JPH0832559B2 - Method for producing inorganic fine powder of perovskite type compound - Google Patents

Method for producing inorganic fine powder of perovskite type compound

Info

Publication number
JPH0832559B2
JPH0832559B2 JP7239487A JP7239487A JPH0832559B2 JP H0832559 B2 JPH0832559 B2 JP H0832559B2 JP 7239487 A JP7239487 A JP 7239487A JP 7239487 A JP7239487 A JP 7239487A JP H0832559 B2 JPH0832559 B2 JP H0832559B2
Authority
JP
Japan
Prior art keywords
group
fine powder
hydroxide
inorganic fine
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7239487A
Other languages
Japanese (ja)
Other versions
JPS63236713A (en
Inventor
雅典 衣笠
輝雄 青江
賛史郎 斉藤
直人 坪本
進 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Kako Co Ltd
Original Assignee
Teikoku Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Kako Co Ltd filed Critical Teikoku Kako Co Ltd
Priority to JP7239487A priority Critical patent/JPH0832559B2/en
Publication of JPS63236713A publication Critical patent/JPS63236713A/en
Publication of JPH0832559B2 publication Critical patent/JPH0832559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペロブスカイト化合物(以下「ABO3」と称す
る。)の無機微粉体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an inorganic fine powder of a perovskite compound (hereinafter referred to as “ABO 3 ”).

該ABO3化合物をセラミックス化したセラミックスは優
れた誘電性、圧電性および半導性を有し、エレクトロニ
クス分野において非常に有用であり、コンデンサー、電
波フィルター,着火素子、サーミスター等として使用さ
れる。
Ceramics obtained by converting the ABO 3 compound into ceramics have excellent dielectric properties, piezoelectric properties, and semiconductivity, and are very useful in the electronics field, and are used as capacitors, radio wave filters, ignition devices, thermistors, and the like.

従来技術 近年電子デバイスの小型軽量高性能化にともない、該
ABO3セラミックスもまた薄膜化、小型化が要求されてお
り、セラミックス化における配合、成形、焼結等の技術
面で薄膜化、小型化の検討がなされてきた。しかし従来
の固相反応で作られた粒径0.8μm以上の原料ではその
限界にきている。すなわち、従来の固相反応で作られた
ABO3原料とは、Mg,Ca,Sr,BaおよびPb(以下A群元素と
称する)の少なくとも1種類以上の炭酸塩もしくは酸化
物と、Ti,Zr、HfおよびSn(以下B群元素と称する)の
少なくとも1種以上の酸化物とを混合し、これを1000℃
以上の高温で処理してABO3化合物となした後ボールミル
等で機械的に粉砕し、ロ過、乾燥して製造される。その
ため固相反応では0.8μm以上のABO3化合物しか得られ
ず、該ABO3化合物を使用するといかに配合、成形、焼結
技術を駆使しようともセラミックスの小型化、薄膜化に
は限界があった。
2. Description of the Related Art Recently, as electronic devices have become smaller and lighter and have higher performance,
ABO 3 ceramics are also required to be thinned and downsized, and studies have been made on thinning and downsizing in terms of technical aspects such as compounding, molding, and sintering in ceramicization. However, the limit has been reached for raw materials with a particle size of 0.8 μm or more produced by conventional solid-phase reaction. That is, it was made by a conventional solid-phase reaction
ABO 3 raw materials include at least one or more carbonates or oxides of Mg, Ca, Sr, Ba and Pb (hereinafter referred to as group A elements) and Ti, Zr, Hf and Sn (hereinafter referred to as group B elements). ) Mixed with at least one or more oxides,
It is produced by treating at the above high temperature to form an ABO 3 compound, mechanically pulverizing it with a ball mill, filtering and drying. For this reason, only ABO 3 compounds of 0.8 μm or more can be obtained in the solid-phase reaction, and there is a limit to the downsizing and thinning of ceramics even if the ABO 3 compound is used, no matter how compounding, molding and sintering techniques are used.

