JPH06316414A - Production of perovskite type compound powder - Google Patents

Production of perovskite type compound powder

Info

Publication number
JPH06316414A
JPH06316414A JP5129937A JP12993793A JPH06316414A JP H06316414 A JPH06316414 A JP H06316414A JP 5129937 A JP5129937 A JP 5129937A JP 12993793 A JP12993793 A JP 12993793A JP H06316414 A JPH06316414 A JP H06316414A
Authority
JP
Japan
Prior art keywords
type compound
perovskite type
perovskite
hydrated oxide
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5129937A
Other languages
Japanese (ja)
Inventor
Masatake Maruo
正剛 丸尾
Mitsuru Watanabe
満 渡辺
Terukazu Moribe
輝和 森部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP5129937A priority Critical patent/JPH06316414A/en
Publication of JPH06316414A publication Critical patent/JPH06316414A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply and easily improve dispersibility, packing ratio, dielectric property and piezoelectric property by pulverizing a perovskite type compound with a compacting pulverizer. CONSTITUTION:A water based suspension (C) is obtained by mixing a hydrated oxide (A) of one or more kind of an element selected from Ba, Pb, Sr, Mg and Ca with a hydrated oxide (B) of one or more kind of an element selected from Ti, Zr, Hf and Sn having >=50m<2>/g specific surface area so as to be (1.1-2.0):1 in mol ratio of component (A):component (B). Next, the perovskite type compound (D) is obtained by hydrothermal treating the component (C) at 100-250 deg.C, classifying the obtained product and drying. Next, the component (D) is pulverized with the compacting pulverizer. If necessary, the component (D) is calcined at 100-700 deg.C before or after pulverizing to produce the perovskite type compound powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ペロブスカイト型化合
物粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing perovskite type compound powder.

【0002】[0002]

【従来の技術】ペロブスカイト型化合物とは、化学式R
MX3 で示される複酸化物に見られるペロブスカイト型
結晶構造を有する化合物のことであり、たとえば、チタ
ン酸バリウム、チタン酸ストロンチウム、チタン酸鉛、
ジルコン酸鉛、チタン酸ジルコン酸鉛、スズ酸カルシウ
ムなどが挙げられる。ペロブスカイト型化合物を焼結さ
せて得られる焼結体は、優れた誘電性、圧電性さらには
半導性を有することから、コンデンサ、電波フィルタ
ー、着火素子、サーミスターなどの電気・電子工業用材
料として有用な物質である。
2. Description of the Related Art A perovskite type compound has a chemical formula R
A compound having a perovskite type crystal structure found in the complex oxide represented by MX 3 , and examples thereof include barium titanate, strontium titanate, lead titanate,
Examples thereof include lead zirconate, lead zirconate titanate, and calcium stannate. A sintered body obtained by sintering a perovskite-type compound has excellent dielectric properties, piezoelectric properties, and semiconductivity. Therefore, it is a material for electric / electronic industries such as capacitors, radio wave filters, ignition elements, thermistors. It is a useful substance.

【0003】ペロブスカイト型化合物を製造するには、
各元素の酸化物や炭酸塩を混合し、焼成するいわゆる固
相合成法、各元素のシュウ酸塩を水系で合成したり、各
元素のシュウ酸塩を固相で混合したりした後、焼成する
いわゆるシュウ酸塩法、各元素の水溶液とアルカリ水溶
液とを混合し、水熱処理した後、濾過し、洗浄し、乾燥
するいわゆる水熱合成法などの方法がある。このように
して得られたペロブスカイト型化合物を、通常は、解砕
あるいは粉砕して粉末とし、該粉末をバインダと混合し
た後、シート成形法や印刷法などの方法を用いて基板上
に粉末層を形成させ、次いで、焼結させて焼結体として
いる。
To produce a perovskite type compound,
So-called solid phase synthesis method in which oxides and carbonates of each element are mixed and baked, oxalates of each element are synthesized in an aqueous system, or oxalates of each element are mixed in a solid phase, and then baked The so-called oxalate method, the so-called hydrothermal synthesis method in which an aqueous solution of each element and an alkaline aqueous solution are mixed, hydrothermally treated, filtered, washed and dried. The perovskite type compound thus obtained is usually crushed or pulverized into a powder, and the powder is mixed with a binder, and then a powder layer is formed on the substrate by a method such as a sheet molding method or a printing method. And then sintered to obtain a sintered body.

