself is increased, but on the other hand, a temperature difference tends to occur between the outermost surface and the inside during tablet use, and the tablet breaks due to the difference in thermal expansion. Is likely to occur. Thus, by blending the calcined first raw material powder under the conditions of 40 wt% or more and 80 wt% or less, the shrinkage during sintering can be easily controlled, and a stable strength can be obtained. Thus, a sintered body having a desired density can be obtained.

また、仮焼された第一原料粉末と未仮焼の第二原料粉末を混合する方法としては、混合時において粉末が粉砕され難い攪拌機による攪拌が好ましい。更に、混合の際、水、バインダー、分散剤、および、金型プレス時に潤滑材として機能するステアリン酸を0.5〜1重量%添加するとよい。   In addition, as a method of mixing the calcined first raw material powder and the uncalcined second raw material powder, stirring by a stirrer in which the powder is not easily pulverized during mixing is preferable. Furthermore, at the time of mixing, it is good to add 0.5 to 1 weight% of water, a binder, a dispersing agent, and the stearic acid which functions as a lubrication agent at the time of a metal mold | die press.

「第三工程:造粒粉末を成形して成形体とする成形工程」
次に、「第二工程」で得られた造粒粉末を成形して成形体とする。造粒粉末の成形は金型プレスにて行う。この際、仮焼された第一原料粉末の配合割合、後工程の焼結温度の設定条件により焼結による収縮がコントロールされているため、タブレットの寸法はこの成形時にほぼ決定される。上述したように仮焼された第一原料粉末の割合が多いと寸法制御が困難になり、少ない場合でも同様である。そして、仮焼された第一原料粉末の混合割合は、上述したように40重量%以上80重量%以下であることを要し、好ましくは50重量%〜70重量%である。
"Third process: Molding process by forming granulated powder into a compact"
Next, the granulated powder obtained in the “second step” is molded into a molded body. The granulated powder is molded by a mold press. Under the present circumstances, since shrinkage | contraction by sintering is controlled by the setting conditions of the mixing ratio of the calcined 1st raw material powder and the sintering temperature of a post process, the dimension of a tablet is substantially determined at the time of this shaping | molding. As described above, when the ratio of the first raw material powder that has been calcined is large, dimensional control becomes difficult, and the same is true even when the ratio is small. And the mixing ratio of the calcined first raw material powder needs to be 40 wt% or more and 80 wt% or less as described above, and is preferably 50 wt% to 70 wt%.

「第三工程:成形体を焼結してZnO−Ga23系酸化物焼結体を得る焼結工程」
次に、上記成形体の焼結時における雰囲気は、酸素、大気、真空中のいずれでもよいが、大気中での焼結が安価にでき最も好ましい。
"Third Step: sintering step of sintering the shaped body to obtain a ZnO-Ga 2 O 3 type oxide-sintered body"
Next, the atmosphere during sintering of the molded body may be any of oxygen, air, and vacuum, but is most preferable because it can be inexpensively sintered in air.

まず、得られた成形体を焼結炉内に配置し、かつ、炉内容積1m3当たり100L(リットル)/分の割合で焼結炉内に酸素を導入し、焼結雰囲気の酸素濃度を30%以上(体積比)として大気中(酸素量21%)よりも酸素濃度を高めに設定し、200〜800℃で20時間以上の加熱(脱バインダ)を行う。 First, the obtained molded body was placed in a sintering furnace, and oxygen was introduced into the sintering furnace at a rate of 100 L (liter) / minute per 1 m 3 of the furnace volume, and the oxygen concentration in the sintering atmosphere was adjusted. 30% or more (volume ratio) is set so that the oxygen concentration is higher than that in the atmosphere (oxygen amount 21%), and heating (debinding) is performed at 200 to 800 ° C. for 20 hours or more.

その後、焼結温度は、800℃以上かつ第一工程における仮焼温度より200℃以上低い温度とする。800℃未満では十分に焼結しないため、得られる焼結体の強度が低く、焼結体の取り扱い中に割れや欠けが発生してしまう。更に、焼結時の収縮が完了していないため、密度や寸法のばらつきも大きくなる。   Thereafter, the sintering temperature is set to 800 ° C. or higher and 200 ° C. or lower than the calcining temperature in the first step. If the temperature is lower than 800 ° C., the sintered body is not sufficiently sintered, so that the strength of the obtained sintered body is low, and cracks and chips occur during handling of the sintered body. Furthermore, since the shrinkage at the time of sintering is not completed, the variation in density and size also increases.

そして、焼結温度を800℃以上かつ第一工程における上記仮焼温度より200℃以上低い温度とすれば焼結密度が2.9g/cm3以上4.0g/cm3以下の焼結体が得られる。しかし、焼結温度が仮焼温度に近すぎると、焼結密度が2.9g/cm3以上4.0g/cm3以下に収まっても高いパワーのビーム照射中に割れが発生してしまう。このため、焼結温度は、800℃以上で第一工程における上記仮焼温度より200℃以上低い温度にすることを要する。 If the sintering temperature is 800 ° C. or higher and 200 ° C. or lower than the calcining temperature in the first step, a sintered body having a sintered density of 2.9 g / cm 3 or more and 4.0 g / cm 3 or less is obtained. can get. However, if the sintering temperature is too close to the calcination temperature, cracks will occur during irradiation with a high power beam even if the sintering density is within the range of 2.9 g / cm 3 to 4.0 g / cm 3 . For this reason, the sintering temperature needs to be 800 ° C. or higher and 200 ° C. or lower than the calcining temperature in the first step.

また、上記焼結は15〜25時間行われるのが好ましいが、最も好ましい時間は17〜23時間である。この範囲内であると、焼結時間の短縮(電力の使用量減)と高い生産性を実現しつつ、高品質な蒸着用ZnO−Ga23系酸化物焼結体タブレットを得ることができる。 The sintering is preferably performed for 15 to 25 hours, but the most preferable time is 17 to 23 hours. Within this range, it is possible to obtain a high-quality ZnO—Ga 2 O 3 oxide sintered body tablet for vapor deposition while realizing a reduction in sintering time (reduction in power consumption) and high productivity. it can.

