WO2015125357A1 - 海水浸透取水設備 - Google Patents

海水浸透取水設備 Download PDF

Info

Publication number
WO2015125357A1
WO2015125357A1 PCT/JP2014/080215 JP2014080215W WO2015125357A1 WO 2015125357 A1 WO2015125357 A1 WO 2015125357A1 JP 2014080215 W JP2014080215 W JP 2014080215W WO 2015125357 A1 WO2015125357 A1 WO 2015125357A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand layer
seawater
biofilm
pipe
microorganisms
Prior art date
Application number
PCT/JP2014/080215
Other languages
English (en)
French (fr)
Inventor
真規 乾
英幸 新里
井上 隆之
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2015125357A1 publication Critical patent/WO2015125357A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • C02F3/046Soil filtration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a seawater infiltration water intake facility capable of promoting the generation or recovery of a biofilm necessary for biofiltration in a filtration sand layer on the sea floor.
  • a supporting gravel layer and a filtration sand layer are installed on the seabed, and the intake water embedded in the supporting gravel layer is the seawater that has penetrated these layers.
  • Seawater seepage water intake equipment for taking water is used (for example, FIG. 1 of Patent Document 1).
  • the osmotic water intake method implemented in this seawater osmotic water intake facility uses "physical filtration” that physically removes impurities using the voids of the filter sand.
  • the osmotic water intake method also utilizes “biological filtration” in which unnecessary organic substances are decomposed and removed by the action of a biofilm formed by microorganisms in seawater adhering to the filter sand layer.
  • suspended water such as silt and plankton, which cause clogging of the filtered sand layer, accumulates on the surface of the filtered sand layer and penetrates into the interior when the water intake is continued.
  • the material should be periodically removed from the filter sand layer and washed.
  • the problem to be solved by the present invention is that when a conventional seawater infiltration water intake facility is newly installed, a considerable amount of time is required until the biological filtration function is exhibited. Moreover, when the conventional seawater infiltration water intake facility is damaged in the biofilm during operation, it takes a considerable amount of time for the biofiltration function to be restored.
  • the present invention provides a seawater infiltration water intake facility that can significantly shorten the time until the function of biofiltration is exhibited or restored by providing means for promoting the generation or recovery of biofilms.
  • the purpose is to do.
  • the present invention provides: In seawater infiltration water intake facilities that take in seawater that has permeated through the filtration sand layer and the support gravel layer on the sea floor with intake pipes embedded in the support gravel layer, biofilm required for biofiltration in the filtration sand layer has been generated or damaged.
  • the most important feature is that it comprises a liquid injection means for injecting a liquid containing microorganisms or a growth promoter of microorganisms into the filtered sand layer.
  • the present invention by injecting a liquid containing microorganisms or microbial growth promoters into the filtration sand layer by the liquid injection means, the growth rate of microorganisms can be improved and the biofilm necessary for biofiltration can be improved. It can facilitate the recovery of biofilms that have been generated or damaged.
  • the present invention after installing the seawater infiltration water intake equipment, by using a liquid injection means, by injecting a liquid containing a microorganism or a growth promoter of microorganisms into the filtration sand layer, the production of a biofilm is promoted, Conventionally, the period of “break-in operation” performed until the generation of biofilm is confirmed is shortened.
  • the present invention also provides liquid injection at the required timing even when external factors such as abrupt changes in water quality during the operation of seawater infiltration facilities, or when the function of biological filtration is reduced by washing the filtration sand layer.
  • the biofilm can be recovered early.
  • FIG. 1 It is a figure which shows the structure of the seawater infiltration water intake equipment of 1st Example which uses a liquid injection
  • (a) is a diagram of a configuration in which the fumaroles are provided at an oblique position on either the left or right side and aligned with the fumaroles of the other adjacent diffuser tubes, and (b) is an fumarole. It is a figure of the structure which provides in a vertically upward position and shifts a position from the fusible hole of the other adjacent diffuser pipe. It is a figure explaining a mode that the liquid containing the microorganisms sent from the liquid injection
  • FIG. 4B is a diagram showing a state in which the liquid is ejected vigorously through the air holes of the air diffuser by sending compressed air from a state where the liquid level is raised. It is a figure explaining the structure which carries out the suction removal of the liquid containing the microorganisms which remain in the aeration tube or the collection tube, or the growth promoter of microorganisms through a suction tube. It is a figure which shows the structure of the seawater infiltration water intake equipment of 2nd Example which uses a gas injection
  • reference numeral 1 denotes a seawater infiltration water intake facility according to a first embodiment of the present invention that includes a filter sand layer 2 and a supporting gravel layer 3 installed on the seabed.
  • Seawater removes impurities and unnecessary organic substances by the action of physical filtration and biological filtration while penetrating the filtration sand layer 2 and the supporting gravel layer 3.
  • a plurality of intake pipes 4 are embedded in the supporting gravel layer 3.
  • the intake pipe 4 is provided with a large number of small-diameter holes that take in purified seawater, and is connected to a water collection pump (not shown). The purified seawater is sent to the land via the intake pipe 4.
  • the seawater infiltration water intake facility 1 is provided with a liquid injection means 5 for injecting a liquid containing a microorganism or a microorganism growth promoter into the filtered sand layer 2.
  • This liquid injection means 5 is for reducing the time until the microorganisms adhere to the filter sand and the biofilm is generated after the filter sand layer 2 and the supporting gravel layer 3 are installed on the seabed, and the function of the biofiltration is exhibited. It is means of.
  • the liquid injection means 5 is also a means for shortening the recovery time of the damaged biofilm after the start of operation.
  • the configuration of the liquid injection means 5 employed by the seawater infiltration water intake facility 1 of the first embodiment is as described below.
  • the filter sand layer 2 has an air diffuser 6b having fumaroles 6a embedded therein.
  • a plurality of diffuser tubes 6b are embedded side by side in the horizontal direction.
  • Each air diffuser 6b is a straight pipe, and a plurality of air holes 6a are provided at positions that are upward when spaced apart from each other (for example, at intervals of 100 to 700 mm).
  • each air diffuser 6b is connected to a collecting tube 6c1 having a diameter larger than that of the air diffuser 6b.
  • the collecting pipe 6c1 is arranged in the horizontal direction so as to intersect with each of the diffuser pipes 6b.
  • a rising pipe 6c2 extending to the land part is connected to, for example, the central part of the collecting pipe 6c1.
  • the collective pipe 6c1 and the rising pipe 6c2 are collectively referred to as a collective rising pipe 6c.
  • suction tube 9a shows a suction tube for transporting a liquid containing a microorganism remaining inside or a growth promoter of the microorganism to the land part.
  • the function of the suction tube 9a will be described later.
  • Reference numeral 9d denotes a pit portion for collecting the remaining liquid.
  • the joint portion 9e is a joint part for connecting the suction pipe 9a and the pit part 9d.
  • the joint portion 9e includes bent tubes 9e1 and 9e2 and a connecting tube 9e3.
  • the seawater infiltration water intake facility 1 includes a line of compressed air delivery means 7 for supplying compressed air and a line of liquid supply means 8 for supplying a liquid containing a microorganism or a microorganism growth promoter. Exists. These two lines join at the downstream side and are connected to the rising pipe 6c2.
  • the line of the compressed air delivery means 7 includes an air compressor 7a, an air storage tank 7b for temporarily accumulating air pressurized by the air compressor 7a, and depressurizing the pressurized air to an appropriate pressure.
  • this compressed air delivery means 7 When this compressed air delivery means 7 is activated, air is ejected from the air holes 6a of the air diffusers 6b connected to the collective rising pipe 6c.
  • the seawater infiltration water intake facility 1 periodically operates the compressed air delivery means 7 to stir the filtered sand of the filtered sand layer 2, and filters suspended substances mixed or accumulated on the surface of the filtered sand layer 2. It can be washed by spraying into the seawater above the sand layer 2.
  • the suspended substance wound up in seawater is discharged
  • the line of the liquid supply means 8 includes a water tank 8a for storing a liquid containing microorganisms or a growth promoter for microorganisms, a valve 8b for supplying the liquid from the water tank 8a, and a filtration sand layer 2. And a flow meter 8c for measuring the supply amount of the liquid to be injected.
  • the valve 8c of the liquid supply means 8 is turned on. By opening, it is possible to supply a liquid containing a microorganism or a microorganism growth promoter to the assembly rising pipe 6c. Thereby, the seawater infiltration water intake facility 1 can inject the liquid containing the microorganisms or the growth promoter of the microorganisms into the filtration sand layer 2 through the air diffuser 6b, thereby promoting the generation or recovery of the biofilm.
  • the seawater infiltration water intake facility 1 has a function of cleaning the filtered sand layer 2 and a function of promoting the generation or recovery of a biofilm.
  • the seawater infiltration water intake facility 1 of the first embodiment that employs the liquid injection means 5 having the above-described configuration, since the equipment on the downstream side of the rising pipe 6c2 is shared, the introduction cost is low. In addition to being reduced, there is an advantage that the device configuration becomes compact.
  • the joining part of the line of the compressed air sending means 7 and the line of the liquid supplying means 8 prevents the liquid containing the microorganisms or the growth promoting agent of the microorganisms from flowing backward to the line side of the compressed air sending means 7.
  • a downward slope is formed in the direction of the collective rising pipe 6c.
  • FIG. 4 is a cross-sectional view of the air diffuser 6b.
  • the fumarole 6a has a range ( ⁇ 90 ° with respect to the vertically upward direction as a reference) that is upward from the horizontal direction (XX ′ line direction) when installed on the seabed. Range).
  • FIG. 4A shows an example in which one fumarole 6a is provided at a position of ⁇ 30 °.
  • FIG. 4B shows an example in which one fumarole 6a is provided at a vertically upward position.
  • the diameter of the fumarole 6a is preferably 5 times or less the average particle size of the filtered sand in order to suppress the backflow of the filtered sand into the diffuser pipe 6b.
  • the fumarole 6a when the fumarole 6a is provided at an obliquely upward position on either the left or right side, for example, the fumarole 6a1 provided at a position of + 30 ° and a position of ⁇ 30 ° If the positions of the air holes 6a2 provided at the positions are aligned, it is possible to avoid interference between air or liquid ejected from the air holes 6a.
  • the fumarole 6a when the fumarole 6a is provided at a vertically upward position, the fumarole is formed by shifting the position from the fumarole 6a of the other adjacent diffuser pipe 6b so as to be staggered. Interference between air or liquid ejected from the hole 6a can be avoided.
  • valve 8b of the liquid supply means 8 is opened, and the liquid 10 in the water tank 8a is supplied into the line of the liquid supply means 8 while being measured by the flow meter 8c.
  • the air in the air diffuser 6b has a pressure equivalent to the water pressure corresponding to the installation depth of the air diffuser 6b, in order to prevent backflow when the liquid 10 is supplied into the line of the liquid supply means 8. Inject compressed air into the water tank 8a or use a pumping means (not shown) such as a pump.
  • the pressure in the line of the liquid supply means 8 increases in proportion to the volume of the injected liquid 10. Therefore, as shown in FIG. 6, when the inside of the air diffuser 6 b is filled with the liquid 10, the liquid 10 is automatically discharged from the blow hole 6 a according to the input amount.
  • the first method has a demerit that the liquid 10 diffuses only around the diffuser 6b and the diffusion range is narrow.
  • the liquid 10 containing the microorganisms or the growth promoting agent of the microorganisms is vigorous from each of the air holes 6a of the air diffuser 6b. It gushes well. Therefore, when this second method is used, the liquid 10 can be diffused over a wide range of the filtered sand layer 2.
  • the liquid 10 containing the microorganism or the growth promoter of the microorganism when it is desired to diffuse the liquid 10 containing the microorganism or the growth promoter of the microorganism over a wide range, after the liquid 10 is injected into the filtered sand layer 2, the liquid 10 is more suitable in the filtered sand layer 2 than the compressed air delivery means 7 line. An amount of air may be blown to moderately agitate the filter sand. Even when this third method is used, the liquid 10 can be diffused over a wide area of the filter sand layer 2.
  • the seawater infiltration water intake facility 1 of the first embodiment is shown in FIG. 1 in order to suck the liquid 10 containing the microorganisms or the growth promoter of the microorganisms remaining in the diffuser pipe 6b and the collecting pipe 6c1.
  • a configuration is adopted in which a suction pipe 9a connected to the collecting pipe 6c1 and a suction pump 9b connected to the suction pipe 9a are provided.
  • 9c has shown the valve for adjusting the quantity of the air to attract
  • the liquid 10 remaining in the diffuser pipe 6b and the collecting pipe 6c1 can be sucked from the suction pipe 9a and collected on the land as shown in FIG. 8 by operating the suction pump 9b.
  • the inside of the diffuser pipe 6b is lower than the external water pressure and the seawater is prevented from flowing backward. It is desirable.
  • the internal pressure of the air diffuser 6 b is always kept higher than the external water pressure by appropriately supplying air to the air diffuser 6 b from the line of the compressed air sending means 7.
  • the liquid 10 for example, a liquid in which a microorganism and a substance that becomes a nutrient of the microorganism are mixed is used.
  • the liquid injected into the filter sand layer 2 may be either a liquid containing microorganisms or a liquid containing substances that serve as nutrients for microorganisms.
  • microorganisms mixed with the liquid 10 collected, separated or cultured from the bottom sand and bottom mud at the site where the seawater infiltration water intake facility 1 is actually installed. This is because injecting microorganisms that have not been confirmed locally or that do not live locally can destroy the ecosystem.
  • the liquid injection means 5 described above is used when the filter sand layer 2 is newly installed, the generation of a biofilm is promoted, so that the period of running-in which has been conventionally performed is shortened.
  • the liquid injection means 5 is carried out at a required timing, The membrane can be recovered early.
  • the liquid injection means 5 can also be used for purposes other than the generation or recovery of biofilms.
  • the size of the diameter of the fumarole 6a is as small as several mm or less in the air diffuser 6b, there is a risk of being blocked by a biofilm if the operation is continued. Therefore, by the same method as described above from the liquid injection means 5, for example, a bactericidal agent such as sodium hypochlorite or sodium hydroxide is injected into the air diffuser 6 b and is blown out by immersion cleaning or at a low flow rate, so The biofilm attached to the can be dissolved to avoid the risk of blockage.
  • a bactericidal agent such as sodium hypochlorite or sodium hydroxide
  • the biocide leaks into the filtration sand layer 2 and the biofilm in the filtration sand layer 2 may be damaged.
  • the biofilm can be recovered by injecting the liquid to be contained again into the filtration sand layer 2.
  • a gas injection means 11 for injecting a gas containing microorganisms or a growth promoter of microorganisms into the filtration sand layer 2. is provided.
  • a line for gas supply means 12 for supplying a gas containing microorganisms or a growth promoter for microorganisms, in addition to a line for compressed air delivery means 7 for supplying compressed air.
  • the two lines join at the downstream side and are connected to the rising pipe 6c2.
  • the configurations of the diffuser pipe 6b, the collective rising pipe 6c, and the compressed air delivery means 7 are not particularly different from those of the first embodiment, and the apparatus configuration is basically the same.
  • the apparatus configuration is basically the same.
  • the second embodiment since a gas containing microorganisms or a growth promoter for microorganisms is used, there is no problem that liquid remains in the diffuser pipe 6b and the collecting pipe 6c1. Therefore, in the second embodiment, the pit portion 9d and the suction pipe 9a line are not provided.
  • the line of the gas supply means 12 includes a storage tank 12a such as a gas cylinder storing a microorganism or a gas containing a growth promoter of the microorganism, and a pressure reducing valve for reducing the gas in the storage tank 12a to an appropriate pressure. 12 b, a control valve 12 c for adjusting the flow rate of the gas, and a flow meter 12 d for measuring the supply amount of the gas injected into the filtration sand layer 2.
  • a storage tank 12a such as a gas cylinder storing a microorganism or a gas containing a growth promoter of the microorganism
  • a pressure reducing valve for reducing the gas in the storage tank 12a to an appropriate pressure.
  • 12 b a control valve 12 c for adjusting the flow rate of the gas
  • a flow meter 12 d for measuring the supply amount of the gas injected into the filtration sand layer 2.
  • the gas supply means 12 is implemented when the filtration sand layer 2 is newly installed or when the biofilm of the filtration sand layer 2 is considered damaged.
  • Each line of the compressed air delivery means 7 and the gas supply means 12 is adjusted by adjusting the opening of the control valve 7d from the indicated value of the flow meter 7e and the opening of the adjusting valve 12c from the indicated value of the flow meter 12d. Therefore, the gas mixture of a predetermined ratio is supplied to the air diffusion pipe 6b through the collective rising pipe 6c.
  • the seawater infiltration water intake facility 1 cleans the filtration sand layer 2 by injecting a mixed gas containing microorganisms or a growth promoter of microorganisms into the filtration sand layer 2 through the air diffuser 6b, and also in the filtration sand layer 2 and filtration.
  • the gas can be dissolved in seawater above the sand layer 2 to promote biofilm formation or recovery.
  • oxygen when oxygen is used as a growth promoter for microorganisms, a gas mixed so that the oxygen concentration is in the range of 20.946% to 100% is blown into the filtration sand layer 2 through the air diffuser 6b. . Thereby, the oxygen concentration in the filtration sand layer 2 rises, and the proliferation of the aerobic microorganisms which require oxygen can be promoted.
  • ammonia when used as a growth promoter for microorganisms, a gas obtained by mixing a quantity of ammonia gas and air that does not exceed the local water quality standard when dissolved in seawater is filtered through the air diffuser 6b and the sand layer 2 is filtered. Try to blow in. Thereby, the concentration of ammoniacal nitrogen (NH 4 + ) in the filter sand layer 2 is increased, and the growth of nitrifying bacteria that digest the ammoniacal nitrogen can be promoted.
  • NH 4 + ammoniacal nitrogen
  • a gas mixer (static mixer) is used so that the gas flowing from both lines can be quickly mixed at the junction of the line of the compressed air delivery means 7 and the line of the gas supply means 12 or downstream thereof. ) May be installed.
  • the seawater infiltration water intake facility 1 of the second embodiment has a function of cleaning the filtered sand layer 2 and a function of promoting the generation or recovery of a biofilm by the gas injection means 11.
  • the gas injection means 11 having the above-described configuration is adopted, since the equipment downstream from the rising pipe 6c2 is shared, the introduction cost is reduced and the apparatus configuration is compact. There are advantages.
  • the present invention employs the present invention to detect in a timely manner that the biofilm of the filtered sand layer 2 is damaged and that it is better to execute the liquid injection means 5 or the gas injection means 11.
  • the state detection means 13 will be described.
  • the expected effects of biological filtration are (1) removal of organic substances by general microorganisms, (2) removal of ammonia nitrogen by nitrifying bacteria, and (3) removal of iron and manganese by iron bacteria. be able to.
  • the present invention it is detected by water quality analysis whether or not the above bacteria are in a decreased state, and the result is used as an index for determining whether or not the biofilm is in a damaged state.
  • This water quality analysis is performed on the raw seawater before penetrating the filtered sand layer 2 and the supporting gravel layer 3 and the filtered treated water taken by the intake pipe 4, and the values are compared. Specific indicators are as described below.
  • the treated water should have a lower dissolved oxygen content (DO) than the raw seawater. Therefore, when the amount of decrease in the dissolved oxygen amount (DO) is reduced or becomes 0, it can be determined that the biofilm of the filtered sand layer 2 is damaged.
  • DO dissolved oxygen content
  • any one of the above indicators is selected and the amount of decrease is small or 0, it can be determined that the biofilm of the filter sand layer 2 is damaged. .
  • a plurality of indicators among the above indicators may be monitored.
  • the following chemical reaction proceeds, so if the biofilm of the filtered sand layer 2 is normal, the amount of ammonia nitrogen (NH 4 + ) in the treated water should be less than in the raw seawater. is there. NH 4 + + 3 / 2O 2 ⁇ NO 2 ⁇ + H 2 O + 2H 2 + NO 2 - + 1 / 2O 2 ⁇ NO 3 -
  • the pH of the seawater decreases. If the biofilm of the filtered sand layer 2 is normal, the pH of the treated water is lower than that of the seawater raw water and is on the acidic side. Should tilt. Therefore, as a method different from the above, the pH of seawater raw water and treated water is measured, and if there is a change in the amount of decrease from the seawater raw water, it is determined that the nitrifying bacteria in the filtration sand layer 2 are damaged. A method can also be adopted.
  • iron bacteria if iron bacteria are propagated in the filtered sand layer 2, the soluble divalent iron and manganese in the seawater raw water are oxidized to form a solid, and the filtered sand layer 2 is subjected to physical filtration. Should be removed.
  • the seawater infiltration water intake facility 1 of the present invention confirms the quality of raw water before infiltrating the filtration sand layer 2 and the supporting gravel layer 3 as shown in the flowchart of FIG.
  • the quality of the filtered treated water taken by the water intake pipe 4 is confirmed (13b), and by comparing both values, whether or not the biofilm of the filtered sand layer 2 is in a damaged state. (13c) is provided with state detecting means 13.
  • this state detection means 13 when it is judged that this state detection means 13 is in the state where the biofilm of the filtration sand layer 2 is damaged, the liquid injection means 5 or the gas injection means 11 is implemented (13d). is there. On the contrary, when it is determined that the biofilm of the filter sand layer 2 is not damaged, neither the liquid injection means 5 nor the gas injection means 11 is implemented.
  • the comparison of the water quality by the state detection means 13 is the case where the filtered treated water taken by the intake pipe 4 is compared with the raw water before infiltrating the filtered sand layer 2 and the supporting gravel layer 3.
  • the position where the pit portion 9d is provided is not limited to this and may be provided in any position of the collecting pipe 6c1.
  • the suction pipe 9a may be directly connected to the lower surface of the collecting pipe 6c1 without using the pit portion 9d.
  • the gas injection means 11 may be provided together with the liquid injection means 5. .

Abstract

【課題】生物ろ過に必要な生物膜の生成、もしくは運転中に損傷を受けた生物膜の回復を促進する。 【解決手段】海底のろ過砂層2及び支持砂利層3を浸透してきた海水を、支持砂利層3に埋設された取水管4により取水する海水浸透取水設備1である。ろ過砂層2における生物ろ過に必要な生物膜の生成、もしくは損傷を受けた生物膜の回復を促進するために、ろ過砂層2に微生物又は微生物の成長促進剤が含まれた液体を注入する液体注入手段5を備える。 【効果】初期導入時、生物ろ過の機能が発揮されるまでの時間が従来よりも格段に短縮される。ろ過砂層の運転中に、水質の急激な変化などの外的要因により生物膜が損傷した場合も、早期に生物膜を回復することができる。

Description

海水浸透取水設備
 本発明は、海底のろ過砂層における生物ろ過に必要な生物膜の生成もしくは回復を促進可能な海水浸透取水設備に関するものである。
 例えば海水淡水化プラントにおいて、不純物のより少ない清浄な海水を得るために、海底に支持砂利層とろ過砂層を設置し、これらの層を浸透してきた海水を支持砂利層に埋設された取水管で取水する海水浸透取水設備が利用されている(例えば、特許文献1の図1)。
 この海水浸透取水設備で実施される浸透取水法は、ろ過砂の空隙を利用して不純物を物理的に取り除く「物理ろ過」を利用している。加えて、浸透取水法は、海水中の微生物がろ過砂層に付着することによって形成された生物膜の作用により不要な有機物等を分解除去する「生物ろ過」も利用するものである。
 従来、海水浸透取水設備においては、物理ろ過は、特別の準備期間を必要とせず、海底にろ過砂層と支持砂利層を設置した直後から機能させることが可能であった。しかし、生物ろ過については、海底にろ過砂層と支持砂利層を設置しても、微生物がろ過砂に付着して生物膜が生成され、生物ろ過の機能が発揮されるまでには、少なくとも数週間~数ヶ月の時間を要するという課題があった。
 また、従来の海水浸透取水設備では、生物膜が一旦生成されても、設置海域の水質や水温の急激な変化あるいは有害物質の流入などが原因で生物膜中の微生物が大きな損傷を受けると、生物ろ過の機能が著しく低下し、生物膜の機能を回復させるのに長い時間を要していた。
 加えて、浸透取水法は、取水を続けていると、ろ過砂層の目詰まりの原因となる例えばシルトやプランクトンなどの懸濁物質がろ過砂層の表面に堆積し、内部にまで入り込むため、懸濁物質はろ過砂層から定期的に取り除いて洗浄する必要がある。
 そこで、従来、海水浸透取水設備では、ろ過砂層に水又は海水を注入することによりろ過砂を攪拌し、逆洗浄する方法が採られていた。また、本出願人は、先の出願(特願2012-273514号)では、ろ過砂層に埋設された噴気孔を有した散気管にエアーコンプレッサから圧縮空気を送り込んで、噴気孔から空気を噴出させることによりろ過砂を攪拌して洗浄するろ過砂層の洗浄システムを提案した。
 しかし、ろ過砂層に水又は海水を注入する方法、あるいは空気を送り込む方法の何れを採用した場合でも、ろ過砂を攪拌洗浄する際に、ろ過砂層中に生じていた生物膜が剥離するなどして損傷を受けると、生物ろ過の効果が減少してしまうという課題があった。
特開2004-33993号公報
 本発明が解決しようとする課題は、従来の海水浸透取水設備は、設備を新設した場合、生物ろ過の機能が発揮されるまでに相当の時間を要していた点である。また、従来の海水浸透取水設備は、運転中に生物膜に損傷を受けると、生物ろ過の機能が元どおりに回復するのにも相当の時間を要していた点である。
 本発明は、生物膜の生成もしくは回復を促進する手段を設けることで、生物ろ過の機能が発揮もしくは復元されるまでの時間を、従来よりも格段に短縮することができる海水浸透取水設備を提供することを目的としている。
 上記の目的を達成するために、本発明は、
 海底のろ過砂層及び支持砂利層を浸透してきた海水を前記支持砂利層に埋設された取水管により取水する海水浸透取水設備において、前記ろ過砂層における生物ろ過に必要な生物膜の生成もしくは損傷を受けた生物膜の回復を促進すべく、前記ろ過砂層に微生物又は微生物の成長促進剤が含まれた液体を注入する液体注入手段を備えたことを最も主要な特徴としている。
 上記本発明によれば、液体注入手段により、ろ過砂層に微生物又は微生物の成長促進剤が含まれた液体を注入することで、微生物の増殖速度を向上させて、生物ろ過に必要な生物膜の生成もしくは損傷を受けた生物膜の回復を促進することができる。
 本発明は、海水浸透取水設備を設置後、液体注入手段を用いて、ろ過砂層に微生物又は微生物の成長促進剤が含まれた液体を注入することで、生物膜の生成が促進されるので、従来、生物膜の生成が確認されるまでの間に行っていた「慣らし運転」の期間が短縮される。
 また、本発明は、海水浸透取水設備の運転中に、水質の急激な変化などの外的要因、または、ろ過砂層の洗浄により生物ろ過の機能が低下した場合についても、所要のタイミングで液体注入手段を実施することにより、生物膜を早期に回復することができる。
液体注入手段を使用する第1実施例の海水浸透取水設備の構成を示す図である。 散気管、集合立ち上がり配管、吸引管を示す俯瞰図である。 散気管、集合立ち上がり配管、吸引管を側面方向から見た図である。 散気管の横断面図であり、(a)は噴気孔を設ける範囲の一例を示す図、(b)は図1の実施例における噴気孔の位置を示す図である。 噴気孔同士の干渉を避けるために、(a)は噴気孔を左右何れかの斜め位置に設けて隣接する他の散気管の噴気孔とは位置を揃える構成の図、(b)は噴気孔を鉛直上向きの位置に設けて隣接する他の散気管の噴気孔とは位置をずらす構成の図である。 液体注入手段から送出された微生物又は微生物の成長促進剤が含まれた液体が、散気管の噴気孔を通じてろ過砂層に注入される様子を説明する図である。 微生物又は微生物の成長促進剤が含まれた液体を、より広範囲に拡散させる構成を説明する図であり、(a)はリリーフ弁から余分な空気を排出し前記液体の液位を高くした状態を示す図、(b)は液位を高くした状態から圧縮空気を送出することにより前記液体が散気管の噴気孔を通じて勢いよく噴出する様子を示す図である。 散気管や集合管内に残存した微生物又は微生物の成長促進剤が含まれた液体を、吸引管を通じて吸引除去する構成を説明する図である。 気体注入手段を使用する第2実施例の海水浸透取水設備の構成を示す図である。 状態検出手段の手順を説明するフローチャート図である。
 以下、本発明を実施するための形態を、図1~図10を用いて詳細に説明する。図1において、1は、海底に設置されたろ過砂層2及び支持砂利層3を備えた本発明の第1実施例の海水浸透取水設備を示している。
 海水は、ろ過砂層2と支持砂利層3を浸透する間に、物理ろ過と生物ろ過の作用によって、不純物や不要な有機物が除去される。支持砂利層3には、複数の取水管4が埋設されている。取水管4は、浄化された海水を取り込む小径の孔が多数設けられており、集水ポンプ(図示せず)に接続されている。浄化された海水は、取水管4を通じて陸上部に送られる。
 海水浸透取水設備1は、ろ過砂層2に微生物又は微生物の成長促進剤が含まれた液体を注入する液体注入手段5を備えている。この液体注入手段5は、海底にろ過砂層2と支持砂利層3を設置後、微生物がろ過砂に付着して生物膜が生成され、生物ろ過の機能が発揮されるまでの時間を短縮するための手段である。加えて、液体注入手段5は、運転開始後に損傷を受けた生物膜の回復時間を短縮するための手段でもある。第1実施例の海水浸透取水設備1が採用した液体注入手段5の構成は、以下に説明するとおりである。
 ろ過砂層2には、噴気孔6aを有した散気管6bが埋設されている。第1実施例では、散気管6bは、図2に示すように、水平方向に複数本並べて埋設されている。各散気管6bは直管であり、複数の噴気孔6aが一定の間隔(例えば100~700mm間隔)を空けて、海底における設置時に上向きとなる位置に設けられている。
 図2及び図3に示すように、各散気管6bの一端は、散気管6bよりも径のサイズが大きい集合管6c1に接続されている。集合管6c1は、各散気管6bと交差するように水平方向に配置されている。また、集合管6c1の例えば中央部には、陸上部まで延びる立ち上がり配管6c2が接続されている。以下、集合管6c1と立ち上がり配管6c2を総称する場合は、集合立ち上がり配管6cという。
 9aは、内部に残留した微生物又は微生物の成長促進剤が含まれた液体を陸上部まで輸送するための吸引管を示している。この吸引管9aの機能については後述する。また、9dは、残留した前記液体を回収するピット部を示している。
 9eは、吸引管9aとピット部9dを接続するためのジョイント部である。ジョイント部9eは、曲管9e1,9e2と、接続管9e3で構成される。
 再び図1を参照すると、海水浸透取水設備1には、圧縮空気を供給する圧縮エアー送出手段7のラインと、微生物又は微生物の成長促進剤が含まれた液体を供給する液体供給手段8のラインが存在する。この2系統のラインは下流側で合流し、立ち上がり配管6c2と接続されている。
 圧縮エアー送出手段7のラインは、エアーコンプレッサ7aと、このエアーコンプレッサ7aにより加圧された空気を一時的に蓄積しておく貯気槽7bと、加圧された空気を適正な圧力まで減圧する減圧弁7cと、空気の流量を調節する調節弁7dと、ろ過砂層2に噴出させる空気の流量を計測する流量計7eと、配管内の過剰な空気を排出するリリーフ弁7fとで構成される。
 この圧縮エアー送出手段7が作動すると、集合立ち上がり配管6cに接続された各散気管6bの噴気孔6aから空気が噴出する。海水浸透取水設備1は、例えば定期的に圧縮エアー送出手段7を作動させることで、ろ過砂層2のろ過砂を攪拌し、ろ過砂層2の内部に混入または表面に堆積した懸濁物質を、ろ過砂層2の上方の海水中に噴き上げて洗浄することができる。なお、海水中に巻き上げられた懸濁物質は、例えば波浪や潮流によって取水エリアの系外に排出される。
 一方、液体供給手段8のラインは、微生物又は微生物の成長促進剤が含まれた液体を貯溜しておくための水槽8aと、前記液体を水槽8aから供給するための弁8bと、ろ過砂層2に注入する前記液体の供給量を計測するための流量計8cとで構成される。
 よって、海水浸透取水設備1は、ろ過砂層2及び支持砂利層3を新設したときや、ろ過砂層2の生物膜が運転中に損傷を受けたと考えられるときは、液体供給手段8の弁8cを開くことにより、集合立ち上がり配管6cに、微生物又は微生物の成長促進剤が含まれた液体を供給することができる。これにより、海水浸透取水設備1は、微生物又は微生物の成長促進剤が含まれた液体を、散気管6bを通じてろ過砂層2に注入し、生物膜の生成または回復を促進することができる。
 このように、海水浸透取水設備1は、ろ過砂層2に対する洗浄の機能と、生物膜の生成もしくは回復を促進する機能を兼ね備えている。そして、特に、上述の構成よりなる液体注入手段5を採用した第1実施例の海水浸透取水設備1によれば、立ち上がり配管6c2よりも下流側の機器が共通化されているので、導入コストが低減されると共に、装置構成もコンパクトになるという利点がある。
 なお、圧縮エアー送出手段7のラインと液体供給手段8のラインの合流部は、微生物又は微生物の成長促進剤が含まれた液体が圧縮エアー送出手段7のライン側に逆流するのを防止するために、集合立ち上がり配管6cの方向に向かって下り勾配となるようにしている。
 図4は、散気管6bの横断面図である。噴気孔6aは、例えば、図4(a)に示すように、海底における設置時に、水平方向(X-X’線方向)よりも上向きとなる範囲(鉛直上向きの方向を基準に±90°の範囲)に設けることができる。一例として、図4(a)は、±30°の位置に噴気孔6aを1つずつ設ける場合の例を示している。また、図4(b)は、鉛直上向きの位置に噴気孔6aを1つ設ける場合の例を示している。
 この噴気孔6aの径は、散気管6b内へのろ過砂の逆流を抑制するために、ろ過砂の平均粒径の5倍以下のサイズとする方が望ましい。また、噴気孔6aから噴出させる空気又は液体は、隣接する他の散気管6bの噴気孔6aから噴出させる空気又は液体とは、干渉しないことが望ましい。
 具体的には、図5(a)に示すように、噴気孔6aを左右何れかの斜め上向きの位置に設ける場合は、例えば+30°の位置に設けた噴気孔6a1と、-30°の位置の位置に設けた噴気孔6a2の、各位置を揃えるようにすれば、噴気孔6aから噴出させる空気又は液体同士の干渉を回避できる。
 また、図5(b)に示すように、噴気孔6aを鉛直上向きの位置に設ける場合は、隣接する他の散気管6bの噴気孔6aとは位置をずらして千鳥状にすることで、噴気孔6aから噴出させる空気又は液体同士の干渉を回避できる。
 次に、図6~図7を参照しながら、ろ過砂層2に微生物又は微生物の成長促進剤が含まれた液体10を注入する方法について説明する。まず、液体供給手段8の弁8bを開き、流量計8cで計測しながら、水槽8a中の液体10を液体供給手段8のライン内に規定量供給する。
 散気管6b内の空気は、散気管6bの設置深度に応じた水圧と同等の圧力を有しているので、液体10を液体供給手段8のライン内に供給するときに逆流を防止するためには、水槽8a内に圧縮空気を注入するか、あるいはポンプ等の圧送手段(図示せず)を使用する。
 液体供給手段8のラインの圧力は、注入した液体10の体積に比例して上昇する。そのため、図6に示すように、散気管6b内が液体10で満たされると自動的に噴気孔6aから液体10が投入量に応じて排出される。但し、この第1の方法による場合は、散気管6bの周囲にしか液体10が拡散せず、拡散範囲が狭いというデメリットがある。
 そこで、微生物又は微生物の成長促進剤が含まれた液体10を、より広範囲に拡散させたい場合は、先ず、リリーフ弁7fより余分な空気を排出することで、立ち上がり配管6c2内の圧力を減圧して調整する。すると、図7(a)に示すように、液体10の液位は立ち上がり配管6c2内の所定の位置まで高くなる。
 その後、図7(b)に示すように、圧縮エアー送出手段7のラインより空気を圧送すると、微生物又は微生物の成長促進剤が含まれた液体10は、散気管6bの各噴気孔6aから勢いよく噴出する。よって、この第2の方法を用いた場合は、液体10を、ろ過砂層2の広範囲に亘って拡散させることが可能になる。
 また、微生物又は微生物の成長促進剤が含まれた液体10を、広範囲に拡散させたい場合は、液体10をろ過砂層2に注入後、ろ過砂層2内に圧縮エアー送出手段7のラインより適当な量の空気を吹き込んで、ろ過砂を適度に攪拌しても良い。この第3の方法を用いた場合も、液体10を、ろ過砂層2の広範囲に拡散させることができる。
 一方、上記いずれの方法を採用した場合も、微生物又は微生物の成長促進剤が含まれた液体10が、散気管6bや集合管6c1内に残存するという課題がある。
 そこで、第1実施例の海水浸透取水設備1は、散気管6bと集合管6c1の内部に残存している微生物又は微生物の成長促進剤が含まれた液体10を吸引するために、図1に示すように、集合管6c1に接続された吸引管9aと、この吸引管9aに接続された吸引ポンプ9bを設ける構成を採用した。なお、9cは、吸引する空気の量を調節するための弁を示している。
 そのため、散気管6bと集合管6c1の内部に残存した液体10は、吸引ポンプ9bを作動させることにより、図8に示すように、吸引管9aから吸引して陸上部で回収することができる。このような構成を採用すれば、残存した液体10に含まれる微生物や微生物の栄養素等に起因して散気管6b内でバイオフィルムが発生し、噴気孔6aが目詰まりを起こすのを防止できる。
 散気管6bと集合管6c1の内部に残存した液体10を、吸引管9aから吸引する構成を採用する場合は、散気管6b内が外部水圧よりも低圧になって海水が逆流することを防止することが望ましい。海水浸透取水設備1においては、散気管6bの内圧は、圧縮エアー送出手段7のラインより散気管6bに空気を適宜供給することで、常に外部水圧よりも高い状態を維持している。
 海水浸透取水設備1においては、液体10として、例えば微生物と、微生物の栄養素となる物質を混合した液体を使用している。しかし、本発明では、ろ過砂層2に注入する液体は、微生物を含む液体、もしくは、微生物の栄養素となる物質を含む液体の何れか一方のみを使用しても良い。
 また、この液体10に混合する微生物は、海水浸透取水設備1を実際に設置する現地の底砂や底泥から採取、分離もしくは培養したものを使用することが好ましい。現地で確認されていない、あるいは、現地で生息していない微生物を注入することは、生態系を破壊する虞があるからである。
 以上に説明した液体注入手段5は、ろ過砂層2を新設したときに用いれば、生物膜の生成が促進されるので、従来、行っていた慣らし運転の期間が短縮される。また、運転開始後に、水質の急激な変化などの外的要因、または、ろ過砂層2の洗浄により生物ろ過の機能が低下した場合についても、所要のタイミングで液体注入手段5を実施すれば、生物膜を早期に回復することができる。
 なお、この液体注入手段5は、生物膜の生成もしくは回復以外の目的でも利用することができる。
 例えば、散気管6bは、噴気孔6aの径のサイズが数mm以下と小さいため、運転を継続していると生物膜によって閉塞するリスクがある。そこで、液体注入手段5から上記と同様の方法で、例えば次亜塩素ナトリウムや水酸化ナトリウムなどの殺菌剤を散気管6b内に注入し、浸漬洗浄もしくは低流量で噴出することで、噴気孔6aに付着した生物膜を溶解させて、閉塞のリスクを回避することができる。
 この場合、ろ過砂層2内に殺菌剤が漏洩して、ろ過砂層2内の生物膜がダメージを受ける虞があるかも知れないが、仮に、生物膜がダメージを受けたと考えられる場合は、微生物を含む液体を再度ろ過砂層2内に注入することで、生物膜を回復することができる。
 次に、図9を参照しながら、第2実施例の海水浸透取水設備1の構成を、第1実施例とは異なる点を中心に説明する。
 第2実施例の海水浸透取水設備1は、第1実施例で説明した液体注入手段5に代えて、ろ過砂層2に微生物又は微生物の成長促進剤が含まれた気体を注入する気体注入手段11を設けたものである。
 海水浸透取水設備1には、圧縮空気を供給する圧縮エアー送出手段7のライン以外に、微生物又は微生物の成長促進剤が含まれた気体を供給する気体供給手段12のラインが存在する。この2系統のラインは、下流側で合流し、立ち上がり配管6c2と接続されている。
 散気管6b、集合立ち上がり配管6c、圧縮エアー送出手段7の構成は、第1実施例と特に異なる点はなく、機器構成は基本的に同じである。但し、第2実施例においては、微生物又は微生物の成長促進剤が含まれた気体を用いるため、散気管6b及び集合管6c1内に液体が残留するという課題はない。したがって、第2実施例においては、ピット部9dや、吸引管9aのラインは設けていない。
 気体供給手段12のラインは、微生物又は微生物の成長促進剤が含まれた気体が格納されるガスボンベなどの貯気槽12aと、貯気槽12a内の前記気体を適正な圧力まで減圧する減圧弁12bと、前記気体の流量を調節する調節弁12cと、ろ過砂層2に注入する前記気体の供給量を計測するための流量計12dとで構成される。
 気体供給手段12は、ろ過砂層2の新設時や、ろ過砂層2の生物膜が損傷を受けていると考えられるときに実施される。そして、流量計7eの指示値から調節弁7dの開度を、また流量計12dの指示値から調節弁12cの開度を調節することで、圧縮エアー送出手段7及び気体供給手段12の各ラインから、所定の比率の混合気体が、集合立ち上がり配管6cを介して散気管6bに供給される。
 海水浸透取水設備1は、微生物又は微生物の成長促進剤が含まれた混合気体を、散気管6bを通じてろ過砂層2に注入することにより、ろ過砂層2を洗浄すると共に、ろ過砂層2内、及びろ過砂層2の上方の海水に前記気体を溶解させて、生物膜の生成または回復を促進することができる。
 例えば、微生物の成長促進剤として酸素を使用する場合は、酸素濃度が20.946%以上~100%の範囲となるように混合した気体を、散気管6bを通じてろ過砂層2内に吹き込むようにする。これにより、ろ過砂層2中の酸素濃度が上昇し、酸素を必要とする好気性微生物の増殖を促すことができる。
 また、例えば、微生物の成長促進剤としてアンモニアを使用する場合は、海水に溶解した場合に現地水質基準を超えない程度の量のアンモニアガスと空気を混合した気体を、散気管6bを通じてろ過砂層2内に吹き込むようにする。これにより、ろ過砂層2中のアンモニア性窒素(NH4 +)濃度が上昇し、アンモニア性窒素を消化する硝化菌の増殖を促すことができる。
 なお、必要であれば、圧縮エアー送出手段7のラインと気体供給手段12のラインの合流部、もしくはその下流部に、両ラインから流れ込む気体が速やかに混合するように、ガス混合器(スタティックミキサー)を設置しても良い。
 このように、第2実施例の海水浸透取水設備1は、ろ過砂層2に対する洗浄の機能と、気体注入手段11による生物膜の生成もしくは回復を促進する機能を兼ね備えている。そして、特に、上述の構成による気体注入手段11を採用した場合は、立ち上がり配管6c2よりも下流側の機器が共通化されているので、導入コストが低減されると共に、装置構成がコンパクトになるという利点がある。
 続いて、ろ過砂層2の生物膜が損傷し、液体注入手段5、もしくは、気体注入手段11を実行した方がよい状態になっていることを、タイムリーに検出するために、本発明が採用した状態検出手段13について説明する。
 生物ろ過に期待する効果としては、(1)一般的な微生物による有機物の除去、(2)硝化菌によるアンモニア態窒素の除去、(3)鉄バクテリアによる鉄・マンガンの除去、の3点を挙げることができる。
 そこで、本発明においては、上記の細菌が減少している状態にあるか否かを水質分析によって検出し、その結果を、生物膜が損傷している状態にあるか否かを判断する指標として用いる。この水質分析は、ろ過砂層2及び支持砂利層3を浸透する前の海水原水と、取水管4によって取水されたろ過済みの処理水について実施し、値を比較するものである。具体的な指標は、以下に説明するとおりである。
 まず、好気性の細菌については、酸素を消費するため、ろ過砂層2の生物膜が正常であれば、処理水は海水原水よりも溶存酸素量(DO)が減少するはずである。そこで、この溶存酸素量(DO)の減少量が小さくなるか、あるいは0となった場合は、ろ過砂層2の生物膜がダメージを受けていると判断することができる。
 また、有機物を分解する微生物については、海水中の溶存有機物が減少するため、ろ過砂層2の生物膜が正常であれば、処理水は海水原水よりも有機物が減少するはずである。有機物を定量的に把握するには、一般的に以下の指標が用いられている。
 TOC(Total Organic Carbon:全有機炭素)
 DOC(Dissolved Organic Carbon:溶存有機炭素)
 BOD(Biochemical oxygen demand:生物化学的酸素要求量)
 COD(Chemical Oxygen Demand:化学的酸素要求量)
 E260
 SDI(Silt Density Index)
 TEP(Transparent Expolymer Particles)
 そこで、上記指標のうち、いずれか1つの指標を選択し、その減少量が小さくなるか、あるいは0となった場合は、ろ過砂層2の生物膜がダメージを受けていると判断することができる。あるいは、必要であれば、上記指標のうち、複数の指標を監視するようにしても良い。
 また、硝化菌については、以下の化学反応が進行するため、ろ過砂層2の生物膜が正常であれば、処理水は海水原水よりもアンモニア態窒素(NH4 +)の量が減少するはずである。
 NH4 + + 3/2O2 → NO2 - + H2O + 2H2 +
 NO2 - + 1/2O2 → NO3 -
 そこで、このアンモニア態窒素(NH4 +)の減少量が小さくなるか、あるいは0となった場合は、ろ過砂層2の生物膜がダメージを受けていると判断することができる。
 また、アンモニア態窒素(NH4 +)が減少すれば、海水のpHは低下するので、ろ過砂層2の生物膜が正常であれば、処理水のpHは、海水原水よりも小さく、酸性側に傾くはずである。そこで、上記とは別の方法として、海水原水と処理水のpHを計測し、海水原水からの低下量に異変が生じた場合に、ろ過砂層2の硝化菌にダメージが生じていると判断する方法も採用できる。
 また、鉄バクテリアについては、ろ過砂層2中に鉄バクテリアが繁殖していれば、海水原水中の溶解性の二価鉄やマンガンを酸化して固体状にし、ろ過砂層2の物理ろ過の作用により除去されるはずである。
 そこで、海水原水と処理水の鉄(Fe)やマンガン(Mn)の量を計測し、海水原水からの低下量に異変が生じた場合は、ろ過砂層2の鉄バクテリアがダメージを受けていると判断することができる。
 以上の説明をまとめると、本発明の海水浸透取水設備1は、図10のフローチャートに示すように、ろ過砂層2及び支持砂利層3を浸透する前の原水の水質を確認し(13a)、次に、取水管4によって取水されたろ過済みの処理水の水質を確認し(13b)、両者の値を比較することにより、ろ過砂層2の生物膜が損傷を受けている状態にあるか否かを判断する(13c)、状態検出手段13を備えたものである。
 そして、この状態検出手段13は、ろ過砂層2の生物膜が損傷を受けている状態にあると判断されたときは、液体注入手段5、もしくは、気体注入手段11を実施する(13d)ものである。これとは逆に、ろ過砂層2の生物膜が損傷を受けている状態にないと判断されたときは、液体注入手段5、気体注入手段11の、いずれの手段も実施しない。
 そして、既に説明したとおり、状態検出手段13による水質の比較は、取水管4によって取水されたろ過済みの処理水を、ろ過砂層2及び支持砂利層3を浸透する前の原水と比較した場合における溶存酸素量の減少量、溶存有機物の減少量、アンモニア態窒素の減少量、pHの低下量、FeもしくはMnの減少量の、いずれか一つ、または必要に応じて複数の指標を用いるものである。
 本発明は、前記の例に限るものではなく、各請求項に記載の技術的思想の範疇であれば適宜実施の形態を変更しても良いことは言うまでもない。
 例えば、上記実施例では、ピット部9dは集合管6c1の中央部に設ける例を開示したが、ピット部9dを設ける位置はこれに限らず、集合管6c1の、どの位置に設けても良い。また、ピット部9dを用いずに集合管6c1の下面に直接、吸引管9aを接続してもよい。
 また、第2実施例では、液体注入手段5に代えて、気体注入手段11を設ける場合の例を開示したが、本発明においては、液体注入手段5と共に、気体注入手段11を設けても良い。
1 海水浸透取水設備
2 ろ過砂層
3 支持砂利層
4 取水管
5 液体注入手段
6a 噴気孔
6b 散気管
6c 集合立ち上がり配管
6c1 集合管
6c2 立ち上がり配管
7 圧縮エアー送出手段
7a エアーコンプレッサ
8 液体供給手段
9a 吸引管
9b 吸引ポンプ
10 微生物又は微生物の成長促進剤が含まれた液体
11 気体注入手段
12 気体供給手段
13 状態検出手段

Claims (7)

  1.  海底のろ過砂層及び支持砂利層を浸透してきた海水を前記支持砂利層に埋設された取水管により取水する海水浸透取水設備において、前記ろ過砂層における生物ろ過に必要な生物膜の生成もしくは損傷を受けた生物膜の回復を促進すべく、前記ろ過砂層に微生物又は微生物の成長促進剤が含まれた液体を注入する液体注入手段を備えたことを特徴とする海水浸透取水設備。
  2.  前記ろ過砂層に混入又は堆積した懸濁物質を攪拌して洗浄すべく、前記ろ過砂層に埋設され、噴気孔を有した散気管と、この散気管に圧縮空気を送り込むエアーコンプレッサが設けられており、前記液体注入手段による微生物又は微生物の成長促進剤が含まれた液体の前記ろ過砂層への注入が、前記散気管を通じて行われることを特徴とする請求項1に記載の海水浸透取水設備。
  3.  前記散気管と前記エアーコンプレッサの間に複数の前記散気管と接続された集合管が配設されており、前記散気管と前記集合管の内部に残存している微生物又は微生物の成長促進剤が含まれた液体を吸引するために、前記集合管に接続された吸引管と、この吸引管に接続された吸引ポンプを備えたことを特徴とする請求項2に記載の海水浸透取水設備。
  4.  前記液体注入手段に代えて、あるいは、前記液体注入手段と共に、前記ろ過砂層に微生物又は微生物の成長促進剤が含まれた気体を注入する気体注入手段を備えたことを特徴とする請求項1に記載の海水浸透取水設備。
  5.  前記ろ過砂層に混入又は堆積した懸濁物質を攪拌して洗浄すべく、前記ろ過砂層に埋設され、噴気孔を有した散気管と、この散気管に圧縮空気を送り込むエアーコンプレッサが設けられており、前記気体注入手段による微生物又は微生物の成長促進剤が含まれた気体の前記ろ過砂層への注入が、前記散気管を通じて行われることを特徴とする請求項4に記載の海水浸透取水設備。
  6.  前記ろ過砂層及び前記支持砂利層を浸透する前の原水の水質と、前記取水管によって取水されたろ過済みの処理水の水質を比較することにより、前記ろ過砂層の生物膜が損傷を受けている状態にあるか否かを判断する状態検出手段を更に備えたことを特徴とする請求項1~5の何れかに記載の海水浸透取水設備。
  7.  前記状態検出手段による水質の比較は、前記処理水を前記原水と比較した場合における溶存酸素量の減少量、溶存有機物の減少量、アンモニア態窒素の減少量、pHの低下量、FeもしくはMnの減少量の、いずれか一つまたは複数の指標を用いることを特徴とする請求項6に記載の海水浸透取水設備。
PCT/JP2014/080215 2014-02-21 2014-11-14 海水浸透取水設備 WO2015125357A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-031807 2014-02-21
JP2014031807A JP2015157233A (ja) 2014-02-21 2014-02-21 海水浸透取水設備

Publications (1)

Publication Number Publication Date
WO2015125357A1 true WO2015125357A1 (ja) 2015-08-27

Family

ID=53877886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080215 WO2015125357A1 (ja) 2014-02-21 2014-11-14 海水浸透取水設備

Country Status (2)

Country Link
JP (1) JP2015157233A (ja)
WO (1) WO2015125357A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713832A (zh) * 2016-04-13 2016-06-29 浙江大学 一种可控温的非循环供水管道生物膜培养装置及其使用方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6190992B1 (ja) * 2016-03-28 2017-09-06 株式会社大建 雨水貯水システム
JP6814108B2 (ja) * 2017-08-10 2021-01-13 日立造船株式会社 防波堤システム

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363405A (ja) * 1991-02-04 1992-12-16 Toa Harbor Works Co Ltd 水質浄化捨石堤
JPH05317871A (ja) * 1992-05-21 1993-12-03 Japan Organo Co Ltd 有機性排水の生物処理方法
JPH08184081A (ja) * 1994-12-28 1996-07-16 Ohbayashi Corp 石積み浄化堤
JP2000070979A (ja) * 1998-09-01 2000-03-07 Hitachi Chem Co Ltd 洗車機排水処理装置
JP2002054183A (ja) * 2000-08-10 2002-02-20 Ohbayashi Corp 海水取水システムおよび海水取水方法
JP2006136799A (ja) * 2004-11-11 2006-06-01 Wako Concrete Kogyo Kk 仮眠微生物による水質改善方法
JP2011088075A (ja) * 2009-10-22 2011-05-06 Ohbayashi Corp 石積み浄化堤の機能維持方法及びシステム
JP2011089318A (ja) * 2009-10-22 2011-05-06 Ohbayashi Corp 石積み浄化堤の機能維持方法及びシステム
JP2012246711A (ja) * 2011-05-30 2012-12-13 Hitachi Zosen Corp 海水の浸透取水ろ過方法及び砂層表面の目詰まり防止装置
JP2013075268A (ja) * 2011-09-30 2013-04-25 Hitachi Zosen Corp 海水の浸透ろ過方法及び浸透取水ユニット
JP2013181371A (ja) * 2012-03-05 2013-09-12 Hitachi Zosen Corp 海水浸透取水装置
JP2014117643A (ja) * 2012-12-14 2014-06-30 Hitachi Zosen Corp ろ過砂層の洗浄システム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363405A (ja) * 1991-02-04 1992-12-16 Toa Harbor Works Co Ltd 水質浄化捨石堤
JPH05317871A (ja) * 1992-05-21 1993-12-03 Japan Organo Co Ltd 有機性排水の生物処理方法
JPH08184081A (ja) * 1994-12-28 1996-07-16 Ohbayashi Corp 石積み浄化堤
JP2000070979A (ja) * 1998-09-01 2000-03-07 Hitachi Chem Co Ltd 洗車機排水処理装置
JP2002054183A (ja) * 2000-08-10 2002-02-20 Ohbayashi Corp 海水取水システムおよび海水取水方法
JP2006136799A (ja) * 2004-11-11 2006-06-01 Wako Concrete Kogyo Kk 仮眠微生物による水質改善方法
JP2011088075A (ja) * 2009-10-22 2011-05-06 Ohbayashi Corp 石積み浄化堤の機能維持方法及びシステム
JP2011089318A (ja) * 2009-10-22 2011-05-06 Ohbayashi Corp 石積み浄化堤の機能維持方法及びシステム
JP2012246711A (ja) * 2011-05-30 2012-12-13 Hitachi Zosen Corp 海水の浸透取水ろ過方法及び砂層表面の目詰まり防止装置
JP2013075268A (ja) * 2011-09-30 2013-04-25 Hitachi Zosen Corp 海水の浸透ろ過方法及び浸透取水ユニット
JP2013181371A (ja) * 2012-03-05 2013-09-12 Hitachi Zosen Corp 海水浸透取水装置
JP2014117643A (ja) * 2012-12-14 2014-06-30 Hitachi Zosen Corp ろ過砂層の洗浄システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Kaisui Shinto Shusui Shisetsu no Tokucho to Shiuntenji no Suishitsu Hendo", JAPAN SOCIETY OF CIVIL ENGINEERS DAI 60 KAI NENJI GAKUJUTSU KOENKAI, September 2005 (2005-09-01), pages 25 - 26 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713832A (zh) * 2016-04-13 2016-06-29 浙江大学 一种可控温的非循环供水管道生物膜培养装置及其使用方法
CN105713832B (zh) * 2016-04-13 2017-12-12 浙江大学 一种可控温的非循环供水管道生物膜培养装置及其使用方法

Also Published As

Publication number Publication date
JP2015157233A (ja) 2015-09-03

Similar Documents

Publication Publication Date Title
KR101122222B1 (ko) 수처리 장치 및 수처리 장치 여과재층의 세정 방법
TW201107252A (en) Suspended media membrane biological reactor system and process including suspension system and multiple biological reactor zones
JP5844196B2 (ja) 淡水化装置及び淡水化方法
US11767243B2 (en) Method for water treatment and recycling
WO2015125357A1 (ja) 海水浸透取水設備
US9328005B2 (en) Denitrification process
TWI236929B (en) Membrane cartridge, membrane separation apparatus and membrane separation method
JP2006212505A (ja) 排水処理装置とそれを用いた排水処理システム
CN209923142U (zh) 码头船舶生活污水接收处理系统
JP2007144307A (ja) 水処理方法及びその処理装置
CN207659171U (zh) 淹没曝气生物滤池反应系统
JP6112162B2 (ja) 有機性排水の生物処理装置及び処理方法
JP5825807B2 (ja) 廃水処理装置及び廃水処理方法
JP2020084552A (ja) 揚水システム、地下水の供給方法、および地下水中の溶存酸素濃度の増加を抑える方法
JP4335193B2 (ja) 有機性廃水の処理方法及び装置
JPH02207882A (ja) 汚水類処理装置
US10513452B2 (en) Water treatment system
JP2007050366A (ja) 排水処理装置
KR101177757B1 (ko) 수소가스를 이용한 상수도 원수의 질산성 질소제거 방법 및 장치
JP6940934B2 (ja) 現地浸漬型水質浄化設備
KR100609762B1 (ko) 고도수처리장치 및 방법
CN206476813U (zh) 污水净化设备及喷泉系统
KR101200625B1 (ko) 생물여과장치
JP2004066178A (ja) 排水処理装置
CN112079533A (zh) 煤矿井下短程水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882867

Country of ref document: EP

Kind code of ref document: A1