【0004】[0004]

【発明が解決しようとする課題】近年の電気機器・電子
機器の小型化、軽量化、高性能化、多機能化に伴い、そ
れを構成する部品や原材料に対する性能要求はさらに厳
しくなっている。たとえば、コンピュータなどの集積回
路に用いられる積層コンデンサは、ペロブスカイト型化
合物の焼結体の薄層と内部電極が交互に多数積み重ねら
れ、電気的に並列接続された構造をとっている。この積
層コンデンサの小型化、高容量化などの要求に伴い、焼
結体の薄層化、高誘電率化が一段と望まれており、この
ため、焼結体の原材料であるペロブスカイト型化合物粉
末の微粒子化、均質化、高分散化などの傾向は益々顕著
になっている。また、部品や原材料に対する価格の値下
げ要請も強く、たとえば、前記の積層コンデンサの内部
電極には白金、パラジウム、銀などの貴金属材料が用い
られていたが、銅、ニッケルなどの廉価な卑金属材料へ
の転換が図られている。これに伴い、ペロブスカイト型
化合物粉末に対し、一層低温で焼結でき、さらに、低酸
素分圧の雰囲気下で焼結させても半導体化しない非還元
性を有するものが嘱望されている。
With the recent miniaturization, weight reduction, high performance, and multi-functionalization of electric and electronic devices, performance requirements for parts and raw materials constituting the same have become more severe. For example, a multilayer capacitor used in an integrated circuit of a computer or the like has a structure in which a thin layer of a sintered body of a perovskite type compound and many internal electrodes are alternately stacked and electrically connected in parallel. With the demand for miniaturization and high capacity of this multilayer capacitor, further thinning of the sintered body and higher permittivity are further demanded. Therefore, the perovskite type compound powder which is the raw material of the sintered body is required. The trends toward finer particles, homogenization, and higher dispersion are becoming more and more prominent. In addition, there are strong demands for price reductions of parts and raw materials. For example, noble metal materials such as platinum, palladium, and silver were used for the internal electrodes of the above-mentioned multilayer capacitors, but cheaper base metal materials such as copper and nickel were used. Is being changed. Along with this, it is desired that the perovskite-type compound powder can be sintered at a lower temperature and has non-reducing property that does not become a semiconductor even when sintered in an atmosphere of low oxygen partial pressure.

【0005】このような要求に対して、焼結体の原材料
であるペロブスカイト型化合物粉末の改良製法も提案さ
れている。たとえばチタン酸バリウム粉末を例に挙げる
と、バリウムの水和酸化物とチタンの水和酸化物とを原
料として使用し、両者を所定のBa/Tiモル比に混合
させた後、所定のアルカリ濃度下、常圧または加圧下で
水熱処理し、得られた生成物を濾過し、洗浄し、乾燥
し、解砕するいわゆる水熱法がよく知られている。この
ようにして得られたチタン酸バリウム粉末は前記従来技
術のものに比べ微粒子であり、均質な成分組成のもので
ある。しかながら、ペロブスカイト型化合物粉末を微粒
子にすると吸油量が高く、バインダに対する分散性が悪
くなるため、使用するバインダの量を増やす必要があ
る。この結果、得られる焼結体中のペロブスカイト型化
合物の充填率が低くなり、誘電性や圧電性などの特性が
低下してしまう。また、前記の水熱法などの水系で製造
したペロブスカイト型化合物粉末は特に、ペロブスカイ
ト型結晶構造内に多量の水分を含んでいるため、焼結体
としたときの誘電性や圧電性などの特性が充分でない。
如上のごとく、いずれの方法においても、所望のペロブ
スカイト型化合物粉末は得られ難いのが現状である。
In response to such demands, an improved method for producing perovskite type compound powder which is a raw material for the sintered body has been proposed. Taking barium titanate powder as an example, barium hydrated oxide and titanium hydrated oxide are used as raw materials, and both are mixed at a predetermined Ba / Ti molar ratio, and then a predetermined alkali concentration is obtained. The so-called hydrothermal method is well known in which hydrothermal treatment is performed under normal pressure or pressure, and the obtained product is filtered, washed, dried, and crushed. The barium titanate powder thus obtained is finer than that of the above-mentioned prior art and has a homogeneous composition. However, if the perovskite type compound powder is made into fine particles, the oil absorption is high and the dispersibility in the binder is deteriorated. Therefore, it is necessary to increase the amount of the binder to be used. As a result, the filling rate of the perovskite type compound in the obtained sintered body becomes low, and the characteristics such as dielectric property and piezoelectric property deteriorate. In addition, since the perovskite type compound powder produced by a water system such as the hydrothermal method contains a large amount of water in the perovskite type crystal structure, the properties such as dielectric properties and piezoelectricity when formed into a sintered body are particularly high. Is not enough.
As described above, it is difficult to obtain the desired perovskite type compound powder by any method under the present circumstances.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記問題
を解決すべく種々検討した結果、(1)ペロブスカイト
型化合物を粉砕する際に、特定の粉砕機を用いることに
よりバインダに対する分散性を改善できること、(2)
このようにして得られたペロブスカイト型化合物粉末
は、焼結体としたときの誘電性や圧電性などの特性が優
れていること、(3)前記従来技術の水熱法において、
特定の比表面積を有する微細な水和酸化物を用いて得ら
れたペロブスカイト型化合物を、前記(1)の特定の粉
砕機を用いて粉砕することにより、分散性のよい微粒子
のペロブスカイト型化合物粉末が得られること、さら
に、(4)ペロブスカイト型化合物の粉砕の前または後
に、該ペロブスカイト型化合物を焼成すると、ペロブス
カイト型結晶構造内の水分を除去でき、焼結体としたと
きの誘電性や圧電性などの特性をより一層改善すること
ができることなどを見出し、本発明を完成した。
As a result of various studies to solve the above problems, the inventors of the present invention have found that (1) when a perovskite compound is pulverized, the dispersibility in a binder is improved by using a specific pulverizer. Can be improved (2)
The perovskite-type compound powder thus obtained has excellent properties such as dielectric properties and piezoelectricity when formed into a sintered body, (3) in the hydrothermal method of the above-mentioned prior art,
A perovskite compound powder obtained by using a fine hydrated oxide having a specific specific surface area is pulverized by using the specific pulverizer of (1) above to obtain fine perovskite compound powder having good dispersibility. And (4) firing the perovskite-type compound before or after crushing the perovskite-type compound, water in the perovskite-type crystal structure can be removed, and the dielectric and piezoelectric properties of the sintered body can be improved. The inventors have completed the present invention by discovering that properties such as properties can be further improved.

【0007】すなわち、本発明は特にバインダに対する
分散性の優れたペロブスカイト型化合物粉末を提供する
ことにある。
That is, the present invention is to provide a perovskite type compound powder having excellent dispersibility in a binder.

【0008】本発明は、ペロブスカイト型化合物を粉砕
する際に、粉砕機として圧密粉砕機を用いる方法であ
る。圧密粉砕機とは、圧縮作用と摩砕作用とを兼ね備え
た粉砕機のことであり、ペロブスカイト型化合物を該圧
密粉砕機に入れて粉砕すると、圧縮作用によりフレーク
状に圧密されると同時に、摩砕作用により細かく粉砕さ
れる。圧密粉砕機としては、たとえば、擂潰機、エッジ
ランナー、ローラーミル、フレットミルを用いることが
できる。
The present invention is a method of using a consolidation crusher as a crusher when crushing a perovskite type compound. A compaction pulverizer is a pulverizer having both a compression action and an attrition action, and when a perovskite type compound is put into the consolidation pulverizer and pulverized, it is compacted into flakes by the compression action, and at the same time, it is pulverized. It is finely crushed by the crushing action. As the compaction crusher, for example, a crusher, an edge runner, a roller mill or a fret mill can be used.

【0009】本発明において、ペロブスカイト型化合物
としては種々のものを用いることができるが、たとえ
ば、チタン酸バリウム、チタン酸ストロンチウム、チタ
ン酸鉛、ジルコン酸鉛、チタン酸ジルコン酸鉛、スズ酸
カルシウムが用いられる。これらのペロブスカイト型化
合物は、一般に前記のいわゆる固相合成法、シュウ酸塩
法、水熱合成法、水熱法などの従来の方法で製造され
る。本発明においては、特に、水熱法において、原料と
して特定の比表面積を有する微細な水和酸化物を用いる
下記の方法で得られたペロブスカイト型化合物を用いる
のが好ましい。
In the present invention, various compounds can be used as the perovskite type compound, and examples thereof include barium titanate, strontium titanate, lead titanate, lead zirconate, lead zirconate titanate and calcium stannate. Used. These perovskite type compounds are generally produced by conventional methods such as the so-called solid phase synthesis method, oxalate method, hydrothermal synthesis method, hydrothermal method and the like. In the present invention, it is particularly preferable to use a perovskite type compound obtained by the following method in which a fine hydrated oxide having a specific specific surface area is used as a raw material in the hydrothermal method.

【0010】次に、本発明において使用するペロブスカ
イト型化合物の好ましい製造方法について詳述する。い
わゆる水熱法においては、各種の水和酸化物からなる水
性懸濁液を水熱処理してペロブスカイト型化合物が得ら
れるが、本発明では、Ba、Pb、Sr、MgおよびC
aから選ばれる少なくとも一種の元素の水和酸化物と、
比表面積が50m2 /g以上、好ましくは80m2 /g
以上の、Ti、Zr、HfおよびSnから選ばれる少な
くとも一種の元素の水和酸化物とからなる水性懸濁液を
水熱処理する。
Next, a preferred method for producing the perovskite type compound used in the present invention will be described in detail. In a so-called hydrothermal method, an aqueous suspension containing various hydrated oxides is hydrothermally treated to obtain a perovskite type compound. In the present invention, Ba, Pb, Sr, Mg and C are used.
a hydrated oxide of at least one element selected from a,
Specific surface area of 50 m 2 / g or more, preferably 80 m 2 / g
The above-mentioned aqueous suspension comprising a hydrated oxide of at least one element selected from Ti, Zr, Hf and Sn is hydrothermally treated.

【0011】本発明において、水和酸化物はいわゆる水
和酸化物のほか、酸化物、含水酸化物、水酸化物を含
む。Ba、Pb、Sr、MgおよびCaから選ばれる少
なくとも一種の元素の水和酸化物は市販品を用いること
もできるが、たとえば、該元素の塩化物、硝酸塩、酢酸
塩などの水可溶性塩の水溶液にアルカリを添加し、中和
して得られるものを用いるのが好ましい。。他方の原料
である、比表面積が50m2 /g以上の、Ti、Zr、
HfおよびSnから選ばれる少なくとも一種の元素の水
和酸化物は、たとえば、該元素の塩化物、硝酸塩、酢酸
塩などの水可溶性塩の水溶液にアルカリを添加して中和
したり、該水可溶性塩を70℃以上の温度で加水分解し
て得られる。前記の水和酸化物の比表面積が50m2
gより小さい場合には、微粒子のペロブスカイト型化合
物が得られにくく、また、不純物が多く均質の成分組成
のものが得られにくくなるほか、反応速度が遅いため、
水熱処理の温度を高くしたり、処理時間を長くしたりす
る必要があるなど、工業的見地からも好ましくない。前
記の中和や加水分解で得られた水和酸化物は、不純物を
除去するために濾過し、洗浄するのが好ましい。
In the present invention, the hydrated oxide includes so-called hydrated oxide, as well as oxide, hydrous oxide and hydroxide. As the hydrated oxide of at least one element selected from Ba, Pb, Sr, Mg and Ca, a commercially available product may be used, but for example, an aqueous solution of a water-soluble salt such as chloride, nitrate or acetate of the element. It is preferable to use a product obtained by adding an alkali to and neutralizing. . The other raw material, Ti, Zr, having a specific surface area of 50 m 2 / g or more,
The hydrated oxide of at least one element selected from Hf and Sn is, for example, neutralized by adding an alkali to an aqueous solution of a water-soluble salt such as chloride, nitrate or acetate of the element, or the water-soluble salt. It is obtained by hydrolyzing a salt at a temperature of 70 ° C. or higher. The specific surface area of the hydrated oxide is 50 m 2 /
When it is smaller than g, it is difficult to obtain a fine particle perovskite type compound, and it is difficult to obtain a compound having a large amount of impurities and a uniform component composition.
It is not preferable from an industrial viewpoint that the temperature of the hydrothermal treatment needs to be increased or the treatment time needs to be lengthened. The hydrated oxide obtained by the above-mentioned neutralization or hydrolysis is preferably filtered and washed to remove impurities.

【0012】次いで、前記のBa、Pb、Sr、Mgお
よびCaから選ばれる少なくとも一種の元素の水和酸化
物と、Ti、Zr、HfおよびSnから選ばれる少なく
とも一種の元素の水和酸化物とを水に懸濁させて水性懸
濁液を調製する。Ba、Pb、Sr、MgおよびCaか
ら選ばれる少なくとも一種の元素の水和酸化物は、T
i、Zr、HfおよびSnから選ばれる少なくとも一種
の元素の水和酸化物に対してモル比で表して好ましくは
1以上、特に好ましくは1.1〜2.0となるように混
合する。前記のモル比が1より小さいと所望の組成のペ
ロブスカイト型化合物が得られなかったり、余剰の成分
がペロブスカイト型化合物中に残存しやすくなり、誘電
性や圧電性などの特性を損ないやすいため好ましくな
い。次いで、前記の水性懸濁液を好ましくは80℃以
上、特に好ましくは100〜250℃の温度で水熱処理
する。水熱処理の温度が80℃より低いと反応速度が遅
く、水熱処理に長時間を要したり、未反応物がペロブス
カイト型化合物中に残存しやすくなり好ましくない。水
熱処理時の圧力は通常飽和蒸気圧程度で行うのが好まし
いが、飽和蒸気圧以上に加圧したり、大気圧程度で行っ
てもよい。前記の水熱処理は、通常、工業的に用いられ
る耐熱耐圧装置で行なうことができる。
Next, a hydrated oxide of at least one element selected from Ba, Pb, Sr, Mg and Ca and a hydrated oxide of at least one element selected from Ti, Zr, Hf and Sn. Is suspended in water to prepare an aqueous suspension. The hydrated oxide of at least one element selected from Ba, Pb, Sr, Mg and Ca is T
The hydrated oxide of at least one element selected from i, Zr, Hf and Sn is mixed in a molar ratio of preferably 1 or more, particularly preferably 1.1 to 2.0. When the above molar ratio is less than 1, a perovskite type compound having a desired composition cannot be obtained, or a surplus component is likely to remain in the perovskite type compound, which tends to impair properties such as dielectric properties and piezoelectricity, which is not preferable. . Next, the aqueous suspension is hydrothermally treated at a temperature of preferably 80 ° C or higher, particularly preferably 100 to 250 ° C. When the temperature of the hydrothermal treatment is lower than 80 ° C., the reaction rate is slow, the hydrothermal treatment requires a long time, and unreacted substances tend to remain in the perovskite type compound, which is not preferable. The hydrothermal treatment is usually carried out preferably at a saturated vapor pressure, but may be pressurized to a saturated vapor pressure or higher, or at atmospheric pressure. The hydrothermal treatment can be carried out by a heat and pressure resistant device which is usually used industrially.

【0013】このようにして得られた生成物を通常の方
法により分別し、必要に応じて洗浄し、乾燥してペロブ
スカイト型化合物を得る。乾燥は任意の温度で行うこと
ができるが、80〜150℃の温度が適当である。この
ようにして得られたペロブスカイト型化合物を前記の圧
密粉砕機で粉砕して本発明のペロブスカイト型化合物粉
末とする。
The product thus obtained is separated by a conventional method, washed if necessary, and dried to obtain a perovskite type compound. The drying can be performed at any temperature, but a temperature of 80 to 150 ° C is suitable. The perovskite type compound thus obtained is pulverized by the above-mentioned compaction pulverizer to obtain the perovskite type compound powder of the present invention.

【0014】本発明においては、ペロブスカイト型化合
物、特に水熱法などの水系で製造したペロブスカイト型
化合物を圧密粉砕機で粉砕する前または粉砕した後に、
該ペロブスカイト型化合物を100〜700℃の温度で
焼成するのが望ましい。
In the present invention, a perovskite type compound, particularly a perovskite type compound produced in an aqueous system such as a hydrothermal method, is crushed by a compaction crusher or after crushing,
It is desirable to calcine the perovskite type compound at a temperature of 100 to 700 ° C.

【0015】[0015]

【実施例】【Example】

実施例1 TiO2 に換算して2.5mol/lの四塩化チタン水
溶液1リットルとイオン交換水1リットルとを氷で冷や
しながら5リットルの四つ口フラスコに入れた。攪拌
下、この液のpHが7になるまで28%のアンモニア水
溶液を滴下した。得られた水和酸化チタンの沈殿を吸引
濾過器で濾過し、濾液の導電率が20μS/cmになる
まで洗浄して濾過ケーキを得た。この濾過ケーキの一部
を105℃の温度で乾燥して比表面積(BET法)を測
定したところ300m2 /gであった。次に、前記の濾
過ケーキからTiO2 に換算して100gの量を分取
し、この濾過ケーキとイオン交換水1リットルとをビー
カーに入れ、水性懸濁液とした。次いで、この水性懸濁
液と市販の水酸化バリウム(Ba(OH)2 ・8H
2 O)592g(Ba/Tiモル比=1.5)を3リッ
トルのオートクレーブに入れた後、加熱し、150℃の
温度で1時間保持して飽和水蒸気圧下で水熱処理を行っ
た。次いで、得られた生成物を吸引濾過器で濾過し、洗
浄し、105℃の温度で乾燥した。得られた乾燥物10
gを擂潰機で30分間粉砕して、本発明のチタン酸バリ
ウム粉末(試料A)を得た。
Example 1 1 liter of a 2.5 mol / l titanium tetrachloride aqueous solution in terms of TiO 2 and 1 liter of ion-exchanged water were placed in a 5-liter four-necked flask while being cooled with ice. With stirring, 28% aqueous ammonia solution was added dropwise until the pH of the liquid became 7. The obtained precipitate of hydrated titanium oxide was filtered with a suction filter and washed until the conductivity of the filtrate became 20 μS / cm to obtain a filter cake. A part of this filter cake was dried at a temperature of 105 ° C. and its specific surface area (BET method) was measured, and it was 300 m 2 / g. Next, an amount of 100 g in terms of TiO 2 was collected from the above filter cake, and this filter cake and 1 liter of deionized water were placed in a beaker to obtain an aqueous suspension. Then, this aqueous suspension and commercially available barium hydroxide (Ba (OH) 2 .8H
After 592 g of 2 O) (Ba / Ti molar ratio = 1.5) was placed in a 3 liter autoclave, the mixture was heated and kept at a temperature of 150 ° C. for 1 hour for hydrothermal treatment under a saturated steam pressure. The product obtained was then filtered on a suction filter, washed and dried at a temperature of 105 ° C. Obtained dried product 10
g was crushed for 30 minutes by a crusher to obtain barium titanate powder (Sample A) of the present invention.

【0016】実施例2 実施例1で得た乾燥物10gを550℃の温度で1時間
焼成し、次いで、擂潰機で30分間粉砕して、本発明の
チタン酸バリウム粉末(試料B)を得た。
Example 2 10 g of the dried product obtained in Example 1 was calcined at a temperature of 550 ° C. for 1 hour, and then pulverized with a crusher for 30 minutes to obtain the barium titanate powder (sample B) of the present invention. Obtained.

【0017】比較例1 実施例1で得た乾燥物10gを手粉砕して、比較試料C
とした。
Comparative Example 1 10 g of the dried product obtained in Example 1 was hand crushed to obtain a comparative sample C.
And

【0018】前記実施例および比較例で得られた試料A
〜Cについて吸油量と1200℃の焼結体の比誘電率、
誘電損失を常法により測定した結果を表1に示す。比誘
電率、誘電損失は、室温において、LCRメーターを用
いて1KHzで計測した。比較試料Cを化学分析した結
果、Ba含有量は55.3重量%、Ti含有量は20.
3重量%、Na含有量は0.002重量%であり、Ba
/Tiのモル比は0.950であった。また、この比較
試料Cの比表面積(BET法)は11.0m2 /gであ
り、粒径は0.15μmであった。X線回折の結果、比
較試料Cは立方晶系のチタン酸バリウムであった。な
お、試料A、Bの比表面積(BET法)と粒径は、比較
試料Cのそれらの値と同程度であり、また、試料A、B
は比較試料Cと同じ立方晶系のチタン酸バリウムであっ
た。
Sample A obtained in the above Examples and Comparative Examples
Oil absorption and relative dielectric constant of the sintered body at 1200 ° C.
Table 1 shows the results of measuring the dielectric loss by a conventional method. The relative permittivity and the dielectric loss were measured at 1 KHz using an LCR meter at room temperature. As a result of chemical analysis of the comparative sample C, the Ba content was 55.3% by weight and the Ti content was 20.
3 wt%, Na content 0.002 wt%, Ba
The molar ratio of / Ti was 0.950. The specific surface area (BET method) of this comparative sample C was 11.0 m 2 / g, and the particle size was 0.15 μm. As a result of X-ray diffraction, Comparative Sample C was cubic barium titanate. The specific surface area (BET method) and particle size of Samples A and B are comparable to those of Comparative Sample C, and Samples A and B
Was the same cubic barium titanate as Comparative Sample C.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例3 TiO2 に換算して2.5mol/lの四塩化チタン水
溶液20mlと1mol/lのオキシ塩化ジルコニウム
水溶液52mlとイオン交換水300mlとを5リット
ルの四つ口フラスコに入れた。この液のpHが7になる
まで、10Nの水酸化ナトリウム水溶液を滴下した。な
お、得られた沈殿物を一部採取し、吸引濾過器で濾過
し、洗浄し、105℃の温度で乾燥して比表面積(BE
T法)を測定したところ200m2 /gであった。次い
で、前記の沈殿生成液に攪拌下、1mol/lの硝酸鉛
水溶液105mlを添加し、該液のpHが7になるまで
10Nの水酸化ナトリウム水溶液を滴下した後、さら
に、10Nの水酸化ナトリウム水溶液25mlとイオン
交換水を滴下して全液量を1リットルとした水性懸濁液
を得た。Pb:Zr:Tiのモル比(添加量)は1.0
5:0.52:0.50であった。次いで、前記の水性
懸濁液を3リットルのオートクレーブに入れた後、加熱
し、200℃の温度で0.5時間保持して飽和水蒸気圧
下で水熱処理を行った。得られた生成物を吸引濾過器で
濾過し、洗浄し、105℃の温度で乾燥した。次いで、
得られた乾燥物10gを擂潰機で30分間粉砕して、本
発明のチタン酸ジルコン酸鉛粉末(試料D)を得た。
Example 3 20 ml of a 2.5 mol / l titanium tetrachloride aqueous solution in terms of TiO 2 , 52 ml of a 1 mol / l zirconium oxychloride aqueous solution and 300 ml of ion-exchanged water were placed in a 5-liter four-necked flask. . A 10N aqueous sodium hydroxide solution was added dropwise until the pH of this solution reached 7. In addition, a part of the obtained precipitate was collected, filtered with a suction filter, washed, and dried at a temperature of 105 ° C. to obtain a specific surface area (BE
It was 200 m < 2 > / g when the T method) was measured. Next, 105 ml of a 1 mol / l lead nitrate aqueous solution was added to the above-mentioned precipitation-produced solution under stirring, and 10 N sodium hydroxide aqueous solution was added dropwise until the pH of the solution became 7, and then 10 N sodium hydroxide was added. 25 ml of an aqueous solution and ion-exchanged water were added dropwise to obtain an aqueous suspension having a total liquid volume of 1 liter. The molar ratio (addition amount) of Pb: Zr: Ti is 1.0.
It was 5: 0.52: 0.50. Then, the aqueous suspension was put into a 3 liter autoclave, heated, and kept at a temperature of 200 ° C. for 0.5 hours to carry out hydrothermal treatment under a saturated steam pressure. The product obtained is filtered on a suction filter, washed and dried at a temperature of 105 ° C. Then
10 g of the obtained dried product was pulverized with a crusher for 30 minutes to obtain a lead zirconate titanate powder (Sample D) of the present invention.

【0021】実施例4 実施例3で得た乾燥物10gを350℃の温度で1時間
焼成し、次いで、擂潰機で30分間粉砕して、本発明の
チタン酸ジルコン酸鉛粉末(試料E)を得た。
Example 4 10 g of the dried product obtained in Example 3 was calcined at a temperature of 350 ° C. for 1 hour, and then pulverized with a crusher for 30 minutes to obtain the lead zirconate titanate powder of the present invention (Sample E). ) Got.

【0022】比較例2 実施例3で得た乾燥物10gを手粉砕して、比較試料F
とした。
Comparative Example 2 10 g of the dried product obtained in Example 3 was hand ground to obtain a comparative sample F.
And

【0023】比較試料Fを化学分析した結果、Pb含有
量は64.5重量%、Zr含有量は14.0重量%、T
i含有量は7.5重量%、Na含有量は0.008重量
%であり、Pb:Zr:Tiのモル比は1.00:0.
49:0.50であった。また、この比較試料Fの比表
面積は8.9m2 /gであり、粒径は0.5μmであっ
た。X線回折の結果、比較試料Fは立方晶系のチタン酸
ジルコン酸鉛であった。なお、試料D、Eの比表面積
(BET法)と粒径は、比較試料Fのそれらの値と同程
度であり、また、試料D、Eは比較試料Fと同じ立方晶
系のチタン酸ジルコン酸鉛であった。前記実施例および
比較例で得られた試料D〜Fの吸油量、試料D〜Fおよ
び市販品のチタン酸ジルコン酸鉛粉末の焼結温度とそれ
らの焼結温度での粒径を常法により測定した結果を表2
に示す。
As a result of chemical analysis of the comparative sample F, the Pb content was 64.5% by weight, the Zr content was 14.0% by weight, and the T
The i content was 7.5% by weight, the Na content was 0.008% by weight, and the molar ratio of Pb: Zr: Ti was 1.00: 0.
It was 49: 0.50. The specific surface area of this comparative sample F was 8.9 m 2 / g, and the particle size was 0.5 μm. As a result of X-ray diffraction, the comparative sample F was cubic lead zirconate titanate. The specific surface area (BET method) and particle size of Samples D and E are similar to those of Comparative Sample F, and Samples D and E are the same cubic zirconate titanate as Comparative Sample F. It was lead acid. The oil absorptions of Samples D to F obtained in the above Examples and Comparative Examples, the sintering temperatures of Samples D to F and commercially available lead zirconate titanate powder, and the particle sizes at those sintering temperatures were determined by a conventional method. Table 2 shows the measurement results
Shown in.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】本発明は、ペロブスカイト型化合物を粉
砕する際において、圧密粉砕機を用いて粉砕するペロブ
スカイト型化合物粉末の製造方法であって、バインダに
対する分散性を改善し、焼結体としたときの充填率を高
めることができ、誘電性や圧電性などの特性を簡便、か
つ、容易に改善することができるなど工業的に有用な方
法である。本発明の望ましい方法は、前記従来技術の水
熱法において、特定の比表面積を有する微細な水和酸化
物を用いて得られたペロブスカイト型化合物を、圧密粉
砕機を用いて粉砕する方法、あるいは、ペロブスカイト
型化合物の圧密粉砕の前または後に、ペロブスカイト型
化合物を100〜700℃の温度で焼成する方法であ
り、これらの方法により、不純物の含有量が少なく、バ
インダに対する分散性のよい微粒子のペロブスカイト型
化合物粉末が得られ、低温焼結性に優れ、焼結体とした
ときの誘電性や圧電性などの特性を改善することができ
る。
INDUSTRIAL APPLICABILITY The present invention is a method for producing a perovskite type compound powder in which a perovskite type compound is crushed using a compaction crusher, and the dispersibility in a binder is improved to obtain a sintered body. This is an industrially useful method in which the filling rate at that time can be increased, and the characteristics such as dielectric properties and piezoelectricity can be easily and easily improved. Desirable method of the present invention, in the hydrothermal method of the prior art, a method of pulverizing a perovskite compound obtained by using a fine hydrated oxide having a specific specific surface area using a compaction pulverizer, or Before or after compaction pulverization of the perovskite-type compound, the perovskite-type compound is calcined at a temperature of 100 to 700 ° C. By these methods, fine particles of perovskite having a low content of impurities and good dispersibility in a binder are obtained. A type compound powder is obtained, which is excellent in low-temperature sinterability and can improve properties such as dielectric properties and piezoelectricity when a sintered body is formed.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ペロブスカイト型化合物を圧密粉砕機で粉
砕することを特徴とするペロブスカイト型化合物粉末の
製造方法。
1. A method for producing a perovskite type compound powder, which comprises pulverizing a perovskite type compound with a compaction pulverizer.
【請求項2】Ba、Pb、Sr、MgおよびCaから選
ばれる少なくとも一種の元素の水和酸化物と、比表面積
が50m2 /g以上の、Ti、Zr、HfおよびSnか
ら選ばれる少なくとも一種の元素の水和酸化物とからな
る水性懸濁液を水熱処理して得られたペロブスカイト型
化合物を圧密粉砕機で粉砕することを特徴とするペロブ
スカイト型化合物粉末の製造方法。
2. A hydrated oxide of at least one element selected from Ba, Pb, Sr, Mg and Ca, and at least one selected from Ti, Zr, Hf and Sn having a specific surface area of 50 m 2 / g or more. A method for producing a perovskite-type compound powder, characterized in that a perovskite-type compound obtained by hydrothermally treating an aqueous suspension comprising a hydrated oxide of the element is pulverized with a compaction pulverizer.
【請求項3】請求項1または2記載の粉砕の前または後
に、ペロブスカイト型化合物を100〜700℃の温度
で焼成することを特徴とするペロブスカイト型化合物粉
末の製造方法。
3. A method for producing a perovskite type compound powder, which comprises firing the perovskite type compound at a temperature of 100 to 700 ° C. before or after the pulverization according to claim 1 or 2.
JP5129937A 1993-05-06 1993-05-06 Production of perovskite type compound powder Pending JPH06316414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5129937A JPH06316414A (en) 1993-05-06 1993-05-06 Production of perovskite type compound powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5129937A JPH06316414A (en) 1993-05-06 1993-05-06 Production of perovskite type compound powder

Publications (1)

Publication Number Publication Date
JPH06316414A true JPH06316414A (en) 1994-11-15

Family

ID=15022126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5129937A Pending JPH06316414A (en) 1993-05-06 1993-05-06 Production of perovskite type compound powder

Country Status (1)

Country Link
JP (1) JPH06316414A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893623B2 (en) * 1998-12-11 2005-05-17 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
EP1637502A1 (en) * 2004-09-14 2006-03-22 Kerr-McGee Pigments GmbH Finely divided earth alkali metal titanates and method for their production using particles of titanium oxide hydrate
US7030165B2 (en) 1999-05-26 2006-04-18 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
JP2008162817A (en) * 2006-12-27 2008-07-17 Samsung Electro Mech Co Ltd Dielectric ceramic material and its manufacturing method as well as ceramic capacitor
WO2010108988A1 (en) * 2009-03-25 2010-09-30 Tronox Pigments Gmbh Lead zirconate titanates and method for the production thereof
JP2012533512A (en) * 2009-07-20 2012-12-27 カウンシィル オブ サイアンティフィック アンド インダストリアル リサーチ CeAlO3 perovskite containing transition metal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893623B2 (en) * 1998-12-11 2005-05-17 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
US7030165B2 (en) 1999-05-26 2006-04-18 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
US7091154B2 (en) 1999-05-26 2006-08-15 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
EP1637502A1 (en) * 2004-09-14 2006-03-22 Kerr-McGee Pigments GmbH Finely divided earth alkali metal titanates and method for their production using particles of titanium oxide hydrate
WO2006029834A3 (en) * 2004-09-14 2006-11-23 Tronox Pigments Gmbh Fine-particled alkaline-earth titanates and method for the production thereof using titan oxide particles
JP2008513324A (en) * 2004-09-14 2008-05-01 トロノクス ピグメンツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fine-grained alkaline earth metal titanate and its production method under the use of titanium oxide particles
JP2008162817A (en) * 2006-12-27 2008-07-17 Samsung Electro Mech Co Ltd Dielectric ceramic material and its manufacturing method as well as ceramic capacitor
WO2010108988A1 (en) * 2009-03-25 2010-09-30 Tronox Pigments Gmbh Lead zirconate titanates and method for the production thereof
JP2012533512A (en) * 2009-07-20 2012-12-27 カウンシィル オブ サイアンティフィック アンド インダストリアル リサーチ CeAlO3 perovskite containing transition metal

Similar Documents

Publication Publication Date Title
US5900223A (en) Process for the synthesis of crystalline powders of perovskite compounds
US20080145292A1 (en) Barium Titanate, Production Process Thereof and Capacitor
JP3780405B2 (en) Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same
JP2008522946A (en) Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same
CN101128395B (en) Composition making method
US8715614B2 (en) High-gravity reactive precipitation process for the preparation of barium titanate powders
EP0439620B1 (en) Method of producing pulverized perovskite compound
JPH06316414A (en) Production of perovskite type compound powder
CN102718484A (en) Preparation method of lead zirconate titanate piezoelectric ceramics
CN100575263C (en) Barium calcium titanate, its manufacture method and electrical condenser
JP3772354B2 (en) Manufacturing method of ceramic powder
JP3838523B2 (en) Method for producing the composition
JPH0580427B2 (en)
JP5119008B2 (en) Method for producing perovskite-type barium titanate powder
JP6573653B2 (en) Method for producing perovskite-type barium titanate powder
JP3668985B2 (en) Manufacturing method of ceramic powder
JPH0517150A (en) Production of ceramic raw material powder
KR100647247B1 (en) Method for Synthesizing Barium Titanate Powder by solvothermal technique
JPH06321630A (en) Composition for ceramic dielectric
JPH0676258B2 (en) Method for manufacturing ceramic dielectric
JP2004299916A (en) Method for manufacturing oxide powder having perovskite structure
JPH0524089B2 (en)
KR20020030021A (en) Method for producing complex metal oxide powder
JPH05116943A (en) Production of barium titanate powder
KR20060102928A (en) Manufacturing method of barium titanate powder