そして、本発明に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットについては、例えば、直径10〜50mmで高さ5〜60mmの円柱形状タブレット若しくはペレット形状で使用することが可能である。 Then, the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to the present invention, for example, can be used in cylindrical tablet or pellet height 5~60mm diameter 10~50mm is there.

「第三工程の焼結処理が終了した後における還元処理」
ZnOの酸素欠損を促進し、体積抵抗率の一層の低下を計るため、焼結処理が終了したZnO−Ga23系酸化物焼結体に対して還元処理を行うことが好ましい。
“Reduction treatment after the third step of sintering”
In order to promote the oxygen deficiency of ZnO and further reduce the volume resistivity, it is preferable to perform a reduction treatment on the ZnO—Ga 2 O 3 based oxide sintered body after the sintering treatment.

還元処理は、例えば、窒素、アルゴン、二酸化炭素、ヘリウム等の非酸化性ガスを導入しながら常圧で行う方法、好ましくは2Pa以下の真空雰囲気中600〜1000℃で加熱する方法により行うことができる。   The reduction treatment is performed by, for example, a method of performing normal pressure while introducing a non-oxidizing gas such as nitrogen, argon, carbon dioxide, or helium, and preferably heating at 600 to 1000 ° C. in a vacuum atmosphere of 2 Pa or less. it can.

次に、真空雰囲気中において還元処理を行う一例について説明する。   Next, an example of performing the reduction process in a vacuum atmosphere will be described.

第三工程の焼結処理が終了し、室温で、2Pa以下の真空雰囲気になるよう排気した後、室温から還元温度である600〜1000℃まで1〜10℃/分の昇温速度で昇温し、該還元温度を1〜6時間保持する。   After the sintering process of the third step is completed, the exhaust gas is evacuated to a vacuum atmosphere of 2 Pa or less at room temperature, and then the temperature is increased from room temperature to a reduction temperature of 600 to 1000 ° C. at a rate of 1 to 10 ° C./min. The reduction temperature is maintained for 1 to 6 hours.

上記還元温度が600℃未満では、真空雰囲気中での還元作用が薄れる。一方、1000℃を超えると、ZnOの蒸発が活発化して組成ずれを来し易いばかりか、炉材やヒータの寿命を縮めて生産性を悪化させ易い。また、降温速度が1℃/分未満であると、焼結体の結晶粒成長が著しくなる。一方、10℃/分を超えると、還元炉内温度の均一性が低下し、焼結体内の膨脹・収縮量にバラツキを生じる。また、真空雰囲気が2Pa超えた場合、上記還元作用が薄れる。更に、保持時間が1時間未満では、体積抵抗率を一層低下させることが難しくなる。一方、6時間を超えると、焼結体における結晶粒の成長が著しくなると共に、空孔の粗大化、ひいては最大空孔径の増大化を来してしまう。   When the reduction temperature is less than 600 ° C., the reducing action in a vacuum atmosphere is reduced. On the other hand, when the temperature exceeds 1000 ° C., the evaporation of ZnO is activated and the composition is likely to shift, and the life of the furnace material and the heater is shortened and the productivity is easily deteriorated. On the other hand, if the cooling rate is less than 1 ° C./min, crystal grain growth of the sintered body becomes remarkable. On the other hand, if it exceeds 10 ° C./minute, the uniformity of the temperature in the reducing furnace is lowered, and the amount of expansion / contraction in the sintered body varies. Moreover, when the vacuum atmosphere exceeds 2 Pa, the reducing action is reduced. Furthermore, when the holding time is less than 1 hour, it is difficult to further reduce the volume resistivity. On the other hand, when the time exceeds 6 hours, the crystal grains grow significantly in the sintered body, and the pores become coarse and consequently the maximum pore diameter increases.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

[実施例1]
平均粒径が0.6μmの酸化亜鉛粉末に、60重量%の水、0.5重量%の分散剤(ポリカルボン酸アンモニウム塩)、および、1.0重量%のバインダー(PVA)を添加し、攪拌機で混合した後、スプレードライヤーを用いて仮焼前粉末を作製した。その後、大気中にて1200℃で20時間の仮焼を行った後、篩がけを行い、平均粒径が30μmの仮焼粉(仮焼された第一原料粉末)を得た。
[Example 1]
To zinc oxide powder having an average particle size of 0.6 μm, 60% by weight of water, 0.5% by weight of a dispersant (polycarboxylic acid ammonium salt) and 1.0% by weight of a binder (PVA) are added. After mixing with a stirrer, a pre-calcined powder was prepared using a spray dryer. Then, after calcining at 1200 ° C. for 20 hours in the air, sieving was performed to obtain calcined powder (calcined first raw material powder) having an average particle size of 30 μm.

次に、酸化亜鉛粉末に対し、酸化ガリウムが3重量%および酸化インジウムが3重量%となるように配合して成る平均粒径が1.0μmの未仮焼粉末(未仮焼の第二原料粉末)を、上記仮焼粉(仮焼された第一原料粉末)に対し、仮焼粉の混合割合が60重量%となるように配合し、かつ、1.0重量%の上記バインダーと0.5重量%の上記分散剤および0.5重量%のステアリン酸(潤滑材)を添加し、攪拌機で18時間以上攪拌した後、スプレードライヤーを用いて造粒粉末を得た。   Next, an uncalcined powder (non-calcined second raw material) having an average particle size of 1.0 μm, which is mixed with zinc oxide powder so that gallium oxide is 3% by weight and indium oxide is 3% by weight. Is mixed with the calcined powder (calcined first raw material powder) so that the mixing ratio of the calcined powder is 60% by weight, and 1.0% by weight of the binder and 0% are mixed. After adding 0.5% by weight of the dispersant and 0.5% by weight of stearic acid (lubricant) and stirring for 18 hours or more with a stirrer, granulated powder was obtained using a spray dryer.