発明が解決しようとする問題点 特開昭59-39726,特開昭61-91016、特開昭60-90825お
よび特開昭61-31345には、ABO3化合物の微粒子原料が記
載されている。しかしながらこれらの方法では、ロ過、
水洗の工程を必要とするためA/Bモル比制御が非常に困
難となり、また経済的にも不利である。例えば、特開昭
59-39726,特開昭61-91016では、チタンまたはジルコニ
ウムの水酸化物とバリウム、ストロンチウム、カルシウ
ムの水溶性塩とを強アルカリ水溶液中で反応して微粒子
ABO3を得ているが、電気特性上好ましくないアルカリ金
属Na,K等を除く操作が必要となり、さらにそのためモル
比制御が困難となり、コスト高となる。また、特開昭61
-31345では、反応終了後、ロ過時の未反応水溶性A元素
成分の流出のために生じるA/Bモル比のずれを防止する
ため、ロ過前に一度A元素成分を不溶化させる工程を追
加し、A/Bモル比を制御しているが、いずれにしても、
ロ過、水洗工程が不可欠なためモル比制御の正確性に欠
け、工程を追加する分だけさらに経済的に不利である。
また、ABO3化合物のA/Bモル比因子はセラミックス化、
つまり、緻密化あるいはその焼結結晶粒径において非常
に影響を及ぼすことがわかっており、少なくとも少数点
以下3桁近くのA/Bモル比コントロールの正確さが要求
されている。
Problems to be Solved by the Invention JP-A-59-39726, JP-A-61-91016, JP-A-60-90825 and JP-A-61-31345 describe fine particle raw materials of ABO 3 compounds. However, with these methods,
Since the step of washing with water is required, it becomes very difficult to control the A / B molar ratio, and it is economically disadvantageous. For example,
59-39726, JP-A 61-91016 discloses that fine particles are produced by reacting a hydroxide of titanium or zirconium with a water-soluble salt of barium, strontium or calcium in a strong alkaline aqueous solution.
Although ABO 3 has been obtained, it is necessary to perform an operation to remove alkali metals Na, K, etc., which are not preferable in terms of electrical characteristics, and therefore it becomes difficult to control the molar ratio, resulting in high cost. In addition, JP-A-61
-31345, after the completion of the reaction, to prevent the deviation of the A / B molar ratio caused by the outflow of unreacted water-soluble A element component at the time of filtration, add a step to insolubilize the element A component once before filtration. However, the A / B molar ratio is controlled, but in any case,
Since the filtration and washing steps are indispensable, the accuracy of the molar ratio control is lacking, and the additional steps are economically disadvantageous.
Also, the A / B molar ratio factor of the ABO 3 compound is ceramicization,
That is, it has been known that the densification or the sintered crystal grain size thereof is greatly affected, and the accuracy of the A / B molar ratio control is required to be at least three digits below the decimal point.

そこで本発明者らは、A群元素およびB群元素の化合
物の混合物水溶液を常圧加熱反応または水熱反応した
後、噴霧乾燥することにより、一般に行われているロ
過、水洗工程を省略することを可能にし、それらの工程
によって生じるA/Bモル比のずれおよび未反応A元素成
分の偏在を解消することを可能にし、さらに工場スケー
ルで生産する場合、連続式で行えるメリットを見出し、
本発明に至った。
Therefore, the present inventors omit the commonly-used filtration and water washing steps by subjecting a mixed aqueous solution of a compound of a group A element and a compound of a group B element to atmospheric pressure heating reaction or hydrothermal reaction and then spray drying. It is possible to eliminate the deviation of the A / B molar ratio and the uneven distribution of the unreacted A element component caused by those steps, and when producing at the factory scale, find the merit that can be done in a continuous system,
The present invention has been completed.

発明の構成 次に本発明方法を詳細に説明する。Structure of the Invention Next, the method of the present invention will be described in detail.

A群元素化合物から選ばれる少なくとも1種の化合物
またはB群元素化合物から選ばれる少なくとも1種の化
合物は、市販品そのままを使用してもよく、また、通常
の合成法で調製しても良い。例えば、水酸化物、酸化
物、有機金属化合物、塩等が使用できる。ただし、該化
合物の陰イオン部が後のセラミックス化および該セラミ
ックスの電気特性上好ましくない影響を及ぼす場合は使
用できない。またB群元素の水酸化物あるいは酸化物を
用いる場合、本原料の粒径は0.3μm以下,好ましくは
0.1μm以下のものが良く、0.3μm以上であると反応が
困難になる。さらに、本原料の粒径は目的生成ABO3化合
物の粒径以下でなければならないことはいうまでもな
い。
As the at least one compound selected from the group A element compounds or at least one compound selected from the group B element compounds, commercially available products may be used as they are, or they may be prepared by an ordinary synthetic method. For example, hydroxides, oxides, organometallic compounds, salts and the like can be used. However, it cannot be used when the anion part of the compound exerts an unfavorable effect on the subsequent ceramic formation and the electrical characteristics of the ceramic. When using a hydroxide or oxide of Group B element, the particle size of this raw material is 0.3 μm or less, preferably
It is preferably 0.1 μm or less, and the reaction becomes difficult when it is 0.3 μm or more. Further, it goes without saying that the particle size of this raw material must be equal to or smaller than the particle size of the target-produced ABO 3 compound.

A群元素化合物から選ばれる少なくとも1種の化合物
と、B群元素化合物から選ばれる少なくとも1種の化合
物との混合物水溶液は、必要に応じてpH10以上に調節さ
れる。pH10以下では反応が進行しない場合がほとんどで
ある。
The aqueous solution of a mixture of at least one compound selected from the group A element compounds and at least one compound selected from the group B element compounds is adjusted to pH 10 or higher as necessary. In most cases, the reaction does not proceed below pH 10.

こうして得られたアルカリ性混合物水溶液を常圧加熱
反応または水熱反応することにより、ABO3化合物を得
る。いうまでもなく常圧加熱反応とは常圧下で沸騰させ
て反応させる方法であり、水熱反応とは加圧下で通常11
0℃〜300℃付近の温度で反応する方法である。そしてこ
れらの反応条件として反応温度、反応圧、反応時間、混
合物水溶液の濃度等が挙げられる。反応温度は通常、90
℃以上であればABO3化合物は生成するが、反応速度を上
げるには高温にすれば良い。また反応時間については反
応温度100℃,常圧で3時間あれば十分であり、反応温
度および圧力と相関する。また、混合物水溶液の濃度は
生成ABO3の粒径に影響し、濃度が低ければ粒径が大きく
なる傾向がある。好ましい濃度としては0.2〜0.9モル/l
(ABO3換算)である。ただし、これらの諸条件について
は目的生成ABO3化合物、あるいはA元素の化合物の混合
物水溶液の調製方法によって多少違ってくる。
The ABO 3 compound is obtained by subjecting the aqueous alkaline mixture solution thus obtained to atmospheric pressure heating reaction or hydrothermal reaction. Needless to say, the atmospheric pressure heating reaction is a method of reacting by boiling under atmospheric pressure, and the hydrothermal reaction is usually under pressure.
It is a method of reacting at a temperature around 0 ° C to 300 ° C. The reaction conditions include reaction temperature, reaction pressure, reaction time, concentration of the mixture aqueous solution, and the like. Reaction temperature is usually 90
ABO 3 compounds are produced at a temperature of ℃ or higher, but it is sufficient to raise the temperature to increase the reaction rate. As for the reaction time, a reaction temperature of 100 ° C. and normal pressure for 3 hours is sufficient, and correlates with the reaction temperature and pressure. Further, the concentration of the mixture aqueous solution affects the particle size of the produced ABO 3 , and the lower the concentration, the larger the particle size tends to be. The preferred concentration is 0.2-0.9 mol / l
(ABO 3 equivalent). However, these various conditions are somewhat different depending on the method of preparing the target-produced ABO 3 compound or the aqueous solution mixture of the compound of the element A.

次に、生成したABO3化合物含有スラリーは噴霧乾燥さ
れる。該噴霧乾燥は通常スプレードライヤーで行われる
が、以下に示す条件を満足する装置であればスプレード
ライヤーに限らない。
Next, the produced ABO 3 compound-containing slurry is spray-dried. The spray drying is usually performed by a spray dryer, but the spray dryer is not limited to the spray dryer as long as the device satisfies the following conditions.

1) A元素成分とB元素成分が系外に出ず、A/Bモル
比のズレを生じない。
1) The A element component and the B element component do not go out of the system, and the A / B molar ratio does not shift.

2) 未反応A元素成分およびB元素成分が乾燥時に偏
在せず、未反応A元素成分とB元素成分および生成ABO3
が均一乾燥される。
2) Unreacted A element component and B element component are not unevenly distributed during drying, and unreacted A element component, B element component and generated ABO 3
Are uniformly dried.

本発明の方法によって得られた粉は、未反応A元素成
分及びB元素成分が存在しても、均一に存在しているた
め、本乾燥工程、仮焼工程、本焼成工程で容易に反応し
てABO3になる。
Since the powder obtained by the method of the present invention is present uniformly even if the unreacted A element component and B element component are present, it easily reacts in the main drying step, the calcination step, and the main firing step. Becomes ABO 3 .

さらに、噴霧乾燥後得られたABO3無機微粉体は必要に
応じてカ焼される。そのカ焼温度は目的とされる該無機
微粉体の粒径および結晶形によって制限される。チタン
酸バリウムを例にとると、含水酸化チタン(粒径0.05μ
m)と水酸化バリウムの常圧加熱反応で得たBa/Tiモル
比1.000のチタン酸バリウムは、乾燥後、諸条件によっ
て若干異なるが通常0.1μm以下の立方晶形の粉であ
る。そして本チタン酸バリウムは高温で処理されると粒
成長し、結晶形も変化する。具体的には1000℃で3時間
カ焼した本チタン酸バリウムは、平均粒径が0.5μmで
あり、結晶形は正方晶である。従って0.5μm正方晶の
チタン酸バリウムが必要な場合、1000℃でカ焼し、0.15
μmの立方晶のものが必要な場合850℃でカ焼すれば良
い。
Furthermore, the ABO 3 inorganic fine powder obtained after spray drying is calcined if necessary. The calcination temperature is limited by the intended particle size and crystal form of the inorganic fine powder. Taking barium titanate as an example, hydrous titanium oxide (particle size 0.05μ
The barium titanate having a Ba / Ti molar ratio of 1.000 obtained by the reaction of m) with barium hydroxide under atmospheric pressure is a cubic powder having a particle size of 0.1 μm or less, although it varies slightly depending on various conditions after drying. When barium titanate is treated at a high temperature, the grains grow and the crystal form also changes. Specifically, this barium titanate calcined at 1000 ° C. for 3 hours has an average particle size of 0.5 μm and its crystal form is a tetragonal crystal. Therefore, if you need 0.5μm tetragonal barium titanate, calcine at 1000 ℃
If you need a cubic crystal of μm, you can calcine at 850 ℃.

ABO3化合物の焼結に際しては、該焼結体の焼結性また
は電気特性を調節する目的で通常種々の添加剤が加えら
れる。例えば焼結性に関しては粒成長抑制剤、硬化剤等
があり、電気特性に関してはシフター,ディプレッサ
ー,還元剤,還元防止剤等がある。具体的にはB,Bi,Li,
Y,Dy,Ce,Sm,Mn,Co,Ni,Nb,Si等がある。そして必要があ
れば目的用途に応じて、これらの添加剤をABO3微粉体中
に含有させることが可能である。添加時期はA元素およ
びB元素の混合物水溶液の調製時、反応時、反応後、お
よび噴霧乾燥終了時のいずれでも良いが、均一に含有さ
せるには、噴霧乾燥前の工程で添加する方が好ましい。
When the ABO 3 compound is sintered, various additives are usually added for the purpose of adjusting the sinterability or electric characteristics of the sintered body. For example, regarding sinterability, there are grain growth inhibitors, curing agents, etc., and regarding electrical characteristics, there are shifters, depressors, reducing agents, reduction inhibitors, etc. Specifically, B, Bi, Li,
There are Y, Dy, Ce, Sm, Mn, Co, Ni, Nb and Si. If necessary, these additives can be contained in the ABO 3 fine powder according to the intended use. The time of addition may be at the time of preparation of the aqueous solution of the mixture of the element A and the element B, at the time of reaction, after the reaction, or at the end of spray drying, but in order to make the content uniform, it is preferable to add in the step before spray drying .

また、ABO3化合物の乾式成形に際しては通常成形カサ
密度を上げる等の目的でバインダーや可塑剤などの成形
助剤をABO3化合物原料粉に加えて造粒し、できた顆粒を
用いて成形される。本発明法では、ABO3化合物の反応生
成後成形助剤を加えて噴霧乾燥することによって成形用
顆粒原料として得ることも可能である。
Further, during dry molding of the ABO 3 compound, a molding aid such as a binder or a plasticizer is usually added to the ABO 3 compound raw material powder for the purpose of increasing the molding bulk density, etc., and the resulting granules are molded. It In the method of the present invention, it is also possible to obtain a granule raw material for molding by adding a molding auxiliary after the reaction formation of the ABO 3 compound and spray-drying.

実施例1 大阪チタニウム(株)製の塩化チタン水溶液(Ti=1
6.5重量%)200gに水1800mlを加え、5重量%アンモニ
ア水(林純薬工業(株)試薬1級)700mlを約1時間か
けて添加し、水酸化チタンスラリーとなし、ヌッチェで
水洗ロ過を行い、含水酸化チタンケーキとした。該ケー
キはTiO2の定量の結果、11.46重量%であった。
Example 1 Titanium chloride aqueous solution (Ti = 1, manufactured by Osaka Titanium Co., Ltd.)
Water (1800 wt., 6.5 wt%), 1800 ml of water, and 700 ml of 5 wt% ammonia water (Hayashi Junyaku Kogyo Co., Ltd. reagent grade 1) are added over about 1 hour to form a titanium hydroxide slurry, which is washed with a nutsche filter. Was performed to obtain a hydrous titanium oxide cake. The cake was found to have a TiO 2 content of 11.46% by weight.

該含水酸化チタンケーキ240.2gに蒸留水を加えて、Ti
O260g/lスラリーに調整した後、反応系を窒素雰囲気に
し、Ba(OH)2・8H2O108.7gを加え、さらに蒸留水を加え
て0.7モル/l(BaTiO3換算)、Ba/Tiモル比1.000のスラ
リーに調整した。該スラリーを沸騰温度まで約1時間か
けて昇温し、沸騰温度で約3時間反応を行った。
Distilled water was added to 240.2 g of the hydrous titanium oxide cake to prepare Ti
After adjusting to a slurry of O 2 60 g / l, the reaction system was placed in a nitrogen atmosphere, 108.7 g of Ba (OH) 2 · 8H 2 O was added, and distilled water was further added to obtain 0.7 mol / l (calculated as BaTiO 3 ), Ba / The slurry was adjusted to a Ti molar ratio of 1.000. The slurry was heated to the boiling temperature over about 1 hour and reacted at the boiling temperature for about 3 hours.

反応終了後、該スラリーを0.9モル/lまで濃縮し、大
川原化工機(株)製スプレードライヤー)を用いて入口
温度250℃,出口温度120℃、アトマイザー回転数25000
r.p.mで噴霧乾燥してチタン酸バリウム微粉体を得た。
After the reaction was completed, the slurry was concentrated to 0.9 mol / l, and the inlet temperature was 250 ° C, the outlet temperature was 120 ° C, and the atomizer rotation number was 25000 using a spray dryer manufactured by Okawara Kakoki Co., Ltd.
It was spray dried at rpm to obtain barium titanate fine powder.

生成チタン酸バリウム微粉体のX線回折および電子顕
微鏡写真から、生成チタン酸バリウム微粉体は、平均粒
径0.08μmで、立方晶であることがわかった。また、螢
光X線にてBa/Tiモル比を測定したところ1.000であっ
た。
From the X-ray diffraction and the electron micrograph of the produced barium titanate fine powder, it was found that the produced barium titanate fine powder was a cubic crystal with an average particle size of 0.08 μm. The Ba / Ti molar ratio measured by fluorescent X-ray was 1.000.

実施例2 実施例1と同様にして含水酸化チタン/Ba(OH)2・8H2
O混合スラリー0.7モル/l(BaTiO3換算)を調製した後、
該スラリーを耐熱性ニッケル合金製のオートクレーブ
(容量1)に500mlを仕込み、500r.p.mで攪拌しなが
ら100℃/hrで昇温し、250℃で2時間反応を行った。
Example 2 As in Example 1, hydrous titanium oxide / Ba (OH) 2 .8H 2
After preparing O mixed slurry 0.7 mol / l (BaTiO 3 conversion),
The slurry was charged into a heat-resistant nickel alloy autoclave (volume: 1) (500 ml), heated at 100 ° C./hr while stirring at 500 rpm, and reacted at 250 ° C. for 2 hours.

反応後実施例1と同様にスプードライヤーで噴霧乾燥
を行いチタン酸バリウム微粉体を得た。
After the reaction, spray drying was carried out in the same manner as in Example 1 using a spoo dryer to obtain barium titanate fine powder.

X線回折および電顕写真は実施例1のものと同様であ
った。また螢光X線によりBa/Tiモル比の定量を行った
結果1.000であった。
X-ray diffraction and electron micrograph were the same as in Example 1. Further, the Ba / Ti molar ratio was quantified by fluorescent X-ray, and the result was 1.000.

実施例3 純度99.99%のチタニウムイソプロポキシド(レアー
メタル(株)製)100gを150mlのイソプロピルアルコー
ル(林純薬(株)特級)に溶解し、2時間加熱還流し
た。窒素雰囲気化で、該チタニウムイソプロポキシド溶
液を、80℃に保った45重量%Ba(OH)2・8H2O水溶液246.6
gに1時間30分かけてローラーポンプで徐々に滴下し、
その後加水し、スラリー濃度0.7モル/l、Ba/Tiモル比1.
000に調整した。以下、実施例1または実施例2と同様
に常圧加熱反応または水熱反応を行った後、噴霧乾燥を
行い、チタン酸バリウム無機微粉体を得た。常温加熱反
応および水熱反応で得た組成物の両者とも、X線回折、
電顕写真および螢光X線のBa/Tiモル比の定量結果よ
り、粒径0.09μmで、Ba/Tiモル比が1.000の立方晶形チ
タン酸バリウムであることがわかった。
Example 3 100 g of titanium isopropoxide (manufactured by Rare Metal Co., Ltd.) having a purity of 99.99% was dissolved in 150 ml of isopropyl alcohol (Hayashi Pure Chemical Co., Ltd. special grade) and heated under reflux for 2 hours. In a nitrogen atmosphere, the titanium isopropoxide solution was kept at 80 ° C. in a 45 wt% Ba (OH) 2 .8H 2 O aqueous solution 246.6.
Gradually drop by roller pump over 1 hour 30 minutes,
Then water, slurry concentration 0.7 mol / l, Ba / Ti molar ratio 1.
Adjusted to 000. Thereafter, the atmospheric pressure heating reaction or the hydrothermal reaction was performed in the same manner as in Example 1 or Example 2, and then spray drying was performed to obtain barium titanate inorganic fine powder. Both of the compositions obtained by the room temperature heating reaction and the hydrothermal reaction were subjected to X-ray diffraction,
From electron micrographs and fluorescent X-ray quantification results of the Ba / Ti molar ratio, it was found to be cubic barium titanate having a particle size of 0.09 μm and a Ba / Ti molar ratio of 1.000.

実施例4 窒素雰囲気下で、純度99.99%バリウムイソプロポキ
シド(レアーメタル(株)製)75.83g(0.2970モル)と
純度99.99%チタニウムイソポロポキシド(レアーメタ
ル(株)製)85.17g(0.3000モル)とを350mlのイソプ
ロピルアルコールに溶解し、2時間加熱還流した。
Example 4 Under a nitrogen atmosphere, 75.83 g (0.2970 mol) of purity 99.99% barium isopropoxide (manufactured by Rare Metal Co., Ltd.) and 85.17 g (0.3000 mol) of purity 99.99% titanium isoporopoxide (manufactured by Rare Metal Co., Ltd.) And were dissolved in 350 ml of isopropyl alcohol and heated under reflux for 2 hours.

該溶液に蒸留水65mlを1時間かけて滴下し、アルコラ
ートを加水分解し、一旦室温まで冷却し加水してスラリ
ー濃度を0.5モル/l(BaTiO3換算)、Ba/Tiモル比0.990
に調整した。
Distilled water (65 ml) was added dropwise to the solution over 1 hour to hydrolyze the alcoholate, and once cooled to room temperature, water was added to give a slurry concentration of 0.5 mol / l (calculated as BaTiO 3 ), a Ba / Ti molar ratio of 0.990.
Adjusted to.

以下、実施例1または実施例2と同様に常温加熱反応
または水熱反応を行い、粒径0.07μmでBa/Tiモル比0.9
90の立方晶チタン酸バリウムを得た。
Thereafter, a room temperature heating reaction or a hydrothermal reaction is performed in the same manner as in Example 1 or Example 2 to obtain a Ba / Ti molar ratio of 0.9 with a particle size of 0.07 μm.
90 cubic barium titanates were obtained.

実施例5 実施例1と同様にして得た含水酸化チタンケーキ(1
1.46重量%)200.0gに蒸留水を加えてスラリー濃度60g/
lに調整した。反応系を窒素雰囲気下にした後、Sr(OH)2
・8H2O76.24gを該スラリーに添加した。
Example 5 Hydrous titanium oxide cake (1
1.46 wt%) Distilled water is added to 200.0 g to obtain a slurry concentration of 60 g /
Adjusted to l. After placing the reaction system in a nitrogen atmosphere, Sr (OH) 2
The · 8H 2 O76.24g was added to the slurry.

最終スラリー濃度を0.7モル/l(SrTiO3換算)に加水
調整した後、以下実施例1または実施例2と同様にして
チタン酸ストロンチウム微粉体を得た。螢光X線より該
チタン酸ストロンチウムのSr/Tiモル比を定量した結果
1.000であった。
After adjusting the final slurry concentration to 0.7 mol / l (converted to SrTiO 3 ), strontium titanate fine powder was obtained in the same manner as in Example 1 or Example 2 below. Results of quantifying the Sr / Ti molar ratio of the strontium titanate from fluorescent X-rays
It was 1.000.

実施例6 実施例1で得たあらかじめTi含有量を測定した含水酸化
チタンスラリー(約TiO260g/l)中に、窒素雰囲気下でB
a0.9Sr0.1TiO3になるようあらかじめBaおよびSrのそれ
ぞれの含有量を定量しておいたBa(OH)2・8H2OおよびSr
(OH)2・8H2Oを添加し、その後加水してスラリー濃度を
0.7モル/l(Ba0.9Sr0.1TiO2換算)になるよう調整した
後、以下実施例1または実施例2と同様にして、Ba0.9S
r0.1TiO3微粉体を得た。螢光X線での定量により、Ba,S
rおよびTiのモル比は所定通りであった。
Example 6 B in a nitrogen atmosphere was added to the hydrous titanium oxide slurry (about TiO 2 60 g / l) obtained in Example 1 whose Ti content was measured in advance.
a 0.9 Sr 0.1 each content had been quantified Ba beforehand Ba and Sr to be the TiO 3 (OH) 2 · 8H 2 O and Sr
(OH) was added 2 · 8H 2 O, then water was added a slurry concentration
After adjusting to 0.7 mol / l (calculated as Ba 0.9 Sr 0.1 TiO 2 ), Ba 0.9 S was prepared in the same manner as in Example 1 or Example 2 below.
r 0.1 TiO 3 fine powder was obtained. Quantitative analysis with fluorescent X-ray gives Ba, S
The molar ratio of r and Ti was as specified.

実施例7 実施例1で得たBaTiO3組成物を850℃で3時間カ焼
し、部分安定化ジルコニアボールと樹脂製ポットを用い
て3時間湿式粉砕した後、ポリビニルアルコールおよび
ポリエチレングリコールをそれぞれBaTiO3に対して固型
分換算で1.0重量%および0.5重量%添加し、スプレード
ライヤーにて造粒した。造粒物を1500kg/cm2の圧力で乾
式成形した後600℃まで50℃/hr,所定温度まで250℃/hr
で昇温し、所定温度で2時間焼成した。
Example 7 The BaTiO 3 composition obtained in Example 1 was calcined at 850 ° C. for 3 hours, wet-milled for 3 hours using partially stabilized zirconia balls and a resin pot, and then polyvinyl alcohol and polyethylene glycol were added to BaTiO 3 respectively. It was added 1.0 wt% and 0.5 wt% in solid content basis relative to 3, and granulated by a spray drier. After dry molding the granules at a pressure of 1500 kg / cm 2 , up to 600 ℃ 50 ℃ / hr, up to a predetermined temperature 250 ℃ / hr
The temperature was raised by, and firing was performed at a predetermined temperature for 2 hours.

比較品として、市販品チタン酸バリウム(平均粒径1.
0μm)も前記と同様に成形焼成した。得られた焼結体
について、カサ密度を化学天秤およびマイクロメータで
測定し、電気特性(20℃での誘電率;tanδおよびキュリ
ー点,キュリー点での誘電率)を横河ヒューレットパッ
カード社製LCRメーター4274Aで測定した結果を表1に示
す。
As a comparison product, a commercially available barium titanate (average particle size 1.
0 μm) was molded and fired in the same manner as above. The bulk density of the obtained sintered body was measured with an analytical balance and a micrometer, and the electrical characteristics (dielectric constant at 20 ° C; tan δ and Curie point, dielectric constant at Curie point) were measured by Yokogawa Hewlett-Packard LCR. Table 1 shows the results measured by the meter 4274A.

発明の効果 以上のように、本発明方法ではA群元素およびB群元
素の出発原料の仕込み量、あるいは反応前のA/Bモル比
さえ厳密に調整すれば、所望のA/Bモル比に非常に精度
良く制御された微粒子ABO3化合物を容易かつ安価で得る
ことができ、さらに従来のロ過水洗乾燥工程により生ず
る未反応A元素およびB元素成分の偏在がなく、生成し
たABO3化合物と未反応A元素成分およびB元素成分とが
均一に混合している。さらに、通常セラミックス化にお
いて必要とされている添加剤や成形助剤を噴霧乾燥前に
加えることによって非常に合理的に成形用顆粒セラミッ
クス原料を得ることができる。
EFFECTS OF THE INVENTION As described above, in the method of the present invention, if the charged amounts of the starting materials of the group A element and the group B element or the A / B molar ratio before the reaction are strictly adjusted, the desired A / B molar ratio can be obtained. It is possible to easily and inexpensively obtain a finely divided fine particle ABO 3 compound, and furthermore, there is no uneven distribution of unreacted A element and B element components caused by the conventional washing with water and drying step, and the produced ABO 3 compound can be obtained. Unreacted A element component and B element component are uniformly mixed. Furthermore, by adding the additives and molding aids usually required for ceramization before spray drying, a granular ceramic raw material for molding can be obtained very rationally.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】Mg,Ca,Sr,Ba等のアルカリ土類金属およびP
bよりなるA群元素化合物から選ばれる少なくとも一種
の化合物と、Ti,Zr,HfおよびSnよりなるB群元素化合物
から選ばれる少なくとも一種の化合物との所定のA/Bモ
ル比混合物水溶液を調製し、該混合物水溶液を常圧加熱
反応あるいは水熱反応させた後、反応混合物を噴霧乾燥
し、必要に応じてカ焼することを特徴とするペロブスカ
イト型化合物の無機微粉体の製造方法。
1. An alkaline earth metal such as Mg, Ca, Sr, or Ba and P.
A predetermined A / B molar ratio mixture aqueous solution of at least one compound selected from the group A element compounds consisting of b and at least one compound selected from the group B element compounds consisting of Ti, Zr, Hf and Sn is prepared. A method for producing an inorganic fine powder of a perovskite-type compound, which comprises subjecting the aqueous solution of the mixture to a reaction under atmospheric pressure or a hydrothermal reaction, spray-drying the reaction mixture, and calcining if necessary.
【請求項2】A群元素の少なくとも一種の水酸化物及び
/又は酸化物と、B群元素の少なくとも一種の水酸化物
及び/又は酸化物とを混合して混合物水溶液を得る第1
項記載の無機微粉体の製造方法。
2. A mixture aqueous solution which comprises mixing at least one hydroxide and / or oxide of a group A element with at least one hydroxide and / or oxide of a group B element.
Item 6. A method for producing an inorganic fine powder according to item.
【請求項3】A群元素の少なくとも一種の水酸化物及び
/又は酸化物と、B群元素の少なくとも一種の有機金属
化合物とを混合して、混合物水溶液を得る第1項記載の
無機微粉体の製造方法。
3. The inorganic fine powder according to claim 1, wherein at least one hydroxide and / or oxide of the group A element is mixed with at least one organometallic compound of the group B element to obtain an aqueous solution of the mixture. Manufacturing method.
【請求項4】A群元素の少なくとも1種の有機金属化合
物と、B群元素の少なくとも1種の水酸化物及び/又は
酸化物とを混合して混合物水溶液を得る第1項記載の無
機微粉体の製造方法。
4. The inorganic fine powder according to claim 1, wherein at least one organometallic compound of Group A element is mixed with at least one hydroxide and / or oxide of Group B element to obtain an aqueous mixture solution. Body manufacturing method.
【請求項5】A群元素の少なくとも1種の有機金属化合
物と、B群元素の少なくとも1種の有機金属化合物とを
混合して、混合物水溶液を得る第1項記載の無機微粉体
の製造方法。
5. The method for producing an inorganic fine powder according to claim 1, wherein at least one organometallic compound of group A element is mixed with at least one organometallic compound of group B element to obtain an aqueous mixture solution. .
【請求項6】A群元素の少なくとも1種の水酸化物及び
/又は酸化物が水酸化バリウムであり、B群元素の少な
くとも1種の水酸化物及び/又は酸化物が含水酸化チタ
ンであり、ペロブスカイト型化合物がチタン酸バリウム
である第2項記載の無機微粉体の製造方法。
6. At least one hydroxide and / or oxide of the group A element is barium hydroxide, and at least one hydroxide and / or oxide of the group B element is hydrous titanium oxide. The method for producing an inorganic fine powder according to item 2, wherein the perovskite type compound is barium titanate.
【請求項7】A群元素の少なくとも1種の水酸化物及び
/又は酸化物が水酸化ストロンチウムであり、B群元素
の少なくとも1種の水酸化物及び/又は酸化物が含水酸
化チタンであり、ペロブスカイト型化合物がチタン酸ス
トロンチウムである第2項記載の無機微粉体の製造方
法。
7. At least one hydroxide and / or oxide of the group A element is strontium hydroxide, and at least one hydroxide and / or oxide of the group B element is hydrous titanium oxide. The method for producing an inorganic fine powder according to claim 2, wherein the perovskite compound is strontium titanate.
JP7239487A 1987-03-25 1987-03-25 Method for producing inorganic fine powder of perovskite type compound Expired - Fee Related JPH0832559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7239487A JPH0832559B2 (en) 1987-03-25 1987-03-25 Method for producing inorganic fine powder of perovskite type compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7239487A JPH0832559B2 (en) 1987-03-25 1987-03-25 Method for producing inorganic fine powder of perovskite type compound

Publications (2)

Publication Number Publication Date
JPS63236713A JPS63236713A (en) 1988-10-03
JPH0832559B2 true JPH0832559B2 (en) 1996-03-29

Family

ID=13488008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7239487A Expired - Fee Related JPH0832559B2 (en) 1987-03-25 1987-03-25 Method for producing inorganic fine powder of perovskite type compound

Country Status (1)

Country Link
JP (1) JPH0832559B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180116727A (en) * 2017-04-14 2018-10-25 인하대학교 산학협력단 Ferroelectric ceramic composite manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2634290B2 (en) * 1990-05-01 1997-07-23 株式会社 村田製作所 Method for producing barium titanate powder
JP2642876B2 (en) * 1994-08-11 1997-08-20 工業技術院長 Lead titanate-based dielectric thin film
AU2001290650A1 (en) 2000-09-05 2002-03-22 Altair Nanomaterials Inc Method for producing mixed metal oxides and metal oxide compounds
WO2004096712A1 (en) * 2003-04-25 2004-11-11 Sumitomo Chemical Company, Limited Barium titanate powder and method for producing same
JP4252508B2 (en) * 2004-07-20 2009-04-08 Tdk株式会社 Method for producing barium titanate powder, powder and multilayer ceramic electronic component using the same
JP4827011B2 (en) * 2006-03-10 2011-11-30 Tdk株式会社 Ceramic powder, dielectric paste using the same, multilayer ceramic electronic component, and manufacturing method thereof
JP6065286B2 (en) * 2014-02-14 2017-01-25 富士フイルム株式会社 Method for producing strontium titanate fine particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180116727A (en) * 2017-04-14 2018-10-25 인하대학교 산학협력단 Ferroelectric ceramic composite manufacturing method

Also Published As

Publication number Publication date
JPS63236713A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
US5096642A (en) Process for producing a high density ceramic of perovskite
Gu et al. Single‐Calcination Synthesis of Pyrochlore‐Free 0.9 Pb (Mg1/3Nb2/3) O3–0.1 PbTiO3 and Pb (Mg1/3Nb2/3) O3 Ceramics Using a Coating Method
JPS61275108A (en) Preparation of powder of dielectric substance
EP0428387B1 (en) Process for producing powder material for lead perovskite ceramic
JPH0832559B2 (en) Method for producing inorganic fine powder of perovskite type compound
Hong et al. Preparation of Pb (Mg13Nb23) O3 powder using a citrate-gel derived columbite MgNb2O6 precursor and its dielectric properties
JPS61111957A (en) Composition for ceramic dielectric
US6592805B1 (en) Method for producing sintered electroceramic materials from hydroxide and oxalate precursors
JPH03126664A (en) Perovskite type oxide porcelain and production therefor
JPH0210089B2 (en)
JPH0676258B2 (en) Method for manufacturing ceramic dielectric
KR100290247B1 (en) Method for manufacturing barium titanate and perovskite type composite oxide
JP2660301B2 (en) Manufacturing method of sintered body
JP2841347B2 (en) Manufacturing method of piezoelectric ceramics
JP3710100B2 (en) Manufacturing method of oxide piezoelectric material
JPH05319894A (en) Easily sinterable powder for microwave dielectric
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPH06321630A (en) Composition for ceramic dielectric
JPS6284B2 (en)
JPS63236760A (en) Titanate sintered body
JPH05330908A (en) Production of relaxation type ferroelectric porcelain raw material powder
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPH0457615B2 (en)
JPS61232217A (en) Production of low-temperature sinterable powdery raw material for producing dielectric ceramic
JPH05116943A (en) Production of barium titanate powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees