JPS61111957A - Composition for ceramic dielectric - Google Patents

Composition for ceramic dielectric

Info

Publication number
JPS61111957A
JPS61111957A JP59232179A JP23217984A JPS61111957A JP S61111957 A JPS61111957 A JP S61111957A JP 59232179 A JP59232179 A JP 59232179A JP 23217984 A JP23217984 A JP 23217984A JP S61111957 A JPS61111957 A JP S61111957A
Authority
JP
Japan
Prior art keywords
perovskite compound
group
particles
melting point
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59232179A
Other languages
Japanese (ja)
Other versions
JPH0580427B2 (en
Inventor
一允 安倍
昌史 青木
力丸 浩昭
一久 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP59232179A priority Critical patent/JPS61111957A/en
Priority to DE19853538440 priority patent/DE3538440A1/en
Publication of JPS61111957A publication Critical patent/JPS61111957A/en
Publication of JPH0580427B2 publication Critical patent/JPH0580427B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/129Ceramic dielectrics containing a glassy phase, e.g. glass ceramic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/22Plumbates; Plumbites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • C04B35/4684Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase containing lead compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • C01P2006/33Phase transition temperatures
    • C01P2006/34Melting temperatures

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はセラミック誘電体用組成物及びこれを焼成して
得られるセラミック誘電体に関し、詳しくは、実質的に
立方晶であるペロブスカイト化合物からなる粒径1μm
以下の粒子を含存し、1100℃以下の低温での焼成に
よって、実質的に立方晶ペロブスカイト化合物焼結体か
らなり、実質的に圧電性をもたないと共に、静電容量の
温度変化が非常に小さく、更に、絶縁抵抗と低い誘電正
接等の電気特性にもすぐれるセラミック誘電体を与える
組成物、この組成物を用いてセラミック誘電体を製造す
る方法、及びこのようにして得られるセラミック誘電体
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic dielectric composition and a ceramic dielectric obtained by firing the same.
Contains the following particles, and is made of a cubic perovskite compound sintered body by firing at a low temperature of 1100°C or less, has virtually no piezoelectricity, and has very little temperature change in capacitance. A composition that provides a ceramic dielectric material that is small in size and has excellent electrical properties such as insulation resistance and low dielectric loss tangent, a method for manufacturing a ceramic dielectric material using this composition, and a ceramic dielectric material obtained in this way. Regarding the body.

一般に、ペロブスカイト化合物とは、チタン酸カルシウ
ムKCペロブスカイト)と同様な結晶構造を存する化合
物をいい、このような化合物を成形し、焼結することに
より、誘電性、圧電性及び半導性を有する誘電体セラミ
ックスが得られ、これらは、近年、コンデンサー、電波
フィルター、着火素子、サーミスター等として、通信機
や電子計算機のような電子機器に大量に使用されている
In general, a perovskite compound is a compound that has a crystal structure similar to that of calcium titanate (KC perovskite), and by molding and sintering such a compound, a dielectric material having dielectricity, piezoelectricity, and semiconductivity can be produced. In recent years, these ceramics have been used in large quantities in electronic devices such as communication devices and computers as capacitors, radio wave filters, ignition elements, thermistors, etc.

従来、ペロブスカイト化合物は、Mg%Ca。Conventionally, perovskite compounds contain Mg%Ca.

3rSBasPb等の炭酸塩又は酸化物と、Ti%Zr
s Hrs Sn等の酸化物とを混合し、1000℃以
上の温度で仮焼した後、湿式粉砕し、濾過乾燥して製造
されている。しかし、このような方法によれば、仮焼に
よってペロブスカイト化合物が団結するため、湿式粉砕
しても、粒径1μm以下に微細化することが困難であり
、また、粉砕後の形状も破砕物状である。従って、仮焼
法によるペロブスカイト化合物粒子を成形し、焼結して
、誘電体とする際に、焼結性に劣るのみならず、焼結に
よって粒子が粒径5〜10μm程度にまで結晶成長し、
微細な粒子からなる焼結体を得ることができない。
Carbonate or oxide such as 3rSBasPb and Ti%Zr
It is manufactured by mixing s Hrs with an oxide such as Sn, calcining it at a temperature of 1000° C. or higher, wet-pulverizing it, and filtering and drying it. However, according to this method, since the perovskite compound is aggregated by calcination, it is difficult to reduce the particle size to 1 μm or less even by wet grinding, and the shape after grinding is also similar to that of crushed particles. It is. Therefore, when forming and sintering perovskite compound particles by the calcination method to make a dielectric material, not only are the sintering properties poor, but also the crystal growth of the particles to a particle size of about 5 to 10 μm occurs due to sintering. ,
It is not possible to obtain a sintered body consisting of fine particles.

特に、積層セラミックコンデンサーは、ペロブスカイト
化合物の焼結体からなるセラミック誘電体と電極金属と
が交互に積層されて一体に形成されており、セラミック
誘電体として代表的にはメタチタン酸バリウム(BaT
iOs)の焼結体が用いられているが、前述したように
、従来のペロブスカイト化合物焼結体は、焼結粒子が大
きい粒径を有し、コンデンサー用誘電体として最適であ
るとされている0、5〜1μm程度の粒径との間に大き
い隔たりがある。
In particular, a multilayer ceramic capacitor is integrally formed by alternately laminating a ceramic dielectric made of a sintered body of a perovskite compound and an electrode metal, and the ceramic dielectric is typically made of barium metatitanate (BaT).
As mentioned above, conventional perovskite compound sintered bodies have large sintered particles and are said to be optimal as dielectric materials for capacitors. There is a large gap between particle diameters of about 0.5 to 1 μm.

更に、従来、例えば上記したようなメタチタン酸バリウ
ムのようなペロブスカイト化合物は、粒径が大きいため
に、焼結度を高めて緻密な焼結体を得るには、例えば、
上記積層セラミックコンデンサーの場合、を種金属と共
に、1300〜1400℃程度の高温度に加熱すること
が必要であるので、積層セラミックコンデンサーの内部
電極としては、例えば、白金やパラジウム等のような高
価な高融点貴金属iai系を用いざるを得ない。
Furthermore, conventional perovskite compounds such as barium metatitanate as described above have large particle sizes, so in order to increase the degree of sintering and obtain a dense sintered body, for example,
In the case of the above-mentioned multilayer ceramic capacitor, it is necessary to heat it together with the seed metal to a high temperature of about 1,300 to 1,400°C. There is no choice but to use a high melting point noble metal iai type.

そこで、銀のように比較的低融点であって、且つ、安価
な金属材料を積層セラミックコンデンサーの内部電極と
して使用し得るように、低融点ガラス組成物粉末とペロ
ブスカイト化合物粒子を混合して、比較的低い温度で焼
結する方法が提案されているが(例えば、K、 R,C
howdary at al、。
Therefore, in order to use a relatively low melting point and inexpensive metal material such as silver as the internal electrode of a multilayer ceramic capacitor, we mixed a low melting point glass composition powder and perovskite compound particles and compared them. Although methods of sintering at relatively low temperatures have been proposed (for example, K, R, C
howdary at al.

Ferroelectrics、 1981. Vol
、 37. pp、 689−692゜特開昭54−6
6450号公報等)、ペロブスカイト焼結体の粒径が大
きいために、得られる積層セラミックコンデンサーの性
能は尚満足すべきではない。
Ferroelectrics, 1981. Vol.
, 37. pp, 689-692゜Unexamined Japanese Patent Publication No. 54-6
6450, etc.), the particle size of the perovskite sintered body is large, so the performance of the obtained multilayer ceramic capacitor is still not satisfactory.

本発明者らは、ペロブスカイト化合物の製造及びその焼
結によるセラミック誘電体の製造における上記した問題
を解決するために鋭意研究した結果、実質的に立方晶で
あるペロブスカイト型化合物からなる粒径が1μm以下
の微細粒子は焼結特性にすぐれ、これを低融点物質を液
相として°1100℃以下の低温で焼成することによっ
て、実質的に立方晶ペロブスカイト化合物焼結体からな
り、すぐれた電気特性を有する誘電体セラミックを与え
ることを見出し、か(して、例えば、内部電極材料とし
て低融点の金属の使用を可能として、積層セラミックコ
ンデンサーの電極製作費用を低減し得ると共に、上記焼
結体からなる誘電体が圧電現象を実質的に伴わず、且つ
、静電容量の温度変化が非常に小さいと共に、絶縁抵抗
や誘電正接等の銹、電体特性にもすぐれることを見出し
て、本発明に至ったものである。
As a result of intensive research to solve the above-mentioned problems in the production of perovskite compounds and the production of ceramic dielectrics by sintering the same, the inventors of the present invention have found that the particle size of perovskite-type compounds, which are substantially cubic crystals, is 1 μm. The following fine particles have excellent sintering properties, and by firing them at a low temperature of 1100°C or less using a low melting point substance as a liquid phase, they are essentially made of cubic perovskite compound sintered bodies and have excellent electrical properties. (Thus, for example, it is possible to use a metal with a low melting point as an internal electrode material, thereby reducing the cost of manufacturing the electrodes of a multilayer ceramic capacitor. The present invention has been made based on the discovery that a dielectric material is substantially free from piezoelectric phenomena, has very small temperature change in capacitance, and has excellent electrical properties such as insulation resistance and dielectric loss tangent. This is what we have come to.

従って、本発明は、セラミック誘電体用組成物及びこれ
を焼成してなるセラミック誘電体を提供することを目的
とし、特に、実質的に立方晶であるペロブスカイト化合
物を含む粒径が1μm以下の微細な粒子と低融点ガラス
物質とからなり、1100℃以下の低温での焼成によっ
て、すぐれた誘電体特性、特に、静電容量の温度変化が
非常に少なく、且つ、実質的に圧電性をもたないと共に
、高い絶縁抵抗と低い誘電正接を有するセラミック誘電
体を与えるセラミック誘電体用組成物、かかる組成物よ
り得られるセラミック誘電体、及びその製造方法を提供
することを目的とする。
Therefore, an object of the present invention is to provide a composition for a ceramic dielectric material and a ceramic dielectric material obtained by firing the composition, and in particular, it is an object of the present invention to provide a composition for a ceramic dielectric material and a ceramic dielectric material obtained by firing the same. It is composed of particles and a low melting point glass substance, and by firing at a low temperature of 1100 degrees Celsius or less, it has excellent dielectric properties, in particular, very little temperature change in capacitance, and has substantially piezoelectric properties. It is an object of the present invention to provide a composition for a ceramic dielectric which provides a ceramic dielectric having a high insulation resistance and a low dielectric loss tangent, a ceramic dielectric obtained from such a composition, and a method for manufacturing the same.

本発明によるセラミック誘電体用組成物は、(”)Mg
s Ca、Sr、Ba及びPbよりなるA群から選ばれ
る少なくとも1種の元素と、T i、、Z r s H
’及びSnよりなるB群から選ばれる少なくとも1種の
元素とを含み、実質的に立方晶であるペロブスカイト化
合物からなる、粒径が1μm以下である粒子、及び (b)融点が1100℃以下である低融点物質粉末とか
らなることを特徴とする。
The ceramic dielectric composition according to the present invention is composed of ('')Mg
s At least one element selected from Group A consisting of Ca, Sr, Ba and Pb, and Ti, Z r s H
and (b) particles having a particle size of 1 μm or less and consisting of a substantially cubic perovskite compound containing at least one element selected from Group B consisting of It is characterized by consisting of a certain low melting point substance powder.

また、本発明によるセラミック誘電体の製造方法は、 (a)Mgs Ca%Sr、Ba及びPbよりなるA群
から選ばれる少なくとも1種の元素と、’r’i、Zr
、Hf及びSnよりなるB群から選ばれる少なくとも1
種の元素とを含み、実質的に立方晶であるペロブスカイ
ト化合物からなる粒径が1μm以下である粒子と、 (b)B i、B5Pb及びWよりなる群から選ばれる
少なくとも1種の元素の化合物を含む低融点物質粉末と
を混合し、1100℃以下の温度で焼成することを特徴
とする。
Further, the method for manufacturing a ceramic dielectric according to the present invention includes: (a) at least one element selected from Group A consisting of Mgs Ca%Sr, Ba, and Pb;
, Hf and Sn.
and (b) a compound of at least one element selected from the group consisting of Bi, B5Pb, and W. It is characterized in that it is mixed with a powder of a low melting point substance containing powder and fired at a temperature of 1100°C or less.

本発明のセラミック誘電体用組成物において用いるペロ
ブスカイト化合物粒子は、上記A群から選ばれる少なく
とも1種の元素と、上記B群から選ばれる少なくとも1
種の元素とを含む実質的に立方晶結晶構造を有するペロ
ブスカイト化合物からなる粒径が1μm以下の微細な粒
子である。
The perovskite compound particles used in the ceramic dielectric composition of the present invention contain at least one element selected from the above group A and at least one element selected from the above group B.
These are fine particles having a particle size of 1 μm or less, which are made of a perovskite compound having a substantially cubic crystal structure and containing seed elements.

結晶構造が実質的に立方晶である微細なペロブスカイト
化合物からなる粒子は、既に知られているように、前記
A群から選ばれる少なくとも1種の元素の水酸化物(以
下、A水酸化物という、)と前記B群から選ばれる少な
くとも1種の元素の水酸化物(以下、B水酸化物という
、)との水酸化物混合物を調製し、これを水熱処理する
ことにより得ることができる。尚、A水酸化物とB水酸
化物とを混合することによって、一部、ペロブスカイト
化合物が生成することが知られているので、本発明にお
いては、上記水酸化物混合物は、一部ペロブスカイト化
合物を含有してもよい、また、混合物が全体として結晶
化度の低いペロブスカイト化合物の混合物であってもよ
い。
As is already known, particles of a fine perovskite compound having a substantially cubic crystal structure are hydroxides of at least one element selected from Group A (hereinafter referred to as A hydroxide). , ) and a hydroxide of at least one element selected from Group B (hereinafter referred to as B hydroxide), and then hydrothermally treated. It is known that by mixing hydroxide A and hydroxide B, a part of a perovskite compound is formed. Alternatively, the mixture may be a mixture of perovskite compounds having a low degree of crystallinity as a whole.

上記水酸化物混合物は、例えば、簡便な方法として、A
水酸化物とB水酸化物とを混合することによって調製す
ることができる。他の方法として、例えば、A群元素の
塩とB群元素の塩との混合物にアルカリを反応させても
よ(、また、A群元素の水酸化物(又は塩)とB群元素
の塩(又は水酸化物)との混合物にアルカリを反応させ
てもよい。
The above-mentioned hydroxide mixture can be prepared, for example, by using A as a simple method.
It can be prepared by mixing hydroxide and B hydroxide. As another method, for example, a mixture of a salt of a group A element and a salt of a group B element may be reacted with an alkali (or a hydroxide (or salt) of a group A element and a salt of a group B element). (or hydroxide) may be reacted with an alkali.

更に、別の方法として、A群元素の水酸化物(又はアル
コキシド)とB群元素のアルコキシド(又は水酸化物)
とを反応させてもよ(、或いはA群元素のアルコキシド
とB群元素のアルコキシドとの混合物を加水分解しても
よい。
Furthermore, as another method, a hydroxide (or alkoxide) of a group A element and an alkoxide (or hydroxide) of a group B element
(Alternatively, a mixture of an alkoxide of a group A element and an alkoxide of a group B element may be hydrolyzed.

次いで、上記のような水酸化物混合物を水熱処理するこ
とにより、本発明において好適に用いることができる実
質的に立方晶のペロブスカイト化合物からなる粒径1μ
m以下の微細な粒子を得ること力Cできる。水熱処理と
は、既に知られているように、水性媒体中でアルカリ性
にて加熱処理することをいい、本発明においては、水熱
処理は、反応温度100℃乃至水性媒体の臨界温度にお
いて、必要に応じてアルカリ添加後、本来アルカリ性で
ある上記水酸化物混合物を加熱すればよい。
Next, by hydrothermally treating the hydroxide mixture as described above, particles of a substantially cubic perovskite compound that can be suitably used in the present invention with a diameter of 1 μm are obtained.
It is possible to obtain fine particles with a force C of less than m. As is already known, hydrothermal treatment refers to heat treatment in an alkaline aqueous medium, and in the present invention, hydrothermal treatment is performed at a reaction temperature of 100°C to the critical temperature of the aqueous medium as necessary. Accordingly, after adding an alkali, the hydroxide mixture, which is alkaline in nature, may be heated.

水熱処理温度が100℃よりも低いときは、A水酸化物
とB水酸化物との反応が十分に進行せず、目的とするペ
ロブスカイト化合物を高収率で得ることができない、他
方、反応温度は高いほど反応速度を速める観点からは好
ましいが、反面、高温反応になるほど、装置費用及び熱
エネルギー費用が高価となるので、実用上からは300
℃以下が好ましく、通常、120〜300℃の範囲が好
適である。この水熱処理の後、スラリー状の反応混合物
を濾過し、固形分を乾燥すれば、粒径1μm以下の微細
ペロブスカイト化合物粒子を得ることができる。
When the hydrothermal treatment temperature is lower than 100°C, the reaction between hydroxide A and hydroxide B does not proceed sufficiently, and the desired perovskite compound cannot be obtained in high yield.On the other hand, the reaction temperature The higher the value of
The temperature is preferably 120 to 300°C, usually 120 to 300°C. After this hydrothermal treatment, by filtering the slurry-like reaction mixture and drying the solid content, fine perovskite compound particles with a particle size of 1 μm or less can be obtained.

上記水熱処理において、必要に応じて、水性媒体のアル
カリ性の程度、即ち、アルカリの過剰度や濃度を適宜に
調整fればよいが、一般に、アルカリの過剰度が高いほ
ど、得られるペロブスカイト化合物粒子の粒径は小さく
なる。また、水性媒体中でA水酸化物及qB水酸化物の
濃度が高いほど、得られるペロブスカイト化合物の粒径
は小さくなる。従って、必要とする粒径に応じて、水熱
処理におけるアルカリの過剰度及び各水酸化物の濃度を
選択すればよい。
In the above hydrothermal treatment, the degree of alkalinity of the aqueous medium, that is, the excess degree and concentration of the alkali, may be adjusted as appropriate, but in general, the higher the excess degree of the alkali, the better the perovskite compound particles obtained. The particle size of the particles becomes smaller. Furthermore, the higher the concentration of A hydroxide and qB hydroxide in the aqueous medium, the smaller the particle size of the obtained perovskite compound. Therefore, the degree of excess of alkali and the concentration of each hydroxide in the hydrothermal treatment may be selected depending on the required particle size.

以上のようにして、水熱合成によって得られるペロブス
カイト化合物粒子は、従来の仮焼法によるペロブスカイ
ト化合物粒子とは異なって、結晶構造が実質的に立方晶
であるペロブスカイト化合物からなり、粒径が1μm以
下、通常、0.01〜1μmの範囲にある球状微粒子で
あるので、表面エネルギーが大きく且つ、粒度分布も均
一である。
As described above, perovskite compound particles obtained by hydrothermal synthesis are different from perovskite compound particles obtained by conventional calcination methods, and are composed of perovskite compounds whose crystal structure is substantially cubic, and have a particle size of 1 μm. Hereinafter, since they are usually spherical fine particles in the range of 0.01 to 1 μm, they have a large surface energy and a uniform particle size distribution.

結晶構造が実質的に立方晶であり、且つ、微細なペロブ
スカイト化合物からなる粒子は、上記水熱合成による以
外に、既に知られているように、一般に溶液法と呼ばれ
ている金属アルコキシド法や共沈法等によっても得るこ
とができる(例えば、m能材料1982年12月号第1
〜8頁)。
Particles of a fine perovskite compound having a substantially cubic crystal structure can be produced by, in addition to the hydrothermal synthesis described above, a metal alkoxide method, which is generally called a solution method, or a metal alkoxide method, which is generally called a solution method. It can also be obtained by coprecipitation method etc.
~8 pages).

金属アルコキシド法は、上記A群から選ばれる少なくと
も1種の元素のアルコキシドと、上記B群から選ばれる
少なくとも1種の元素のアルコキシドとの混合物に水を
加え、アルコキシドを加水分解して、ペロブスカイト化
合物を得るものである。また、A群の元素のアルコキシ
ドをB群の元素の水酸化物にて加水分解してもよい、ま
た、共沈法には、一般に、水酸化物共沈法や有機酸塩法
等が知られている。水酸化物共沈法は、A群の元素の塩
類とB群の元素の塩類又は水酸化物との混合溶液にアル
カリを反応させて、A群の元素の水酸化物とB群の元素
の水酸化物との混合物を得、必要に応じて、これを50
0〜900℃程度の温度に焼成してペロブスカイト化合
物を得るものである0例えば、過剰の水酸化ナトリウム
を含む水酸化バリウム水78液に四塩化チタン溶液を添
加することによって、立方晶ペロブスカイト化合物を得
ることができる。有機酸塩法は、A群の元素の塩類とB
群の元素の塩類との混合物に有機酸を反応させて、A群
の元素とB群の元素とを含む水不溶性の有機酸の複合塩
を得、これを5oo〜9゜O℃程度の温度で熱分解する
ことによって、ペロブスカイト化合物を得る方法であり
、例えば、有機酸としてシュウ酸やクエン酸を用いる方
法が知られている。
In the metal alkoxide method, water is added to a mixture of an alkoxide of at least one element selected from Group A and an alkoxide of at least one element selected from Group B, and the alkoxide is hydrolyzed to form a perovskite compound. This is what you get. In addition, the alkoxide of a group A element may be hydrolyzed with a hydroxide of a group B element. In addition, generally known coprecipitation methods include the hydroxide coprecipitation method and the organic acid salt method. It is being In the hydroxide coprecipitation method, a mixed solution of salts of group A elements and salts or hydroxides of group B elements is reacted with an alkali to form hydroxides of group A elements and group B elements. obtain a mixture with hydroxide and, if necessary, add 50
A perovskite compound is obtained by firing at a temperature of about 0 to 900°C. For example, a cubic perovskite compound can be obtained by adding a titanium tetrachloride solution to 78 barium hydroxide solutions containing excess sodium hydroxide. Obtainable. The organic acid salt method uses salts of group A elements and B
A water-insoluble composite salt of an organic acid containing a group A element and a group B element is obtained by reacting an organic acid with a mixture of a salt of a group element, and the mixture is heated at a temperature of about 50° to 90°C. This is a method of obtaining a perovskite compound by thermal decomposition with .For example, a method using oxalic acid or citric acid as an organic acid is known.

以上のように、水熱合成法、金属アルコシト法及び共沈
法のいずれによっても、実質的に立方晶のペロブスカイ
ト化合物からなる粒径1μm以下の粒子を得ることがで
き、本発明においては、このようなペロブスカイト化合
物粒子をすべて用いることができる。特に、前記したよ
うな従来の水熱合成法によれば得られる粒子が球状であ
るので、充填性がすぐれ、緻密な焼結体を得ることがで
きる。また、後述するように、低融点物質をマトリック
スとする焼結誘電体とするとき、ペロブスカイト化合物
の焼結粒子がマトリックス中に均一に分散される利点を
有する0反面、例えば、水酸化バリウムと含水酸化チタ
ンの混合物を水熱合成して、微細且つ球状の立方晶チタ
ン酸バリウムを得る方法によれば(久保輝一部ら、工業
化学雑誌、第71巻第1号第114〜118頁(196
8年))、一般に、反応を完結させることが困難であり
、水熱反応後、反応混合物を水洗、濾過する段階で未反
応のBa塩が溶出するので、得られたチタン酸バリウム
を焼成しても、所要のB a / T i比を有する焼
結体を得ることが容易でない場合がある。
As described above, particles with a particle size of 1 μm or less consisting of a substantially cubic perovskite compound can be obtained by any of the hydrothermal synthesis method, metal alkosite method, and coprecipitation method, and in the present invention, particles with a particle size of 1 μm or less can be obtained. All such perovskite compound particles can be used. In particular, since the particles obtained by the conventional hydrothermal synthesis method as described above are spherical, the filling property is excellent and a dense sintered body can be obtained. Furthermore, as will be described later, when making a sintered dielectric material using a low melting point substance as a matrix, the sintered particles of the perovskite compound have the advantage of being uniformly dispersed in the matrix. According to a method of hydrothermally synthesizing a mixture of titanium oxide to obtain fine and spherical cubic barium titanate (Kubo Teruichi et al., Industrial Chemistry Magazine, Vol. 71, No. 1, pp. 114-118 (196
8)), it is generally difficult to complete the reaction, and unreacted Ba salt is eluted when the reaction mixture is washed with water and filtered after the hydrothermal reaction, so the barium titanate obtained is calcined. However, it may not be easy to obtain a sintered body having the required B a /T i ratio.

これに対して、前記した金属アルコキシド法及び共沈法
によれば、実質的に立方晶のペロブスカイト化合物から
なる粒径1μm以下の粒子を得ることができるうえに、
所定のA群元素とB群元素との比(以下、単にA/B比
ということがある。)を有、するペロブスカイト化合物
を得ることができるので、例えば、特に比誘電率等の電
気特性にすぐれたセラミック誘電体を得ることができる
。但し、この方法によるペロブスカイト化合物粒子は凝
集しやすいので、低融点物質をマトリックスとする焼結
誘電体とするとき、ペロブスカイト化合物粒子がマトリ
ックス中に均一に分散しないことがある。
On the other hand, according to the metal alkoxide method and the coprecipitation method described above, it is possible to obtain particles having a particle size of 1 μm or less and consisting of a substantially cubic perovskite compound, and
Since it is possible to obtain a perovskite compound having a predetermined ratio of group A elements to group B elements (hereinafter sometimes simply referred to as A/B ratio), An excellent ceramic dielectric material can be obtained. However, since the perovskite compound particles obtained by this method tend to aggregate, when a sintered dielectric material having a low melting point substance is used as a matrix, the perovskite compound particles may not be uniformly dispersed in the matrix.

そこで、本発明においては、水熱合成法によってペロブ
スカイト化合物粒子を得る場合に、前記水酸化物混合物
の水熱処理後にBaのようなA群の元素を不溶化するた
めの添加剤としての不溶化荊を加えることにより、実質
的に立方晶のペロブスカイト化合物からなり、粒径が1
μm以下であって、微細且つ球状であるうえに、所定の
A群元素とB群元素との比を有するペロブスカイト化合
物粒子を用いることが好ましい。
Therefore, in the present invention, when obtaining perovskite compound particles by a hydrothermal synthesis method, an insolubilizer is added as an additive to insolubilize group A elements such as Ba after the hydrothermal treatment of the hydroxide mixture. As a result, it consists of a substantially cubic perovskite compound, and the particle size is 1.
It is preferable to use perovskite compound particles that are micrometer or smaller, fine and spherical, and have a predetermined ratio of group A elements to group B elements.

一般に、ペロブスカイト化合物を水熱合成によって得る
場合、反応が完結しないようなとき、反応終了後の水性
媒体中には、B群の元素、例えばTiは固体化合物とし
て存在し、A群の元素、例えばBaは水溶性化合物とし
て存在するので、反応生成物を濾過、水洗する段階でB
a化合物が溶出し、その結果、所要のB a / T 
i比を存するぺロブスカイト化合物を得ることができな
い、そこで、本発明者らが既に提案したように(特願昭
59−154289号)、水熱処理後、水性媒体中に残
存するA群の元素を水不溶性化合物として固定化するこ
とにより、反応生成物の濾過、水洗時にもA群の元素を
反応生成物中に残存させることができ、かくして、反応
生成物を乾燥、焼成することにより、所要の元素比をを
するペロブスカイト化合物焼結体を得ることができる。
Generally, when a perovskite compound is obtained by hydrothermal synthesis, when the reaction is not completed, group B elements, such as Ti, exist as solid compounds in the aqueous medium after the reaction, and group A elements, such as Ti, are present as solid compounds in the aqueous medium after the reaction. Since Ba exists as a water-soluble compound, B is removed at the stage of filtering and washing the reaction product with water.
a compound elutes, resulting in the required B a /T
It is not possible to obtain a perovskite compound having a ratio of By immobilizing them as water-insoluble compounds, Group A elements can remain in the reaction product even when the reaction product is filtered or washed with water.Thus, by drying and calcining the reaction product, the required amount can be obtained. A perovskite compound sintered body having a high element ratio can be obtained.

このような不溶化剤としては、A群の元素の不溶化生成
物が、水性媒体中での溶解度が小さく、且つ、焼成時に
熱分解して、焼結体に残存しない化合物や樹脂類が好ま
しく用いられる。具体的には、例えば、炭酸ガス、炭酸
ナトリウム、炭酸アンモニウム等の炭酸化合物、ラウリ
ン酸、ミリスチン酸、バルミチン酸、ステアリン酸等の
脂肪酸のアルカリ金属塩、シュウ酸、マロン酸、ケトマ
ロン酸、石酒酸、コハク酸等の多塩基酸又はそのアルカ
リ金属塩、アンバーライトIRC−50等のような陽イ
オン交換樹脂を挙げることができる。
As such an insolubilizing agent, it is preferable to use compounds or resins in which the insolubilized product of group A elements has low solubility in an aqueous medium, and which thermally decomposes during firing and does not remain in the sintered body. . Specifically, examples include carbon dioxide gas, carbonic acid compounds such as sodium carbonate and ammonium carbonate, alkali metal salts of fatty acids such as lauric acid, myristic acid, valmitic acid, and stearic acid, oxalic acid, malonic acid, ketomalonic acid, and stone liquor. Examples include acids, polybasic acids such as succinic acid or alkali metal salts thereof, and cation exchange resins such as Amberlite IRC-50.

また、不溶化剤として、焼結体中に残存するが、焼結体
の特性に存置な影響を与えないものも用いることができ
る。このような不溶化剤としては、例えば、ゼオライト
のようなシリカや、アルミニウム系の無機イオン交換剤
等を挙げることができる。
Further, as the insolubilizing agent, it is also possible to use an agent that remains in the sintered body but does not have any residual influence on the properties of the sintered body. Examples of such an insolubilizer include silica such as zeolite, an aluminum-based inorganic ion exchanger, and the like.

このように、本発明に従って、水熱処理後の水性媒体中
のA群の元素を不溶化した後、常法に従って、反応生成
物を濾過し、水洗し、乾燥するこ・とにより、所要のA
/B比を有するペロブスカイト化合物を得ることができ
る。
Thus, according to the present invention, after insolubilizing the A group elements in the aqueous medium after hydrothermal treatment, the reaction product is filtered, washed with water, and dried in accordance with a conventional method to obtain the required A.
/B ratio can be obtained.

上記のように、水熱処理後にA群元素を不溶化して得た
立方晶ペロブスカイト化合物粒子は、粒径が1μm以下
の微細な球状であると共に、所定のA/B比を有するの
で、特に、充填性及び分散性にすぐれて焼結性が高く、
低温での焼結により  。
As mentioned above, the cubic perovskite compound particles obtained by insolubilizing group A elements after hydrothermal treatment have a fine spherical shape with a particle size of 1 μm or less and have a predetermined A/B ratio. It has excellent properties and dispersibility, and has high sinterability.
By sintering at low temperature.

て緻密強固な焼結粒子を形成し、従来のセラミック誘電
体に比較して、薄膜化しても尚安定な性能を得ることが
できる。
It forms dense and strong sintered particles, and compared to conventional ceramic dielectrics, even if the film is made thinner, stable performance can be obtained.

従って、本発明によるセラミック誘電体用組成物におい
ては、ペロブスカイト化合物を水熱合成法によって得た
場合、上記不溶化剤、この不溶化剤によって不溶化され
たA群元素の化合物、未反応のB群元素の酸化物等の少
量を含むことは許容される。
Therefore, in the ceramic dielectric composition according to the present invention, when a perovskite compound is obtained by hydrothermal synthesis, the above-mentioned insolubilizing agent, the group A element compound insolubilized by the insolubilizing agent, and the unreacted group B element are combined. It is permissible to include small amounts of oxides, etc.

更に、−aに、ペロブスカイト化合物粒子を焼結する際
に、添加剤の作用によって、粒子成長や焼結体の電気特
性を制御し得ることが知られているが、本発明において
も、従来より知られている種々の添加剤を使用すること
ができる。このような添加剤として、例えば、BやBi
のほか、L11Na% K等のアルカリ金属、Y%Dy
%Ce。
Furthermore, in -a, it is known that when sintering perovskite compound particles, the particle growth and electrical properties of the sintered body can be controlled by the action of additives. Various known additives can be used. Examples of such additives include B and Bi.
In addition, alkali metals such as L11Na% K, Y%Dy
%Ce.

Sm等の希土類元素、F e 、M n s Co %
N t sNb等の遷移金属、更にはSi%AI等の元
素の化合物を挙げることができる。このような添加剤は
、ペロブスカイト化合物の調製及びその焼成の任意の段
階で添加されてよく、従って、本発明の組成物はこのよ
うな添加剤を含有してもよい。
Rare earth elements such as Sm, F e , M n s Co %
Examples include compounds of transition metals such as N t sNb, and further elements such as Si%AI. Such additives may be added at any stage of the preparation of the perovskite compound and its calcination, and therefore the compositions of the invention may contain such additives.

本発明によるセラミック誘電体用組成物は、上に説明し
たような実質的にペロブスカイト化合物からなる粒子と
1100℃以下の融点を有する低融点物質粉末とからな
る。この低融点物質は、融点が400〜1000℃の範
囲にあるのが特に好ましく、従って、代表的には、Bt
 、B SP b及びWよりなる群から選ばれる少なく
とも1種の元素の酸化物を挙げることができる。
The composition for a ceramic dielectric according to the present invention consists of particles substantially consisting of a perovskite compound as described above and a powder of a low melting point substance having a melting point of 1100° C. or less. It is particularly preferred that this low melting point material has a melting point in the range 400-1000°C, and therefore typically Bt
, B SP b, and W.

本発明によるセラミック誘電体は、上記のように実質的
にペロブスカイト化合物からなる微粒子と低融点物質粉
末との混合物を、好ましくは、焼結性を高めるために例
えば顆粒状に成形した後、これを1100℃以下の温度
で焼成することにより、緻密強固な焼結体として得るこ
とができる。
The ceramic dielectric according to the present invention is produced by forming a mixture of fine particles substantially consisting of a perovskite compound and a powder of a low melting point substance as described above into, for example, granules in order to improve sinterability. By firing at a temperature of 1100° C. or lower, a dense and strong sintered body can be obtained.

このように、一般に、ペロブスカイト化合物を低融点物
質の存在下に焼結するとき、ペロブスカイト化合物に対
する低融点物質の割合が多いほど、焼結体の焼結度が増
大し、一方、比誘電率は減少することが知られている。
Thus, in general, when a perovskite compound is sintered in the presence of a low melting point substance, the higher the ratio of the low melting point substance to the perovskite compound, the higher the degree of sintering of the sintered body, while the relative dielectric constant known to decrease.

従って、ペロブスカイト化合物に対する低融点物質の割
合は、焼結粒子の焼結度及び比誘電率を考慮して適宜に
選ばれるが、通常、ペロブスカイト化合物に基づいて低
融煮物質を1〜30重量%とするのがよく、特に、3〜
15重量%とするのが好ましい。
Therefore, the proportion of the low melting point substance to the perovskite compound is appropriately selected in consideration of the degree of sintering and relative dielectric constant of the sintered particles, but usually the low melting point substance is 1 to 30% by weight based on the perovskite compound. It is recommended that 3~
The content is preferably 15% by weight.

以上のように、本発明によるセラミック誘電体用組成物
によれば、ペロブスカイト化合物粒子が実質的に立方晶
である粒径1μm以下の微細な粒子であるために、低融
点物質を液相として、1100℃以下の低温で焼成する
ことにより、緻密強固な焼結体が速やかに得られる。ま
た、このようにして本発明の組成物から得られるセラミ
ック誘電体は、ペロブスカイト化合物の焼結粒子が実質
的に立方晶からなる微細な粒子であるので、圧電性が実
質的にな(、且つ、静電容量の温度変化が非常に小さく
、更に、高い絶縁抵抗や低い誘電正接を有する。
As described above, according to the ceramic dielectric composition according to the present invention, since the perovskite compound particles are fine particles having a substantially cubic crystal grain size of 1 μm or less, a low melting point substance is used as a liquid phase. By firing at a low temperature of 1100° C. or lower, a dense and strong sintered body can be quickly obtained. Furthermore, the ceramic dielectric material thus obtained from the composition of the present invention has substantially no piezoelectricity (and , temperature change in capacitance is very small, and furthermore, it has high insulation resistance and low dielectric loss tangent.

しかも、このセラミック誘電体を得るに際して、本発明
の組成物によれば、1too℃以下の低温での焼成によ
って、緻密強固であると共に上記特性を有するセラミッ
ク焼結体を得ることができるので、恨のような低融点の
金属材料を内部を極として用いることができると共に、
熱エネルギーをも節減できるので、積層セラミックコン
デンサーの電極製作費用を著しく低減することができる
Moreover, when obtaining this ceramic dielectric, according to the composition of the present invention, a ceramic sintered body that is dense and strong and has the above characteristics can be obtained by firing at a low temperature of 1 too°C or less. A metal material with a low melting point such as can be used as a pole inside, and
Since thermal energy can also be saved, the cost of manufacturing the electrodes of multilayer ceramic capacitors can be significantly reduced.

更に、本発明の組成物において、水熱合成により得られ
るペロブスカイト化合物を用いるとき、粒子が球状であ
って、分散性及び充填性にすぐれるので、特に焼結性に
すぐれたペロブスカイト化合物粒子焼結体を得ることが
できる。他方、ペロブスカイト化合物を金属アルコキシ
ドや共沈法により得るとき、A群元素/B群元素比を所
定比とすることができるので、例えば、特に、比誘電率
等の電気特性にすぐれるセラミック焼結体を得ることが
できる。
Furthermore, in the composition of the present invention, when a perovskite compound obtained by hydrothermal synthesis is used, the particles are spherical and have excellent dispersibility and filling properties, so that the perovskite compound particles have particularly excellent sinterability. You can get a body. On the other hand, when a perovskite compound is obtained by a metal alkoxide or a coprecipitation method, the ratio of group A elements/group B elements can be set to a predetermined ratio. You can get a body.

特に、水熱処理後にA群元素を不溶化して得たペロブス
カイト化合物粒子はA群元素/B群元素の比が所定の値
に規制されていると共に、焼結性及び誘電体特性のいず
れにもすぐれ、ペロブスカイト化合物の焼結粒子が低融
点物質のマトリックスに微細且つ均一に分散するので、
従来のセラミック誘電体に比べて格段に薄膜化すること
ができ、例えば、セラミックコンデンサーを一層小型化
し得て、且つ、安定な性能を確保することができる。
In particular, perovskite compound particles obtained by insolubilizing group A elements after hydrothermal treatment have the ratio of group A elements/group B elements regulated to a predetermined value, and have excellent sinterability and dielectric properties. , since the sintered particles of perovskite compound are finely and uniformly dispersed in the matrix of low melting point material,
The film can be made much thinner than conventional ceramic dielectrics, and for example, ceramic capacitors can be further downsized and stable performance can be ensured.

以下に実施例を挙げて本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

実施例1 四塩化チタンを一部水和させた部分水酸化塩化チタン(
TiC1g、 sh (OH) t、 &4、Ti16
.5を量%及び塩素28.8重量%)水溶液゛(大阪チ
タニウム■製、以下、塩化チタン水溶液という、)13
9g(Tiとして0.48モル)に水1250m1を加
え、この水溶液に5.0重量%アンモニア水483s+
1を30分を要して添加し、水酸化チタンを得た。この
水酸化チタンを水洗した後、濾別し、これに窒素雰囲気
下に水酸化バリウム8水和塩(Ba (OH) z・8
HzO)  151.4 g (B aとして0.48
モル)を加え、加水して、BaTi0*として濃度を0
.8モル/lに調製したスラリーを得た。
Example 1 Partially hydrated titanium chloride (partially hydrated titanium tetrachloride)
TiC1g, sh (OH) t, &4, Ti16
.. 5 and 28.8% by weight of chlorine) aqueous solution (manufactured by Osaka Titanium ■, hereinafter referred to as titanium chloride aqueous solution) 13
Add 1250 ml of water to 9 g (0.48 mol as Ti), and add 483 s+ of 5.0 wt% ammonia water to this aqueous solution.
1 was added over a period of 30 minutes to obtain titanium hydroxide. After washing this titanium hydroxide with water, it was separated by filtration, and barium hydroxide octahydrate salt (Ba (OH) z・8
HzO) 151.4 g (0.48 as Ba
mol) and added water to bring the concentration to 0 as BaTi0*.
.. A slurry adjusted to 8 mol/l was obtained.

ハステロイcaiz容量オートクレーブにこのスラリー
600m1を仕込み、700〜900rpmで攪拌しな
がら90分後に200℃まで昇温し、200℃で5時間
加熱して水熱処理した。この後、スラリーを水洗し、濾
過して、BaTiO3を得た。
600 ml of this slurry was charged into a Hastelloy CAIZ capacity autoclave, heated to 200° C. after 90 minutes while stirring at 700 to 900 rpm, and heated at 200° C. for 5 hours for hydrothermal treatment. After this, the slurry was washed with water and filtered to obtain BaTiO3.

このBaTiOsは、電子顕微鏡にて観察した結果、平
均粒径が0.1μmの球状物であり、X線回折は立方晶
系BaTiOs特有のピークを示した。第1図に本実施
例で得たBaTioz粒子の電子顕微鏡写真(2000
0倍)を示す。
As a result of observation with an electron microscope, this BaTiOs was found to be spherical with an average particle size of 0.1 μm, and X-ray diffraction showed a peak unique to cubic BaTiOs. Figure 1 shows an electron micrograph of BaTioz particles obtained in this example (2000
0 times).

別に、酸化ホウ素(Btus) 3.95 gと酸化ビ
スマス(Bi*Os) 94.20 gとを乳鉢にて十
分に混合した後、白金るつぼにて700℃の温度に加熱
して溶融させた。この溶融物を水中に流し込み、急冷固
化させた後、乳鉢及びボールミルにて粉砕し、BzOz
−Biz02低融点物質の粉末を得た。
Separately, 3.95 g of boron oxide (Btus) and 94.20 g of bismuth oxide (Bi*Os) were thoroughly mixed in a mortar, and then heated to a temperature of 700° C. in a platinum crucible to melt them. This melt was poured into water, rapidly solidified, and then ground in a mortar and ball mill to obtain BzOz
- A powder of Biz02 low melting point substance was obtained.

次いで、先に得られたBaTi0iに基づいて、上記低
融点物質をそれぞれ5重量%、10重量%及び15重量
%の割合で添加し、乳鉢で十分に混合した後、この混合
物に8重量%ポリビニルアルコール水溶液を加え、造粒
して顆粒とし、更に、圧力1000kg/ljで加圧成
形して、直径20嘗璽のグリーンペレットを得た。
Next, based on the previously obtained BaTiOi, the above-mentioned low melting point substances were added in proportions of 5% by weight, 10% by weight and 15% by weight, respectively, and after thorough mixing in a mortar, 8% by weight of polyvinyl An aqueous alcohol solution was added to the mixture to form granules, which were then pressure-molded at a pressure of 1000 kg/lj to obtain green pellets with a diameter of 20 tablets.

このグリーンペレットを400℃の温度で3時間加熱し
て、ポリビニルアルコールを熱分解揮散させた後、所定
の温度で1時間焼成して、焼結セラミック体を得、この
焼結密度を測定した。
The green pellets were heated at a temperature of 400° C. for 3 hours to thermally decompose and volatilize the polyvinyl alcohol, and then fired at a predetermined temperature for 1 hour to obtain a sintered ceramic body, and the sintered density was measured.

次に、この焼結セラミック体を厚みが約1 mmとなる
ように両面を研摩し、イオンコーターにて両面に銀をコ
ートして、電気特性を測定した。比誘電率及び誘電体損
は、横河ヒューレットパツカード社製LFインピーダン
スアナライザーにて測定し、また、絶縁抵抗は、横河ヒ
ューレットパッカード社製PAメーターにて測定した。
Next, both sides of this sintered ceramic body were polished to a thickness of about 1 mm, both sides were coated with silver using an ion coater, and the electrical properties were measured. The relative dielectric constant and dielectric loss were measured using an LF impedance analyzer manufactured by Yokogawa Hewlett-Packard, and the insulation resistance was measured using a PA meter manufactured by Yokogawa Hewlett-Packard.

表に上で得た焼結体の焼結密度、比誘電率、誘電正接及
び抵抗率を示す、この結果から、本発明による誘電体セ
ラミック用組成物は、焼結性、電気特性いずれにも極め
てすぐれたセラミック誘電体を与えることが明らかであ
る。また、このようにして得られた表における実験番号
4の焼結セラミック体のX線回折図を第2図に示す。
The table shows the sintered density, dielectric constant, dielectric loss tangent, and resistivity of the sintered body obtained above. From these results, it is clear that the dielectric ceramic composition according to the present invention has excellent sinterability and electrical properties. It is clear that this provides an excellent ceramic dielectric. Further, the X-ray diffraction diagram of the sintered ceramic body of Experiment No. 4 in the table thus obtained is shown in FIG.

また、表において実験番号1.4及び7の本発明による
代表的なセラミック誘電体の比誘電率の温度変化をそれ
ぞれ第3図に示す、更に、これらのセラミック誘電体に
それぞれ直流電圧3kV/mを30分間印加し、分極さ
せて、電気機械結合係数kp値を測定した。いずれもk
p値は殆どOであって、圧電性は示さなかった。
In addition, the temperature changes in relative permittivity of typical ceramic dielectrics according to the present invention in experiment numbers 1.4 and 7 in the table are shown in Figure 3, respectively. was applied for 30 minutes to cause polarization, and the electromechanical coupling coefficient kp value was measured. Both are k
The p value was almost O, and piezoelectricity was not exhibited.

比較例1 高純度炭酸バリウム及び酸化チタン(共に堺化学工業a
l製)を等モル比にて混合し、1200℃で2時間仮焼
した後、ボールミルにて湿式粉砕し、平均粒径1.6μ
mのBaTiOsを得た。このペロブスカイト化合物粒
子の電子顕微鏡写真を第4図に示す。
Comparative Example 1 High purity barium carbonate and titanium oxide (both Sakai Chemical Industry a)
(manufactured by L.L.) in an equimolar ratio, calcined at 1200°C for 2 hours, and then wet-pulverized in a ball mill to obtain an average particle size of 1.6 μm.
m of BaTiOs was obtained. FIG. 4 shows an electron micrograph of this perovskite compound particle.

これに実施例1で得た低融点物質粉末を5重量%添加し
、乳鉢にて十分に混合した後、実施例1と同様にして焼
結体を製作し、物性及び電気特性を評価した。結果を表
に示す。
5% by weight of the low melting point substance powder obtained in Example 1 was added to this and thoroughly mixed in a mortar. A sintered body was produced in the same manner as in Example 1, and its physical properties and electrical properties were evaluated. The results are shown in the table.

比較例2 平均粒径1.3μmの市販貰純度BaTiOsに実施例
1において得た低融点物質粉末を5重量%加えた。乳鉢
にて十分に混合した後、実施例1と同様にして焼結体を
製作し、物性を測定した。結果を表に示す。
Comparative Example 2 5% by weight of the low melting point substance powder obtained in Example 1 was added to commercially available pure BaTiOs having an average particle size of 1.3 μm. After thorough mixing in a mortar, a sintered body was produced in the same manner as in Example 1, and its physical properties were measured. The results are shown in the table.

実施例2 実施例1と同様にして水熱処理により得たBaTi0!
のスラリーを水洗、濾過し、全濾液中のBaを原子吸光
光度法にて分析すると、反応率は98.3%であった。
Example 2 BaTi0! obtained by hydrothermal treatment in the same manner as in Example 1!
The slurry was washed with water and filtered, and Ba in the entire filtrate was analyzed by atomic absorption spectrophotometry, and the reaction rate was 98.3%.

但し、反応率は、〔(仕込みBaモル数−濾液中のBa
モル数)/仕込みBaモル数)xlooで定義される。
However, the reaction rate is [(number of moles of Ba charged - Ba in the filtrate)
It is defined as (number of moles)/number of moles of Ba charged) xloo.

上記の濾過後、110℃の温度で固形物を再び濾液に分
散させ、pH6,5になるまで炭酸ガスを吹き込んだ後
、塩素が検出されなくなるまで、水洗し、濾過、乾燥し
てBaTi0=を得た。Ba/Ti比を螢光X線にて分
析すると、1.00であり、粒径は0.1μmであった
After the above filtration, the solids were dispersed in the filtrate again at a temperature of 110°C, and carbon dioxide gas was blown into the solution until the pH reached 6.5, followed by washing with water, filtration, and drying until no chlorine was detected. Obtained. Analysis of the Ba/Ti ratio using fluorescent X-rays revealed that it was 1.00, and the particle size was 0.1 μm.

このBaTiOsに実施例1で得た低融点物質粉末を5
重量%添加し、乳鉢にて十分に混合した後、実施例1と
同様にして焼結体を調製し、物性及び電気特性を評価し
た。結果を表に示す。
Add 5% of the low melting point substance powder obtained in Example 1 to this BaTiOs.
After adding % by weight and thoroughly mixing in a mortar, a sintered body was prepared in the same manner as in Example 1, and its physical properties and electrical properties were evaluated. The results are shown in the table.

実施例3 窒素雰囲気下でバリウムイソプロポキシド76゜7g(
Baとして0.30モル)及びチタンイソプロポキシド
85.3g(Tiとして0.30モル)をイソプロピル
アルコール320#11に溶解させ、2時間加熱還流さ
せた。この溶液に脱炭酸イオン交換水65m1を30分
を要して徐々に加え、上記アルコラードを加水分解させ
、次いで、室温まで冷却した後、更に、加水してスラリ
ー濃度をBaTiOs換算にて0.5モル/eに調整し
た。
Example 3 76°7 g of barium isopropoxide (
0.30 mol as Ba) and 85.3 g of titanium isopropoxide (0.30 mol as Ti) were dissolved in isopropyl alcohol 320 #11 and heated under reflux for 2 hours. To this solution, 65 ml of decarbonated ion-exchanged water was gradually added over 30 minutes to hydrolyze the alcoholade, and after cooling to room temperature, water was further added to make the slurry concentration 0.5 in terms of BaTiOs. It was adjusted to mol/e.

この後、実施例1と同様にして焼結体を得、焼結特性及
び電気特性を評価した。結果を表に示す。
Thereafter, a sintered body was obtained in the same manner as in Example 1, and its sintering properties and electrical properties were evaluated. The results are shown in the table.

実施例4 窒素雰囲気下で30%塩化ストロンチウム(SrCh)
水溶液31.7g(Srとして0.06モル)、26重
量%塩化バリウ五二水和塩(BaC11・2HzO)水
溶液255.5g(Baとして0.24モル)及び塩化
チタン水溶液87.1g(Tiとして0.30モル)を
混合し、この混合水溶液を60℃に保持した35重量%
力性ソーダ水溶液184gに1時間を要して添加し、そ
の後、加水して、スラリー濃度をBaa、 1Sro、
 zTiO*として0.5モル/lに調整した。
Example 4 30% strontium chloride (SrCh) under nitrogen atmosphere
31.7 g of aqueous solution (0.06 mol as Sr), 255.5 g of 26% by weight barium chloride pentahydrate (BaC11.2HzO) aqueous solution (0.24 mol as Ba), and 87.1 g of titanium chloride aqueous solution (as Ti). 0.30 mol) was mixed, and this mixed aqueous solution was maintained at 60°C.
It took 1 hour to add to 184 g of aqueous sodium hydroxide solution, and then water was added to adjust the slurry concentration to Baa, 1Sro,
It was adjusted to 0.5 mol/l as zTiO*.

この後、実施例1と同様にして焼結体を得、焼結特性及
び電気特性を測定した。結果を表に示す。
Thereafter, a sintered body was obtained in the same manner as in Example 1, and its sintering properties and electrical properties were measured. The results are shown in the table.

実施例5 酸化ゲルマニウム(GeOx) 12 g及び酸化鉛(
PbO)42、7 gを乳鉢にて十分に混合した後、白
金るつぼを用いて800℃に加熱し、溶融させた。この
溶融物を水中に流し込み、急冷固化させた後、乳鉢及び
ボールミルにて粉砕し、Pb5Ge30++低融点物質
を得た。
Example 5 12 g of germanium oxide (GeOx) and lead oxide (
After thoroughly mixing 42.7 g of PbO) in a mortar, the mixture was heated to 800° C. using a platinum crucible to melt. This melt was poured into water, rapidly cooled and solidified, and then ground in a mortar and ball mill to obtain a Pb5Ge30++ low melting point substance.

この後、実施例1で得たBaTiOsに対して、上で得
た低融点物質粉末10重量%を加え、乳鉢で十分に混合
した後、実施例1と同様にしてグリーンペレットを得た
Thereafter, 10% by weight of the low melting point substance powder obtained above was added to the BaTiOs obtained in Example 1, and after thoroughly mixing in a mortar, green pellets were obtained in the same manner as in Example 1.

得られたグリーンペレットを400℃で3時間加熱して
、ポリビニルアルコールを分解揮散させた後、所定の温
度で30分間焼成した。この後、実施例1と同様にして
焼結体を得、焼結特性を測定した。結果を表に示す。
The obtained green pellets were heated at 400° C. for 3 hours to decompose and volatilize the polyvinyl alcohol, and then baked at a predetermined temperature for 30 minutes. Thereafter, a sintered body was obtained in the same manner as in Example 1, and the sintering properties were measured. The results are shown in the table.

比較例3及び4 実施例4で得たPb%Ge、O,、低融点物質粉末を比
較例1及び比較例2で得たBaTi0.それぞれに対し
てtOW量%を加え、乳鉢で十分に混合した後、実施例
1と同様にしてグリーンペレットを得た。
Comparative Examples 3 and 4 The Pb%Ge, O, low melting point substance powder obtained in Example 4 was mixed with BaTi0. After adding tOW amount % to each and thoroughly mixing in a mortar, green pellets were obtained in the same manner as in Example 1.

得られたグリーンペレットを実施例4と全く同様にして
焼成し、この後、実施例1と同様にして焼結体を得、焼
結特性及び電気特性を測定した。
The obtained green pellets were fired in exactly the same manner as in Example 4, and then a sintered body was obtained in the same manner as in Example 1, and the sintering properties and electrical properties were measured.

結果を表に示す。The results are shown in the table.

【図面の簡単な説明】 第1図は、本発明に従って水熱処理して得られたBaT
iOs粒子構造を示す電子顕微鏡写真(20000倍)
、第2図は、本発明による焼結セラミック体のX線回折
図、第3図は、本発明による組成物から得た代表的なセ
ラミック誘電体である実験番号l、4及び7の比誘電率
の温度変化を示すグラフ、第4図は、従来の焼成法によ
り得られるBaTioz粒子構造を示す電子顕微鏡写真
(20000倍)である。 特許出願人  堺化学工業株式会社 代理人 弁理士  牧 野 逸 部 第3図 51!罫L  ノI   C”C”) 第4図
[Brief Description of the Drawings] Figure 1 shows BaT obtained by hydrothermal treatment according to the present invention.
Electron micrograph showing iOs particle structure (20,000x magnification)
, FIG. 2 is an X-ray diffraction diagram of a sintered ceramic body according to the present invention, and FIG. 3 is a dielectric diagram of experiment numbers 1, 4, and 7, which are representative ceramic dielectric bodies obtained from a composition according to the present invention. Figure 4 is an electron micrograph (20,000x magnification) showing the BaTioz particle structure obtained by the conventional calcination method. Patent Applicant Sakai Chemical Industry Co., Ltd. Agent Patent Attorney Ittsu Makino Department Figure 3 51! Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)(a)Mg、Ca、Sr、Ba及びPbよりなる
A群から選ばれる少なくとも1種の元素と、 Ti、Zr、Hf及びSnよりなるB群から選ばれる少
なくとも1種の元素とを含み、実質的に立方晶であるペ
ロブスカイト化合物からなる粒径が1μm以下である粒
子、及び (b)融点が1100℃以下である低融点物質粉末とか
らなることを特徴とするセラミック誘電体用組成物。
(1) (a) At least one element selected from Group A consisting of Mg, Ca, Sr, Ba and Pb and at least one element selected from Group B consisting of Ti, Zr, Hf and Sn. and (b) a low melting point substance powder having a melting point of 1100° C. or less. thing.
JP59232179A 1984-11-02 1984-11-02 Composition for ceramic dielectric Granted JPS61111957A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59232179A JPS61111957A (en) 1984-11-02 1984-11-02 Composition for ceramic dielectric
DE19853538440 DE3538440A1 (en) 1984-11-02 1985-10-29 Composition for preparing a ceramic dielectric and process for preparing a ceramic dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232179A JPS61111957A (en) 1984-11-02 1984-11-02 Composition for ceramic dielectric

Publications (2)

Publication Number Publication Date
JPS61111957A true JPS61111957A (en) 1986-05-30
JPH0580427B2 JPH0580427B2 (en) 1993-11-09

Family

ID=16935244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232179A Granted JPS61111957A (en) 1984-11-02 1984-11-02 Composition for ceramic dielectric

Country Status (2)

Country Link
JP (1) JPS61111957A (en)
DE (1) DE3538440A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133974A (en) * 1987-08-12 1989-05-26 Cabot Corp Composition based on doped barium titanate
JP2005303282A (en) * 2004-03-16 2005-10-27 E I Du Pont De Nemours & Co Thick-film dielectric composition and thick-film conductive composition
US7968486B2 (en) 2007-01-29 2011-06-28 Kyocera Corporation Dielectric ceramics and capacitor
CN114890676A (en) * 2021-06-21 2022-08-12 桂林电子科技大学 High-dielectric high-energy-storage microcrystalline glass dielectric material and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398904A (en) * 1986-10-15 1988-04-30 三菱マテリアル株式会社 High permeability ceramic composition
FR2617151B1 (en) * 1987-06-29 1990-10-12 Solvay PROCESS FOR THE MANUFACTURE OF MIXED METAL OXIDE POWDER, AND MIXED METAL OXIDE POWDERS
CA2005036A1 (en) * 1988-12-08 1990-06-08 Scott L. Swartz Process for producing highly crystalline and homogeneous sub-micron doped and undoped piezoelectric ceramic powders with controlled stoichiometry and particle size
US5112433A (en) * 1988-12-09 1992-05-12 Battelle Memorial Institute Process for producing sub-micron ceramic powders of perovskite compounds with controlled stoichiometry and particle size

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751171A (en) * 1980-07-16 1982-03-25 Du Pont Dielectric composition
JPS57123863A (en) * 1980-07-28 1982-08-02 Univ Illinois Semiconductive ceramic composition and manufacture
JPS5939726A (en) * 1982-08-25 1984-03-05 Sony Corp Manufacture of fine barium titanate particle
JPS5945928A (en) * 1982-09-08 1984-03-15 Sony Corp Preparation of fine particle from strontium titanate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158219A (en) * 1977-11-01 1979-06-12 University Of Illinois Foundation Heterophasic ceramic capacitor
US4335216A (en) * 1981-05-01 1982-06-15 Tam Ceramics, Inc. Low temperature fired dielectric ceramic composition and method of making same
JPS6019081B2 (en) * 1982-08-04 1985-05-14 株式会社村田製作所 High dielectric constant porcelain composition
JPS6131345A (en) * 1984-07-25 1986-02-13 堺化学工業株式会社 Manufacture of composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751171A (en) * 1980-07-16 1982-03-25 Du Pont Dielectric composition
JPS57123863A (en) * 1980-07-28 1982-08-02 Univ Illinois Semiconductive ceramic composition and manufacture
JPS5939726A (en) * 1982-08-25 1984-03-05 Sony Corp Manufacture of fine barium titanate particle
JPS5945928A (en) * 1982-09-08 1984-03-15 Sony Corp Preparation of fine particle from strontium titanate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133974A (en) * 1987-08-12 1989-05-26 Cabot Corp Composition based on doped barium titanate
JP2005303282A (en) * 2004-03-16 2005-10-27 E I Du Pont De Nemours & Co Thick-film dielectric composition and thick-film conductive composition
US7968486B2 (en) 2007-01-29 2011-06-28 Kyocera Corporation Dielectric ceramics and capacitor
CN114890676A (en) * 2021-06-21 2022-08-12 桂林电子科技大学 High-dielectric high-energy-storage microcrystalline glass dielectric material and preparation method thereof
CN114890676B (en) * 2021-06-21 2023-07-07 桂林电子科技大学 High-dielectric high-energy-storage microcrystalline glass dielectric material and preparation method thereof

Also Published As

Publication number Publication date
DE3538440A1 (en) 1986-05-07
JPH0580427B2 (en) 1993-11-09

Similar Documents

Publication Publication Date Title
US4643984A (en) Process for producing a composition which includes perovskite compounds
KR100845216B1 (en) Spherical tetragonal barium titanate particles and process for producing the same
EP1860069B1 (en) Method for producing composition
JP4556398B2 (en) Method for producing the composition
JPS61111957A (en) Composition for ceramic dielectric
KR20030059189A (en) Production of dielectric barium titanate particles
JP3772354B2 (en) Manufacturing method of ceramic powder
JP2764111B2 (en) Method for producing perovskite ceramic powder
JPH0832559B2 (en) Method for producing inorganic fine powder of perovskite type compound
Yoshikawa et al. Preparation of PLZT powders from several aqueous solutions
JPH0769634A (en) Production of composition
JPH0818866B2 (en) Ceramic dielectric composition
JPS59195574A (en) Manufacture of ceramic raw material powder
JPS6227371A (en) Composition for ceramic dielectric and manufacture of ceramic dielectric
KR100596519B1 (en) Method for manufacturing ceramic composition
US4820669A (en) Process for preparing powdered ceramic raw materials of complex oxide
JPH06316414A (en) Production of perovskite type compound powder
JPH03126664A (en) Perovskite type oxide porcelain and production therefor
JPH0210091B2 (en)
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
JPH0873219A (en) Production of powdery ceramic
JPS63236760A (en) Titanate sintered body
JPS63277561A (en) Production of sintered ceramic material of lead titanate zirconate
JPH062585B2 (en) Method for producing lead titanate microcrystals
JPS61158823A (en) Production of lead titanate fine powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term