次に、得られた造粒粉末を、一軸プレス機を用いて90kNの圧力で成形し、直径30.7mm、高さ40.7mmの成形体を得た後、この成形体を焼結させた。   Next, the obtained granulated powder was molded at a pressure of 90 kN using a uniaxial press to obtain a molded body having a diameter of 30.7 mm and a height of 40.7 mm, and then the molded body was sintered. .

焼結工程は、室温から1000℃まで58時間かけて昇温させ、1000℃にて20時間保持して焼結を行った。   In the sintering process, the temperature was raised from room temperature to 1000 ° C. over 58 hours, and the sintering was performed at 1000 ° C. for 20 hours.

更に、焼結後における酸化物焼結体タブレットを、真空状態で、室温から800℃まで2.4時間かけて昇温させ、800℃にて3時間保持して還元を行い、実施例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットを得た。 Further, the sintered oxide tablet after sintering was heated in a vacuum state from room temperature to 800 ° C. over 2.4 hours, and held at 800 ° C. for 3 hours for reduction. to obtain a deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according.

尚、得られた実施例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットにおける端部分の一部を切断しその破断面におけるSEM(走査型電子顕微鏡)撮像図を得た。この撮像図を図1に示す。また、実施例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの焼結密度は3.35g/cm3であり、かつ、体積抵抗率は50Ω・cmであった。これらの結果を表2に示す。 In addition, a part of end part in the obtained ZnO—Ga 2 O 3 oxide sintered compact tablet for vapor deposition according to Example 1 was cut to obtain an SEM (scanning electron microscope) imaging diagram at the fracture surface. . This imaging diagram is shown in FIG. Moreover, the sintered density of the ZnO—Ga 2 O 3 based oxide sintered body tablet for vapor deposition according to Example 1 was 3.35 g / cm 3 , and the volume resistivity was 50 Ω · cm. These results are shown in Table 2.

更に、実施例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回析から、当該タブレット中においてInGaO3(ZnO)5(InGaZn58)相で表されるホモロガス構造化合物が検出され、高抵抗のGa23相とZnGa24相で表されるスピネル構造化合物は検出されなかった。この結果を表2に示すと共に上記X線回析チャート図を図2に示す。 Furthermore, the X-ray diffraction of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to Example 1, represented by InGaO 3 (ZnO) 5 (InGaZn 5 O 8) phase during the tablet A homologous structural compound was detected, and a spinel structural compound represented by a high-resistance Ga 2 O 3 phase and a ZnGa 2 O 4 phase was not detected. The results are shown in Table 2 and the X-ray diffraction chart is shown in FIG.

そして、得られた実施例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットに対し、量産を目指して高いパワー(加速電圧15kV、出力24kW)の電子ビームをいきなり照射したところタブレットの割れは確認されず、かつ、蒸着中における蒸着用ZnO−Ga23系酸化物焼結体タブレットの割れも確認されなかった。 Then, with respect to deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to Example 1 was obtained, high power (acceleration voltage 15kV, output 24 kW) with the aim of production it was suddenly irradiated with an electron beam The crack of the tablet was not confirmed, and the crack of the ZnO—Ga 2 O 3 oxide sintered body tablet for vapor deposition during vapor deposition was not confirmed.

[実施例2]
仮焼された第一原料粉末の平均粒径が15μm(実施例1では30μm)である点を除き、実施例1と同様にして、実施例2に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットを得た。
[Example 2]
The ZnO—Ga 2 O 3 -based oxidation for vapor deposition according to Example 2 is performed in the same manner as in Example 1 except that the average particle diameter of the calcined first raw material powder is 15 μm (30 μm in Example 1). A sintered product tablet was obtained.

得られた実施例2に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの上記「焼結密度」は3.35g/cm3、「体積抵抗率」は55Ω・cmであった。 The above-mentioned “sintering density” of the obtained ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition according to Example 2 was 3.35 g / cm 3 and “volume resistivity” was 55 Ω · cm. .

これらの結果を表2に示す。   These results are shown in Table 2.

また、実施例2に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回析から、当該タブレット中において、InGaO3(ZnO)5(InGaZn58)相で表されるホモロガス構造化合物が検出され、高抵抗のGa23相とZnGa24相で表されるスピネル構造化合物は検出されなかった。また、実施例1と同様、高いパワー(加速電圧15kV、出力24kW)の電子ビームをいきなり照射したが、照射直後並びに蒸着中における蒸着用ZnO−Ga23系酸化物焼結体タブレットの割れは確認されなかった。これ等結果も表2に示す。 Further, from the X-ray diffraction of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to Example 2, during the tablet, represented by InGaO 3 (ZnO) 5 (InGaZn 5 O 8) phase And a spinel structure compound represented by a high resistance Ga 2 O 3 phase and a ZnGa 2 O 4 phase was not detected. Further, as in Example 1, a high power (acceleration voltage 15 kV, output 24 kW) electron beam was suddenly irradiated, but cracking of the ZnO—Ga 2 O 3 oxide sintered compact tablet for vapor deposition immediately after irradiation and during vapor deposition. Was not confirmed. These results are also shown in Table 2.

[実施例3〜9]
表1に示した「原料粉末の重量%(配合割合)」「原子数割合(%)」に設定し、かつ、表1に示す「第一原料粉末の平均粒径(μm)」「第二原料粉末の平均粒径(μm)」とした点を除き、実施例1と同様にして、実施例3〜9に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットを得た。
[Examples 3 to 9]
Set to “weight% (mixing ratio)” and “atom ratio (%)” of the raw material powder shown in Table 1, and “average particle diameter (μm) of the first raw material powder” and “second” shown in Table 1 Except for the point of “average particle diameter of raw material powder (μm)”, a ZnO—Ga 2 O 3 based oxide sintered body tablet for vapor deposition according to Examples 3 to 9 was obtained in the same manner as in Example 1.

得られた実施例3〜9に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの「焼結密度」と「体積抵抗率」は表2に示す値であった。 “Sintering density” and “volume resistivity” of the obtained ZnO—Ga 2 O 3 -based oxide sintered body tablets for vapor deposition according to Examples 3 to 9 were values shown in Table 2.

また、実施例3〜9に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回析から、各タブレット中において、InGaO3(ZnO)5(InGaZn58)相で表されるホモロガス構造化合物が検出され、高抵抗のGa23相とZnGa24相で表されるスピネル構造化合物は検出されなかった。また、実施例1と同様、高いパワー(加速電圧15kV、出力24kW)の電子ビームをいきなり照射したが、照射直後並びに蒸着中における各タブレットの割れは確認されなかった。これ等結果も表2に示す。 Further, from the X-ray diffraction of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to Example 3-9, during each tablet, in InGaO 3 (ZnO) 5 (InGaZn 5 O 8) phase The represented homologous structural compound was detected, and the spinel structural compound represented by the high-resistance Ga 2 O 3 phase and ZnGa 2 O 4 phase was not detected. Further, as in Example 1, a high power (acceleration voltage 15 kV, output 24 kW) electron beam was suddenly irradiated, but cracking of each tablet was not confirmed immediately after irradiation or during vapor deposition. These results are also shown in Table 2.

[比較例1]
Inの原子数割合(%)を「0.63」(表1参照)にして「1.25≦In/(Zn+Ga+In)×100≦2.54」の範囲外に設定した点を除き、実施例1と同様にして、比較例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットを得た。
[Comparative Example 1]
Except for the point that the atomic ratio (%) of In was set to “0.63” (see Table 1) and was set outside the range of “1.25 ≦ In / (Zn + Ga + In) × 100 ≦ 2.54”. In the same manner as in Example 1, a ZnO—Ga 2 O 3 based oxide sintered body tablet for vapor deposition according to Comparative Example 1 was obtained.

得られた比較例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの「焼結密度」は3.35g/cm3、「体積抵抗率」は80Ω・cmであった。 The “sintered density” of the obtained ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition according to Comparative Example 1 was 3.35 g / cm 3 , and “volume resistivity” was 80 Ω · cm.

また、比較例1に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回析から、タブレット中においてInGaZn58相は検出されず、高抵抗のZnGa24相で表されるスピネル構造化合物が検出され、かつ、高抵抗のGa23相は検出されない結果が得られた。この結果を表2に示すと共にX線回析チャート図を図3に示す。 Moreover, from the X-ray diffraction of the ZnO—Ga 2 O 3 oxide sintered body tablet for vapor deposition according to Comparative Example 1, the InGaZn 5 O 8 phase was not detected in the tablet, and the high-resistance ZnGa 2 O 4 phase was detected. As a result, a spinel structure compound represented by the following formula was detected, and a high-resistance Ga 2 O 3 phase was not detected. The results are shown in Table 2 and an X-ray diffraction chart is shown in FIG.

尚、表2における主相欄に「ZnO(Inを固溶)」と記載されているように、Inの原子数割合(%)が「1.25≦In/(Zn+Ga+In)×100≦2.54」の範囲外である小数値「0.63」に設定されているため、(InGaZn58)相で表されるホモロガス構造化合物は生成されずにInがZnO相に固溶された状態となっており、この結果、高抵抗のZnGa24相で表されるスピネル構造化合物が検出されてタブレットの「体積抵抗率」は80Ω・cmと高い値となり、このため、実施例1と同一条件の電子ビームを照射した場合、蒸着中において蒸着用ZnO−Ga23系酸化物焼結体タブレットの割れを生ずることが確認される。 In addition, as described in the main phase column in Table 2, “ZnO (In is a solid solution)”, the atomic ratio (%) of In is “1.25 ≦ In / (Zn + Ga + In) × 100 ≦ 2. Since the decimal value “0.63” which is out of the range of “54” is set, the homologous structure compound represented by the (InGaZn 5 O 8 ) phase is not generated, and In is dissolved in the ZnO phase. As a result, a spinel structure compound represented by a high-resistance ZnGa 2 O 4 phase was detected, and the “volume resistivity” of the tablet was as high as 80 Ω · cm. When irradiated with an electron beam under the same conditions, it is confirmed that the ZnO—Ga 2 O 3 oxide sintered tablet for vapor deposition is cracked during vapor deposition.

[比較例2]
Gaの原子数割合(%)を「0.88」(表1参照)にして「1.75≦Ga/(Zn+Ga+In)×100≦3.54」の範囲外に設定した点を除き、実施例1と同様にして、比較例2に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットを得た。
[Comparative Example 2]
Except for the point that the atomic percentage (%) of Ga was set to “0.88” (see Table 1) and was set outside the range of “1.75 ≦ Ga / (Zn + Ga + In) × 100 ≦ 3.54”. In the same manner as in Example 1, a ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition according to Comparative Example 2 was obtained.

得られた比較例2に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの「焼結密度」は3.36g/cm3、「体積抵抗率」は86Ω・cmであった。 The “sintered density” of the obtained ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition according to Comparative Example 2 was 3.36 g / cm 3 , and “volume resistivity” was 86 Ω · cm.

また、比較例2に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回析から、タブレット中においてInGaZn58相は検出されず、高抵抗のZnGa24相で表されるスピネル構造化合物とGa23相も検出されない結果が得られた。 Moreover, from the X-ray diffraction of the ZnO—Ga 2 O 3 based oxide sintered body tablet for vapor deposition according to Comparative Example 2, the InGaZn 5 O 8 phase was not detected in the tablet, and the high resistance ZnGa 2 O 4 phase was detected. As a result, the spinel structure compound represented by the formula and the Ga 2 O 3 phase were not detected.

ところで、表2における主相欄に「ZnO(In,Gaを固溶)」と記載されているように、Gaの原子数割合(%)が「1.75≦Ga/(Zn+Ga+In)×100≦3.54」の範囲外である小数値「0.88」に設定され、酸化物焼結体中におけるGa成分が極めて少量であるため、高抵抗のGa23相とZnGa24相で表されるスピネル構造化合物および(InGaZn58)相で表されるホモロガス構造化合物等は生成されずにInとGaはZnO相に固溶された状態となっている。尚、InとGaがZnO相に多量に固溶されている場合でもタブレットの「体積抵抗率」は86Ω・cmと高い値となり、この結果、実施例1と同一条件の電子ビームを照射した場合、蒸着中において蒸着用ZnO−Ga23系酸化物焼結体タブレットの割れを生ずることが確認される。 By the way, as described in “ZnO (In, Ga is a solid solution)” in the main phase column in Table 2, the atomic ratio (%) of Ga is “1.75 ≦ Ga / (Zn + Ga + In) × 100 ≦ It is set to a decimal value “0.88” which is out of the range of 3.54 ”, and since the Ga component in the oxide sintered body is extremely small, a high resistance Ga 2 O 3 phase and ZnGa 2 O 4 phase The spinel structure compound represented by the above formula and the homologous structure compound represented by the (InGaZn 5 O 8 ) phase are not produced, and In and Ga are in a solid solution state in the ZnO phase. Even when In and Ga are dissolved in a large amount in the ZnO phase, the “volume resistivity” of the tablet is as high as 86 Ω · cm. As a result, when an electron beam is irradiated under the same conditions as in Example 1. It is confirmed that cracking of the ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition occurs during vapor deposition.

[比較例3]
Gaの原子数割合(%)を「5.31」(表1参照)にして「1.75≦Ga/(Zn+Ga+In)×100≦3.54」の範囲外に設定した点を除き、実施例1と同様にして、比較例3に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットを得た。
[Comparative Example 3]
Except for the point that the atomic percentage (%) of Ga was set to “5.31” (see Table 1) and was set outside the range of “1.75 ≦ Ga / (Zn + Ga + In) × 100 ≦ 3.54”. In the same manner as in Example 1, a ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition according to Comparative Example 3 was obtained.

得られた比較例3に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの「焼結密度」は3.35g/cm3、「体積抵抗率」は89Ω・cmであった。 The “sintered density” of the obtained ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition according to Comparative Example 3 was 3.35 g / cm 3 , and “volume resistivity” was 89 Ω · cm.

また、比較例3に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回析から、タブレット中においてInGaZn58相は検出されず、高抵抗のZnGa24相で表されるスピネル構造化合物とGa23相が検出される結果が得られた。 Moreover, from the X-ray diffraction of the ZnO—Ga 2 O 3 based oxide sintered body tablet for vapor deposition according to Comparative Example 3, the InGaZn 5 O 8 phase was not detected in the tablet, and the high-resistance ZnGa 2 O 4 phase was detected. As a result, a spinel structure compound represented by the formula and a Ga 2 O 3 phase were detected.

尚、表2における主相欄に「ZnO(Inを固溶)」と記載されているように、Gaの原子数割合(%)が「1.75≦Ga/(Zn+Ga+In)×100≦3.54」の範囲外である大数値「5.31」に設定されているため、(InGaZn58)相で表されるホモロガス構造化合物は生成されずにInがZnO相に固溶された状態となっており、この結果、高抵抗のZnGa24相で表されるスピネル構造化合物とGa23相が検出されてタブレットの「体積抵抗率」は89Ω・cmと高い値となり、このため、実施例1と同一条件の電子ビームを照射した場合、蒸着中において蒸着用ZnO−Ga23系酸化物焼結体タブレットの割れを生ずることが確認される。 In addition, as described in the main phase column in Table 2, “ZnO (In solid solution)”, the Ga atom number ratio (%) is “1.75 ≦ Ga / (Zn + Ga + In) × 100 ≦ 3. Since the large value “5.31” which is out of the range of “54” is set, the homologous structure compound represented by the (InGaZn 5 O 8 ) phase is not generated, and In is dissolved in the ZnO phase. As a result, the spinel structure compound represented by the high-resistance ZnGa 2 O 4 phase and the Ga 2 O 3 phase are detected, and the “volume resistivity” of the tablet is as high as 89 Ω · cm. Therefore, when irradiated with electron beams under the same conditions as in example 1, to produce a crack of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets during deposition is confirmed.

[比較例4]
仮焼されかつ篩がけされた第一原料粉末の平均粒径を「5μm」(表1参照)にして「10μm以上50μm以下」の範囲外に設定した点を除き、実施例1と同様にして、比較例4に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットを得た。
[Comparative Example 4]
Except for the point that the average particle size of the calcined and sieved first raw material powder was set to “5 μm” (see Table 1) and was set outside the range of “10 μm to 50 μm”, the same as in Example 1 to obtain a deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets of Comparative example 4.

得られた比較例4に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの「焼結密度」は3.36g/cm3、「体積抵抗率」は56Ω・cmであった。 The “sintered density” of the obtained ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition according to Comparative Example 4 was 3.36 g / cm 3 , and “volume resistivity” was 56 Ω · cm.

また、比較例4に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回析から、当該タブレット中においてInGaO3(ZnO)5(InGaZn58)相で表されるホモロガス構造化合物が検出され、高抵抗のGa23相とZnGa24相で表されるスピネル構造化合物は検出されなかった。この結果を表2に示す。 Also, it expressed from the X-ray diffraction of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets of Comparative Example 4, in InGaO 3 (ZnO) 5 (InGaZn 5 O 8) phase during the tablet A homologous structural compound was detected, and a spinel structural compound represented by a high-resistance Ga 2 O 3 phase and a ZnGa 2 O 4 phase was not detected. The results are shown in Table 2.

但し、第一原料粉末の平均粒径が「10μm以上50μm以下」の範囲外である小数値「5μm」に設定されているため、当該タブレットの上記第一原料粉末に由来する平均結晶粒径が「10μm以上20μm以下」なる要件を満たさなくなり、この結果、実施例1と同一条件の電子ビームを照射した場合、蒸着中において比較例4に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの割れを生ずることが確認される(表2参照)。 However, since the average particle size of the first raw material powder is set to a decimal value “5 μm” which is outside the range of “10 μm or more and 50 μm or less”, the average crystal particle size derived from the first raw material powder of the tablet is When the requirement of “10 μm or more and 20 μm or less” is not satisfied. As a result, when the electron beam is irradiated under the same conditions as in Example 1, the ZnO—Ga 2 O 3 based oxide sintering for vapor deposition according to Comparative Example 4 is performed during vapor deposition. It is confirmed that the body tablet is cracked (see Table 2).

[比較例5]
仮焼されかつ篩がけされた第一原料粉末の平均粒径を「70μm」(表1参照)にして「10μm以上50μm以下」の範囲外に設定した点を除き、実施例1と同様にして、比較例5に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットを得た。
[Comparative Example 5]
Except that the calcined and sieved first raw material powder has an average particle size of “70 μm” (see Table 1) and is set outside the range of “10 μm or more and 50 μm or less”, the same as in Example 1. to obtain a deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets of Comparative example 5.

得られた比較例5に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの「焼結密度」は3.35g/cm3、「体積抵抗率」は53Ω・cmであった。 The “sintering density” of the obtained ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition according to Comparative Example 5 was 3.35 g / cm 3 and “volume resistivity” was 53 Ω · cm.

また、比較例5に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回析から、当該タブレット中においてInGaO3(ZnO)5(InGaZn58)相で表されるホモロガス構造化合物が検出され、高抵抗のGa23相とZnGa24相で表されるスピネル構造化合物は検出されなかった。この結果を表2に示す。 Also, it expressed from the X-ray diffraction of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets of Comparative Example 5, in InGaO 3 (ZnO) 5 (InGaZn 5 O 8) phase during the tablet A homologous structural compound was detected, and a spinel structural compound represented by a high-resistance Ga 2 O 3 phase and a ZnGa 2 O 4 phase was not detected. The results are shown in Table 2.

但し、第一原料粉末の平均粒径が「10μm以上50μm以下」の範囲外である大数値「70μm」に設定されているため、当該タブレットの上記第一原料粉末に由来する平均結晶粒径が「10μm以上20μm以下」なる要件を満たさなくなり、この結果、実施例1と同一条件の電子ビームを照射した場合、蒸着中において比較例5に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの割れを生ずることが確認される(表2参照)。 However, since the average particle size of the first raw material powder is set to a large value “70 μm” that is outside the range of “10 μm or more and 50 μm or less”, the average crystal particle size derived from the first raw material powder of the tablet is When the requirement of “10 μm or more and 20 μm or less” is not satisfied. As a result, when the electron beam is irradiated under the same conditions as in Example 1, the ZnO—Ga 2 O 3 based oxide sintering for vapor deposition according to Comparative Example 5 is performed during vapor deposition. It is confirmed that the body tablet is cracked (see Table 2).

[比較例6]
第二原料粉末の平均粒径を「0.05μm」(表1参照)にし「0.1μm以上1.5μm以下」の範囲外に設定した点を除き、実施例1と同様にして、比較例6に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットを得た。
[Comparative Example 6]
Comparative Example as in Example 1 except that the average particle size of the second raw material powder was set to “0.05 μm” (see Table 1) and was set outside the range of “0.1 μm to 1.5 μm”. A ZnO—Ga 2 O 3 oxide sintered body tablet for vapor deposition according to 6 was obtained.

得られた比較例6に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの「焼結密度」は3.35g/cm3、「体積抵抗率」は58Ω・cmであった。 The “sintering density” of the obtained ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition according to Comparative Example 6 was 3.35 g / cm 3 , and “volume resistivity” was 58 Ω · cm.

また、比較例6に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回析から、当該タブレット中においてInGaO3(ZnO)5(InGaZn58)相で表されるホモロガス構造化合物が検出され、高抵抗のGa23相とZnGa24相で表されるスピネル構造化合物は検出されなかった。この結果を表2に示す。 Also, it expressed from the X-ray diffraction of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets of Comparative Example 6, in InGaO 3 (ZnO) 5 (InGaZn 5 O 8) phase during the tablet A homologous structural compound was detected, and a spinel structural compound represented by a high-resistance Ga 2 O 3 phase and a ZnGa 2 O 4 phase was not detected. The results are shown in Table 2.

但し、第二原料粉末の平均粒径が「0.1μm以上1.5μm以下」の範囲外である小数値「0.05μm」に設定されているため、当該タブレットの上記第二原料粉末に由来する平均結晶粒径が「1μm以上3μm以下」なる要件を満たさなくなり、この結果、実施例1と同一条件の電子ビームを照射した場合、蒸着中において比較例6に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの割れを生ずることが確認される(表2参照)。 However, since the average particle size of the second raw material powder is set to a decimal value “0.05 μm” that is outside the range of “0.1 μm or more and 1.5 μm or less”, it is derived from the second raw material powder of the tablet. As a result, when the electron beam under the same conditions as in Example 1 is irradiated, ZnO—Ga 2 O for vapor deposition according to Comparative Example 6 is deposited during the vapor deposition. It is confirmed that the 3 system oxide sintered tablet is cracked (see Table 2).

[比較例7]
第二原料粉末の平均粒径を「2.0μm」(表1参照)にし「0.1μm以上1.5μm以下」の範囲外に設定した点を除き、実施例1と同様にして、比較例7に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットを得た。
[Comparative Example 7]
Comparative Example as in Example 1 except that the average particle diameter of the second raw material powder was set to “2.0 μm” (see Table 1) and was set outside the range of “0.1 μm to 1.5 μm”. A ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition according to 7 was obtained.

得られた比較例7に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの「焼結密度」は3.35g/cm3、「体積抵抗率」は55Ω・cmであった。 The “sintered density” of the obtained ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition according to Comparative Example 7 was 3.35 g / cm 3 and “volume resistivity” was 55 Ω · cm.

また、比較例7に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットのX線回析から、当該タブレット中においてInGaO3(ZnO)5(InGaZn58)相で表されるホモロガス構造化合物が検出され、高抵抗のGa23相とZnGa24相で表されるスピネル構造化合物は検出されなかった。この結果を表2に示す。 Also, expressed from the X-ray diffraction of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to Comparative Example 7, in InGaO 3 (ZnO) 5 (InGaZn 5 O 8) phase during the tablet A homologous structural compound was detected, and a spinel structural compound represented by a high-resistance Ga 2 O 3 phase and a ZnGa 2 O 4 phase was not detected. The results are shown in Table 2.

