WO2015125501A1 - タンパク質凍結保存用保護剤 - Google Patents

タンパク質凍結保存用保護剤 Download PDF

Info

Publication number
WO2015125501A1
WO2015125501A1 PCT/JP2015/050131 JP2015050131W WO2015125501A1 WO 2015125501 A1 WO2015125501 A1 WO 2015125501A1 JP 2015050131 W JP2015050131 W JP 2015050131W WO 2015125501 A1 WO2015125501 A1 WO 2015125501A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
cryoprotectant
amino acid
human
proteins
Prior art date
Application number
PCT/JP2015/050131
Other languages
English (en)
French (fr)
Inventor
秀一 廣明
名都子 天野
直紀 松尾
元規 太田
佐斗志 福地
佳奈 清水
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2016503988A priority Critical patent/JP6643761B2/ja
Publication of WO2015125501A1 publication Critical patent/WO2015125501A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Definitions

  • the present invention relates to a protective agent for protein cryopreservation.
  • the present invention is useful for preventing or suppressing a decrease in protein activity during freezing or freeze-drying, improving protein storage stability, and the like.
  • Enzymes and antibody proteins are useful as pharmaceuticals, diagnostic agents, various reagents, etc., but have the property of losing their activity due to physicochemical modification, and special measures are required for their long-term storage.
  • One solution is to freeze an aqueous solution of the enzyme or antibody and store it at a low temperature, or freeze-dry and store it in a dry state (solid).
  • enzymes and antibodies that lose activity when frozen or lyophilized.
  • a cryoprotectant produced by a microorganism belonging to the genus Erwinia or Xanthomonas (patent document 1), (2) silkworm-derived sericin (patent document 2), (3) plant-derived protein Dehydrin and its partial peptides (Non-patent Document 1), (4) Grapes-derived freeze-tolerance proteins (Freezing tolerance proteins) Wcs19 and Wcor410 (Patent Document 3), (5) Bovine serum albumin (BSA), (6) Human Protective agents such as serum albumin (HSA) have been developed and used.
  • an object of the present invention is to provide a cryoprotectant for proteins that is highly versatile and suitable for use in human medicine.
  • the present inventors focused on reducing the immunogenicity to humans and adopted a strategy of searching for proteins having cryoprotective activity from proteins existing in the human genome.
  • some of the previously reported proteins with cryoprotective activity include “Intrinsically Disordered Protein (IDP)”, which has made remarkable progress in recent years.
  • IDDP Intrinsically Disordered Protein
  • Reference Database was used as a population to search for cryoprotectant candidates using a program for predicting naturally denatured proteins / regions (disorder proteins / regions). Five types of gene products satisfying certain conditions were extracted from the obtained candidates, and their characteristics were examined. As a result, it was confirmed that all five species had a cryoprotective action.
  • a cryoprotectant for proteins including human-derived naturally modified proteins.
  • the cryoprotectant according to [1] comprising two or more kinds of human-derived naturally denatured proteins.
  • the human-derived naturally denatured protein is identified by searching under the following conditions (1) and (2) using a gene product database of a human genome as a population: Described cryoprotectant: (1) The length is 20 amino acid residues or more and 100 amino acid residues or less; (2) Naturally denatured protein region throughout.
  • the natural denatured protein derived from humans is identified by searching the gene product database of the human genome under the following conditions (1) and (2): Described cryoprotectant: (1) The length is 30 amino acid residues or more and 100 amino acid residues or less; (2) Naturally denatured protein region throughout. [5] The cryoprotective agent according to [1] or [2], wherein the natural human-derived modified protein consists of the amino acid sequence of any one of SEQ ID NOs: 1 to 5 or a continuous part thereof. [6] The cryoprotectant according to [5], wherein the part has a length of 20 amino acid residues or more.
  • B3-IDP SEQ ID NO: 1
  • B4-IDP SEQ ID NO: 2
  • C1-IDP SEQ ID NO: 3
  • D10-IDP SEQ ID NO: 4
  • E1-IDP SEQ ID NO: 5
  • Mutant shortened D10-IDP from the C-terminal side (sequence right) (D10-20aa: SEQ ID NO: 8, D10-15aa: SEQ ID NO: 9) and variant shortened E1-IDP from the C-terminal side (sequence right) (E1-34aa: SEQ ID NO: 10, E1-31aa: SEQ ID NO: 11, E1-28aa: SEQ ID NO: 12, E1-25aa: SEQ ID NO: 13) and C9_subIDP (a protein containing a naturally denatured region as part of its structure) Information on IDP (SEQ ID NO: 14) obtained by extending serine (S) on the N-terminal side (on the left side of the sequence) was also posted.
  • Cryoprotective action with a mixture of two cryoprotectant candidates C1-IDP and D10-IDP.
  • Lyophilization protective activity against model enzyme LH
  • the lyophilization protection activity of five cryoprotectant candidates was compared and evaluated with BSA.
  • Lyophilization protective activity against model enzyme LH
  • Concentration dependence of freeze-drying protection activity of five cryoprotectant candidates was compared and evaluated with BSA.
  • Cryoprotective activity against glutathione-S-transferase (GST). The cryoprotective activities of five cryoprotectant candidates were compared and evaluated with BSA and sericin. The added protein concentration was 100 ⁇ g / ml.
  • Cryoprotective activity against glutathione-S-transferase GST.
  • concentration dependency of cryoprotective activity of five cryoprotectant candidates was examined.
  • EGFP enhanced green fluorescent protein
  • the cryoprotective activity of the cryoprotectant candidate E1-IDP was compared and evaluated with BSA.
  • the first aspect of the present invention relates to a cryoprotectant for proteins.
  • the term “for protein” means that the object of protection is a protein. That is, the present invention prevents or suppresses the decrease in protein activity (including loss of activity) accompanying freezing. Therefore, when the cryoprotectant of the present invention is applied at the time of freezing the protein, the effect of freezing is reduced. As a result, typically, the activity of the protein after freezing or cryopreservation is applied to the cryoprotectant of the present invention. It becomes higher than when not.
  • the term “freezing” should be interpreted broadly and includes the concept of lyophilization combined with a drying process in addition to a simple freezing process.
  • a human-derived naturally denatured protein is used as an active ingredient based on the knowledge that human-derived naturally denatured protein has shown a cryoprotective action on proteins.
  • proteins / domains are called “intrinsically unstructured”, “intrinsically disordered”, etc., and those with these are naturally modified proteins (Intrinsically Disordered Protein) : IDP) (Peter E. Wright and H. Jane Dyson, J. Mol. Biol. (1999) 293, 321-31; A. Keith Dunker et al. J.
  • the active ingredient of the present invention is a human-derived naturally modified protein
  • its amino acid sequence, length, etc. are not particularly limited.
  • Human-derived natural denatured proteins can be identified or obtained by searching using a gene prediction database for the human genome gene database and using a disorder prediction program.
  • a gene prediction database for the human genome for example, HPRD (Human Protein Reference Database: http://www.hprd.org/), a database based on or constructed using it can be used.
  • PONDR see http://www.pondr.com/index
  • DISOPRED2 Ward, JJ, McGuffin, LJ, Bryson, K., Buxton, BF, and Jones, DT The DISOPRED server for the prediction of protein disorder.
  • POODLE Prediction Of Order and Disorder by machine LEarning; see http://mbs.cbrc.jp/poodle/), DICHOT (Fukuchi, S., Hosoda, K. Homma, K., Gojobori, T. and Nishikawa, K. Binary classification of protein molecules into intrinsically disordered and ordered segments.
  • POODLE is a particularly effective prediction program in terms of high prediction sensitivity.
  • the feature of POODLE is that it uses a measurement method according to the length of the sequence.
  • the disorder area that is somewhat long is often related to function, and the short disorder area is a disorder caused by the fluctuation of the loop or coil area. There are many cases that do not have.
  • the ratio of the disorder region in the interior of the polypeptide chain is lower than that in the terminal portion. This is probably because the end portion is easily exposed on the surface of the protein, and it has no function and has just fluctuated.
  • POODLE-W predicts the entire amino acid sequence
  • POODLE-L predicts long sequences of 40 amino acids or more
  • POODLE-S predicts short sequences
  • these POODLEs There is POODLE-I that uses a workflow system that uses W / L / S and other prediction programs.
  • the major difference from the conventional prediction method is that the same amino acid is aligned, and a calculated value that takes into account the position of the amino acid in the polypeptide chain is employed.
  • POODLE-I not only uses POODLE-S, which is calculated based on amino acid sequences, and POODLE-W / L, which is calculated based on physicochemical properties taking into account the entire sequence or amino acid position, but also homology modeling (fold recognition) Predicted through a flowchart that combines order / disorder prediction with TSpred, coiled-coil prediction with COILpred, secondary structure prediction with SSpred, and solvent-exposed surface area (accessible surface area) prediction with ASApred (S. Hirose et al. (2010), In Silico Biology 10, 185-91).
  • DICHOT has a feature that it can be completely distinguished whether it is a structural region or a denatured region over the entire length of the amino acid sequence by combining the structure prediction method with a newly developed denatured region prediction method using the conservation degree of the sequence. I have. Therefore, it is very convenient when it is used for the purpose of first listing sequences containing a denatured region from the human genome or the like.
  • Condition (1) relates to the physical properties such as the function, activity, solubility, etc. of the naturally-modified protein. If the number of amino acid residues is too small, it may not function sufficiently as a cryoprotectant. If the amount is too large, there is a possibility that the solubility to a concentration effective as a cryoprotectant cannot be obtained.
  • the length is 30 amino acid residues or more and 100 amino acid residues or less.
  • the upper limit of the number of amino acid residues is set to 50 amino acid residues.
  • the lower limit of the number of amino acid residues is 20 under the condition (1). It can be said that good results are also obtained when amino acid residues are set.
  • the condition (2) when the ratio of the number of residues in the naturally denatured state to the sequence length exceeds 60% (preferably 70%), it can be estimated that the region is a naturally denatured protein region.
  • IDEAL in 2014 illustrates interaction composed of intrinsically disordered proteins and their binding partners ". 2014, Nucleic Acids Res., 42, D320-D325 .; S. Fukuchi, S. Sakamoto, Y. Nobe, S. D.
  • cryoprotective action on the protein is exhibited, only a part of the region identified as a naturally derived protein derived from human (ie, a fragment) can be used.
  • cryoprotectant of this embodiment contains two or more kinds of human-derived naturally modified proteins as active ingredients.
  • C1-IDP having the amino acid sequence of SEQ ID NO: 3
  • D10-IDP having the amino acid sequence of SEQ ID NO: 4
  • E1-IDP having the amino acid sequence of SEQ ID NO: 5
  • any one or two or more of these five types of naturally derived proteins derived from humans are used. Instead of the full length of these five kinds of naturally derived proteins derived from humans, a continuous portion can also be used.
  • the length of the “consecutive portion” is preferably 30 amino acid residues or more (upper limit is the total length of each human-derived natural denatured protein), more preferably 20 amino acid residues (upper limit is the length of each human-derived natural denatured protein) The total length).
  • Consecutive portion examples include D10-20aa (having the amino acid sequence of SEQ ID NO: 8), E1-34aa (having the amino acid sequence of SEQ ID NO: 10), and E1-31aa (sequence) shown in Examples described later.
  • E1-28aa having the amino acid sequence of SEQ ID NO: 12
  • E1-25aa having the amino acid sequence of SEQ ID NO: 13).
  • the human-derived naturally denatured protein which is an active ingredient of the present invention can be prepared by using a standard genetic engineering technique, molecular biological technique, biochemical technique, and the like. For example, it can be prepared by transforming a suitable host cell (for example, E. coli) with DNA encoding the active ingredient of the present invention and recovering the protein expressed in the transformant. The recovered protein is appropriately purified according to the purpose. Thus, various modifications are possible if the active ingredient of the present invention is obtained as a recombinant protein.
  • the active ingredient in the present invention may be prepared by a known peptide synthesis method (for example, solid phase synthesis method, liquid phase synthesis method).
  • the cryoprotectant of the present invention can be applied to various proteins, among which enzymes and antibodies are suitable application targets (protection targets).
  • enzymes include digestive enzymes (amylase, lipase, cellulase), protease (peptin, trypsin, chymotrypsin, papain, bromelain, blood coagulation factor Xa), glycolytic enzymes (galactosidase, lactase, saccharase), oxidoreductase (lactic acid) Dehydrogenase, alcohol dehydrogenase).
  • Antibodies are broadly classified into polyclonal antibodies and monoclonal antibodies, but can be applied to both.
  • the origin of the antibody eg, chimeric antibody, humanized antibody, human antibody
  • class eg, IgG, IgM, IgA, IgE
  • antibody fragments Fab, Fab ′, F (ab ′) 2 , scFv, dsFv, etc.
  • the second aspect of the present invention relates to the use of the cryoprotectant, and provides a protein or structure storage method, protein preparation, and the like.
  • a protein or structure a complex protein such as glycoprotein, lipoprotein, nucleoprotein, phosphoprotein, cell, tissue, etc.
  • Freezing or freeze-drying is performed in the presence of.
  • Two or more types of proteins (or structures) may be present in the solution. In this case, at least one type of protein (or structure) is to be protected.
  • cryoprotectant phosphate buffered saline (PBS), Tris buffered saline (TBS), citrate buffer, glutamate buffer, etc.
  • PBS phosphate buffered saline
  • TBS Tris buffered saline
  • citrate buffer glutamate buffer
  • glutamate buffer etc.
  • physiological saline distilled water and the like
  • the amount of the cryoprotectant added is not particularly limited.
  • the cryoprotectant may be added so that the concentration of the human-derived natural denatured protein that is a component of the cryoprotectant is 0.005% by weight to 1.0% by weight.
  • concentration of the object to be protected can be set to 0.001 to 1.0% by weight, for example.
  • the freezing or lyophilization treatment may be performed by a conventional method. Protocols for freezing or lyophilizing proteins, cells, tissues, etc. are readily available, eg Current protocols in molecular biology (edited by Frederick M.
  • a protein or structure in a state where a cryoprotectant coexists is obtained.
  • Such a protein or structure in a unique state is also one of the inventions provided by the present application.
  • it is also possible to provide the protein or structure in a state before performing the freezing or freeze-drying treatment (that is, in a solution state). Therefore, the “protein or structure in a state in which a cryoprotectant coexists” provided by the present invention can take three forms of a frozen state, a lyophilized state, and a solution state.
  • a protein having a medicinal effect is employed as an object to be protected, and a protein preparation containing the protein and a cryoprotectant is provided.
  • the amount of the cryoprotectant added to the protein preparation is not particularly limited.
  • the cryoprotectant is added so that the content of the human-derived naturally denatured protein that is a component of the cryoprotectant is 0.005% by weight to 1.0% by weight. .
  • the preferred addition amount may vary depending on the cryoprotectant used, the object of protection, etc., but those skilled in the art can determine the optimum addition amount through preliminary experiments.
  • other pharmaceutically acceptable components for example, carriers, suspending agents, preservatives, preservatives, antibiotics, etc.
  • Protein preparations can be provided as pharmaceuticals or quasi drugs.
  • cryoprotectant candidates In consideration of human safety (especially immunogenicity), a strategy was adopted to search for proteins having cryoprotective activity from proteins existing in the human genome. Focusing on the fact that the proteins with cryoprotective activity known as the prior art include “naturally modified proteins (IDP)” whose research has been remarkably progressed in recent years, the human genome database HPRD (Human Protein Reference Database) Using the program POODLE (National Institute of Advanced Industrial Science and Technology) for predicting naturally-modified proteins / regions (disorder proteins / regions) as candidates, cryoprotectant candidates were searched.
  • the candidate substances were selected from the viewpoint of (1) the length of the sequence of the gene product and (2) the ratio of the naturally denatured region from the 1000 or more candidates obtained.
  • (1) is related to cryoprotective activity (it is expected that a certain length is necessary to show the activity) and ease of handling, and (2) is high in cryoprotective activity (naturally modified region The higher the number, the higher the activity.
  • the following (i) and (ii) were set, and a gene product satisfying both was selected.
  • the sequence of the gene product is shorter than 50 amino acid residues.
  • the entire protein sequence or the entire domain sequence, and in the former case, the probability score in POODLE-W is greater than 0.6, or the number of residues in the naturally denatured state relative to the sequence length in POODLE-S. The ratio exceeds 60%, and in the latter case, the ratio of the number of residues in the native state to the sequence length in POODLE-S exceeds 70%.
  • mutants (D10-20aa, D10-15aa) in which D10-IDP is shortened from the C-terminal side (sequence right) and mutants in which E1-IDP is shortened from the C-terminal side (sequence right) ( E1-34aa, E1-31aa, E1-28aa, E1-25aa) and C9_subIDP (a protein that includes a naturally-modified region in part of its structure) extended the serine (S) to the N-terminal side (on the left side of the sequence) IDP information was also posted.
  • LDH lactate dehydrogenase
  • cryoprotective effect of a mixture of two different cryoprotectant candidate candidates (C1-IDP and D10-IDP) mixed at a protein ratio of 1: 1 was examined.
  • the experimental method was as described above, and the cryoprotective activity against freeze-thaw treatment of lactate dehydrogenase (LDH) was examined. The results are shown in FIG. The mixture showed almost the same activity when used alone (C1-IDP or D10-IDP).
  • cryoprotective effects that surpassed BSA.
  • it also showed a freeze-drying protective action. Since cryoprotective activity was observed in all of the evaluated candidates, most of the human-derived IDPs found by the above-described search methods and search conditions are predicted to have an activity equal to or higher than that of BSA.
  • the GST activity in the case of non-freezing and thawing treatment was taken as 100%, the GST activity after repeated freezing and thawing treatment was determined, and the value was taken as the cryoprotective activity.
  • the results are shown in FIGS. All five types of cryoprotectant candidates (B3-IDP, B4-IDP, C1-IDP, D10-IDP, E1-IDP) showed cryoprotective effects equivalent to or better than BSA.
  • the cryoprotective action of sericin was weaker than the cryoprotectant candidate and BSA.
  • the above results are almost in agreement with the results of experiments using LDH, indicating that the identified cryoprotectant candidates are also useful for cryoprotection of enzymes other than LDH.
  • the experimental method was as follows. Freezing with liquid nitrogen (1 minute) and thawing with water bath (water temperature 20 ° C., 5 minutes) were repeated 10 times, and then the fluorescence intensity of GFP was measured as an activity index. A GFP solution in which GFP (2.4 ⁇ M) and a sample (E1-IDP) were mixed during the above freeze-thaw treatment was prepared.
  • the GFP fluorescence intensity at the time of non-freezing and thawing treatment was taken as 100%, and the GFP fluorescence intensity after repeated freeze-thawing treatment was determined, and the value was taken as cryoprotective activity.
  • the results are shown in FIG. E1-IDP showed cryoprotective action over GFP over BSA. This result suggests that the cryoprotectant candidate exhibits cryoprotective activity not only for enzymes but also for various proteins.
  • a cryoprotectant using human-derived components is provided.
  • the cryoprotective agent of the present invention it is possible to prevent or suppress a decrease in protein activity, denaturation, etc. during freezing (including freeze-drying).
  • biopharmaceuticals antibody drugs, enzyme drugs, etc.
  • it can be applied to cells and tissues.
  • cryoprotective agent of the present invention In the case of a biopharmaceutical or the like to which the cryoprotective agent of the present invention is applied, it is possible to envisage a special operation at the time of use, that is, a usage mode in which the cryoprotectant is applied to a patient without performing separation and removal. Can contribute to cost reduction.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

汎用性が高く、ヒト医薬への利用にも適する、タンパク質用の凍結保護剤を提供することを課題とする。ヒト由来天然変性タンパク質を含む凍結保護剤が提供される。

Description

タンパク質凍結保存用保護剤
 本発明はタンパク質凍結保存用の保護剤に関する。本発明は、凍結時又は凍結乾燥時におけるタンパク質の活性低下の防止ないし抑制、タンパク質の保存安定性の向上などに有用である。本出願は、2014年2月24日に出願された日本国特許出願第2014-033169号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
 酵素や抗体タンパク質は医薬品、診断薬、各種試薬などとして有用であるが、物理化学的変性によりその活性を失うという性質をもち、その長期保存には特別な工夫が必要である。酵素や抗体の水溶液を凍結し低温で保存する、あるいは凍結乾燥して乾燥状態(固体)で保存するというのは一つの解決策である。しかしながら、凍結時又は凍結乾燥時に活性を失う酵素や抗体もある。そこで、保存時の活性低下を防ぐために、(1)Erwinia属またはXanthomonas属微生物が産生する凍結保護物質(特許文献1)、(2)カイコ由来セリシン(特許文献2)、(3)植物由来タンパク質デヒドリン及びその部分ペプチド(非特許文献1)、(4)イネ科植物由来凍結耐性タンパク質(Freezing tolerance proteins)Wcs19及びWcor410(特許文献3)、(5)ウシ血清アルブミン(BSA)、(6)ヒト血清アルブミン(HSA)等の保護剤が開発・利用されている。
特開2001-139599号公報 特開2002-101869号公報 米国特許第5,731,419号明細書
Protein Science, 2011, January; 20(1): 42-50
 酵素や抗体タンパク質等をバイオ医薬品として利用する場合には、凍結保護剤が人体内にて免疫反応を引き起こし、炎症やアナフィラキシーなどの副作用を起こす危険性を考慮する必要がある。上掲の(1)~(5)はヒト以外の生物由来であり、ヒト医薬品への添加物としては適さない。(6)のHSAのみがこの目的で利用可能であるが、HSAには既に血液製剤としての別の薬効があるため医薬品添加剤としての利用には制限があり、また血漿製剤HSAにはウイルス混入などの医療事故のリスクがある。さらに、組換え型HSAには高コストであるという欠点もある。そこで本発明は、汎用性が高く、ヒト医薬への利用にも適する、タンパク質用の凍結保護剤を提供することを目的とする。
 上記目的の下で本発明者らはヒトに対する免疫原性を下げることに主眼を置き、ヒトゲノム中に存在するタンパク質の中から、凍結保護活性を有するものを探索するという戦略を採用した。その際、凍結保護活性を有する既報のタンパク質の中には近年研究の進展が著しい「天然変性タンパク質(Intrinsically Disordered Protein : IDP )」が含まれている点に着目し、ヒトゲノムに関するデータベースHPRD(Human Protein Reference Database)を母集団として、天然変性タンパク質/領域(ディスオーダータンパク質/領域)を予測するプログラムを利用して凍結保護物質候補を探索した。得られた候補の中から一定の条件を満たす遺伝子産物5種を抽出し、その特性を検討した。その結果、5種全てに凍結保護作用のあることが確認された。この結果は、タンパク質の凍結保護剤としてのヒト由来天然変性タンパク質の有用性を示唆するとともに、本発明者らが採用した探索手法の有効性を裏づける。
 以下の発明は主として上記成果及び考察に基づく。
 [1]ヒト由来天然変性タンパク質を含む、タンパク質用の凍結保護剤。
 [2]二種類以上のヒト由来天然変性タンパク質を含むことを特徴とする、[1]に記載の凍結保護剤。
 [3]前記ヒト由来天然変性タンパク質が、ヒトゲノムの遺伝子産物データベースを母集団として、以下の条件(1)及び(2)で検索して同定されたものである、[1]又は[2]に記載の凍結保護剤:
(1)20アミノ酸残基以上、100アミノ酸残基以下の長さである;
(2)全体にわたって天然変性タンパク質領域である。
 [4]前記ヒト由来天然変性タンパク質が、ヒトゲノムの遺伝子産物データベースを母集団として、以下の条件(1)及び(2)で検索して同定されたものである、[1]又は[2]に記載の凍結保護剤:
(1)30アミノ酸残基以上、100アミノ酸残基以下の長さである;
(2)全体にわたって天然変性タンパク質領域である。
 [5]前記ヒト由来天然変性タンパク質が、配列番号1~5のいずれかのアミノ酸配列又はその連続した一部分からなる、[1]又は[2]に記載の凍結保護剤。
 [6]前記一部分が20アミノ酸残基以上の長さである、[5]に記載の凍結保護剤。
 [7]前記一部分が配列番号8、10~14のいずれかのアミノ酸配列からなる、[5]に記載の凍結保護剤。
 [8][1]~[7]のいずれか一項に記載の凍結保護剤が添加された溶液中にタンパク質又はタンパク質を成分として含む構造体が存在した状態で凍結又は凍結乾燥するステップを含む、タンパク質又はタンパク質を成分として含む構造体の保存方法。
 [9]前記構造体が細胞又は組織である、[8]に記載の保存方法。
 [10][1]~[7]のいずれか一項に記載の凍結保護剤が共存した状態で保存されているタンパク質又はタンパク質を成分として含む構造体。
 [11]タンパク質と、[1]~[7]のいずれか一項に記載の凍結保護剤と、を含有したタンパク質製剤。
 [12]前記タンパク質が酵素又は抗体である、[11]に記載のタンパク質製剤。
凍結保護物質候補5種(B3-IDP:配列番号1、B4-IDP:配列番号2、C1-IDP:配列番号3、D10-IDP:配列番号4、E1-IDP:配列番号5)のアミノ酸配列及び特性。D10-IDPをC末端側(配列右側)から短くした変異体(D10-20aa:配列番号8、D10-15aa:配列番号9)及びE1-IDPをC末端側(配列右側)から短くした変異体(E1-34aa:配列番号10、E1-31aa:配列番号11、E1-28aa:配列番号12、E1-25aa:配列番号13)の情報と、C9_subIDP(構造の一部に天然変性領域を含むタンパク質)のN末端側(配列左側)にセリン(S)を伸長したIDP(配列番号14)の情報も掲載した。比較のために、デヒドリン(YSK2)及びその一部(K2)のアミノ酸配列及び特性も併記した。 モデル酵素(乳酸脱水素酵素:LDH)に対する凍結保護活性。凍結保護物質候補5種の凍結保護活性をBSA及びセリシンと比較・評価した。 モデル酵素(LDH)に対する凍結保護活性。凍結保護物質候補5種の凍結保護活性の濃度依存性を調べた。 モデル酵素(LDH)に対する凍結保護活性。凍結保護物質候補5種の低濃度(凍結・融解時の添加タンパク質濃度50μg/mL)における凍結保護活性をBSA及びセリシンと比較・評価した。 2種類の凍結保護物質候補(C1-IDPとD10-IDP)の混合物による凍結保護作用。 モデル酵素(LDH)に対する凍結乾燥保護活性。凍結保護物質候補5種の凍結乾燥保護活性をBSAと比較・評価した。 モデル酵素(LDH)に対する凍結乾燥保護活性。凍結保護物質候補5種の凍結乾燥保護活性の濃度依存性をBSAと比較・評価した。 配列長の異なる凍結保護物質候補の凍結保護活性の比較。 グルタチオン-S-転移酵素(GST)に対する凍結保護活性。凍結保護物質候補5種の凍結保護活性をBSA及びセリシンと比較・評価した。添加タンパク質濃度は100μg/mlとした。 グルタチオン-S-転移酵素(GST)に対する凍結保護活性。凍結保護物質候補5種の凍結保護活性の濃度依存性を調べた。 強化緑色蛍光タンパク質(EGFP)に対する凍結保護活性。凍結保護物質候補E1-IDPの凍結保護活性をBSAと比較・評価した。
 本発明の第1の局面はタンパク質用の凍結保護剤に関する。本明細書において用語「タンパク質用」とは、保護の対象がタンパク質であることを意味する。即ち本発明は、凍結に伴いタンパク質の活性が低下すること(活性が喪失されることも含む)を防止ないし抑制する。従って、本発明の凍結保護剤をタンパク質の凍結時に適用すると、凍結による影響が軽減される結果、典型的には、凍結後又は凍結保存後のタンパク質の活性が、本発明の凍結保護剤を適用しない場合に比較して高くなる。用語「凍結」は広義に解釈されるべきであり、単純な凍結処理に加え、乾燥処理を併用した凍結乾燥の概念も含む。
 本発明の凍結保護剤では、タンパク質に対する凍結保護作用をヒト由来天然変性タンパク質が示したという知見に基づき、有効成分としてヒト由来天然変性タンパク質を用いる。近年、天然状態では一定の立体構造をもたないタンパク質又はその一部の領域が生体内に多数あることが知られるようになった。このようなタンパク質/領域は「本質的に構造をとっていない(intrinsically unstructured)」、「本質的に不規則(intrinsically disordered)」などと呼ばれ、これをもつものを天然変性タンパク質(Intrinsically Disordered Protein : IDP)という(Peter E. Wright and H. Jane Dyson, J. Mol. Biol. (1999) 293, 321-31; A. Keith Dunker et al. J. Mol. Graph. Model. (2001) 19, 26-59)。タンパク質をバイオインフォマティクスにもちこんで、不規則な領域の特性を研究したDunkerらのグループは、不規則な領域をもつタンパク質を網羅的に解析して不規則領域を予測するプログラムPONDRを開発した(A. Keith Dunker et al. C Adv. Protein Chemistry (2002) 62, 25-49)。このPONDRを皮切りに、2000年前後からさまざまな予測プログラムが開発された。2013年には「Intrinsically Disordered Proteins(天然変性タンパク質)」が創刊され、呼称が統一されていなかった「不規則な領域をもつタンパク質」のことを「intrinsically disordered protein(天然変性タンパク質)」と呼ぶことが提唱された(A. Keith Dunker et al. Intrinsically Disordered Proteins (2013) 1, issue1)。
 本発明の有効成分は、ヒト由来天然変性タンパク質である限り、そのアミノ酸配列、長さなどは特に限定されない。ヒト由来天然変性タンパク質は、ヒトゲノムの遺伝子産物データベースを母集団とし、変性領域(disorder)予測プログラムを用いた検索によって同定ないし取得することができる。ヒトゲノムの遺伝子産物データベースとしては、例えば、HPRD(Human Protein Reference Database:http://www.hprd.org/)、それに準ずる又はそれ利用して構築されたデータベースを用いることができる。一方、予測プログラムとしては、PONDR(http://www.pondr.com/indexを参照)、DISOPRED2(Ward, J.J., McGuffin, L.J., Bryson, K., Buxton, B.F., and Jones, D.T. The DISOPRED server for the prediction of protein disorder. Bioinformatics. 20 2138 (2004))、POODLE(Prediction Of Order and Disorder by machine LEarning;http://mbs.cbrc.jp/poodle/を参照)、DICHOT(Fukuchi, S., Hosoda, K. Homma, K., Gojobori, T. and Nishikawa, K. Binary classification of protein molecules into intrinsically disordered and ordered segments. BMC Structural Biology 11 29 (2011), http://spock.genes.nig.ac.jp/~genome/DICHOT/ を参照)、GLOBPLOT2 (http://globplot.embl.de/ を参照)等を利用できる。中でもPOODLEは、予測感度の高さの点から特に有効な予測プログラムである。POODLEの特徴は配列の長さに応じた測定法を用いている点である。一般的に、ある程度長いディスオーダー(disorder)領域は機能に関連しているものが多く、短いディスオーダー領域はループやコイルの領域がゆらいでしまっているために生じたディスオーダーであって機能をもたない場合が多い。また、ポリペプチド鎖の内部は末端部に比べてディスオーダー領域である割合が低いことが知られている。これは、末端部はタンパク質の表面に露出しやすく、それが機能をもたずにただゆらいでしまっていることが考えられる。これらディスオーダー領域の傾向をその長さに着目し、アミノ酸配列全体を予測するPOODLE-W、主に40アミノ酸以上の長い配列を予測するPOODLE-L、短い配列を予測するPOODLE-S、これらPOODLE-W/L/Sや他の予測プログラムを利用したワークフローシステムを利用したPOODLE-Iがある。従来までの予測法と大きく異なるのは同じアミノ酸でもアミノ酸の並び、ポリペプチド鎖中にそのアミノ酸の存在する位置を考慮した計算値を採用している点である。また、POODLE-Iはアミノ酸の並びを基に計算するPOODLE-Sや配列全体あるいはアミノ酸の位置を考慮した物理化学的性質を基に計算するPOODLE-W/Lのみだけでなく、ホモロジーモデリング(fold recognition)TSpredによるオーダー/ディスオーダー(order/disorder)予測、COILpredのコイルドコイル予測、SSpredの二次構造予測、ASApredの溶媒露出表面積(accessible surface area)予測を組み合わせたフローチャートを経て予測を行う(S. Hirose et al. (2010), In Silico Biology 10, 185-91)。一方、DICHOTは、構造予測法と新たに開発した配列の保存度を用いる変性領域予測法を組み合わせることで、アミノ酸配列の全長にわたり完全に構造領域または変性領域かを判別することができるという特徴を備えている。そのため、ヒトゲノムなどから変性領域を含む配列をまずリストアップしたい、などの目的で使用する際の利便性が優れている。
 予測プログラムを用いた検索の際の条件として以下の(1)及び(2)を設定するとよい。尚、条件(1)は天然変性タンパク質の機能ないし活性、溶解度などの物理的性質に関係し、アミノ酸残基数が少なすぎると凍結保護剤として十分に機能しないおそれがあり、アミノ酸残基数が多すぎると凍結保護剤として有効な濃度までの溶解度が得られないおそれがある。
 (1)30アミノ酸残基以上、100アミノ酸残基以下の長さである。
 (2)全体にわたって天然変性タンパク質領域である。
 好ましくは、(1)の条件において、アミノ酸残基数の上限を50アミノ酸残基に設定する。一方、天然変性タンパク質が20アミノ酸残基以上の長さで特に高い凍結保護活性を示した実験結果(後述の実施例)を踏まえると、(1)の条件において、アミノ酸残基数の下限を20アミノ酸残基に設定した場合も、良好な結果が得られるといえる。また、(2)の条件に関して、配列長に対する天然変性状態の残基数の割合が60%(好ましくは70%)を超えるときに、全体にわたって天然変性タンパク質領域であると推測できる。
 各プログラムの使用方法、その他の条件等については、サーバ上で公開されているヘルプページ(例えばPOODLEについてはhttp://mbs.cbrc.jp/poodle/help.htmlで入手可能である)や過去の報告(例えば、DICHOTについてはS. Fukuchi et al., BMC Structural Biology 9:26 (2009))が参考になる。
 IDPデータベースとして「Database of Protein Disorder(DisProt)」(Center for Computational Biology and Bioinformatics at Indiana University School of Medicine, Center for Information Science and Technology at Temple University)及び「Intrinsically Disordered proteins with Extensive Annotations and Literature(IDEAL)」(S. Fukuchi, T. Amemiya, S. Sakamoto, Y. Nobe, K. Hosoda, Y. Kado, S. D. Murakami, R. Koike, H. Hiroaki and M. Ota. "IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners". 2014, Nucleic Acids Res., 42, D320-D325.; S. Fukuchi, S. Sakamoto, Y. Nobe, S. D. Murakami, T. Amemiya, K. Hosoda, R. Koike, H. Hiroaki and M. Ota. "IDEAL: Intrinsically Disordered proteins with Extensive Annotations and Literature". 2012, Nucleic Acids Res., 40, D507-D511.)が知られている。これらのデータベースに登録されているヒト由来天然変性タンパク質又はその一部(断片)を本発明の有効成分として用いることもできる。尚、DisProtには、約700種類のタンパク質情報が登録されている。
 所望の作用、即ち、タンパク質に対する凍結保護作用を発揮する限りにおいて、ヒト由来天然変性タンパク質として同定される領域の一部のみ(即ち断片)を使用することもできる。
 一態様では2種類以上のヒト由来天然変性タンパク質を併用する。即ち、この態様の凍結保護剤は有効成分として2種類以上のヒト由来天然変性タンパク質を含む。
 本発明の有効成分として使用可能なヒト由来天然変性タンパク質の具体例は、後述の実施例に示したB3-IDP(配列番号1のアミノ酸配列を有する)、B4-IDP(配列番号2のアミノ酸配列を有する)、C1-IDP(配列番号3のアミノ酸配列を有する)、D10-IDP(配列番号4のアミノ酸配列を有する)、E1-IDP(配列番号5のアミノ酸配列を有する)である。好ましい態様の一つでは、これら5種類のヒト由来天然変性タンパク質のいずれか又は2種以上が用いられる。これら5種類のヒト由来天然変性タンパク質の全長ではなく、連続した一部分を用いることもできる。凍結保護作用を発揮する限りにおいて、任意の部分をここでの「連続した一部分」として採用できる。特定の「連続した一部分」が凍結保護作用を発揮するか否かは、後述の実施に示した評価法によって容易に判定できる。「連続した一部分」の長さは好ましくは30アミノ酸残基以上(上限は各ヒト由来天然変性タンパク質の全長の長さ)、更に好ましくは20アミノ酸残基以上(上限は各ヒト由来天然変性タンパク質の全長の長さ)である。「連続した一部分」の具体例は、後述の実施例に示したD10-20aa(配列番号8のアミノ酸配列を有する)、E1-34aa(配列番号10のアミノ酸配列を有する)、E1-31aa(配列番号11のアミノ酸配列を有する)、E1-28aa(配列番号12のアミノ酸配列を有する)、E1-25aa(配列番号13のアミノ酸配列を有する)である。
 本発明の有効成分であるヒト由来天然変性タンパク質は標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって調製することができる。例えば、本発明の有効成分をコードするDNAで適当な宿主細胞(例えば大腸菌)を形質転換し、形質転換体内で発現されたタンパク質を回収することにより調製することができる。回収されたタンパク質は目的に応じて適宜精製される。このように組換えタンパク質として本発明の有効成分を得ることにすれば種々の修飾が可能である。本発明における有効成分を公知のペプチド合成法(例えば固相合成法、液相合成法)によって調製することにしてもよい。
 本発明の凍結保護剤は様々なタンパク質に適用し得るが、中でも酵素及び抗体は好適な適用対象(保護対象)である。酵素の例として、消化酵素(アミラーゼ、リパーゼ、セルラーゼ)、プロテアーゼ(ペプチン、トリプシン、キモトリプシン、パパイン、ブロメライン、血液凝固第Xa因子)、糖分解酵素(ガラクトシダーゼ、ラクターゼ、サッカラーゼ)、酸化還元酵素(乳酸脱水素酵素、アルコール脱水素酵素)を挙げることができる。抗体は、ポリクローナル抗体とモノクローナル抗体に大別されるが、いずれに対しても適用可能である。また、抗体の由来(例えば、キメラ抗体、ヒト化抗体、ヒト抗体)、クラス(例えばIgG、IgM、IgA、IgE)等も特に限定されない。抗体断片(Fab、Fab'、F(ab')2、scFv、dsFvなど)への適用も可能である。
 単独のタンパク質の他、タンパク質を成分とした各種構造体(糖タンパク質、リポタンパク質、核タンパク質、リンタンパク質等の複合タンパク質、細胞、組織など)(以下、説明の便宜上、「タンパク質を成分とした各種構造体」を略して「構造体」と呼ぶ)の凍結時の保護にも本発明を適用可能である。
 本発明の第2の局面は上記凍結保護剤の用途に関し、タンパク質又は構造体の保存方法、タンパク質製剤などを提供する。典型的には、本発明の保存方法では本発明の凍結保護剤が添加された溶液中にタンパク質又は構造体(糖タンパク質、リポタンパク質、核タンパク質、リンタンパク質等の複合タンパク質、細胞、組織など)が存在した状態で凍結又は凍結乾燥の処理を行う。2種類以上のタンパク質(又は構造体)が溶液中に存在していてもよい。この場合、少なくとも1種類のタンパク質(又は構造体)が保護対象となる。溶媒には各種緩衝液(リン酸緩衝生理食塩水(PBS)、トリス緩衝生理食塩水(TBS)、クエン酸緩衝液、グルタミン酸緩衝液等)、生理食塩水、蒸留水等を用いることができる。凍結保護剤の添加量は特に限定されないが、例えば、凍結保護剤の成分であるヒト由来天然変性タンパク質の濃度が、0.005重量%~1.0重量%となるように凍結保護剤を添加するとよい。また、保護対象の濃度は、例えば、0.001重量%~1.0重量%に設定することができる。凍結又は凍結乾燥の処理の際、溶液中に凍結保護剤と保護対象が共存した状態が形成されておればよく、凍結保護剤と保護対象の添加順序は特に問わない。凍結又は凍結乾燥の処理は常法で行えばよい。タンパク質、細胞、組織などの凍結又は凍結乾燥に関するプロトコールは容易に入手できる状態にあり、例えばCurrent protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987)、Molecular Cloning(Third Edition, Cold Spring Harbor Laboratory Press, New York)、The Protein Protocols Handbook (Springer Protocols Handbooks, Third Edition, Humana Press, 2009)、蛋白質科学会アーカイブ(日本蛋白質科学会、http://www.pssj.jp/archives/を参照)を参考にすることができる。
 本発明の保存方法を実施すれば、凍結保護剤が共存した状態にあるタンパク質又は構造体が得られる。このような特有の状態にあるタンパク質又は構造体も、本願が提供する発明の一つである。一方、凍結又は凍結乾燥の処理を行う前の状態(即ち、溶液状態)でタンパク質又は構造体を提供することも可能である。従って、本発明の提供する「凍結保護剤が共存した状態にあるタンパク質又は構造体」は、凍結状態、凍結乾燥状態及び溶液状態の3態様を取り得る。一態様では、薬効を示すタンパク質(例えば酵素、抗体)が保護対象として採用され、タンパク質と凍結保護剤を含有するタンパク質製剤が提供されることになる。タンパク質製剤における凍結保護剤の添加量は特に限定されないが、例えば、凍結保護剤の成分であるヒト由来天然変性タンパク質の含量が0.005重量%~1.0重量%となるように凍結保護剤が添加される。使用する凍結保護剤、保護対象などに応じて好ましい添加量は変動し得るが、当業者であれば予備実験を通して最適な添加量を決定することができる。製剤化する場合には、製剤上許容される他の成分(例えば、担体、懸濁剤、保存剤、防腐剤、抗生物質など)を含有させることができる。タンパク質製剤は医薬品又は医薬部外品として提供され得る。
1.凍結保護物質候補の探索
 ヒトに対する安全性(特に免疫原性)を考慮し、ヒトゲノム中に存在するタンパク質の中から凍結保護活性を有するものを探索するという戦略を採用した。従来技術として知られている凍結保護活性を有するタンパク質には、近年研究の進展が著しい「天然変性タンパク質(IDP)」が含まれていることに着目し、ヒトゲノムに関するデータベースHPRD(Human Protein Reference Database)を母集団として、天然変性タンパク質/領域(ディスオーダータンパク質/領域)を予測するプログラムPOODLE(独立行政法人産業技術総合研究所)を利用して凍結保護物質候補を探索した。得られた1000種類以上の候補の中から、(1)遺伝子産物の配列の長さ、及び(2)天然変性領域の割合、の観点で候補物質を絞り込むことにした。(1)は凍結保護活性(活性を示すためにはある程度の長さが必要と予想される)と取り扱いの容易性等に関係し、(2)は凍結保護活性の高さ(天然変性領域が多い程、より高い活性を示すと予想される)に関係する。尚、具体的な条件として以下の(i)及び(ii)を設定し、両者を満たした遺伝子産物を選択することにした。
 (i)その遺伝子産物の配列が50アミノ酸残基より短い。
 (ii)タンパク質全体の配列又はドメイン全体の配列であって、前者の場合には、POODLE-Wにおいてprobability scoreが0.6よりも大きい、又はPOODLE-Sにおいて配列長に対する天然変性状態の残基数の割合が60%を超え、後者の場合には、POODLE-Sにおいて配列長に対する天然変性状態の残基数の割合が70%を超える。
 選択された凍結保護物質候補から5種を選び、その凍結保護作用を検証した。検証に供した5種(B3-IDP、B4-IDP、C1-IDP、D10-IDP、E1-IDP)のアミノ酸配列及び特性を図1に示す。当該5種の凍結保護物質候補が天然変性タンパク質であることは、分光学的解析(NMR、CDスペクトル)によって確認した。尚、図1には、D10-IDPをC末端側(配列右側)から短くした変異体(D10-20aa、D10-15aa)及びE1-IDPをC末端側(配列右側)から短くした変異体(E1-34aa、E1-31aa、E1-28aa、E1-25aa)の情報と、C9_subIDP(構造の一部に天然変性領域を含むタンパク質)のN末端側(配列左側)にセリン(S)を伸長したIDPの情報も掲載した。
2.凍結保護物質候補5種の凍結保護作用の検証
 Npro融合タンパク質発現系(Nat Methods. 2007 Dec;4(12):1037-43)を利用して5種の候補をそれぞれ調製した。Npro発現系を利用すると、目的タンパク質を封入体(IB)に発現させることができる。従って、長いIDPを分解されることなく大腸菌で生産することができる。また、巻き戻すことにより自動的にタグ部分が切断され、ハイスループット化に適することや、N末端にタグ由来配列がつかないといった利点もある。
 凍結保護作用はCarpenter JFら(Carpenter JF and Crowe JH: Cryobiology, 25, 1988, 266-269)ならびにLin Cら(Lin C and Thomashow MF: Biochemical and Biophysical Research Communications, 183, 1992, 1103-1108)の方法を参考に測定した。具体的には、モデル酵素として凍結融解の処理によって活性が低下する乳酸脱水素酵素(LDH)を用い、液体窒素による凍結(30秒間)および水浴による融解(水温4℃、5分間)を5回繰り返した後、LDH活性を測定した。タンパク質凍結保護剤として一般に使用されているBSAを比較対照として使用した。また、セリシン(sericin)とも比較した。陰性対照としてニワトリ卵白リゾチームを用いた。上記の凍結融解処理の際に、LDH(25μg/mL)と試料(500μg/mL)を混合したLDH溶液を用意した。凍結融解未処理の際のLDH活性を100%とし、凍結融解処理を繰り返した後のLDH活性を求めた。尚、LDHは生体の維持に重要な酵素であり、凍結保護活性の評価におけるモデル酵素として一般的である。また、酵素は凍結保存時などに活性が低下し易いことから、凍結保存時のタンパク質に対する保護作用を評価する上で、酵素に対する保護作用を指標にすることは妥当といえる。
 LDH活性の測定結果を図2に示す。5種類の候補の全てに凍結保護作用が認められた。
 濃度と活性の関係を調べるために、各種濃度の試料を用いてLDH活性を測定した。図3に示すように、5種類の候補の全てに濃度依存性を認めるとともに、BSAならびにセリシンよりも低濃度でより高い凍結保護作用を示すことが判明した。更に、C9_subIDP(33アミノ酸のペプチドで、そのうち23アミノ酸部分がWWドメインの立体構造を有している)よりも低濃度でより高い凍結保護作用を示すことが判明したため、配列に含まれる天然変性領域の含有率が高いことが凍結保護作用に有効であることが判明した。尚、試料濃度が50μg/mLのときの活性を比較したグラフを図4に示す。
 一方、異なる2種類の凍結保護物質候補(C1-IDPとD10-IDP)をタンパク質量比で1:1に混合した混合物による凍結保護作用を検討した。実験方法は上記の通りとし、乳酸脱水素酵素(LDH)の凍結融解処理に対する凍結保護活性を調べた。結果を図5に示す。混合物は、単独で使用したとき(C1-IDP又はD10-IDP)とほぼ同等の活性を示した。
 一方、上記測定方法に準じた方法(凍結、融解処理に代えて、凍結(30秒間)、凍結乾燥処理(over night)及び溶解(MilliQTM水)を行う以外は同一)によって、5種類の候補の凍結乾燥に対する保護作用も調べることにした。測定結果を図6、7に示す。B3-IDP、B4-IDP、C1-IDP、D10-IDP、E1-IDPはBSAと同等の凍結乾燥保護作用も示した。
 以上の通り、5種の候補はBSAを凌駕する凍結保護作用を示した。また、凍結保護作用に加え、凍結乾燥保護作用も示した。評価した候補の全てに凍結保護活性が見られたことから、上記の探索方法・探索条件で見出されたヒト由来IDPは、その多くがBSAと同等以上の活性をもつと予測される。
3.配列長と活性の関係
 凍結保護物質候補2種(E1-IDP、D10-IDP)について配列長を短くし、凍結保護活性の変化を調べた。E1-IDPは25アミノ酸残基まで、D10-IDPは15アミノ酸残基まで配列長を短くした。その結果、20アミノ酸残基までは高い凍結保護活性を保持していたが(D10-20aa、E1-34aa、E1-31aa、E1-28aa、E1-25aa)、15アミノ酸残基まで短くするとBSAと同等の凍結保護活性まで低下した(D10-15aa)。
4.グルタチオン-S-転移酵素(GST)に対する凍結保護活性
 凍結保護物質候補5種がGSTに対しても凍結保護作用を示すか検討した。実験方法は以下の通りとした。液体窒素による凍結(30秒間)及び水浴による融解(水温20℃、5分間)を5回繰り返した後、GST Gene Fusion System Handbook (Amersham Biosciences)を参考にGST活性を測定した。具体的には、上記の凍結融解処理の際に、GST(0.8 μM)と試料(5~1000μg/mL、BSAおよびセリシンは5~2000μg/mL)を混合したGST溶液を用意した。凍結融解未処理の際のGST活性を100%とし、凍結融解処理を繰り返した後のGST活性を求め、その値を凍結保護活性とした。結果を図9及び図10に示す。凍結保護物質候補である5種類のタンパク質(B3-IDP、B4-IDP、C1-IDP、D10-IDP、E1-IDP)全てがBSAと同等またそれ以上の凍結保護作用を示した。一方、セリシンの凍結保護作用は凍結保護物質候補及びBSAよりも弱かった。以上の結果は、LDHを使用した実験の結果とほぼ一致するものであり、同定した凍結保護物質候補がLDH以外の酵素の凍結保護にも有用であることを示す。
5.緑色蛍光タンパク質に対する凍結保護活性
 凍結保護物質候補の汎用性を更に検証するため、緑色蛍光タンパク質(GFP)変異体である強化緑色蛍光タンパク質(EGFP)に対する、凍結保護物質候補E1-IDPの凍結保護活性を調べた。実験方法は以下の通りとした。液体窒素による凍結(1分間)および水浴による融解(水温20℃、5分間)を10回繰り返した後、GFPの蛍光強度を活性指標として測定した。上記の凍結融解処理の際に、GFP(2.4μM)と試料(E1-IDP)を混合したGFP溶液を用意した。凍結融解未処理の際のGFP蛍光強度を100%とし、凍結融解処理を繰り返した後のGFP蛍光強度を求め、その値を凍結保護活性とした。結果を図11に示す。E1-IDPはGFPに対してBSA以上の凍結保護作用を示した。この結果は、酵素に限らず、各種タンパク質に対して凍結保護物質候補が凍結保護活性を発揮することを示唆する。
 本発明によれば、ヒト由来の成分を用いた凍結保護剤が提供される。本発明の凍結保護剤を利用すれば、凍結(凍結乾燥を含む)時におけるタンパク質の活性の低下、変性等を防止ないし抑制することができる。好ましい用途として、ヒト由来の成分という特徴(ヒトに対する抗原性が低いことが想定される)を活かし、ヒトへ投与されるバイオ医薬品(抗体医薬品や酵素医薬品など)、或いはヒトへ投与ないし移植される細胞・組織などへの適用が考えられる。本発明の凍結保護剤を適用したバイオ医薬品などの場合、使用に際して特別な操作、即ち、凍結保護剤の分離除去を行うことなく患者へ適用するという使用態様も想定でき、バイオ医薬品の普及化・低コスト化に貢献し得る。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。

Claims (12)

  1.  ヒト由来天然変性タンパク質を含む、タンパク質用の凍結保護剤。
  2.  二種類以上のヒト由来天然変性タンパク質を含むことを特徴とする、請求項1に記載の凍結保護剤。
  3. 前記ヒト由来天然変性タンパク質が、ヒトゲノムの遺伝子産物データベースを母集団として、以下の条件(1)及び(2)で検索して同定されたものである、請求項1又は2に記載の凍結保護剤:
    (1)20アミノ酸残基以上、100アミノ酸残基以下の長さである;
    (2)全体にわたって天然変性タンパク質領域である。
  4.  前記ヒト由来天然変性タンパク質が、ヒトゲノムの遺伝子産物データベースを母集団として、以下の条件(1)及び(2)で検索して同定されたものである、請求項1又は2に記載の凍結保護剤:
    (1)30アミノ酸残基以上、100アミノ酸残基以下の長さである;
    (2)全体にわたって天然変性タンパク質領域である。
  5.  前記ヒト由来天然変性タンパク質が、配列番号1~5のいずれかのアミノ酸配列又はその連続した一部分からなる、請求項1又は2に記載の凍結保護剤。
  6.  前記一部分が20アミノ酸残基以上の長さである、請求項5に記載の凍結保護剤。
  7.  前記一部分が配列番号8、10~14のいずれかのアミノ酸配列からなる、請求項5に記載の凍結保護剤。
  8.  請求項1~7のいずれか一項に記載の凍結保護剤が添加された溶液中にタンパク質又はタンパク質を成分として含む構造体が存在した状態で凍結又は凍結乾燥するステップを含む、タンパク質又はタンパク質を成分として含む構造体の保存方法。
  9.  前記構造体が細胞又は組織である、請求項8に記載の保存方法。
  10.  請求項1~7のいずれか一項に記載の凍結保護剤が共存した状態で保存されているタンパク質又はタンパク質を成分として含む構造体。
  11.  タンパク質と、請求項1~7のいずれか一項に記載の凍結保護剤と、を含有したタンパク質製剤。
  12.  前記タンパク質が酵素又は抗体である、請求項11に記載のタンパク質製剤。
PCT/JP2015/050131 2014-02-24 2015-01-06 タンパク質凍結保存用保護剤 WO2015125501A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016503988A JP6643761B2 (ja) 2014-02-24 2015-01-06 タンパク質凍結保存用保護剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-033169 2014-02-24
JP2014033169 2014-02-24

Publications (1)

Publication Number Publication Date
WO2015125501A1 true WO2015125501A1 (ja) 2015-08-27

Family

ID=53878017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050131 WO2015125501A1 (ja) 2014-02-24 2015-01-06 タンパク質凍結保存用保護剤

Country Status (2)

Country Link
JP (1) JP6643761B2 (ja)
WO (1) WO2015125501A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059228A1 (ja) * 2018-09-21 2020-03-26 国立大学法人 東京大学 クライアントタンパク質を保護するタンパク質のスクリーニング方法並びに生理活性タンパク質安定化タンパク質および該タンパク質を含む医薬組成物
CN111729085A (zh) * 2020-07-07 2020-10-02 广东丝源集团有限公司 一种耐热疫苗及其制备方法
CN113521015A (zh) * 2020-10-21 2021-10-22 山东省妇幼保健院 一种融合蛋白4D5Fv-PE25冻干剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186230A (ja) * 1992-12-17 1994-07-08 Doujin Iyaku Kako Kk 安定な抗体溶液及び抗体の安定化方法
JP2006115837A (ja) * 2004-09-24 2006-05-11 Seiren Co Ltd 細胞凍結保存用組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186230A (ja) * 1992-12-17 1994-07-08 Doujin Iyaku Kako Kk 安定な抗体溶液及び抗体の安定化方法
JP2006115837A (ja) * 2004-09-24 2006-05-11 Seiren Co Ltd 細胞凍結保存用組成物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HINCHA, DIRK K. ET AL.: "LEA proteins: IDPs with versatile functions in cellular dehydration tolerance", BIOCHEMICAL SOCIETY TRANSACTIONS, vol. 40, no. 5, 2012, pages 1000 - 1003 *
HUGHES STEPHANIE ET AL.: "Cryoprotective mechanism of a small intrinsically disordered dehydrin protein", PROTEIN SCIENCE, vol. 20, no. 1, 2011, pages 42 - 50, XP055222233, ISSN: 0961-8368 *
NAOKI MATSUO: "Evaluation of potential cryoprotective activity of intrinsically disordered protein", PROTEIN SCIENCE SOCIETY OF JAPAN NENKAI PROGRAM YOSHISHU, vol. 14 th, 26 May 2014 (2014-05-26), pages 111 *
TAKAYUKI AMEMIYA: "Construction of Intrinsically Disordered proteins with Extensive Annotations and Literature (IDEAL", PROTEIN SCIENCE SOCIETY OF JAPAN NENKAI PROGRAM YOSHISHU, vol. 40, no. d1, 2012, pages d507 - d511, XP055222240, ISSN: 0305-1048 *
TANTOS AGNES ET AL.: "Cold stability of intrinsically disorderd proteins", FEBS LETTERS, vol. 583, no. 2, 2009, pages 465 - 469, XP025926495, ISSN: 0014-5793 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059228A1 (ja) * 2018-09-21 2020-03-26 国立大学法人 東京大学 クライアントタンパク質を保護するタンパク質のスクリーニング方法並びに生理活性タンパク質安定化タンパク質および該タンパク質を含む医薬組成物
JPWO2020059228A1 (ja) * 2018-09-21 2021-09-02 国立大学法人 東京大学 クライアントタンパク質を保護するタンパク質のスクリーニング方法並びに生理活性タンパク質安定化タンパク質および該タンパク質を含む医薬組成物
US20210349102A1 (en) * 2018-09-21 2021-11-11 The University Of Tokyo Screening Method for Client Protein-Protecting Protein, and Physiologically Active Protein-Stabilizing Protein and Pharmaceutical Composition Comprising Said Protein
JP7380574B2 (ja) 2018-09-21 2023-11-15 国立大学法人 東京大学 クライアントタンパク質を保護するタンパク質のスクリーニング方法並びに生理活性タンパク質安定化タンパク質および該タンパク質を含む医薬組成物
CN111729085A (zh) * 2020-07-07 2020-10-02 广东丝源集团有限公司 一种耐热疫苗及其制备方法
CN113521015A (zh) * 2020-10-21 2021-10-22 山东省妇幼保健院 一种融合蛋白4D5Fv-PE25冻干剂及其制备方法和应用
CN113521015B (zh) * 2020-10-21 2022-12-06 山东省妇幼保健院 一种融合蛋白4D5Fv-PE25冻干剂及其制备方法和应用

Also Published As

Publication number Publication date
JP6643761B2 (ja) 2020-02-12
JPWO2015125501A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
Ratanji et al. Immunogenicity of therapeutic proteins: influence of aggregation
Lindner et al. Mouse Hsp25, a small heat shock protein: The role of its C‐terminal extension in oligomerization and chaperone action
CA2704974C (en) Extracellular histones as biomarkers for prognosis and molecular targets for therapy
Morgan The complement system: an overview
AU2005232436C1 (en) Annexin V for preventing atherothrombosis and plaque rupture
CN113564150A (zh) 半胱氨酸蛋白酶
WO2015125501A1 (ja) タンパク質凍結保存用保護剤
ES2749977T3 (es) Composiciones de proteínas terapéuticas que tienen inmunogenia reducida y/o eficacia mejorada
Mehta et al. Partial unfolding of a monoclonal antibody: role of a single domain in driving protein aggregation
Iizuka et al. UNC-45A is a nonmuscle myosin IIA chaperone required for NK cell cytotoxicity via control of lytic granule secretion
CN105793419B (zh) 修饰的kz144内溶素序列
Ahnoff et al. Thermal inactivation of enzymes and pathogens in biosamples for MS analysis
Carpenter et al. Long‐Term Storage of Proteins
Hawe et al. Formulation development for hydrophobic therapeutic proteins
JP2017519762A (ja) 免疫グロブリン単一可変ドメインでttpを処置する方法、およびその使用
JP4233114B2 (ja) フォン・ブィレブランド因子の治療用フラグメント
Sutherland et al. Stabilization of viruses by encapsulation in silk proteins
Rahman et al. A systematic mutational analysis identifies a 5‐residue proline tag that enhances the in vivo immunogenicity of a non‐immunogenic model protein
Santarsiero et al. The complement system in kidney transplantation
Brill et al. Dimerization of recombinant tobacco mosaic virus movement protein
JP5872472B2 (ja) シャペロニン10変異体
Maurer et al. Aggregates of α‐chymotrypsinogen anneal to access more stable states
Saperas et al. Physicochemical and Functional Comparison ofXenopus laevisNucleoplasmin Obtained from Oocytes and from Overexpression in Bacteria
JP2021501138A (ja) 虚血性再灌流障害を治療するための酸化特異的エピトープの阻害
US10941179B2 (en) Method for suppressing aggregation of polypeptide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752847

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016503988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752847

Country of ref document: EP

Kind code of ref document: A1