WO2015122180A4 - Manufacturing method for strontium titanate fine particles - Google Patents

Manufacturing method for strontium titanate fine particles Download PDF

Info

Publication number
WO2015122180A4
WO2015122180A4 PCT/JP2015/000617 JP2015000617W WO2015122180A4 WO 2015122180 A4 WO2015122180 A4 WO 2015122180A4 JP 2015000617 W JP2015000617 W JP 2015000617W WO 2015122180 A4 WO2015122180 A4 WO 2015122180A4
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
aqueous solution
strontium titanate
solution
fine particles
Prior art date
Application number
PCT/JP2015/000617
Other languages
French (fr)
Japanese (ja)
Other versions
WO2015122180A1 (en
Inventor
佐々木 勉
田中 淳
鈴木 真之
阿尻 雅文
Original Assignee
富士フイルム株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 国立大学法人東北大学 filed Critical 富士フイルム株式会社
Publication of WO2015122180A1 publication Critical patent/WO2015122180A1/en
Publication of WO2015122180A4 publication Critical patent/WO2015122180A4/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing strontium titanate particles suitable as a mother catalyst for dielectric materials and photocatalysts.
  • Strontium titanate is one of the materials having many excellent physical properties such as dielectric properties, thermoelectric properties, and high refractive index as an optical material.
  • strontium titanate (SrTiO 3 ) particles formed by supporting a metal such as platinum on the surface as a co-catalyst is one of those being developed as a hydrogen generation photocatalyst. Can be mentioned.
  • SrTiO 3 is expected to be a photocatalyst that enables hydrogen production using only sunlight.
  • the strontium titanate particles serving as a mother catalyst are required to have optimum particle size and shape and high crystallinity in order to be able to support the cocatalyst with a larger surface area. There is.
  • hydrothermal synthesis method is a method which can synthesize fine particles of submicron or less It has been known.
  • Patent Documents 1 to 10 describe a method of producing titanium oxide particles or fine powder by hydrothermal synthesis.
  • Patent Documents 8, 9 and 10 disclose methods of producing titanate oxide particles by subcritical or supercritical synthesis.
  • the pH is as strong as more than 13.5. It is necessary to carry out under alkaline conditions. Some of these documents do not mention pH conditions, and some documents mention that they can be produced under lower alkaline conditions, but any of them can be produced as far as production is reported in the examples.
  • the pH is manufactured through strongly alkaline conditions of more than 13.5. In particular, synthesis of strontium titanate particles has only been reported as an example of preparation under conditions of pH 14 or higher.
  • Patent Document 6 discloses, as a method for producing a single phase titanium-containing perovskite oxide at low temperature and pressure, a method of hydrothermally synthesizing in an aqueous solution of an alkali metal hydroxide of 10 molar concentration or more. It is done.
  • Patent Document 4 states that it is preferable to use an aqueous solution of barium hydroxide having a pH of 7 to 10 in the third step, the third step is a re-hydrothermal treatment, and the second step for performing hydrothermal synthesis is As described in Example 1, it is carried out under strongly alkaline conditions of pH 13.5 or more.
  • patent document 7 implements by two-step heating, and the process is complicated.
  • Japanese Examined Patent Publication 3-39016 Japanese Examined Patent Publication No. 6-649 Japanese Examined Patent Publication No. 2-46531 Patent No. 3838523 gazette Unexamined-Japanese-Patent No. 6-322587 Japanese Patent Application Publication No. 2007-31176 Tokuhei 8-32559 Patent No. 3663408 Patent No. 4593124 Japanese Patent Application Publication No. 2003-261329
  • alkali resistance in the reaction vessel is essential.
  • a reaction container having alkali resistance ones made of Teflon (registered trademark) or those made of Hastelloy (registered trademark) are known, however, those made of Teflon (registered trademark) have limited heat resistance, so the reaction temperature is There is a limit and there is a problem that the product made of Hastelloy (registered trademark) is very expensive, resulting in high equipment cost.
  • reaction container made of SUS etc. which is excellent in heat resistance, is highly versatile and inexpensive, can be used as a reaction container, and for that purpose It is preferable to be able to manufacture on conditions.
  • the present invention has been made in view of the above circumstances, and an object thereof is to produce perovskite-type strontium titanate fine particles under low alkaline conditions.
  • the first production method of the strontium titanate fine particles of the present invention is Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively; Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1; Preparing a reaction solution by adding a basic substance to the mixed solution to adjust the pH to prepare a reaction solution;
  • the reaction liquid has a hydrothermal reaction or a subcritical reaction or a supercritical reaction at a temperature of 250 ° C. or higher, and a step D1.
  • reacting the reaction solution means reacting one or more components contained in the reaction solution.
  • the term "fine particles” shall mean those having a size of less than 10 ⁇ m in average particle size, preferably nanoparticles.
  • the nanoparticles may generally refer to those having an average particle size of 200 nm or less, preferably 200 nm or less. In some cases, the nanoparticles may be of a size with an average particle size of 100 nm or less, and in other cases with a size of 50 nm or less.
  • the nanoparticles are of a size whose average particle size is 20 nm or less, and in other cases whose average particle size is 10 nm or less or 5 nm or less You may Also, in a preferred case, the particle size of the nanoparticles is preferably uniform, but in some cases, it may be preferable to mix particles having different particle sizes at a certain ratio.
  • the average particle size can be measured by a method known in the art, and can be measured by, for example, an electron microscope (TEM, SEM), an adsorption method, a light scattering method, X-ray small angle scattering (SAXS) or the like.
  • TEM electron microscope
  • SEM electron microscope
  • SAXS X-ray small angle scattering
  • water above the critical point of water (temperature 374 ° C., pressure 22 MPa) is supercritical water, and water at a temperature near 350 ° C. near critical point is subcritical water
  • the reaction in supercritical water is a supercritical reaction
  • the reaction in subcritical water is a subcritical reaction.
  • X which is the pH of the reaction solution prepared in step C1
  • X preferably satisfies X ⁇ 11, more preferably 11 ⁇ X ⁇ 13.5, and 11 ⁇ X. It is further preferable to satisfy ⁇ 12.
  • the second method for producing a strontium titanate fine particle of the present invention shown below can be applied.
  • the second production method of the strontium titanate fine particles of the present invention comprises a step A2 of preparing an Sr-containing aqueous solution and a Ti-containing aqueous solution respectively; Step B2 of mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution to prepare a mixed solution in which the molar ratio Sr / Ti of the contained Sr component and Ti component is more than 1.0.
  • a basic substance is added to the mixed solution to adjust the pH of the mixed solution to prepare a reaction solution C2.
  • the reaction liquid has a hydrothermal reaction or a subcritical reaction or a supercritical reaction at a temperature of 250 ° C. or higher.
  • X which is the pH of the reaction solution prepared in step C2, preferably satisfies 9 ⁇ X ⁇ 13.5, and more preferably 9 ⁇ X ⁇ 12.
  • step B2 it is preferable to mix the Sr-containing aqueous solution and the Ti-containing aqueous solution so that the molar ratio Sr / Ti of the Sr component and the Ti component contained in the mixed solution is 1.3 or more.
  • the Ti-containing aqueous solution used in the step of preparing the mixed solution preferably does not contain TiO 2 as a main component of the Ti component.
  • the "main component” means a component having a content of 50% by mass or more.
  • the Sr-containing aqueous solution be prepared by dissolving strontium acetate or hydroxide or nitrate in water
  • the Ti-containing aqueous solution is preferably a titanium tetrachloride aqueous solution.
  • a reaction liquid containing Ti (OH) 4 and / or HTiO 3 - ion as a main component of Ti component is prepared Is preferred.
  • a basic aqueous solution used for adjustment of pH sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is preferable.
  • perovskite-type strontium titanate fine particles can be produced by a hydrothermal reaction, a subcritical reaction or a supercritical reaction under a condition of alkali lower than neutrality.
  • highly crystalline strontium titanate fine particles can be produced by using a Ti-containing aqueous solution to be mixed with a Sr-containing aqueous solution that does not contain TiO 2 as a main component of the Ti component.
  • fine-particles obtained by supercritical reaction in Example 1 (1st manufacturing method) The figure which shows the XRD spectrum of strontium titanate microparticles
  • fine-particles obtained by supercritical reaction in Example 2 (2nd manufacturing method) The figure which shows the XRD spectrum of the strontium titanate microparticles
  • FIG. 1 shows a flow diagram of the method for producing strontium titanate fine particles of the present embodiment.
  • Nonpolar Perovskite by setting the temperature so that titanium dioxide is hard to precipitate in it and raising the temperature rapidly in that state to make it a subcritical reaction or supercritical reaction near the critical point where water becomes a nonpolar gas state
  • the barium titanate fine particles having a high degree of crystallinity not containing crystal water or hydroxyl groups can be relatively low temperature and short time by remarkably increasing the formation rate of the crystalline titanium oxide and greatly reducing the concentration of dissolved ions. And it is possible to manufacture efficiently.
  • the inventors focused on the instability of the Ti-containing aqueous solution and focused on the potential-pH diagram of Ti.
  • Ti is not in the ion dissociation state but in the hydrate of titanium dioxide (TiO 2 ⁇ H 2 O) in a weak acid to a weak alkaline environment of less than pH 12. Due to its stability, it is considered that, at room temperature, conversion to titanium dioxide hydrate starts shortly after preparation of the Ti-containing aqueous solution when in a weak acid to a weak alkaline environment of less than pH 12.
  • Ti is considered to be in the form of Ti hydroxide (Ti (OH) 4 ) or HTiO 3 ⁇ from the potential-pH diagram. Therefore, in a strong alkaline environment, it is considered that the aqueous solution state can be maintained without precipitation of titanium dioxide.
  • the inventor infers that the factor for obtaining a perovskite oxide with good crystallinity in a strong alkaline environment is in the state of Ti in water under a strong alkaline environment, and as a reaction site for hydrothermal synthesis,
  • a reaction liquid in which Ti in the liquid maintains Ti (OH) 4 or HTiO 3 - ion state it is considered that not only in a strongly alkaline environment, but also a perovskite oxide with good crystallinity can be produced.
  • the present inventors start to change to titanium dioxide hydrate due to temporal changes such as ultraviolet light and temperature conditions after the Ti ion in the aqueous solution, and then white crystals of titanium dioxide start to precipitate. Have confirmed that. Then, the crystal structure of titanium dioxide formed at this stage is mainly rutile type, and once crystals of rutile type nonuniform and large in particle diameter are precipitated, production of strontium titanate fine particles with uniform crystallinity is good. Confirmed that it was difficult.
  • the inventors of the present invention have been able to obtain titanium dioxide having a large size in the mixed solution by mixing the Ti-containing aqueous solution with the Sr-containing aqueous solution while maintaining the state immediately after preparation under the condition that the pH of the reaction solution to be hydrothermally reacted is 11 or more. It has been found that skeletal formation or precipitation can be substantially suppressed, and strontium titanate having high crystallinity can be synthesized by a subsequent hydrothermal reaction, subcritical reaction, or supercritical reaction (see Example 1 below).
  • the inventor kept the state immediately after preparation of the Ti-containing aqueous solution with the Sr-containing aqueous solution.
  • strontium titanate fine particles can be synthesized by hydrothermal, subcritical, and supercritical reactions even in a pH range of 12 or more.
  • the ions are destabilized because the water is in a nonpolar gas state, and the equilibrium of the metal salt aqueous solution is from the ion dissociation state to the hydroxide side and further to the oxide side. Shift very fast.
  • Sr is presumed to be more stable than strontium hydroxide and hydroxide, and it is possible to rapidly make a hydrothermal reaction by forming an Sr-rich environment in the reaction liquid. In this case, fine crystalline strontium titanate fine particles with less heterophase can be produced (see Examples below).
  • the first method for producing strontium titanate fine particles of the present invention Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively; Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1; Preparing a reaction solution by adding a basic substance to the mixed solution to adjust the pH to prepare a reaction solution;
  • the reaction liquid has a hydrothermal reaction or a subcritical reaction or a supercritical reaction at a temperature of 250 ° C. or higher, and a step D1.
  • the second method for producing a strontium titanate fine particle of the present invention shown below can be applied.
  • the second method for producing strontium titanate fine particles of the present invention comprises a step A2 of preparing an Sr-containing aqueous solution and a Ti-containing aqueous solution, and Step B2 of mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution to prepare a mixed solution in which the molar ratio Sr / Ti of the contained Sr component and Ti component is more than 1.0.
  • a basic substance is added to the mixed solution to adjust the pH of the mixed solution to prepare a reaction solution C2.
  • the reaction liquid has a hydrothermal reaction or a subcritical reaction or a supercritical reaction at a temperature of 250 ° C. or higher.
  • step A1 and step A2 are steps for preparing an Sr-containing aqueous solution and a Ti-containing aqueous solution, respectively.
  • the aqueous solution containing Sr is not particularly limited, but hydroxides of Sr, oxides, chlorides, fluorides, halides such as iodide, inorganic salts such as nitrates, carbonates, sulfates, acetates, oxalic acid A salt, an organic acid salt such as a lactic acid salt, etc. may be dissolved in water, and an acetate, a hydroxide or a nitrate may be dissolved in water.
  • the method for preparing the Sr-containing aqueous solution is not particularly limited, and any known method depending on the substance can be adopted as appropriate.
  • the aqueous solution containing Ti is not particularly limited, but hydroxides of Ti, oxides, chlorides, fluorides, halides such as iodide, inorganic salts such as nitrates, carbonates, sulfates, acetates, oxalic acid A salt, an organic acid salt such as lactic acid salt and the like dissolved in water may be mentioned, and titanium tetrachloride which is a chloride is preferable.
  • the method for preparing the Ti-containing aqueous solution is not particularly limited, and any known method depending on the substance can be appropriately adopted.
  • the Ti-containing aqueous solution does not carry out the next step B1 or B2 immediately after preparation.
  • Immediately after preparation in order to maintain the condition immediately after preparation, store the product in a light-shielded, refrigerated or frozen state.
  • Steps B1 and B2 are both steps of mixing the Sr-containing aqueous solution and the Ti-containing aqueous solution prepared in steps A1 and A2.
  • the Ti-containing aqueous solution to be mixed with the Sr-containing aqueous solution in the step B1 or the step B2 preferably does not contain TiO 2 as a main component of the Ti component.
  • the Ti-containing aqueous solution is considered to cause a change to the hydrate of titanium dioxide soon after preparation under conditions other than a strong alkaline environment of pH 12 or more at room temperature. Under other conditions of temperature and pH, the presence or absence and the rate of the change are considered to be different, so under the conditions where it is difficult to change titanium dioxide into hydrate, the mixed solution of the next step is not necessarily immediately after preparation. Although it is not necessary to carry out the preparation, if the mixed solution of the next step is prepared immediately after the preparation of the Ti-containing aqueous solution, the temperature condition and the pH condition can be achieved by carrying out the later steps. Regardless, it is possible to form strontium titanate particles with low crystallinity.
  • step B1 or B2 it is preferable to carry out step B1 or B2 using the Ti-containing aqueous solution immediately after preparation of the Ti-containing aqueous solution or otherwise using the Ti-containing aqueous solution stored in a light-shielded refrigerated state or frozen immediately after preparation.
  • step B1 of the first production method the Ti-containing aqueous solution and the Sr-containing aqueous solution are used so that the molar ratio Sr / Ti of Sr component and Ti component in the mixed solution can be 1 which can form a normal stoichiometric composition. (There is no problem even if it deviates from 1 within the range in which the perovskite type can be formed in technical common sense).
  • the molar ratio Sr / Ti in the mixed solution is usually Sr / Ti in the mixed solution.
  • the stoichiometric composition needs to be larger than 1 and preferably 1.3 or more, and more preferably 1.3 or more and 1.7 or less. Therefore, in step B2 of the second production method, the Ti-containing aqueous solution and the Sr-containing aqueous solution may be mixed so that the molar ratio Sr / Ti of the Sr component and the Ti component in the mixed solution is more than one.
  • steps B1 and B2 from the viewpoint of minimizing the formation of precipitates in the mixed solution during the preparation of the mixed solution, it is preferable to thoroughly stir during the steps B1 and B2. Moreover, it is more preferable to implement stirring until immediately before the next step C1 or C2 is performed.
  • Step (C1, C2), Step (D1, D2)> In steps C1 and C2, a basic substance is added to the mixed solution prepared in steps B1 and B2, and the pH of the mixed solution is adjusted to be the conditions for performing the next step D1 or D2 to prepare a reaction liquid It is a process.
  • Steps D1 and D2 are steps of synthesizing strontium titanate fine particles by performing a hydrothermal reaction or a subcritical or supercritical reaction using the reaction solution prepared in steps C1 and C2.
  • steps D1 and D2 As the pH of the mixed solution in steps C1 and C2 is higher in the reaction temperature of the next step, steps D1 and D2, it becomes easy to be able to produce perovskite-type strontium titanate fine particles even under low alkaline conditions.
  • FIG. 2 plots the data of Examples and Comparative Examples described later, with the pH of the mixed solution adjusted in Step C1 as the abscissa and the reaction temperature of Step D1 as the ordinate.
  • FIG. 3 plots pH of the mixed solution adjusted in step C2 as the abscissa and the reaction temperature of step D2 as the ordinate, and plots data of Examples and Comparative Examples described later.
  • X which is the pH of the mixed solution, is preferably 11 or more, and more preferably 12 or more.
  • X which is the pH of the mixed solution, preferably satisfies 9 ⁇ X ⁇ 13.5, and more preferably 9 ⁇ X ⁇ 12.
  • the pH of the hydrate of titanium dioxide hydrate is lower than that of low alkali by the hydrothermal reaction, subcritical reaction or supercritical reaction of the reaction liquid in Sr-rich conditions. Under the conditions, strontium titanate fine particles with good crystallinity can be produced. In the second production method, in the synthesis under low alkaline conditions of pH 9 or more and 12 or less, the supercritical reaction is most effective.
  • the steps C1 and C2 and the steps D1 and D2 are performed as the X value and the Y value in the regions shown in FIGS. 2 and 3, respectively.
  • a reaction liquid containing Ti (OH) 4 and / or HTiO 3 ⁇ ion as a main component of Ti component is prepared in C 1 or step C 2, and perovskite type strontium titanate fine particles are synthesized in step D 1 or D 2 be able to.
  • the basic aqueous solution used in the steps C1 and C2 is not particularly limited, but an ionization degree of 0.8 or more is desirable, and it is preferable to use a strong base near one.
  • a basic aqueous solution a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution is preferably exemplified.
  • the dropwise addition of the basic aqueous solution is preferably carefully added drop by drop.
  • There is no problem in producing such precipitates but if the variation in the size of the precipitates is large or if the precipitates themselves are large in units of milli units or more even if the variation is small, the crystallinity is good at the end of the next step It is presumed that the yield of strontium titanate is likely to be low. Therefore, when a precipitate is produced, it is preferable to carry out stirring or grinding so as to be as fine as possible.
  • the means for stirring or pulverizing is not particularly limited, and may be carried out manually using a stirring rod or the like, or may be dispersed by a stirrer or ultrasonic treatment.
  • the reaction time can be appropriately set according to the temperature condition and the pH condition, and further whether or not it is a supercritical reaction.
  • hydrothermal synthesis is usually synthesis under pressure.
  • strontium titanate fine particles can be obtained.
  • the first production method and the second production method it is possible to produce strontium titanate fine particles of good crystallinity by hydrothermal reaction, subcritical reaction, or supercritical reaction under low alkali conditions. .
  • highly crystalline strontium titanate fine particles can be produced by using a Ti-containing aqueous solution to be mixed with a Sr-containing aqueous solution that does not contain TiO 2 as a main component of the Ti component.
  • Example 1 First, a required amount of purified water was collected as an Sr-containing aqueous solution, and weighed with strontium nitrate to prepare a strontium nitrate aqueous solution. Moreover, titanium tetrachloride aqueous solution was prepared as Ti containing aqueous solution. Ampoule-like TiCl 4 is slowly added dropwise to purified water. At that time, it is carried out with stirring and cooling, and immediately after adjustment to the designated concentration, it is shielded from light and stored refrigerated. As a solvent water, purified water was used unless otherwise stated.
  • the aqueous solution of titanium tetrachloride was shielded from light, and immediately after preparation, it was stored in a refrigerator to maintain the state immediately after preparation, and then mixed with an aqueous solution of strontium nitrate to obtain a mixed solution.
  • the molar ratio Sr / Ti of the Sr component to the Ti component in the mixed solution was mixed so as to be 1.
  • the mixed solution was stored in a beaker, and the aqueous solution of potassium hydroxide was dropped into the mixed solution one by one to adjust the pH of the mixed solution.
  • a gel-like white precipitate was produced, and the pH of the mixed solution was 7, 10, 11, 1.5, 12, 13.5 while stirring and grinding the precipitate.
  • the respective reaction solutions were prepared.
  • the reaction solution of each pH thus obtained was subjected to a hydrothermal reaction, a subcritical reaction or a supercritical reaction in the range of 200 ° C. to 400 ° C. to carry out synthesis of strontium titanate fine particles.
  • the reaction conditions are shown in Table 1. According to each temperature, the reaction solution is put into a designated volume of Hastelloy (registered trademark) container (made by AKICO) having an inner volume of about 5 cm 3 , and it is sealed in a stainless steel pressure container. The reaction was carried out for 10 minutes under the temperature conditions described in Table 1 and a pressure of 30 MPa, and then quenched.
  • FIG. 4 compares the XRD spectra of the strontium titanate fine particles obtained at four pHs in the case of the supercritical reaction
  • FIG. 5 shows the temperatures of 300 ° C. and 350 ° C. at the pH 12 (subcritical) 6) compares the XRD spectra of the strontium titanate fine particles obtained at 400 ° C. (supercritical)
  • FIG. 6 shows the result at 300 ° C., 350 ° C. (subcritical) and 400 ° C. (supercritical) when pH 11 is used
  • the XRD spectrum of the obtained strontium titanate fine particles is compared.
  • FIG. 4 also shows the XRD spectrum of the strontium titanate fine particles synthesized at pH 7 for comparison.
  • FIG. 4 shows that a perovskite phase is obtained at pH 12 and 13.5 under supercritical conditions.
  • mixing of a different phase is slightly confirmed at pH 11, it is considered that fine particles having a main perovskite phase are obtained as compared with the XRD spectrum at pH 7 in which the different phase is the main.
  • Example 2 A mixed solution was prepared in the same manner as Example 1, except that the molar ratio Sr / Ti of Sr component to Ti component in the mixed solution was set to 1.3 or more. Next, the pH of the mixed solution was adjusted in the same manner as in Example 1. Immediately after the addition of the aqueous potassium hydroxide solution, a gel-like white precipitate was produced, and the pH of the mixed solution was 7, 9, 10, 11, 11.5, 12, 13 while stirring and crushing the precipitate. .5 were prepared respectively.
  • the reaction solution of each pH thus obtained is subjected to a hydrothermal reaction, a subcritical reaction or a supercritical reaction in the range of 250 ° C. to 400 ° C. to obtain strontium titanate fine particles in the same manner as in Example 1.
  • the synthesis was performed.
  • the reaction conditions are shown in Table 2.
  • FIGS. 7-10 Representative XRD spectra are shown in FIGS. 7-10.
  • FIG. 7 compares the XRD spectra of the strontium titanate fine particles obtained at two pHs in the case of the supercritical reaction
  • FIG. 8 shows a temperature of 300 ° C. and 350 ° C. in the case of pH 11 (subcritical)
  • FIGS. 9 and 10 show that strontium titanate fine particles in the perovskite phase are obtained.
  • Example 1 was described as Example 1 and Example 2, it is a comparative example about what the perovskite phase in Table 1 is not obtained.
  • the method for producing strontium titanate fine particles according to the present invention can be suitably applied to the production of strontium titanate fine particles suitable as a photocatalyst or a functional material for electronic parts such as a piezoelectric or dielectric.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

[Problem] To manufacture perovskite-phase strontium titanate fine particles in low alkali conditions. [Solution] Strontium titanate fine particles are manufactured by performing the following steps: step A1, in which an Sr-containing aqueous solution and a Ti-containing aqueous solution are prepared; step B1, in which the Sr-containing aqueous solution and the Ti-containing aqueous solution are mixed to prepare a mixed solution; step C1, in which a basic substance is added to the mixed solution to adjust the pH of the mixed solution so as to be greater than 10, and a reaction solution is prepared; and step D1 in which the reaction solution is subjected to a hydrothermal reaction at a temperature of at least 250℃, or a sub-critical or super-critical reaction. If the pH of the reaction solution to be prepared in step C1 is taken as X, and the reaction temperature of the reaction solution in step D1 is taken as Y, X and Y satisfy Y>-100X+1400, and X≥10, and Y≥250.

Description

チタン酸ストロンチウム微粒子の製造方法Method for producing strontium titanate fine particles
 本発明は、誘電材料や光触媒の母触媒として好適なチタン酸ストロンチウム粒子を製造する方法に関する。 The present invention relates to a method for producing strontium titanate particles suitable as a mother catalyst for dielectric materials and photocatalysts.
 チタン酸ストロンチウムは、誘電特性や熱電特性、光学材料として高屈折率であることなど、多くの優れた物性を有している材料の一つである。また、近年のエネルギー問題、環境問題の観点から,水素生成光触媒として開発が進められているものの1つに、表面に白金等の金属を助触媒として担持してなるチタン酸ストロンチウム(SrTiO)粒子が挙げられる。 Strontium titanate is one of the materials having many excellent physical properties such as dielectric properties, thermoelectric properties, and high refractive index as an optical material. In addition, from the viewpoint of energy and environmental problems in recent years, strontium titanate (SrTiO 3 ) particles formed by supporting a metal such as platinum on the surface as a co-catalyst is one of those being developed as a hydrogen generation photocatalyst. Can be mentioned.
 SrTiOは光照射下での高い安定性や光還元力の強さから、太陽光のみを利用した水素製造を可能にする光触媒として期待が高まっている。かかる水素生成光触媒において、母触媒となるチタン酸ストロンチウム粒子には、より広い表面積にて助触媒を担持可能とするために、最適な粒径や形状があり、結晶性が高いことが求められている。 From the high stability under light irradiation and the strength of photoreduction power, SrTiO 3 is expected to be a photocatalyst that enables hydrogen production using only sunlight. In such a hydrogen generation photocatalyst, the strontium titanate particles serving as a mother catalyst are required to have optimum particle size and shape and high crystallinity in order to be able to support the cocatalyst with a larger surface area. There is.
 チタン酸ストロンチウム粒子の製造方法には、固相法、フラックス法、ゾルゲル法、水熱合成法等があるが、水熱合成法は、サブミクロン以下の微粒子も合成することができる手法であることが知られている。 There are solid phase method, flux method, sol-gel method, hydrothermal synthesis method etc. in the manufacturing method of strontium titanate particles, but hydrothermal synthesis method is a method which can synthesize fine particles of submicron or less It has been known.
 特許文献1~特許文献10には、チタン酸化物粒子又は微粉末を、水熱合成により製造する方法が記載されている。また、特許文献8,9,10には、チタン酸酸化物粒子を亜臨界又は超臨界合成により製造する方法が開示されている。 Patent Documents 1 to 10 describe a method of producing titanium oxide particles or fine powder by hydrothermal synthesis. Patent Documents 8, 9 and 10 disclose methods of producing titanate oxide particles by subcritical or supercritical synthesis.
 特許文献1~10に記載されているように、チタン酸酸化物粒子又は微粉末を水熱又は亜臨界、超臨界合成により、結晶性良く合成するためには、pHが13.5超の強アルカリ条件で実施する必要がある。これらの文献の中には、pH条件について言及していない文献や、より低アルカリ条件にて製造できる旨記載されている文献もあるが、実施例にて製造が報告されている範囲ではいずれもpHは13.5超の強アルカリ条件を経て製造されている。特に、チタン酸ストロンチウム粒子の合成は、pHが14以上の条件での製造例しか報告がない。 As described in Patent Documents 1 to 10, in order to synthesize titanic acid oxide particles or fine powder with good crystallinity by hydrothermal or subcritical, supercritical synthesis, the pH is as strong as more than 13.5. It is necessary to carry out under alkaline conditions. Some of these documents do not mention pH conditions, and some documents mention that they can be produced under lower alkaline conditions, but any of them can be produced as far as production is reported in the examples. The pH is manufactured through strongly alkaline conditions of more than 13.5. In particular, synthesis of strontium titanate particles has only been reported as an example of preparation under conditions of pH 14 or higher.
 例えば、特許文献6では、低温・低圧力にて単相のチタン含有ペロブスカイト型酸化物を製造する方法として、10モル濃度以上のアルカリ金属水酸化物水性液中にて水熱合成する方法が開示されている。特許文献4では、第3工程においてpHが7~10の水酸化バリウム水溶液を用いることが好ましい旨記載されているが、第3工程は再水熱処理であり、水熱合成を行う第2工程は、実施例1に記載されているようにpH13.5超の強アルカリ条件にて実施している。特許文献7では、2段階加熱で実施しており、プロセスが複雑になっている。また、混合溶液について、pH>10が望ましい旨が記載されているが、合成時の明確なpHの記載がなく、導入しているアンモニア水が多いことから、強アルカリ性であることが推測される。 For example, Patent Document 6 discloses, as a method for producing a single phase titanium-containing perovskite oxide at low temperature and pressure, a method of hydrothermally synthesizing in an aqueous solution of an alkali metal hydroxide of 10 molar concentration or more. It is done. Although Patent Document 4 states that it is preferable to use an aqueous solution of barium hydroxide having a pH of 7 to 10 in the third step, the third step is a re-hydrothermal treatment, and the second step for performing hydrothermal synthesis is As described in Example 1, it is carried out under strongly alkaline conditions of pH 13.5 or more. In patent document 7, it implements by two-step heating, and the process is complicated. In addition, it is stated that it is desirable that pH> 10 for mixed solution, but there is no description of clear pH at the time of synthesis, and it is presumed that it is strongly alkaline because there is much ammonia water introduced. .
特公平3-39016号公報Japanese Examined Patent Publication 3-39016 特公平6-649号公報Japanese Examined Patent Publication No. 6-649 特公平2-46531号公報Japanese Examined Patent Publication No. 2-46531 特許第3838523号公報Patent No. 3838523 gazette 特開平6-322587号公報Unexamined-Japanese-Patent No. 6-322587 特開2007-31176号公報Japanese Patent Application Publication No. 2007-31176 特公平8-32559号公報Tokuhei 8-32559 特許第3663408号公報Patent No. 3663408 特許第4593124号公報Patent No. 4593124 特開2003-261329号公報Japanese Patent Application Publication No. 2003-261329
 pH13.5を超えるような強アルカリ条件にて水熱合成,亜臨界合成,又は超臨界合成を行うためには、反応容器に耐アルカリ性が必須である。耐アルカリ性を有する反応容器としては、テフロン(登録商標)製やハステロイ(登録商標)製のものが知られているが、テフロン(登録商標)製のものは耐熱性に限りがあるため反応温度に限界があり、またハステロイ(登録商標)製のものは非常に高価であるため、装置コストが高くなってしまうという問題がある。耐熱性、装置コストの観点からは、反応容器としては、耐熱性に優れ、汎用性が高く安価であるSUS製等の反応容器を使用できることが好ましく、そのためには、できるだけ中性よりの低アルカリ条件にて製造できることが好ましい。 In order to perform hydrothermal synthesis, subcritical synthesis, or supercritical synthesis under strongly alkaline conditions such as exceeding pH 13.5, alkali resistance in the reaction vessel is essential. As a reaction container having alkali resistance, ones made of Teflon (registered trademark) or those made of Hastelloy (registered trademark) are known, however, those made of Teflon (registered trademark) have limited heat resistance, so the reaction temperature is There is a limit and there is a problem that the product made of Hastelloy (registered trademark) is very expensive, resulting in high equipment cost. From the viewpoints of heat resistance and equipment cost, it is preferable that a reaction container made of SUS etc., which is excellent in heat resistance, is highly versatile and inexpensive, can be used as a reaction container, and for that purpose It is preferable to be able to manufacture on conditions.
 本発明は上記事情に鑑みてなされたものであり、低アルカリ条件でペロブスカイト型チタン酸ストロンチウム微粒子を製造することを目的とするものである。 The present invention has been made in view of the above circumstances, and an object thereof is to produce perovskite-type strontium titanate fine particles under low alkaline conditions.
 本発明のチタン酸ストロンチウム微粒子の第1の製造方法は、
 Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A1と、
 調製したSr含有水溶液と、Ti含有水溶液とを混合して混合溶液を調製する工程B1と、
 この混合溶液中に塩基性物質を加えてpHを調整して反応液を調製する工程C1と、
 この反応液を250℃以上の温度で水熱反応又は、亜臨界反応若しくは超臨界反応させる工程D1とを有する。第1の製造方法では、工程C1において調製される反応液のpHをXとし,工程D1における反応液の反応温度をYとしたとき、XとYが、Y>-100X+1400,且つ、X≧10,且つ,Y≧250を満足している。
The first production method of the strontium titanate fine particles of the present invention is
Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively;
Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1;
Preparing a reaction solution by adding a basic substance to the mixed solution to adjust the pH to prepare a reaction solution;
The reaction liquid has a hydrothermal reaction or a subcritical reaction or a supercritical reaction at a temperature of 250 ° C. or higher, and a step D1. In the first production method, when the pH of the reaction solution prepared in step C1 is X and the reaction temperature of the reaction solution in step D1 is Y, X and Y satisfy Y> -100X + 1400, and X ≧ 10. And YY250 is satisfied.
 本明細書において、「反応液を反応させる」とは、反応液中に含まれる単数又は複数の成分を反応させることを意味する。 As used herein, "reacting the reaction solution" means reacting one or more components contained in the reaction solution.
 また、本明細書中、用語「微粒子」とは、その平均粒子径が10μm未満のサイズのものを意味するものとし、好ましくはナノ粒子である。該ナノ粒子は、一般的にはその平均粒子径が200nm以下のサイズのものを指していてよいが, 好ましくは200nm以下のサイズのものが挙げられる。ある場合には、該ナノ粒子は、その平均粒子径が100nm以下のサイズのもの、また別の場合にはその平均粒子径が50nm以下のサイズのものであってよい。また好適な場合には、該ナノ粒子は、その平均粒子径が20nm以下のサイズのもの、また別の場合にはその平均粒子径が10nm以下のサイズのものあるいは5nm以下のサイズのものであってよい。また好適な場合には、該ナノ粒子の粒子サイズは均一なものが好ましいが、一定の割合でその粒子サイズの異なるものの混合しているものが好ましい場合もある。 Further, in the present specification, the term "fine particles" shall mean those having a size of less than 10 μm in average particle size, preferably nanoparticles. The nanoparticles may generally refer to those having an average particle size of 200 nm or less, preferably 200 nm or less. In some cases, the nanoparticles may be of a size with an average particle size of 100 nm or less, and in other cases with a size of 50 nm or less. Also preferably, the nanoparticles are of a size whose average particle size is 20 nm or less, and in other cases whose average particle size is 10 nm or less or 5 nm or less You may Also, in a preferred case, the particle size of the nanoparticles is preferably uniform, but in some cases, it may be preferable to mix particles having different particle sizes at a certain ratio.
 平均粒子径の測定は当該分野で知られた方法によりそれを行うことができ、例えば、電子顕微鏡(TEM、SEM)、吸着法、光散乱法、X線小角散乱(SAXS)などにより測定できる。電子顕微鏡観察において、粒子径分布が広い場合には、視野内に入った粒子が全粒子を代表しているか否かに注意を払う必要がある。 The average particle size can be measured by a method known in the art, and can be measured by, for example, an electron microscope (TEM, SEM), an adsorption method, a light scattering method, X-ray small angle scattering (SAXS) or the like. In electron microscopy, when the particle size distribution is wide, it is necessary to pay attention to whether or not the particles within the field of view represent all particles.
 また、本明細書において、水の臨界点(温度374℃、圧力22MPa)より上の温度、圧力の領域の水を超臨界水、温度350℃付近の臨界点近傍の領域の水を亜臨界水とし、超臨界水中の反応を超臨界反応、亜臨界水中の反応を亜臨界反応とする。 In the present specification, water above the critical point of water (temperature 374 ° C., pressure 22 MPa) is supercritical water, and water at a temperature near 350 ° C. near critical point is subcritical water The reaction in supercritical water is a supercritical reaction, and the reaction in subcritical water is a subcritical reaction.
 第1の製造方法において、工程C1において調製される反応液のpHであるXは、X≧11を満足することが好ましく、11≦X≦13.5を満足することがより好ましく、11≦X≦12を満足することが更に好ましい。 In the first production method, X, which is the pH of the reaction solution prepared in step C1, preferably satisfies X ≧ 11, more preferably 11 ≦ X ≦ 13.5, and 11 ≦ X. It is further preferable to satisfy ≦ 12.
 本発明において、pHをより中性に近い低アルカリ条件でチタン酸ストロンチウム微粒子を製造する場合には、以下に示す本発明の第2のチタン酸ストロンチウム微粒子の製造方法を適用することができる。 In the present invention, in the case of producing strontium titanate fine particles under a low alkaline condition having a pH closer to neutrality, the second method for producing a strontium titanate fine particle of the present invention shown below can be applied.
 本発明のチタン酸ストロンチウム微粒子の第2の製造方法は、Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A2と、
 調製したSr含有水溶液と、Ti含有水溶液とを混合して、含有されるSr成分とTi成分のモル比Sr/Tiが1.0超である混合溶液を調製する工程B2と、
 この混合溶液中に塩基性物質を加えて混合溶液のpHを調整して反応液を調製する工程C2と、
 この反応液を250℃以上の温度で水熱反応又は、亜臨界反応若しくは超臨界反応させる工程D2とを有している。第2の製造方法では、工程C2において調製される反応液のpHをXとし,工程D2における反応液の反応温度をYとしたとき、XとYが、Y≧-500X+5150,且つ、X≧9,且つ、Y≧250を満足している。
The second production method of the strontium titanate fine particles of the present invention comprises a step A2 of preparing an Sr-containing aqueous solution and a Ti-containing aqueous solution respectively;
Step B2 of mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution to prepare a mixed solution in which the molar ratio Sr / Ti of the contained Sr component and Ti component is more than 1.0.
A basic substance is added to the mixed solution to adjust the pH of the mixed solution to prepare a reaction solution C2.
The reaction liquid has a hydrothermal reaction or a subcritical reaction or a supercritical reaction at a temperature of 250 ° C. or higher. In the second production method, when the pH of the reaction solution prepared in step C2 is X and the reaction temperature of the reaction solution in step D2 is Y, X and Y satisfy YY−500 × + 5150, and X ≧ 9. And YY250 is satisfied.
 第2の製造方法において、工程C2において調製される反応液のpHであるXは、9≦X≦13.5を満足することが好ましく、9≦X≦12を満足することが更に好ましい。
  また、工程B2において、混合溶液に含有されるSr成分とTi成分のモル比Sr/Tiが1.3以上となるように、Sr含有水溶液と、Ti含有水溶液とを混合することが好ましい。
In the second production method, X, which is the pH of the reaction solution prepared in step C2, preferably satisfies 9 ≦ X ≦ 13.5, and more preferably 9 ≦ X ≦ 12.
In step B2, it is preferable to mix the Sr-containing aqueous solution and the Ti-containing aqueous solution so that the molar ratio Sr / Ti of the Sr component and the Ti component contained in the mixed solution is 1.3 or more.
 第1の製造方法及び第2の製造方法において、混合溶液を調製する工程(工程B1,工程B2)で用いるTi含有水溶液は、TiOをTi成分の主成分として含まないものであることが好ましい。
 本明細書において、「主成分」とは、含量50質量%以上の成分を意味する。
In the first production method and the second production method, the Ti-containing aqueous solution used in the step of preparing the mixed solution (step B1 and step B2) preferably does not contain TiO 2 as a main component of the Ti component. .
In the present specification, the "main component" means a component having a content of 50% by mass or more.
 また、Sr含有水溶液とTi含有水溶液を調製する工程(工程A1,工程A2)において、Sr含有水溶液としては、ストロンチウムの酢酸塩、又は水酸化物もしくは硝酸塩を水に溶解させてなるものが好ましく、Ti含有水溶液としては、四塩化チタン水溶液であることが好ましい。 In the steps of preparing the Sr-containing aqueous solution and the Ti-containing aqueous solution (steps A1 and A2), it is preferable that the Sr-containing aqueous solution be prepared by dissolving strontium acetate or hydroxide or nitrate in water, The Ti-containing aqueous solution is preferably a titanium tetrachloride aqueous solution.
 混合溶液のpHを調整して反応液を調製する工程(工程C1,工程C2)では、Ti(OH)及び/又はHTiO イオンをTi成分の主成分として含んでなる反応液を調製することが好ましい。また、pHの調整に用いる塩基性水溶液としては、水酸化ナトリウム水溶液又は水酸化カリウム水溶液が好ましい。また、混合溶液のpHを調整して反応液を調製する工程では、pHの調整中に発生する固形物は粉砕することが好ましい。 In the step of preparing the reaction liquid by adjusting the pH of the mixed solution (Step C1, Step C2), a reaction liquid containing Ti (OH) 4 and / or HTiO 3 - ion as a main component of Ti component is prepared Is preferred. Moreover, as a basic aqueous solution used for adjustment of pH, sodium hydroxide aqueous solution or potassium hydroxide aqueous solution is preferable. In addition, in the step of adjusting the pH of the mixed solution to prepare a reaction solution, it is preferable to grind solids generated during the adjustment of pH.
 本発明によれば、中性よりの低アルカリ条件にて、水熱反応又は亜臨界反応若しくは超臨界反応によりペロブスカイト型チタン酸ストロンチウム微粒子を製造することができる。また、Sr含有水溶液と混合するTi含有水溶液として、TiOをTi成分の主成分として含まないものを用いることにより、結晶性の高いチタン酸ストロンチウム微粒子を製造することができる。 According to the present invention, perovskite-type strontium titanate fine particles can be produced by a hydrothermal reaction, a subcritical reaction or a supercritical reaction under a condition of alkali lower than neutrality. Moreover, highly crystalline strontium titanate fine particles can be produced by using a Ti-containing aqueous solution to be mixed with a Sr-containing aqueous solution that does not contain TiO 2 as a main component of the Ti component.
本発明のチタン酸ストロンチウム微粒子の製造方法のフロー図Flow chart of the method for producing strontium titanate fine particles of the present invention 実施例1(第1の製造方法)及び比較例1のpH条件及び水熱反応の温度条件におけるペロブスカイト型チタン酸ストロンチウム微粒子の製造の可否を示す図The figure which shows the availability of manufacture of the perovskite type strontium titanate microparticles | fine-particles in pH condition of Example 1 (1st manufacturing method) and the comparative example 1, and the temperature condition of hydrothermal reaction. 実施例2(第2の製造方法)及び比較例2のpH条件及び水熱反応の温度条件におけるペロブスカイト型チタン酸ストロンチウム微粒子の製造の可否を示す図The figure which shows the availability of manufacture of the perovskite type strontium titanate microparticles | fine-particles in pH condition of Example 2 (2nd manufacturing method) and the comparative example 2, and the temperature condition of hydrothermal reaction. 実施例1(第1の製造方法)にて超臨界反応により得られたチタン酸ストロンチウム微粒子のXRDスペクトルを示す図The figure which shows the XRD spectrum of the strontium titanate microparticles | fine-particles obtained by supercritical reaction in Example 1 (1st manufacturing method) 実施例1(第1の製造方法)にて反応液のpHを12に調整して水熱反応、亜臨界反応、及び超臨界反応により得られたチタン酸ストロンチウム微粒子のXRDスペクトルを示す図The figure which shows the XRD spectrum of strontium titanate microparticles | fine-particles obtained by adjusting pH of the reaction liquid to 12 in Example 1 (1st manufacturing method), a subcritical reaction, and a supercritical reaction. 実施例1(第1の製造方法)にて反応液のpHを11に調整して水熱反応、亜臨界反応、及び超臨界反応により得られたチタン酸ストロンチウム微粒子のXRDスペクトルを示す図The figure which shows the XRD spectrum of strontium titanate microparticles | fine-particles obtained by adjusting pH of the reaction liquid to 11 in Example 1 (1st manufacturing method), a subcritical reaction, and a supercritical reaction. 実施例2(第2の製造方法)にて超臨界反応により得られたチタン酸ストロンチウム微粒子のXRDスペクトルを示す図The figure which shows the XRD spectrum of the strontium titanate microparticles | fine-particles obtained by supercritical reaction in Example 2 (2nd manufacturing method) 実施例2(第2の製造方法)にて反応液のpHを11に調整して水熱法又は超臨界反応により得られたチタン酸ストロンチウム微粒子のXRDスペクトルを示す図The figure which shows the XRD spectrum of the strontium titanate microparticles | fine-particles obtained by adjusting pH of the reaction liquid to 11 in Example 2 (2nd manufacturing method), or a hydrothermal reaction or a supercritical reaction. 実施例2(第2の製造方法)にて反応液のpHを11.5に調整して水熱法又は超臨界反応により得られたチタン酸ストロンチウム微粒子のXRDスペクトルを示す図The figure which shows the XRD spectrum of the strontium titanate microparticles | fine-particles obtained by adjusting pH of the reaction liquid to 11.5 in Example 2 (2nd manufacturing method), or a hydrothermal reaction or a supercritical reaction. 実施例2(第2の製造方法)にて反応液のpHを9に調整して水熱法又は超臨界反応により得られたチタン酸ストロンチウム微粒子のXRDスペクトルを示す図The figure which shows the XRD spectrum of the strontium titanate microparticles | fine-particles obtained by adjusting pH of the reaction liquid to 9 in Example 2 (2nd manufacturing method), or a hydrothermal method or a supercritical reaction.
「チタン酸ストロンチウム微粒子の製造方法」
 図面を参照して、本発明にかかる一実施形態のチタン酸ストロンチウム微粒子の製造方法について説明する。図1は本実施形態のチタン酸ストロンチウム微粒子の製造方法のフロー図を示したものである。
"Production method of strontium titanate fine particles"
With reference to the drawings, a method of manufacturing strontium titanate particles according to an embodiment of the present invention will be described. FIG. 1 shows a flow diagram of the method for producing strontium titanate fine particles of the present embodiment.
 既に述べたように、ペロブスカイト型のチタン酸化物の微粒子又は微粉末を水熱反応又は亜臨界反応、超臨界反応により、結晶性良く合成するためには、pHが13.5超の強アルカリ条件で実施することが技術常識とされている。特許文献10に記載されているように、水熱反応によるペロブスカイト型チタン酸化物の合成では、二酸化チタンを中間生成物として経るため、反応液を強アルカリ条件として、二酸化チタンの溶解度を高めて反応中に二酸化チタンが析出されにくい状態とし、その状態で急速に昇温して、水が非極性のガス状態となる臨界点近傍の亜臨界反応又は超臨界反応とすることにより、非極性のペロブスカイト型チタン酸化物の生成速度を著しく増加させ、且つ、溶存するイオン濃度を大きく低下させることにより、結晶水や水酸基を含まない結晶化度の高い、チタン酸バリウム微粒子を、比較的低温、短時間かつ効率よく製造することを可能にしている。 As described above, in order to synthesize fine particles or fine powder of perovskite-type titanium oxide with good crystallinity by hydrothermal reaction, subcritical reaction, or supercritical reaction, a strong alkaline condition having a pH of more than 13.5. It is considered to be technical common sense to carry out. As described in Patent Document 10, in the synthesis of a perovskite-type titanium oxide by a hydrothermal reaction, titanium dioxide is used as an intermediate product, so the reaction solution is used as a strongly alkaline condition to increase the solubility of titanium dioxide to perform the reaction. Nonpolar Perovskite by setting the temperature so that titanium dioxide is hard to precipitate in it and raising the temperature rapidly in that state to make it a subcritical reaction or supercritical reaction near the critical point where water becomes a nonpolar gas state The barium titanate fine particles having a high degree of crystallinity not containing crystal water or hydroxyl groups can be relatively low temperature and short time by remarkably increasing the formation rate of the crystalline titanium oxide and greatly reducing the concentration of dissolved ions. And it is possible to manufacture efficiently.
 本発明者は、水熱反応、又は亜臨界反応、若しくは超臨界反応によるチタン酸ストロンチウム微粒子の合成において、強アルカリ条件とせずに、中間生成物である二酸化チタンの析出を抑制して合成を進める方法について鋭意検討を行った。 In the synthesis of strontium titanate fine particles by a hydrothermal reaction, a subcritical reaction, or a supercritical reaction, the present inventors proceed with the synthesis by suppressing the precipitation of titanium dioxide as an intermediate product without using strong alkaline conditions. We made a keen study on the method.
 本発明者は、Ti含有水溶液の不安定性に着目し、Tiの電位―pH図に注目した。Tiの電位―pH図によれば、室温(25℃)において、弱酸~pH12未満の弱アルカリ環境下において、Tiはイオン解離状態ではなく二酸化チタンの水和物(TiO・HO)が安定であることから、室温では、弱酸~pH12未満の弱アルカリ環境下である場合にTi含有水溶液の調製後まもなく二酸化チタン水和物への変化が開始すると考えられる。
 一方、pH12以上のアルカリ環境下では、電位―pH図から、Tiは、Ti水酸化物(Ti(OH))又はHTiO イオン状態となると考えられる。従って、強アルカリ環境下では、二酸化チタンが析出せずに水溶液状態を保つことができていると考えられる。
The inventors focused on the instability of the Ti-containing aqueous solution and focused on the potential-pH diagram of Ti. According to the potential-pH diagram of Ti, at room temperature (25 ° C.), Ti is not in the ion dissociation state but in the hydrate of titanium dioxide (TiO 2 · H 2 O) in a weak acid to a weak alkaline environment of less than pH 12. Due to its stability, it is considered that, at room temperature, conversion to titanium dioxide hydrate starts shortly after preparation of the Ti-containing aqueous solution when in a weak acid to a weak alkaline environment of less than pH 12.
On the other hand, in an alkaline environment at a pH of 12 or more, Ti is considered to be in the form of Ti hydroxide (Ti (OH) 4 ) or HTiO 3 from the potential-pH diagram. Therefore, in a strong alkaline environment, it is considered that the aqueous solution state can be maintained without precipitation of titanium dioxide.
 本発明者は、強アルカリ環境下において結晶性の良好なペロブスカイト型酸化物が得られる要因が、強アルカリ環境下における水中のTiの状態にあると推察し、水熱合成の反応場として、反応液中のTiが、Ti(OH)又はHTiO イオン状態を維持した反応液を用いることにより、強アルカリ環境下に限らず結晶性の良好なペロブスカイト型酸化物を製造できると考えた。 The inventor infers that the factor for obtaining a perovskite oxide with good crystallinity in a strong alkaline environment is in the state of Ti in water under a strong alkaline environment, and as a reaction site for hydrothermal synthesis, By using a reaction liquid in which Ti in the liquid maintains Ti (OH) 4 or HTiO 3 - ion state, it is considered that not only in a strongly alkaline environment, but also a perovskite oxide with good crystallinity can be produced.
 また、本発明者は、Ti含有水溶液調製後、水溶液中のTiイオンは紫外線や温度条件など経時変化により、二酸化チタン水和物への変化を開始し、次いで二酸化チタンの白色結晶が析出しはじめることを確認している。そして、この段階で形成される二酸化チタンの結晶構造は主にルチル型であり、一旦ルチル型の不均一で粒径の大きな結晶が析出すると、均一で結晶性の良好なチタン酸ストロンチウム微粒子の製造が難しいことを確認した。 In addition, after preparing the Ti-containing aqueous solution, the present inventors start to change to titanium dioxide hydrate due to temporal changes such as ultraviolet light and temperature conditions after the Ti ion in the aqueous solution, and then white crystals of titanium dioxide start to precipitate. Have confirmed that. Then, the crystal structure of titanium dioxide formed at this stage is mainly rutile type, and once crystals of rutile type nonuniform and large in particle diameter are precipitated, production of strontium titanate fine particles with uniform crystallinity is good. Confirmed that it was difficult.
 かかる結果は、ストロンチウム含有水溶液と、チタン含有水溶液とを混合させる段階で、サイズの大きな二酸化チタンの骨格形成又は析出を最小限に抑制することができれば、強アルカリ条件とせずとも結晶性の良好なチタン酸ストロンチウムを製造可能であることを示唆している。 As a result, if the skeleton formation or precipitation of large size titanium dioxide can be minimized at the stage of mixing the strontium-containing aqueous solution and the titanium-containing aqueous solution, good crystallinity can be obtained without using strong alkaline conditions. It suggests that strontium titanate can be produced.
 本発明者は、水熱反応させる反応液のpHが11以上の条件では、Ti含有水溶液を調製直後の状態を保ってSr含有水溶液と混合させることで、混合溶液中においてサイズの大きな二酸化チタンの骨格形成又は析出をほぼ抑制可能とし、その後の水熱反応又は亜臨界反応、若しくは超臨界反応により結晶性の高いチタン酸ストロンチウムを合成可能であることを見出した(後記実施例1を参照)。 The inventors of the present invention have been able to obtain titanium dioxide having a large size in the mixed solution by mixing the Ti-containing aqueous solution with the Sr-containing aqueous solution while maintaining the state immediately after preparation under the condition that the pH of the reaction solution to be hydrothermally reacted is 11 or more. It has been found that skeletal formation or precipitation can be substantially suppressed, and strontium titanate having high crystallinity can be synthesized by a subsequent hydrothermal reaction, subcritical reaction, or supercritical reaction (see Example 1 below).
 また、本発明者は、二酸化チタンの水和物の安定性が高い、より中性に近いpH10以上12未満の条件とするには、Ti含有水溶液を調製直後の状態を保ってSr含有水溶液と混合させることに加えて、反応液中のSr量をTi量のモル数よりも多くしたSrリッチな状態で、超臨界反応させる必要があることを見出した。Srリッチ条件では、pHが12以上の領域においても水熱・亜臨界・超臨界反応させることでチタン酸ストロンチウム微粒子を合成可能である。 Further, in order to set the condition of pH 10 or more to less than 12 close to neutrality, where the stability of the hydrate of titanium dioxide is high, the inventor kept the state immediately after preparation of the Ti-containing aqueous solution with the Sr-containing aqueous solution. In addition to mixing, it has been found that it is necessary to cause a supercritical reaction in a Sr-rich state in which the amount of Sr in the reaction liquid is larger than the number of moles of the amount of Ti. Under Sr-rich conditions, strontium titanate fine particles can be synthesized by hydrothermal, subcritical, and supercritical reactions even in a pH range of 12 or more.
 臨界点をこえた、超臨界反応では、水が非極性のガス状となることからイオンが不安定化し、金属塩水溶液の平衡がイオン解離状態から、水酸化物側、更には酸化物側に極めて高速にシフトする。また、Tiイオンの存在下では、Srは、水酸化物、酸化物よりもチタン酸ストロンチウムが安定であることが推測され、Srリッチ環境を反応液中で形成することにより、水熱反応を急速に進行させて、異相の少ない結晶性の良好なチタン酸ストロンチウム微粒子を製造することができる(後記実施例を参照)。 In the supercritical reaction beyond the critical point, the ions are destabilized because the water is in a nonpolar gas state, and the equilibrium of the metal salt aqueous solution is from the ion dissociation state to the hydroxide side and further to the oxide side. Shift very fast. In addition, in the presence of Ti ions, Sr is presumed to be more stable than strontium hydroxide and hydroxide, and it is possible to rapidly make a hydrothermal reaction by forming an Sr-rich environment in the reaction liquid. In this case, fine crystalline strontium titanate fine particles with less heterophase can be produced (see Examples below).
 すなわち、本発明のチタン酸ストロンチウム微粒子の第1の製造方法は、
 Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A1と、
 調製したSr含有水溶液と、Ti含有水溶液とを混合して混合溶液を調製する工程B1と、
 この混合溶液中に塩基性物質を加えてpHを調整して反応液を調製する工程C1と、
 この反応液を250℃以上の温度で水熱反応又は、亜臨界反応若しくは超臨界反応させる工程D1とを有している。第1の製造方法では、工程C1において調製される反応液のpHをXとし,工程D1における反応液の反応温度をYとしたとき、XとYが、Y>-100X+1400,且つ、X≧10,且つ、Y≧250を満足している。
That is, according to the first method for producing strontium titanate fine particles of the present invention,
Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively;
Preparing the mixed solution by mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution, B1;
Preparing a reaction solution by adding a basic substance to the mixed solution to adjust the pH to prepare a reaction solution;
The reaction liquid has a hydrothermal reaction or a subcritical reaction or a supercritical reaction at a temperature of 250 ° C. or higher, and a step D1. In the first production method, when the pH of the reaction solution prepared in step C1 is X and the reaction temperature of the reaction solution in step D1 is Y, X and Y satisfy Y> -100X + 1400, and X ≧ 10. And YY250 is satisfied.
 本発明において、pHをより中性に近い低アルカリ条件でチタン酸ストロンチウム微粒子を製造する場合には、以下に示す本発明の第2のチタン酸ストロンチウム微粒子の製造方法を適用することができる。 In the present invention, in the case of producing strontium titanate fine particles under a low alkaline condition having a pH closer to neutrality, the second method for producing a strontium titanate fine particle of the present invention shown below can be applied.
 本発明の第2のチタン酸ストロンチウム微粒子の製造方法は、Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A2と、
 調製したSr含有水溶液と、Ti含有水溶液とを混合して、含有されるSr成分とTi成分のモル比Sr/Tiが1.0超である混合溶液を調製する工程B2と、
 この混合溶液中に塩基性物質を加えて混合溶液のpHを調整して反応液を調製する工程C2と、
 この反応液を250℃以上の温度で水熱反応又は、亜臨界反応若しくは超臨界反応させる工程D2とを有している。第2の製造方法では、工程C2において調製される反応液のpHをXとし,工程D2における反応液の反応温度をYとしたとき、XとYが、Y≧-500X+5150,且つ、X≧9,且つ、Y≧250を満足している。
The second method for producing strontium titanate fine particles of the present invention comprises a step A2 of preparing an Sr-containing aqueous solution and a Ti-containing aqueous solution, and
Step B2 of mixing the prepared Sr-containing aqueous solution with the Ti-containing aqueous solution to prepare a mixed solution in which the molar ratio Sr / Ti of the contained Sr component and Ti component is more than 1.0.
A basic substance is added to the mixed solution to adjust the pH of the mixed solution to prepare a reaction solution C2.
The reaction liquid has a hydrothermal reaction or a subcritical reaction or a supercritical reaction at a temperature of 250 ° C. or higher. In the second production method, when the pH of the reaction solution prepared in step C2 is X and the reaction temperature of the reaction solution in step D2 is Y, X and Y satisfy YY−500 × + 5150, and X ≧ 9. And YY250 is satisfied.
 以下、各工程について、図1を参照して説明する。 Each step will be described below with reference to FIG.
 <工程(A1,A2)>
 工程A1と工程A2は共に、Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程である。
 Sr含有水溶液としては特に制限されないが、Srの水酸化物、酸化物、塩化物,フッ化物,ヨウ化物等のハロゲン化物、硝酸塩,炭酸塩,硫酸塩等の無機酸塩、酢酸塩,シュウ酸塩,乳酸塩等の有機酸塩等を水に溶解させてなるものが挙げられるが、酢酸塩、又は水酸化物もしくは硝酸塩のいずれかを水に溶解させてなるものが好ましい。
<Step (A1, A2)>
Both step A1 and step A2 are steps for preparing an Sr-containing aqueous solution and a Ti-containing aqueous solution, respectively.
The aqueous solution containing Sr is not particularly limited, but hydroxides of Sr, oxides, chlorides, fluorides, halides such as iodide, inorganic salts such as nitrates, carbonates, sulfates, acetates, oxalic acid A salt, an organic acid salt such as a lactic acid salt, etc. may be dissolved in water, and an acetate, a hydroxide or a nitrate may be dissolved in water.
 Sr含有水溶液の調製方法は特に制限されず、物質に応じた公知の方法を適宜採用することができる。 The method for preparing the Sr-containing aqueous solution is not particularly limited, and any known method depending on the substance can be adopted as appropriate.
 Ti含有水溶液としては特に制限されないが、Tiの水酸化物、酸化物、塩化物,フッ化物,ヨウ化物等のハロゲン化物、硝酸塩,炭酸塩,硫酸塩等の無機酸塩、酢酸塩,シュウ酸塩,乳酸塩等の有機酸塩等を水に溶解させてなるものが挙げられるが、塩化物である四塩化チタンが好ましい。
 Ti含有水溶液の調製方法は特に制限されず、物質に応じた公知の方法を適宜採用することができる。
The aqueous solution containing Ti is not particularly limited, but hydroxides of Ti, oxides, chlorides, fluorides, halides such as iodide, inorganic salts such as nitrates, carbonates, sulfates, acetates, oxalic acid A salt, an organic acid salt such as lactic acid salt and the like dissolved in water may be mentioned, and titanium tetrachloride which is a chloride is preferable.
The method for preparing the Ti-containing aqueous solution is not particularly limited, and any known method depending on the substance can be appropriately adopted.
 また、詳細は次工程の説明にて記載するが、Ti含有水溶液は、調製直後の状態を維持した水溶液を次工程において用いることが好ましいため、調製後ただちに次工程B1又はB2を実施しない場合は、調製直後の状態を維持するために、調製後、直ちに遮光し冷蔵又は冷凍して保存する。 Further, although the details will be described in the description of the next step, since it is preferable to use an aqueous solution in which the state immediately after preparation is maintained in the next step, the Ti-containing aqueous solution does not carry out the next step B1 or B2 immediately after preparation. Immediately after preparation, in order to maintain the condition immediately after preparation, store the product in a light-shielded, refrigerated or frozen state.
 <工程(B1,B2)>
 工程B1と工程B2は共に、工程A1及びA2で調製したSr含有水溶液とTi含有水溶液を混合する工程である。工程B1又は工程B2において、Sr含有水溶液と混合するTi含有水溶液は、TiOをTi成分の主成分として含まないものであることが好ましい。
<Step (B1, B2)>
Steps B1 and B2 are both steps of mixing the Sr-containing aqueous solution and the Ti-containing aqueous solution prepared in steps A1 and A2. The Ti-containing aqueous solution to be mixed with the Sr-containing aqueous solution in the step B1 or the step B2 preferably does not contain TiO 2 as a main component of the Ti component.
 既に述べたように、Ti含有水溶液は、室温において、pH12以上の強アルカリ環境以外の状態では、調製後まもなく二酸化チタンの水和物への変化を生じると考えられる。その他の温度、pHの条件では、その変化の有無やその速度は異なると考えられるので、二酸化チタンの水和物への変化が起こりにくい条件では、必ずしも調製直後の状態で次工程の混合溶液の調製を実施しなければならないわけではないが、Ti含有水溶液の調製直後の状態で、次工程の混合溶液の調製を行えば、後工程を後記する方法で実施することにより、温度条件やpH条件に関わらず、結晶性の低いチタン酸ストロンチウム微粒子を形成することができる。
 従って、工程B1又はB2は、Ti含有水溶液は調製後直ちに実施するか、そうでない場合は、調製後、直ちに遮光し冷蔵又は冷凍して保存したTi含有水溶液を用いて実施することが好ましい。
As described above, the Ti-containing aqueous solution is considered to cause a change to the hydrate of titanium dioxide soon after preparation under conditions other than a strong alkaline environment of pH 12 or more at room temperature. Under other conditions of temperature and pH, the presence or absence and the rate of the change are considered to be different, so under the conditions where it is difficult to change titanium dioxide into hydrate, the mixed solution of the next step is not necessarily immediately after preparation. Although it is not necessary to carry out the preparation, if the mixed solution of the next step is prepared immediately after the preparation of the Ti-containing aqueous solution, the temperature condition and the pH condition can be achieved by carrying out the later steps. Regardless, it is possible to form strontium titanate particles with low crystallinity.
Therefore, it is preferable to carry out step B1 or B2 using the Ti-containing aqueous solution immediately after preparation of the Ti-containing aqueous solution or otherwise using the Ti-containing aqueous solution stored in a light-shielded refrigerated state or frozen immediately after preparation.
 第1の製造方法における工程B1では、混合溶液中におけるSr成分とTi成分のモル比Sr/Tiは通常の化学量論組成を形成しうる1となるように、Ti含有水溶液とSr含有水溶液とを混合すればよい(技術常識においてペロブスカイト型を形成しうる範囲内で1からずれても問題ない)。 In step B1 of the first production method, the Ti-containing aqueous solution and the Sr-containing aqueous solution are used so that the molar ratio Sr / Ti of Sr component and Ti component in the mixed solution can be 1 which can form a normal stoichiometric composition. (There is no problem even if it deviates from 1 within the range in which the perovskite type can be formed in technical common sense).
 既に述べたように、水熱反応・亜臨界反応・超臨界反応において、より低アルカリ条件でのペロブスカイト型の形成には、混合溶液中におけるSr成分とTi成分のモル比Sr/Tiは通常の化学量論組成を形成しうる1よりも大きくする必要があり、好ましくは1.3以上であり、更に好ましくは1.3以上1.7以下である。従って、第2の製造方法における工程B2では、混合溶液中におけるSr成分とTi成分のモル比Sr/Tiが1より多くなるように、Ti含有水溶液とSr含有水溶液とを混合すればよい。 As described above, in the formation of the perovskite type under lower alkaline conditions in the hydrothermal reaction, subcritical reaction, and supercritical reaction, the molar ratio Sr / Ti in the mixed solution is usually Sr / Ti in the mixed solution. The stoichiometric composition needs to be larger than 1 and preferably 1.3 or more, and more preferably 1.3 or more and 1.7 or less. Therefore, in step B2 of the second production method, the Ti-containing aqueous solution and the Sr-containing aqueous solution may be mixed so that the molar ratio Sr / Ti of the Sr component and the Ti component in the mixed solution is more than one.
 工程B1及びB2において、混合溶液調製中に混合溶液中に析出物を生じることを極力抑制する観点で、工程B1及びB2中は、よく攪拌を行うことが好ましい。また、攪拌は、次工程C1やC2を実施する直前まで実施することがより好ましい。 In the steps B1 and B2, from the viewpoint of minimizing the formation of precipitates in the mixed solution during the preparation of the mixed solution, it is preferable to thoroughly stir during the steps B1 and B2. Moreover, it is more preferable to implement stirring until immediately before the next step C1 or C2 is performed.
<工程(C1,C2),工程(D1,D2)>
 工程C1及びC2は、工程B1及びB2で調製した混合溶液中に塩基性物質を加えて混合溶液のpHを、次工程D1又はD2を実施する条件となるように調整して反応液を調製する工程である。
 また、工程D1,D2は、工程C1及びC2で調製した反応液を用いて、水熱反応又は亜臨界、超臨界反応させてチタン酸ストロンチウム微粒子を合成する工程である。
<Step (C1, C2), Step (D1, D2)>
In steps C1 and C2, a basic substance is added to the mixed solution prepared in steps B1 and B2, and the pH of the mixed solution is adjusted to be the conditions for performing the next step D1 or D2 to prepare a reaction liquid It is a process.
Steps D1 and D2 are steps of synthesizing strontium titanate fine particles by performing a hydrothermal reaction or a subcritical or supercritical reaction using the reaction solution prepared in steps C1 and C2.
 工程C1、C2における混合溶液のpHは、次工程である工程D1、D2の反応温度が高いほど低アルカリ条件であってもペロブスカイト型のチタン酸ストロンチウム微粒子を製造することが可能となりやすい。 As the pH of the mixed solution in steps C1 and C2 is higher in the reaction temperature of the next step, steps D1 and D2, it becomes easy to be able to produce perovskite-type strontium titanate fine particles even under low alkaline conditions.
 図2は、工程C1において調整した混合溶液のpHを横軸とし、工程D1の反応温度を縦軸として、後記実施例及び比較例のデータをプロットしたものである。
 また、図3は、工程C2において調整した混合溶液のpHを横軸とし、工程D2の反応温度を縦軸として、後記実施例及び比較例のデータをプロットしたものである。
FIG. 2 plots the data of Examples and Comparative Examples described later, with the pH of the mixed solution adjusted in Step C1 as the abscissa and the reaction temperature of Step D1 as the ordinate.
Moreover, FIG. 3 plots pH of the mixed solution adjusted in step C2 as the abscissa and the reaction temperature of step D2 as the ordinate, and plots data of Examples and Comparative Examples described later.
 図2に示されるように、混合溶液中においてSr/Ti=1(第1の製造方法)の場合、図2中の長破線にて区切られる領域内(Y=-100X+1400上は含まない)、すなわち、工程C1において調製される反応液のpHをX(横軸)とし,工程D1における反応液の反応温度をY(縦軸)としたとき、XとYが、Y>-100X+1400,且つ、X≧10,且つ,Y≧250を満足している領域において、ペロブスカイト構造のチタン酸ストロンチウム微粒子を製造することができる。 As shown in FIG. 2, in the case of Sr / Ti = 1 (first production method) in the mixed solution, within the region divided by the long broken line in FIG. 2 (not including Y = −100 × + 1400), That is, when the pH of the reaction solution prepared in step C1 is X (horizontal axis) and the reaction temperature of the reaction solution in step D1 is Y (vertical axis), X and Y satisfy Y> -100X + 1400, and In the region satisfying X ≧ 10 and Y ≧ 250, strontium titanate fine particles having a perovskite structure can be produced.
 図2には、混合溶液のpHであるXは、11以上であることが好ましく、12以上であることが更に好ましいことが示されている。 It is shown in FIG. 2 that X, which is the pH of the mixed solution, is preferably 11 or more, and more preferably 12 or more.
 また、図3に示されるように、混合溶液中においてSr/Ti>1(第2の製造方法)の場合、図3中の長破線にて区切られる領域内、すなわち、工程C2において調製される反応液のpHをX(横軸)とし,工程D2における反応液の反応温度をY(縦軸)としたとき、XとYが、Y≧-500X+1400,且つ、X≧9,且つ,Y≧250を満足している領域において、ペロブスカイト構造のチタン酸ストロンチウム微粒子を製造することができる。 In addition, as shown in FIG. 3, in the case of Sr / Ti> 1 (second production method) in the mixed solution, it is prepared in the region divided by the long broken line in FIG. 3, that is, in step C2. Assuming that the pH of the reaction solution is X (horizontal axis) and the reaction temperature of the reaction solution in step D2 is Y (vertical axis), X and Y are Y ≧ −500 × + 1400 and X ≧ 9 and Y 且 つIn the region satisfying 250, strontium titanate fine particles having a perovskite structure can be produced.
 図3には、混合溶液のpHであるXは、9≦X≦13.5を満足することが好ましく、9≦X≦12を満足することが更に好ましいことが示されている。 It is shown in FIG. 3 that X, which is the pH of the mixed solution, preferably satisfies 9 ≦ X ≦ 13.5, and more preferably 9 ≦ X ≦ 12.
 第2の製造方法では、Srリッチな条件の反応液を水熱反応、又は亜臨界反応、若しくは超臨界反応させることで、より低アルカリよりの、二酸化チタンの水和物の安定性が高いpH条件において、結晶性の良好なチタン酸ストロンチウム微粒子を製造することができる。第2の製造方法において、pH9以上12以下の低アルカリ条件での合成では、超臨界反応がもっとも効果が高い。 In the second production method, the pH of the hydrate of titanium dioxide hydrate is lower than that of low alkali by the hydrothermal reaction, subcritical reaction or supercritical reaction of the reaction liquid in Sr-rich conditions. Under the conditions, strontium titanate fine particles with good crystallinity can be produced. In the second production method, in the synthesis under low alkaline conditions of pH 9 or more and 12 or less, the supercritical reaction is most effective.
 上記のように、第1及び第2の製造方法において、それぞれ、図2,図3で示される領域内のX値とY値として工程C1,C2及び工程D1,D2を実施することにより、工程C1又は工程C2において、Ti(OH)及び/又はHTiO イオンをTi成分の主成分として含んでなる反応液を調製し、工程D1又はD2において、ペロブスカイト型のチタン酸ストロンチウム微粒子を合成することができる。 As described above, in the first and second manufacturing methods, the steps C1 and C2 and the steps D1 and D2 are performed as the X value and the Y value in the regions shown in FIGS. 2 and 3, respectively. A reaction liquid containing Ti (OH) 4 and / or HTiO 3 ion as a main component of Ti component is prepared in C 1 or step C 2, and perovskite type strontium titanate fine particles are synthesized in step D 1 or D 2 be able to.
 工程C1及びC2で用いる塩基性水溶液としては特に制限されないが、電離度が0.8以上が望ましく、1近傍の強塩基を用いることが好ましい。かかる塩基性水溶液としては、水酸化ナトリウム水溶液又は水酸化カリウム水溶液が好ましく例示される。 The basic aqueous solution used in the steps C1 and C2 is not particularly limited, but an ionization degree of 0.8 or more is desirable, and it is preferable to use a strong base near one. As such a basic aqueous solution, a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution is preferably exemplified.
 塩基性水溶液の滴下は、1滴ずつ慎重に滴下していくことが好ましい。かかる析出物を生じること自体に問題はないが、析出物の大きさのばらつきが大きい場合や、ばらつきは小さくとも析出物自体がミリ単位以上の大きなものとなると、次工程終了時に結晶性の良好なチタン酸ストロンチウムの収率が低くなりやすいことが推測される。従って、析出物を生じた場合は、できるだけ細かくなるように、攪拌又は粉砕を行うことが好ましい。攪拌や粉砕の手段は特に制限されず、手動で攪拌棒等を用いて実施してもよいし、スターラーや超音波処理により分散させる手法も用いることができる。 The dropwise addition of the basic aqueous solution is preferably carefully added drop by drop. There is no problem in producing such precipitates, but if the variation in the size of the precipitates is large or if the precipitates themselves are large in units of milli units or more even if the variation is small, the crystallinity is good at the end of the next step It is presumed that the yield of strontium titanate is likely to be low. Therefore, when a precipitate is produced, it is preferable to carry out stirring or grinding so as to be as fine as possible. The means for stirring or pulverizing is not particularly limited, and may be carried out manually using a stirring rod or the like, or may be dispersed by a stirrer or ultrasonic treatment.
 工程D1、D2において、反応時間は温度条件及びpH条件、更に超臨界反応か否かに応じて適宜設定することができる。なお、水熱合成は250℃以上の条件では、加圧下での合成となることが通常である。
 以上のようにして、チタン酸ストロンチウム微粒子を得ることができる。
In the steps D1 and D2, the reaction time can be appropriately set according to the temperature condition and the pH condition, and further whether or not it is a supercritical reaction. In addition, under the conditions of 250 ° C. or higher, hydrothermal synthesis is usually synthesis under pressure.
As described above, strontium titanate fine particles can be obtained.
 上記第1の製造方法及び第2の製造方法によれば、低アルカリ条件にて、水熱反応又は亜臨界反応、若しくは超臨界反応により結晶性の良好なチタン酸ストロンチウム微粒子を製造することができる。また、Sr含有水溶液と混合するTi含有水溶液として、TiO をTi成分の主成分として含まないものを用いることにより、結晶性の高いチタン酸ストロンチウム微粒子を製造することができる。 According to the first production method and the second production method, it is possible to produce strontium titanate fine particles of good crystallinity by hydrothermal reaction, subcritical reaction, or supercritical reaction under low alkali conditions. . Moreover, highly crystalline strontium titanate fine particles can be produced by using a Ti-containing aqueous solution to be mixed with a Sr-containing aqueous solution that does not contain TiO 2 as a main component of the Ti component.
「設計変更」
 本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、適宜変更可能である。
"Design changes"
The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the scope of the present invention.
 (実施例1)
 まず、Sr含有水溶液として、必要量の精製水を採取し、硝酸ストロンチウムと秤量し、硝酸ストロンチウム水溶液を調製した。また、Ti含有水溶液として、四塩化チタン水溶液を調製した。アンプル状のTiClを1滴ずつゆっくりと精製水に滴下する。その際、攪拌し冷却しながら行い、指定濃度に調整後すぐに遮光し冷蔵保存する。特に記載がない限り、溶媒の水は精製水を用いた。
 四塩化チタン水溶液は、遮光し、調製後直ちに冷蔵庫で保管して調整直後の状態を維持した状態で、硝酸ストロンチウム水溶液と混合し、混合溶液を得た。混合の際、混合溶液中のSr成分とTi成分とのモル比Sr/Tiは1となるように混合した。
Example 1
First, a required amount of purified water was collected as an Sr-containing aqueous solution, and weighed with strontium nitrate to prepare a strontium nitrate aqueous solution. Moreover, titanium tetrachloride aqueous solution was prepared as Ti containing aqueous solution. Ampoule-like TiCl 4 is slowly added dropwise to purified water. At that time, it is carried out with stirring and cooling, and immediately after adjustment to the designated concentration, it is shielded from light and stored refrigerated. As a solvent water, purified water was used unless otherwise stated.
The aqueous solution of titanium tetrachloride was shielded from light, and immediately after preparation, it was stored in a refrigerator to maintain the state immediately after preparation, and then mixed with an aqueous solution of strontium nitrate to obtain a mixed solution. At the time of mixing, the molar ratio Sr / Ti of the Sr component to the Ti component in the mixed solution was mixed so as to be 1.
 次に、混合溶液をビーカー内に貯留させ、その混合溶液中に、水酸化カリウム水溶液を1滴ずつ滴下して混合溶液のpHを調整した。水酸化カリウム水溶液を滴下直後より、ゲル状の白色析出物を生じたため、攪拌してその析出物を粉砕しながら、混合溶液のpHが7,10,11,11.5,12,13.5の反応液をそれぞれ調製した。 Next, the mixed solution was stored in a beaker, and the aqueous solution of potassium hydroxide was dropped into the mixed solution one by one to adjust the pH of the mixed solution. Immediately after the addition of the aqueous potassium hydroxide solution, a gel-like white precipitate was produced, and the pH of the mixed solution was 7, 10, 11, 1.5, 12, 13.5 while stirring and grinding the precipitate. The respective reaction solutions were prepared.
 得られた各pHの反応液を用いて、200℃~400℃までの範囲で水熱反応又は亜臨界反応、若しくは超臨界反応を実施してチタン酸ストロンチウム微粒子の合成を実施した。反応条件を表1に示す。
 合成は、反応液を各温度に応じて内容積約5cmのハステロイ(登録商標)製容器(AKICO社製)内に指定量投入し、それをステンレス製の耐圧容器内に入れて密封し、表1に記載の温度条件、及び圧力30MPaにて10分間反応させ、その後急冷した。
The reaction solution of each pH thus obtained was subjected to a hydrothermal reaction, a subcritical reaction or a supercritical reaction in the range of 200 ° C. to 400 ° C. to carry out synthesis of strontium titanate fine particles. The reaction conditions are shown in Table 1.
According to each temperature, the reaction solution is put into a designated volume of Hastelloy (registered trademark) container (made by AKICO) having an inner volume of about 5 cm 3 , and it is sealed in a stainless steel pressure container. The reaction was carried out for 10 minutes under the temperature conditions described in Table 1 and a pressure of 30 MPa, and then quenched.
 得られたチタン酸ストロンチウム微粒子の結晶性の評価結果について、表1及び図2に示す。結晶性の評価は、粉末X線回折測定(XRD)装置(リガク製RINT2000)にて評価した。
 表1、図2では、結晶性の評価結果を記号にて示してある。表1、図2において、●はペロブスカイト相、▲はペロブスカイト相も存在するが異相・アモルファスが混入している場合、×は異相又はアモルファスである場合を意味する。
About the evaluation result of crystallinity of the obtained strontium titanate microparticles | fine-particles, it shows in Table 1 and FIG. The evaluation of crystallinity was evaluated by a powder X-ray diffraction measurement (XRD) apparatus (RINT 2000 manufactured by RIGAKU).
In Table 1 and FIG. 2, the evaluation results of crystallinity are shown by symbols. In Table 1 and FIG. 2, .circle-solid. Indicates the perovskite phase, .tangle-solidup. Indicates the perovskite phase but the heterophase / amorphous is mixed, and x indicates the heterophase or amorphous.
 代表的なXRDスペクトルを図4~図6に示す。図4は、超臨界反応とした場合の4種類のpHにおいて得られたチタン酸ストロンチウム微粒子のXRDスペクトルを比較したものであり、図5はpH12とした場合の、300℃、350℃(亜臨界)、400℃(超臨界)において得られたチタン酸ストロンチウム微粒子のXRDスペクトルを比較したもの、図6はpH11とした場合の、300℃、350℃(亜臨界)、400℃(超臨界)において得られたチタン酸ストロンチウム微粒子のXRDスペクトルを比較したものである。なお、図4では、比較のためにpH7として合成した場合のチタン酸ストロンチウム微粒子のXRDスペクトルについても合わせて示してある。 Representative XRD spectra are shown in FIGS. FIG. 4 compares the XRD spectra of the strontium titanate fine particles obtained at four pHs in the case of the supercritical reaction, and FIG. 5 shows the temperatures of 300 ° C. and 350 ° C. at the pH 12 (subcritical) 6) compares the XRD spectra of the strontium titanate fine particles obtained at 400 ° C. (supercritical), FIG. 6 shows the result at 300 ° C., 350 ° C. (subcritical) and 400 ° C. (supercritical) when pH 11 is used The XRD spectrum of the obtained strontium titanate fine particles is compared. FIG. 4 also shows the XRD spectrum of the strontium titanate fine particles synthesized at pH 7 for comparison.
 図4には、超臨界の条件では、pH12、13.5においてペロブスカイト相が得られていることが示されている。また、pH11では若干異相の混入が確認されるが、異相の方がメインとなっているpH7のXRDスペクトルと比較すると、ペロブスカイト相がメインの微粒子が得られていると考えられる。 FIG. 4 shows that a perovskite phase is obtained at pH 12 and 13.5 under supercritical conditions. In addition, although mixing of a different phase is slightly confirmed at pH 11, it is considered that fine particles having a main perovskite phase are obtained as compared with the XRD spectrum at pH 7 in which the different phase is the main.
 図5には、pH12の条件では、300℃、350℃(亜臨界)、400℃(超臨界)において、いずれもペロブスカイト相が得られていることが確認される。図6には、pH11の条件では、400℃(超臨界)、350℃(亜臨界)においてペロブスカイト相が得られるが、300℃(亜臨界)ではアモルファスとなることが確認される。 In FIG. 5, it is confirmed that the perovskite phase is obtained at 300 ° C., 350 ° C. (subcritical) and 400 ° C. (supercritical) under conditions of pH 12. In FIG. 6, it is confirmed that the perovskite phase is obtained at 400 ° C. (supercritical) and 350 ° C. (subcritical) under the condition of pH 11, but it becomes amorphous at 300 ° C. (subcritical).
 (実施例2)
 混合溶液中のSr成分とTi成分とのモル比Sr/Tiを1.3以上とした以外は実施例1と同様にして混合溶液を調製した。
 次に、実施例1と同様にして混合溶液のpHを調整した。水酸化カリウム水溶液を滴下直後より、ゲル状の白色析出物を生じたため、攪拌してその析出物を粉砕しながら、混合溶液のpHが7,9,10、11,11.5,12,13.5の反応液をそれぞれ調製した。
(Example 2)
A mixed solution was prepared in the same manner as Example 1, except that the molar ratio Sr / Ti of Sr component to Ti component in the mixed solution was set to 1.3 or more.
Next, the pH of the mixed solution was adjusted in the same manner as in Example 1. Immediately after the addition of the aqueous potassium hydroxide solution, a gel-like white precipitate was produced, and the pH of the mixed solution was 7, 9, 10, 11, 11.5, 12, 13 while stirring and crushing the precipitate. .5 were prepared respectively.
 得られた各pHの反応液を用いて、250℃~400℃までの範囲で水熱反応又は亜臨界反応、若しくは超臨界反応を実施して、実施例1と同様にしてチタン酸ストロンチウム微粒子の合成を実施した。反応条件を表2に示す。 The reaction solution of each pH thus obtained is subjected to a hydrothermal reaction, a subcritical reaction or a supercritical reaction in the range of 250 ° C. to 400 ° C. to obtain strontium titanate fine particles in the same manner as in Example 1. The synthesis was performed. The reaction conditions are shown in Table 2.
 合成にて得られたチタン酸ストロンチウム微粒子の結晶性の評価結果について、表2及び図3に示す。表2及び図3の評価結果の表示については、実施例1と同様である。 The evaluation results of the crystallinity of the strontium titanate fine particles obtained in the synthesis are shown in Table 2 and FIG. About the display of the evaluation result of Table 2 and FIG. 3, it is the same as that of Example 1. FIG.
 代表的なXRDスペクトルを図7~図10に示す。図7は、超臨界反応とした場合の2種類のpHにおいて得られたチタン酸ストロンチウム微粒子のXRDスペクトルを比較したものであり、図8はpH11とした場合の、300℃、350℃(亜臨界)、400℃(超臨界)において得られたチタン酸ストロンチウム微粒子のXRDスペクトルを比較したものである。なお、図7では、pH7として合成した場合は、Sr/Ti=1.7としてもペロブスカイト相が得られなかった比較例のXRDスペクトルを合わせて示してある。 Representative XRD spectra are shown in FIGS. 7-10. FIG. 7 compares the XRD spectra of the strontium titanate fine particles obtained at two pHs in the case of the supercritical reaction, and FIG. 8 shows a temperature of 300 ° C. and 350 ° C. in the case of pH 11 (subcritical) And XRD spectra of strontium titanate fine particles obtained at 400 ° C. (supercritical). In addition, in FIG. 7, when it synthesize | combined as pH 7, the XRD spectrum of the comparative example from which the perovskite phase was not obtained is also shown collectively as Sr / Ti = 1.7.
 図7には、超臨界の条件では、Sr/Ti=1.3とすることによって、pH=11においてペロブスカイト相が得られ、Sr/Ti=1.5とすることによって、pH=9において異相を含むもののペロブスカイト相のチタン酸ストロンチウムが得られることが示されている。また、pH7のXRDスペクトルと比較すると、pH7では、アナターゼ型二酸化チタンが形成されやすいことが確認される。 In FIG. 7, under supercritical conditions, a perovskite phase is obtained at pH = 11 by setting Sr / Ti = 1.3, and a different phase is obtained at pH = 9 by setting Sr / Ti = 1.5. It has been shown that strontium titanate having a perovskite phase is obtained. In addition, it is confirmed that anatase-type titanium dioxide is easily formed at pH 7 as compared with the XRD spectrum at pH 7.
 図8には、pH11の条件では、300℃、350℃(亜臨界)、400℃(超臨界)において、いずれもペロブスカイト相が得られていることが確認される。図8において、400℃の超臨界条件にて、Sr/Ti=1とした場合のXRDも合わせて示してある。pH11では、Srリッチせずに超臨界反応を行った場合には、Ti35やKTi816.5等の異相が確認される。 In FIG. 8, it is confirmed that the perovskite phase is obtained at 300 ° C., 350 ° C. (subcritical), and 400 ° C. (supercritical) under conditions of pH 11. FIG. 8 also shows the XRD when Sr / Ti = 1 under the supercritical condition of 400 ° C. At a pH of 11, when the supercritical reaction is carried out without Sr-rich, different phases such as Ti 3 O 5 and KTi 8 O 16.5 are confirmed.
 図9は、Sr/Ti=1.3,pH=11.5,250℃にて水熱反応させて合成したチタン酸ストロンチウム微粒子のXRD、図10は、Sr/Ti=1.3,pH=9,350℃,400℃にて水熱反応させて合成したチタン酸ストロンチウム微粒子のXRDスペクトルである。図9及び図10には、ペロブスカイト相のチタン酸ストロンチウム微粒子が得られていることが示されている。 FIG. 9 is an XRD of strontium titanate fine particles synthesized by hydrothermal reaction at Sr / Ti = 1.3, pH = 11.5, 250 ° C. FIG. 10 shows Sr / Ti = 1.3, pH = It is a XRD spectrum of strontium titanate microparticles | fine-particles synthesize | combined by making it hydrothermally react at 9,350 degreeC and 400 degreeC. FIGS. 9 and 10 show that strontium titanate fine particles in the perovskite phase are obtained.
 なお、本明細書の実施例は、実施例1及び実施例2として記載したが、表1におけるペロブスカイト相が得られていないものについては比較例である。 In addition, although the Example of this specification was described as Example 1 and Example 2, it is a comparative example about what the perovskite phase in Table 1 is not obtained.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 本発明のチタン酸ストロンチウム微粒子の製造方法は、光触媒や、圧電体や誘電体などの電子部品用機能性材料として好適なチタン酸ストロンチウム微粒子の製造に好適に適用することができる。 The method for producing strontium titanate fine particles according to the present invention can be suitably applied to the production of strontium titanate fine particles suitable as a photocatalyst or a functional material for electronic parts such as a piezoelectric or dielectric.

Claims (14)

  1.  Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A1と、
     前記Sr含有水溶液と、前記Ti含有水溶液とを混合して混合溶液を調製する工程B1と、
     該混合溶液中に塩基性物質を加えて前記混合溶液のpHを調整して反応液を調製する工程C1と、
     該反応液を250℃以上の温度で水熱反応又は、亜臨界反応若しくは超臨界反応させる工程D1とを有し、
     前記工程C1において調製される前記反応液のpHをXとし、
     前記工程D1における前記反応液の合成温度をYとしたとき、
     該Xと該Yが、Y>-100X+1400,且つ、X≧10,且つ,Y≧250を満足するチタン酸ストロンチウム微粒子の製造方法。
    Preparing a Sr-containing aqueous solution and a Ti-containing aqueous solution respectively;
    Preparing a mixed solution by mixing the Sr-containing aqueous solution and the Ti-containing aqueous solution;
    Preparing a reaction solution by adding a basic substance to the mixed solution to adjust the pH of the mixed solution;
    The reaction liquid is subjected to a hydrothermal reaction or a subcritical reaction or a supercritical reaction at a temperature of 250 ° C. or higher,
    The pH of the reaction solution prepared in the step C1 is X,
    When the synthesis temperature of the reaction solution in the step D1 is Y,
    A method for producing strontium titanate fine particles, wherein the X and the Y satisfy Y> -100X + 1400, XX10, and Y ≧ 250.
  2.  前記Xが、更に、X≧11を満足する請求項1記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate particles according to claim 1, wherein the X further satisfies X1111.
  3.  前記Xが、更に11≦X≦13.5を満足する請求項2記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate particles according to claim 2, wherein said X further satisfies 11 ≦ X ≦ 13.5.
  4.  前記Xが、更に11≦X≦12を満足する請求項3記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to claim 3, wherein the X further satisfies 11 ≦ X ≦ 12.
  5.  Sr含有水溶液とTi含有水溶液をそれぞれ調製する工程A2と、
     前記Sr含有水溶液と、前記Ti含有水溶液とを混合して、含有されるSr成分とTi成分のモル比Sr/Tiが1.0超である混合溶液を調製する工程B2と、
     該混合溶液中に塩基性物質を加えて前記混合溶液のpHを調整して反応液を調製する工程C2と、
     該反応液を250℃以上の温度で水熱反応又は、亜臨界反応若しくは超臨界反応させる工程D2とを有し、
     前記工程C2において調製される前記反応液のpHをXとし,
     前記工程D2における前記反応液の合成温度をYとしたとき、
     該Xと該Yが、Y≧-500X+5150,且つ、X≧9,且つ、Y≧250を満足するチタン酸ストロンチウム微粒子の製造方法。
    Step A2 of preparing an Sr-containing aqueous solution and a Ti-containing aqueous solution,
    Step B2 of mixing the Sr-containing aqueous solution with the Ti-containing aqueous solution to prepare a mixed solution in which the molar ratio Sr / Ti of the contained Sr component to the Ti component is more than 1.0.
    Preparing a reaction solution by adding a basic substance to the mixed solution to adjust the pH of the mixed solution;
    And B. a step D2 of subjecting the reaction solution to a hydrothermal reaction, a subcritical reaction or a supercritical reaction at a temperature of 250 ° C. or higher,
    Let the pH of the reaction solution prepared in the step C2 be X,
    When the synthesis temperature of the reaction solution in the step D2 is Y,
    A method for producing strontium titanate fine particles, wherein the X and the Y satisfy Y500−500 × + 5150, X ≧ 9, and Y ≧ 250.
  6.  前記Xが、更に9≦X≦13.5を満足する請求項5記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to claim 5, wherein the X further satisfies 9 ≦ X ≦ 13.5.
  7.  前記Xが、更に9≦X≦12を満足する請求項5記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to claim 5, wherein the X further satisfies 9 ≦ X ≦ 12.
  8.  前記工程B2において、前記混合溶液に含有されるSr成分とTi成分のモル比Sr/Tiが1.3以上となるように、前記Sr含有水溶液と、前記Ti含有水溶液とを混合する請求項5~7いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 In the step B2, the Sr-containing aqueous solution and the Ti-containing aqueous solution are mixed such that the molar ratio Sr / Ti of the Sr component and the Ti component contained in the mixed solution is 1.3 or more. The method for producing strontium titanate fine particles according to any one of the above items 1 to 7.
  9.  前記工程B1又は前記工程B2において、TiOをTi成分の主成分として含まない前記Ti含有水溶液を用いる請求項1~8いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 8, wherein the Ti-containing aqueous solution not containing TiO 2 as a main component of Ti component is used in the step B1 or the step B2.
  10.  前記工程A1又は前記工程A2において、
     前記Sr含有水溶液が、ストロンチウムの酢酸塩、又は水酸化物もしくは硝酸塩を水に溶解させてなるものである請求項1~9いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。
    In the step A1 or the step A2,
    The method for producing strontium titanate fine particles according to any one of claims 1 to 9, wherein the Sr-containing aqueous solution is obtained by dissolving strontium acetate or hydroxide or nitrate in water.
  11.  前記工程C1又は前記工程C2において、
     Ti(OH)及び/又はHTiO イオンをTi成分の主成分として含んでなる反応液を調製する請求項1~10いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。
    In the step C1 or the step C2,
    The method for producing strontium titanate fine particles according to any one of claims 1 to 10, wherein a reaction liquid comprising Ti (OH) 4 and / or HTiO 3 - ion as a main component of Ti component is prepared.
  12.  前記工程A1又は前記工程A2において、前記Ti含有水溶液として四塩化チタン水溶液を調製する請求項1~11いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 11, wherein a titanium tetrachloride aqueous solution is prepared as the Ti-containing aqueous solution in the step A1 or the step A2.
  13.  前記工程C1又は前記工程C2において、前記塩基性水溶液が、水酸化ナトリウム水溶液又は水酸化カリウム水溶液である請求項1~12いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 12, wherein in the step C1 or the step C2, the basic aqueous solution is a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution.
  14.  前記工程C1又は前記工程C2において、前記調整中に発生する固形物を粉砕する請求項1~13いずれか1項記載のチタン酸ストロンチウム微粒子の製造方法。 The method for producing strontium titanate fine particles according to any one of claims 1 to 13, wherein solid matter generated during the preparation is crushed in the step C1 or the step C2.
PCT/JP2015/000617 2014-02-14 2015-02-10 Manufacturing method for strontium titanate fine particles WO2015122180A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014026627A JP6065286B2 (en) 2014-02-14 2014-02-14 Method for producing strontium titanate fine particles
JP2014-026627 2014-02-14

Publications (2)

Publication Number Publication Date
WO2015122180A1 WO2015122180A1 (en) 2015-08-20
WO2015122180A4 true WO2015122180A4 (en) 2015-10-01

Family

ID=53799931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000617 WO2015122180A1 (en) 2014-02-14 2015-02-10 Manufacturing method for strontium titanate fine particles

Country Status (2)

Country Link
JP (1) JP6065286B2 (en)
WO (1) WO2015122180A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107216592A (en) * 2017-07-20 2017-09-29 安徽盛华管业有限公司 A kind of preparation method of the CPVC tubing with photocatalytic self-cleaning function

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647364A (en) * 1970-01-06 1972-03-07 Us Air Force Process for producing high-purity submicron barium and strontium titanate powders
JPH06649B2 (en) * 1984-10-12 1994-01-05 ソニー株式会社 Method for producing fine dielectric particles
JPS6272525A (en) * 1985-09-27 1987-04-03 Fuji Titan Kogyo Kk Production of barium titanate or strontium titanate
JPH0832559B2 (en) * 1987-03-25 1996-03-29 テイカ株式会社 Method for producing inorganic fine powder of perovskite type compound
JP4102872B2 (en) * 2002-03-08 2008-06-18 独立行政法人産業技術総合研究所 High crystalline barium titanate ultrafine particles and method for producing the same
JP5507097B2 (en) * 2008-03-12 2014-05-28 富士フイルム株式会社 Perovskite oxide and method for producing the same, piezoelectric body, piezoelectric element, and liquid ejection device
JP5448673B2 (en) * 2009-09-24 2014-03-19 株式会社トクヤマ Method for producing composite oxide nanoparticles
JP2013177259A (en) * 2012-02-28 2013-09-09 Asahi Glass Co Ltd Complex metal oxide particle and composition including the same

Also Published As

Publication number Publication date
WO2015122180A1 (en) 2015-08-20
JP2015151303A (en) 2015-08-24
JP6065286B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
Mustapha et al. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles
Shandilya et al. Hydrothermal technology for smart materials
Reyes-Coronado et al. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile
Nam et al. Preparation of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation
Gnanam et al. Luminescence properties of EG-assisted SnO2 nanoparticles by sol-gel process
JP2972752B1 (en) Method for producing ultrafine crystalline titanium oxide monodispersed powder
JP6081936B2 (en) Method for producing cubic or cuboid crystal of strontium titanate and strontium titanate fine particles
JP6583637B2 (en) Strontium titanate fine particle powder and method for producing the same
JP2009521393A (en) Method for producing metal oxide nanoparticles, and nanoparticles and preparations produced thereby
JP4102872B2 (en) High crystalline barium titanate ultrafine particles and method for producing the same
US20080311031A1 (en) Methods For Production of Metal Oxide Nano Particles With Controlled Properties, and Nano Particles and Preparations Produced Thereby
Dunne et al. Bench-and pilot-scale continuous-flow hydrothermal production of barium strontium titanate nanopowders
Ashiri Obtaining a novel crystalline/amorphous core/shell structure in barium titanate nanocrystals by an innovative one-step approach
Ashiri et al. Processing and characterization of carbonate-free BaTiO 3 nanoscale particles obtained by a rapid ultrasound-assisted wet chemical approach
WO2015122180A4 (en) Manufacturing method for strontium titanate fine particles
Kolesnik et al. Non-classical growth of brookite nanorods
Sokolov et al. Synthesis of nanosized zirconium dioxide and its solid solutions with titanium dioxide from the CO2 supercritical fluid
Kobayashi et al. Morphology control of rutile nanoparticles in a hydrothermal synthesis from water-soluble titanium complex aqueous solution
Zhang et al. Rod-like incipient ferroelectric SrTiO3 polycrystal with crystal-axis orientation
RU2435733C1 (en) Method of producing photocatalytic nanocomposite containing titanium dioxide
JP2005289737A (en) Barium titanate minute particle and its manufacturing method
JPH07277710A (en) Production of perovskite-type multiple oxide powder
Sydorchuk et al. Mechanochemical synthesis of BaTiO 3 using different forms of TiO 2
JP2008189497A (en) Rutile type titanium dioxide particles and method for producing the same
Dharanya et al. Transitional evolution of Strontium Titanate and its intermediaries founded on alkalinity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748740

Country of ref document: EP

Kind code of ref document: A1