但し、第二原料粉末の平均粒径が「0.1μm以上1.5μm以下」の範囲外である大数値「2.0μm」に設定されているため、当該タブレットの上記第二原料粉末に由来する平均結晶粒径が「1μm以上3μm以下」なる要件を満たさなくなり、この結果、実施例1と同一条件の電子ビームを照射した場合、蒸着中において比較例7に係る蒸着用ZnO−Ga23系酸化物焼結体タブレットの割れを生ずることが確認される(表2参照)。 However, since the average particle size of the second raw material powder is set to a large value “2.0 μm” that is outside the range of “0.1 μm or more and 1.5 μm or less”, it is derived from the second raw material powder of the tablet. As a result, when the electron beam under the same conditions as in Example 1 is irradiated, ZnO—Ga 2 O for vapor deposition according to Comparative Example 7 is deposited during the vapor deposition. It is confirmed that the 3 system oxide sintered tablet is cracked (see Table 2).

本発明に係る蒸着用焼結体タブレットによれば、高いパワーの電子ビームや高出力のプラズマが継続して照射されても破損され難いことから長時間の安定成膜が可能になるため、液晶ディスプレイや太陽電池等の電極材用透明導電膜を製造する際の蒸着用焼結体タブレットとして利用される産業上の利用可能性を有している。   According to the sintered sintered tablet for vapor deposition according to the present invention, since it is difficult to be damaged even when continuously irradiated with a high-power electron beam or high-power plasma, stable film formation for a long time is possible. It has industrial applicability to be used as a sintered compact tablet for vapor deposition when producing transparent conductive films for electrode materials such as displays and solar cells.

Claims (8)

Zn(亜鉛)、Ga(ガリウム)、In(インジウム)および酸素(O)で構成される蒸着用ZnO−Ga23系酸化物焼結体タブレットにおいて、
(1)ZnとGaとInの原子数割合(%)が下記式を満たし、
1.75≦Ga/(Zn+Ga+In)×100≦3.54
1.25≦In/(Zn+Ga+In)×100≦2.54
(2)焼結密度が2.9g/cm3以上4.0g/cm3以下、かつ、体積抵抗率が70Ω・cm以下であり、
(3)上記酸化物焼結体タブレットの破断面に現れる仮焼された酸化亜鉛粉末から成る第一原料粉末に由来する第一焼結粒の平均結晶粒径が10μm以上20μm以下、かつ、上記酸化物焼結体タブレットの破断面に現れる未仮焼の酸化亜鉛粉末、酸化ガリウム粉末および酸化インジウム粉末から成る第二原料粉末に由来する第二焼結粒の平均結晶粒径が1μm以上3μm以下であり、
(4)上記酸化物焼結体が、ZnOとInGaO3(ZnO)m(m=1〜10)で表されるホモロガス構造化合物を含有し、Ga23とZnGa24で表されるスピネル構造化合物を含有していないこと、
を特徴とする蒸着用ZnO−Ga23系酸化物焼結体タブレット。
In a ZnO—Ga 2 O 3 oxide sintered body tablet for vapor deposition composed of Zn (zinc), Ga (gallium), In (indium) and oxygen (O),
(1) The atomic ratio (%) of Zn, Ga and In satisfies the following formula:
1.75 ≦ Ga / (Zn + Ga + In) × 100 ≦ 3.54
1.25 ≦ In / (Zn + Ga + In) × 100 ≦ 2.54
(2) The sintered density is 2.9 g / cm 3 or more and 4.0 g / cm 3 or less, and the volume resistivity is 70 Ω · cm or less,
(3) The oxide sintered body calcined by an average grain size of the first sintering particle derived from the first raw material powder consisting of zinc oxide powder were appearing on the fracture surface of the tablet is 10μm or 20μm or less, and, the The average grain size of the second sintered grains derived from the second raw material powder composed of uncalcined zinc oxide powder, gallium oxide powder and indium oxide powder appearing on the fracture surface of the sintered oxide tablet is 1 μm or more and 3 μm or less And
(4) The oxide sintered body contains a homologous structure compound represented by ZnO and InGaO 3 (ZnO) m (m = 1 to 10), and is represented by Ga 2 O 3 and ZnGa 2 O 4. No spinel structure compounds,
A ZnO—Ga 2 O 3 -based oxide sintered body tablet for vapor deposition characterized by the following.
InGaO3(ZnO)mで表されるホモロガス構造化合物の上記mが5であることを特徴とする請求項1に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレット。 InGaO 3 (ZnO) deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets of claim 1, wherein said m of homologous structure compound represented by m is 5. 請求項1または2に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法において、
酸化亜鉛粉末を1000℃以上1400℃以下の仮焼温度で熱処理した後、篩がけを行い、平均粒径が10μm以上50μm以下の仮焼された第一原料粉末を得る第一工程と、
平均粒径が0.1μm以上1.5μm以下の酸化亜鉛粉末、酸化ガリウム粉末および酸化インジウム粉末から成る未仮焼の第二原料粉末を、仮焼された上記第一原料粉末に対して、第一原料粉末の混合割合が40重量%以上80重量%以下となるように混合し、かつ、造粒して造粒粉末を得る第二工程と、
得られた造粒粉末を成形して成形体とし、この成形体を800℃以上かつ第一工程における仮焼温度より200℃以上低い温度で焼結してZnO−Ga23系酸化物焼結体を得る第三工程、
の各工程を具備することを特徴とする蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法。
In the method for manufacturing a deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to claim 1 or 2,
A first step of heat treating the zinc oxide powder at a calcining temperature of 1000 ° C. or higher and 1400 ° C. or lower, followed by sieving to obtain a calcined first raw material powder having an average particle size of 10 μm or more and 50 μm or less;
An uncalcined second raw material powder composed of zinc oxide powder, gallium oxide powder and indium oxide powder having an average particle size of 0.1 μm or more and 1.5 μm or less is compared with the first calcined first raw material powder. Mixing so that the mixing ratio of one raw material powder is 40 wt% or more and 80 wt% or less, and granulating to obtain a granulated powder;
The obtained granulated powder is molded into a molded body, and this molded body is sintered at a temperature of 800 ° C. or higher and 200 ° C. or lower than the calcining temperature in the first step to burn ZnO—Ga 2 O 3 oxide. The third step of obtaining the union,
Deposition ZnO-Ga 2 O 3 type oxide-sintered body production method of the tablet, characterized by comprising the steps of.
上記第二工程における第二原料粉末が、酸化インジウム粉末を2重量%以上4重量%以下含有し、かつ、酸化ガリウム粉末を2重量%以上4重量%以下含有することを特徴とする請求項3に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法。 The second raw material powder in the second step contains 2 wt% or more and 4 wt% or less of indium oxide powder, and contains 2 wt% or more and 4 wt% or less of gallium oxide powder. method for manufacturing a deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets described. 上記第三工程における800℃以上の焼結温度までの昇温速度が0.2℃/分以上1.0℃/分以下であることを特徴とする請求項3に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法。 4. The ZnO—Ga for vapor deposition according to claim 3, wherein a temperature rising rate to a sintering temperature of 800 ° C. or higher in the third step is 0.2 ° C./min to 1.0 ° C./min. 2 O 3 type oxide-sintered body production method of the tablet. 上記第三工程における焼結温度の保持時間が15時間以上25時間以上であることを特徴とする請求項3に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法。 Method for manufacturing a deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to claim 3, wherein the retention time of the sintering temperature in the third step is 15 hours or more 25 hours or more. 上記第三工程の焼結処理が終了した後、室温に戻し、還元処理を行うことを特徴とする請求項3に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法。 After sintering process of the third step is completed, returning to room temperature, the manufacturing method of the deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets according to claim 3, characterized in that the reduction treatment . 上記還元処理は、室温から還元温度である600℃以上1000℃以下まで1〜10℃/分の昇温速度で昇温した後、還元炉内を真空状態にして1〜6時間保持して行うことを特徴とする請求項7に記載の蒸着用ZnO−Ga23系酸化物焼結体タブレットの製造方法。 The reduction treatment is performed by raising the temperature from room temperature to a reduction temperature of 600 ° C. or more and 1000 ° C. or less at a rate of temperature increase of 1 to 10 ° C./min and then holding the inside of the reduction furnace in a vacuum state for 1 to 6 hours. method for manufacturing a deposition ZnO-Ga 2 O 3 type oxide-sintered-body tablets of claim 7, characterized in that.
JP2015203469A 2015-10-15 2015-10-15 ZnO-Ga2O3-based oxide sintered tablet for vapor deposition and method for producing the same Expired - Fee Related JP6468158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203469A JP6468158B2 (en) 2015-10-15 2015-10-15 ZnO-Ga2O3-based oxide sintered tablet for vapor deposition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203469A JP6468158B2 (en) 2015-10-15 2015-10-15 ZnO-Ga2O3-based oxide sintered tablet for vapor deposition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017075363A JP2017075363A (en) 2017-04-20
JP6468158B2 true JP6468158B2 (en) 2019-02-13

Family

ID=58550937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203469A Expired - Fee Related JP6468158B2 (en) 2015-10-15 2015-10-15 ZnO-Ga2O3-based oxide sintered tablet for vapor deposition and method for producing the same

Country Status (1)

Country Link
JP (1) JP6468158B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136863A (en) * 2018-08-16 2019-01-04 研创应用材料(赣州)股份有限公司 A kind of preparation method of the polynary conductive oxide film of the RPD of high-weatherability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334246B2 (en) * 2007-10-19 2013-11-06 ハクスイテック株式会社 Ion plating target for zinc oxide thin film production
JP5967016B2 (en) * 2013-05-29 2016-08-10 住友金属鉱山株式会社 Vapor deposition tablet and manufacturing method thereof
JP5979082B2 (en) * 2013-05-29 2016-08-24 住友金属鉱山株式会社 Vapor deposition tablet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017075363A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
EP2301904B1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JP5686067B2 (en) Zn-Sn-O-based oxide sintered body and method for producing the same
JP2010037161A (en) Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
JP2017145185A (en) Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING THE SAME
JP5692224B2 (en) Zinc oxide sintered tablet and method for producing the same
JPWO2012105323A1 (en) Oxide sintered body and tablet processed the same
JP2014040348A (en) Igzo sintered compact, method for producing the same, and sputtering target
KR101568219B1 (en) Tablet for vapor deposition
WO2010125801A1 (en) Sintered body for zno-ga2o3 sputtering target and method for producing same
CN108698937B (en) Sn-Zn-O oxide sintered body and method for producing same
JP6468158B2 (en) ZnO-Ga2O3-based oxide sintered tablet for vapor deposition and method for producing the same
JP5018831B2 (en) Method for producing zinc oxide-based sintered body for sputtering target
JP5979082B2 (en) Vapor deposition tablet and manufacturing method thereof
JP5772667B2 (en) Vapor deposition tablet and manufacturing method thereof
JP6070171B2 (en) IGZO sintered body and sputtering target
JP2009184876A (en) Gzo sintered body, and method for producing the same
JP2014125422A (en) Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
JP6414527B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
JP5967016B2 (en) Vapor deposition tablet and manufacturing method thereof
JP6551683B2 (en) Sn-Zn-O-based oxide sintered body and method for producing the same
WO2017086016A1 (en) SINTERED Sn-Zn-O OXIDE AND PROCESS FOR PRODUCING SAME
JP2010222176A (en) ZnO SINTERED COMPACT AND METHOD FOR PRODUCING THE SAME
JP2016117610A (en) Tin oxide-based sintered body tablet and oxide transparent conductive film
WO2017149882A1 (en) Sn-Zn-O-BASED OXIDE SINTERED BODY AND METHOD FOR PRODUCING SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181231

R150 Certificate of patent or registration of utility model

Ref document number: 6468158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees