JP3838523B2 - Method for producing the composition - Google Patents

Method for producing the composition Download PDF

Info

Publication number
JP3838523B2
JP3838523B2 JP21287993A JP21287993A JP3838523B2 JP 3838523 B2 JP3838523 B2 JP 3838523B2 JP 21287993 A JP21287993 A JP 21287993A JP 21287993 A JP21287993 A JP 21287993A JP 3838523 B2 JP3838523 B2 JP 3838523B2
Authority
JP
Japan
Prior art keywords
powder
alkaline
aqueous solution
hydrothermal
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21287993A
Other languages
Japanese (ja)
Other versions
JPH0769634A (en
Inventor
光俊 川本
幸生 浜地
国三郎 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP21287993A priority Critical patent/JP3838523B2/en
Publication of JPH0769634A publication Critical patent/JPH0769634A/en
Application granted granted Critical
Publication of JP3838523B2 publication Critical patent/JP3838523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明はペロブスカイト型化合物を含有する組成物の製造方法に関する。
【0002】
【従来の技術】
近年電子デバイスは著しく小型高性能化している。これに対応して、電子デバイスを構成するセラミック電子部品も同様であり、小型高性能を目的として、セラミックの製造工程の改良が種々検討されてきたが、ほとんどその限界に達してきている。したがって、現状よりさらに優れたセラミックスを得るためには、その素材を改善する必要性がある。
【0003】
例えば、誘電体セラミックスとしては、1μm以下好ましくは0.5μm以下の均一で球形状のペロブスカイト型化合物(以下、ABO3型化合物という)が研究されている。このような粒径のABO3型化合物は、粒径が小さければ表面エネルギ−が高くなり、粒径分布が均一で球状であれば、成形時のパッキングがよくなるため、焼結性は著しく改善され、より低い温度で緻密強固なセラミックスが得られる。さらに、積層セラミックコンデンサの薄層化・多積層化を実現させるために、厚み10μm以下のセラミックグリ−ンシ−トが要求されているが、その場合も、1μm以下好ましくは0.5μm以下の均一で球形状のABO3型化合物が必要になる。
【0004】
従来より、ABO3型化合物、例えばチタン酸バリウムの製造方法としては、炭酸バリウムと酸化チタンを1000℃以上の高温で反応(仮焼)させてチタン酸バリウムを合成し、機械的に粉砕、分級する方法(固相合成法)が知られている。また、これに対して、湿式合成法として、金属アルコキシド法、水酸化物法、水熱合成法等が知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、固相合成法の場合、仮焼後のチタン酸バリウムが固結しているため、機械的粉砕、分級を行っても1μm以下の微細な状態にするのは困難である。またその粒子形状は破砕物状になっているため、これを任意の形状に成形して焼結した場合、焼結性に欠けていた。さらに、前述したように、積層セラミックコンデンサの薄層化・多積層化を実現させるためには、厚み10μm以下のセラミックグリ−ンシ−トを問題なく成形することが必要であるが、固相合成法で得られたチタン酸バリウム粉末を用いた場合、グリ−ンシ−トの生密度が低下したり、あるいは、グリ−ンシ−トの厚みばらつきが大きくなったりという不具合が生じていた。
【0006】
また、湿式合成法に関して言えば、金属アルコキシド法の場合、原料が高価で工業化には問題がある。一方、水酸化物法については、原料も比較的安価であり、得られる粉末も焼結性が高いという点で注目されている。
【0007】
たとえば、特開昭60−90825号公報において、チタン酸と水酸化バリウムを多量の水の存在化で、沸点以下の温度で加熱する方法がとられているが、この場合、チタン酸をあらかじめ調整しなければならない。例えば、チタン酸をチタン化合物の水溶液の中和によって沈澱させた場合には、コロイドであるため、洗浄および濾過が工業的に困難であるという問題がある。
【0008】
また、特開昭59−39726号公報において、チタン塩の水溶液に塩化バリウム、硝酸バリウム等水溶性バリウム塩を溶解させ、アルカリを加えてpHを13以上に調整して、沸点以下で加熱する方法が提案されている。しかしながら、この方法で得られるチタン酸バリウム粉末は、粒子径が0.02〜0.03μmと微細すぎるため、成形加工した場合の密度が低く、焼結時の収縮が大きいという問題があり、用途によっては好ましくない場合がある。
【0009】
水熱合成法に関しては、積層セラミックコンデンサの薄層化・多積層化に耐え得るのに最適なチタン酸バリウム粉末を得ることができるとして、近年特に注目されている。
【0010】
たとえば、特開昭61−31345号公報では、Ba、Sr等のA群元素及びTi、Zr等のB群元素の水酸化物の所望のA/B比の混合物を水性媒体中で水熱反応させた後、水性媒体中に溶存するA群元素を水不溶性の形にして濾過、水洗、乾燥させる方法が提案されている。ところが、この場合、A群元素を水不溶性の形にするいわゆる不溶化剤の添加量を、製造ロット毎に決めなければならない煩雑さが生じてくる。つまり、水熱反応において、製造ロット毎に反応率にばらつきがあるため、そのたびごとに、濾液に溶存しているA群元素イオン濃度を分析し、その値に応じて不溶化剤の添加量を決定する必要がある。
【0011】
また、特開昭62−72525号公報では、四塩化チタンの水溶液に、バリウム等の炭酸塩、塩化物、硝酸塩のうち、いずれか1種類の化合物を溶解させ、水酸化ナトリウムまたは水酸化カリウムを加えて、オ−トクレ−ブ中で加熱する方法が提案されている。しかしながら、詳細に検討した結果、NaやK等のアルカリ金属不純物をどうしても除去することができず、例えば、合成されたチタン酸バリウム粉末中に800〜1000ppm程度残存することが明らかとなった。
【0012】
本発明の目的は、1μm以下好ましくは0.5μm以下の均一で球形状の粒子であり、かつ、Aサイト元素とBサイト元素のモル比が1.000±0.002の範囲にあり、さらに、結晶性が良く、アルカリ金属等の不純物が極めて少ないABO3型化合物が得られる製造方法を提供することである。
【0013】
【課題を解決するための手段】
すなわち、本発明にかかる組成物の製造方法の要旨とするところは、(a)Mg、Ca、Sr、Ba、及びPbよりなるA群元素から選ばれる少なくとも1種の塩と、Ti、Zr、Hf及びSnよりなるB群元素から選ばれる少なくとも1種の塩と、水またはアルカリ性水溶液との混合物スラリ−を得る第1工程、(b)前記混合物スラリ−を水熱反応させて水熱合成粉末を得る第2工程、(c)第2工程で得られた水熱合成粉末とアルカリ土類金属を含むアルカリ性水溶液との混合物を水熱反応させる第3工程、とからなることを特徴とする。
【0014】
また、第3工程において、アルカリ土類金属を含むアルカリ性水溶液としては、例えば、pHが7〜10の間に調整された水酸化バリウム水溶液を用いる。
【0015】
第1工程で混合物スラリーを調整したのち、次の第2工程で混合物スラリーを水熱処理することにより合成粉末が得られることになる。この合成粉末にLi、Naなどのアルカリ金属が含まれている場合には、洗浄することが好ましい。洗浄回数はアルカリ金属量が一定量まで低減できるまで任意繰り返せばよい。こののち濾過、乾燥して乾燥粉末とする。この乾燥粉末は次の第3工程にもちこまれ、アルカリ土類金属を含むアルカリ性水溶液と混合し、この混合物を水熱反応させる。ここで、ABO3型化合物が含まれるアルカリ金属不純物をさらに低減させることができる。
【0016】
【作用】
本発明によれば、水熱合成して得られた粉末をさらにアルカリ土類金属を含むアルカリ性水溶液と混合し、この混合物を水熱反応させる工程を有しており、ここでABO3型化合物に含まれるアルカリ金属不純物量を低減することができる。このようにして得られたABO3型化合物は粒子径が小さく、粒度が均一で、球形状であるため、反応性がよく、焼結温度を低下させることができる。また、粉砕工程が省けるため、粉砕による不純物の混入を防げる。
【0017】
【実施例】
(実施例1)
0.1molのTi(O−iC374と、イソプロピルアルコ−ル(以下、IPAという)30mlを、ポリフッ化エチレン系樹脂製ビ−カ−に入れる。次に、この溶液をウルトラディスパ−サ−にて攪拌しながら、0.6molのNaOH水溶液を含有する135mlで加水分解を行う。そして、0.1molのBaCl2・2H2Oを投入する(第1工程)。
【0018】
この混合物スラリ−をポリフッ化エチレン系樹脂製ビ−カ−に入れて、オ−トクレ−ブ装置に装着し、温度:170℃、圧力:16kg/cm2の条件で4時間、ポリフッ化エチレン系樹脂製の攪拌棒を用いて、150rpmで攪拌させながら水熱合成を行った。得られた沈殿物を取り出し、水洗及び濾過を数回繰り返した後、乾燥及び解砕をへて原料粉末を得た(第2工程)。この粉末の粒子径は0.2〜0.3μmであり、Ba/Ti比:1.001、Na量:1000ppm、Cl量:20ppmであった。
【0019】
次に、その粉末20gとpH=10に調整された水酸化バリウム水溶液200mlとを、上記同様ポリフッ化エチレン系樹脂製ビ−カ−に入れ、そのビ−カ−をオ−トクレ−ブ装置に装着し、温度:200℃、圧力:15kg/cm2の条件で4時間、ポリフッ化エチレン系樹脂製の攪拌棒を用いて、150rpmで攪拌させながら水熱処理を行った。処理終了後、濾過、乾燥及び解砕をへて原料粉末を得た(第3工程)。
この粉末の粒子径は0.2〜0.3μmであり、Ba/Ti比:0.999、Na量:100ppm、Cl量:20ppmであった。図1はこの方法で得られた組成物のX線回折パタ−ンであり、(110)の鋭いピークから立方晶のペロブスカイト構造を有していることを示している。
【0020】
各工程について若干説明を付け加えると、第1工程においてBaとTiを等モルの割合で仕込んでいるが、第2工程水熱合成後モル比ずれが起きる。これを防ぐにはBaおよびTiの仕込み濃度の少なくとも4倍、好ましくは6倍以上のOH濃度が必要である。
【0021】
次に、第2工程後、洗浄を行うが、Ba抜けを防ぐためアルカリ性の水溶液で数回洗浄する。アルカリ性のpHとしては少なくとも9以上である。なお、洗浄回数は、Na、K、Cl等の不純物低減に影響している。Clに関しては2〜3回の洗浄でほぼ完全に除去できるが、NaやK等のアルカリ金属不純物は、ある濃度に達すると、その後何回洗浄しても低減せず一定である。本実施例においては残存Na量は3回目以降の洗浄で1000ppmのままであった。これは、Na等のアルカリ金属不純物がチタン酸バリウムの結晶格子の中に取り込まれているものと推察される。
【0022】
この残存Naの低減は第3工程の再水熱処理を行うことで解決することがわかった。このことは、今までの公知例からは、全く予想し得なかった極めて新しい事実である。再水熱処理条件としては温度は高いほどよいが、ポリフッ化エチレン系樹脂製ビ−カ−を使用する場合は、200℃以下が望ましい。また反応時間は4時間で充分である。
【0023】
加えて、再水熱処理時の溶液については、Ba抜けを防ぐためにアルカリ性にしておく必要がある。アルカリ性を付与するものとして、アンモニア水、水酸化ナトリウム溶液や水酸化カリウム溶液などのアルカリ金属を含む水溶液、水酸化バリウム溶液などのアルカリ土類金属を含む水溶液が考えられる。
【0024】
この中で、アンモニア水は水熱処理条件下ではアンモニアが揮発し、pHの低下によるBa抜けが生じることと、揮発したアンモニアがポリフッ化エチレン系樹脂製ビーカーなどと反応するなど好ましくない。また、水酸化ナトリウム溶液などアルカリ金属を含む水溶液は、この発明で得られる組成物からアルカリ金属を除去することも目的の一つであるから使用できない。
【0025】
従って、水酸化バリウム溶液などのアルカリ土類金属を含む水溶液がよい。特に、水酸化バリウム溶液がよく、その際のpHは7〜10好ましくは9〜10の間に設定するのがよい。pHが10を越えると、最終的に得られる粉末のBa/Tiの比がBaが多い側にずれるし、pHが9以下であれば水熱処理条件化において、Ba抜けを起こすことになる。
【0026】
(実施例2)
0.1molのTi(O−iC374と、IPA30mlとを、ポリフッ化エチレン系樹脂製ビ−カ−に入れて、ウルトラディスパ−サ−にて攪拌しながら、0.6molのNaOHを含有する水溶液135mlにて加水分解を行う。そして、0.1molのSrCl2を入れる(第1工程)。
【0027】
この混合物スラリ−を中に含むポリフッ化エチレン系樹脂製ビ−カ−をオ−トクレ−ブ装置に装着し、温度:170℃、圧力16kg/cm2の条件で4時間、ポリフッ化エチレン系樹脂製の攪拌棒を用いて、150rpmで攪拌させながら水熱処理を行った。得られた沈殿物を取り出し、水洗及び濾過を数回繰り返した後、乾燥及び解砕をへて原料粉末を得た(第2工程)。この粉末の粒子径は0.1〜0.2μmであり、Sr/Ti比:1.002、Na量:900ppm、Cl量:10ppmであった。
【0028】
次に、上記粉末20gとpH=10に調整された水酸化バリウム水溶液200mlとをポリフッ化エチレン系樹脂製ビ−カ−に入れ、このビ−カ−をオ−トクレ−ブ装置に装着し、温度:200℃、圧力:15kg/cm2の条件で4時間、ポリフッ化エチレン系樹脂製の攪拌棒を用いて、150rpmで攪拌させながら水熱処理を行った。処理終了後、濾過、乾燥及び解砕をへて原料粉末を得た(第3工程)。
【0029】
この粉末の粒子径及び粒子形状は、電子顕微鏡による観察の結果、0.1〜0.2μmで球形状であり、Sr/Ti比:0.998、Na量:80ppm、Cl量:10ppmであった。またX線回折の結果より、立方晶のペロブスカイト構造を有するチタン酸ストロンチウムが生成していた。
【0030】
上述のように実施例に関しては、チタン酸バリウム(BaTiO3)粉末及びチタン酸ストロンチウム(SrTiO3)粉末に関して述べたが、例えば、CaTiO3、(Ba,Ca)TiO3、Ba(Ti,Zr)O3、(Ba,Ca)(Ti,Zr)O3等の粉末についても、もちろん同様な方法で製造できる。
【0031】
【発明の効果】
本発明により製造されたABO3型粉末は、粒子径が0.1〜0.3μmで球形状であり、かつ、A/B比が1.000±0.002の範囲にある。また、結晶性が良く、アルカリ金属の不純物が極めて少ない。これらの特徴を有するABO3型粉末は、積層セラミックコンデンサの薄層化・多積層化に加え、高機能化・高信頼性化に対応できる。
【図面の簡単な説明】
【図1】実施例1により生成されたチタン酸バリウムのX線回折パタ−ンである。
[0001]
[Industrial application fields]
The present invention relates to a method for producing a composition containing a perovskite type compound.
[0002]
[Prior art]
In recent years, electronic devices have been remarkably reduced in size and performance. Correspondingly, the same applies to the ceramic electronic components constituting the electronic device, and various improvements of the ceramic manufacturing process have been studied for the purpose of miniaturization and high performance, but the limit has been almost reached. Therefore, there is a need to improve the material in order to obtain ceramics that are superior to the current situation.
[0003]
For example, as dielectric ceramics, uniform and spherical perovskite type compounds (hereinafter referred to as ABO 3 type compounds) of 1 μm or less, preferably 0.5 μm or less have been studied. The ABO 3 type compound having such a particle size has a high surface energy if the particle size is small, and if the particle size distribution is uniform and spherical, the packing during molding is improved, so that the sinterability is remarkably improved. A dense and strong ceramic can be obtained at a lower temperature. Furthermore, in order to realize a multilayer ceramic capacitor with a thin layer and multiple layers, a ceramic green sheet having a thickness of 10 μm or less is required, but in that case, it is 1 μm or less, preferably 0.5 μm or less. Therefore, a spherical ABO 3 type compound is required.
[0004]
Conventionally, as a method for producing an ABO 3 type compound such as barium titanate, barium carbonate and titanium oxide are reacted (calcined) at a high temperature of 1000 ° C. or higher to synthesize barium titanate, and mechanically pulverized and classified. A method (solid phase synthesis method) is known. On the other hand, metal alkoxide methods, hydroxide methods, hydrothermal synthesis methods, and the like are known as wet synthesis methods.
[0005]
[Problems to be solved by the invention]
However, in the case of the solid phase synthesis method, the calcined barium titanate is consolidated, so that it is difficult to obtain a fine state of 1 μm or less even if mechanical pulverization and classification are performed. Moreover, since the particle shape is in the form of crushed material, when it was molded into an arbitrary shape and sintered, it lacked sinterability. Furthermore, as described above, in order to realize a thin and multi-layered multilayer ceramic capacitor, it is necessary to form a ceramic green sheet having a thickness of 10 μm or less without any problem. When the barium titanate powder obtained by the above method was used, there was a problem that the green sheet density decreased or the thickness variation of the green sheet increased.
[0006]
As for the wet synthesis method, in the case of the metal alkoxide method, the raw materials are expensive and there is a problem in industrialization. On the other hand, regarding the hydroxide method, attention has been paid in that the raw materials are relatively inexpensive and the resulting powder has high sinterability.
[0007]
For example, in JP-A-60-90825, a method of heating titanic acid and barium hydroxide at a temperature below the boiling point in the presence of a large amount of water is used. In this case, titanic acid is adjusted in advance. Must. For example, when titanic acid is precipitated by neutralization of an aqueous solution of a titanium compound, since it is a colloid, there is a problem that washing and filtration are industrially difficult.
[0008]
JP-A-59-39726 discloses a method in which a water-soluble barium salt such as barium chloride or barium nitrate is dissolved in an aqueous solution of titanium salt, the pH is adjusted to 13 or more by adding an alkali, and heating is performed at a boiling point or lower. Has been proposed. However, since the barium titanate powder obtained by this method is too fine with a particle diameter of 0.02 to 0.03 μm, there is a problem that the density when molded is low and the shrinkage during sintering is large. Depending on the case, it may not be preferable.
[0009]
With regard to the hydrothermal synthesis method, in recent years, it has attracted particular attention as being able to obtain an optimum barium titanate powder that can withstand the thinning and multi-layering of multilayer ceramic capacitors.
[0010]
For example, in Japanese Patent Application Laid-Open No. 61-31345, a mixture of a group A element such as Ba and Sr and a hydroxide of a group B element such as Ti and Zr with a desired A / B ratio is hydrothermally reacted in an aqueous medium. Then, a method is proposed in which the group A element dissolved in the aqueous medium is made into a water-insoluble form, filtered, washed and dried. However, in this case, there is a problem that the amount of so-called insolubilizing agent that makes the group A element water-insoluble must be determined for each production lot. That is, in the hydrothermal reaction, since the reaction rate varies from production lot to production lot, the concentration of group A element ions dissolved in the filtrate is analyzed each time, and the amount of insolubilizing agent added is determined according to the value. It is necessary to decide.
[0011]
In JP-A-62-72525, any one compound of carbonate, chloride and nitrate such as barium is dissolved in an aqueous solution of titanium tetrachloride, and sodium hydroxide or potassium hydroxide is added. In addition, a method of heating in an autoclave has been proposed. However, as a result of detailed studies, it has been clarified that alkali metal impurities such as Na and K cannot be removed and remain, for example, about 800 to 1000 ppm in the synthesized barium titanate powder.
[0012]
The object of the present invention is uniform and spherical particles of 1 μm or less, preferably 0.5 μm or less, and the molar ratio of A site element to B site element is in the range of 1.000 ± 0.002, Another object of the present invention is to provide a production method capable of obtaining an ABO 3 type compound having good crystallinity and extremely low impurities such as alkali metals.
[0013]
[Means for Solving the Problems]
That is, the gist of the production method of the composition according to the present invention is that (a) at least one salt selected from the group A elements consisting of Mg, Ca, Sr, Ba, and Pb, and Ti, Zr, A first step of obtaining a mixture slurry of at least one salt selected from the group B element consisting of Hf and Sn and water or an alkaline aqueous solution; (b) hydrothermal reaction of the mixture slurry for hydrothermal synthesis powder And (c) a third step in which a mixture of the hydrothermally synthesized powder obtained in the second step and an alkaline aqueous solution containing an alkaline earth metal is subjected to a hydrothermal reaction.
[0014]
In the third step, as the alkaline aqueous solution containing an alkaline earth metal , for example, a barium hydroxide aqueous solution having a pH adjusted between 7 and 10 is used.
[0015]
After adjusting the mixture slurry in the first step, a synthetic powder is obtained by hydrothermally treating the mixture slurry in the next second step. When this synthetic powder contains an alkali metal such as Li or Na, it is preferably washed. What is necessary is just to repeat arbitrarily the frequency | count of washing | cleaning until the amount of alkali metals can be reduced to a fixed amount. After that, it is filtered and dried to obtain a dry powder. This dry powder is brought into the next third step, mixed with an alkaline aqueous solution containing an alkaline earth metal , and this mixture is hydrothermally reacted. Here, alkali metal impurities including the ABO 3 type compound can be further reduced.
[0016]
[Action]
According to the present invention, a powder obtained by hydrothermal synthesis further mixed with an alkaline aqueous solution containing an alkaline earth metal, the mixture has a step of hydrothermal reaction, wherein the ABO 3 type compounds The amount of alkali metal impurities contained can be reduced. Since the ABO 3 type compound thus obtained has a small particle size, a uniform particle size, and a spherical shape, the reactivity is good and the sintering temperature can be lowered. Further, since the pulverization process can be omitted, it is possible to prevent impurities from being mixed due to pulverization.
[0017]
【Example】
Example 1
0.1 mol of Ti (O—iC 3 H 7 ) 4 and 30 ml of isopropyl alcohol (hereinafter referred to as IPA) are put into a polyfluorinated ethylene resin beaker. The solution is then hydrolyzed with 135 ml containing 0.6 mol NaOH aqueous solution while stirring with an ultradisperser. Then, 0.1 mol of BaCl 2 .2H 2 O is charged (first step).
[0018]
This mixture slurry was put into a polyfluorinated ethylene resin beaker and mounted on an autoclave apparatus. The temperature was 170 ° C. and the pressure was 16 kg / cm 2 for 4 hours. Hydrothermal synthesis was performed using a resin stir bar while stirring at 150 rpm. The obtained precipitate was taken out, washed with water and filtered several times, and then dried and crushed to obtain a raw material powder (second step). The particle diameter of this powder was 0.2 to 0.3 μm, Ba / Ti ratio: 1.001, Na content: 1000 ppm, and Cl content: 20 ppm.
[0019]
Next, 20 g of the powder and 200 ml of an aqueous solution of barium hydroxide adjusted to pH = 10 are put into a polyfluorinated ethylene resin beaker as described above, and the beaker is placed in an autoclave apparatus. A hydrothermal treatment was performed while stirring at 150 rpm using a stirring rod made of a polyfluorinated ethylene resin for 4 hours under conditions of temperature: 200 ° C. and pressure: 15 kg / cm 2 . After completion of the treatment, the raw material powder was obtained through filtration, drying and crushing (third step).
The particle diameter of this powder was 0.2 to 0.3 μm, Ba / Ti ratio: 0.999, Na content: 100 ppm, and Cl content: 20 ppm. FIG. 1 is an X-ray diffraction pattern of the composition obtained by this method, and shows that it has a cubic perovskite structure from the sharp peak of (110).
[0020]
If a little explanation is added about each process, in the 1st process, Ba and Ti are charged in the ratio of equimolar ratio, but a molar ratio shift occurs after the 2nd process hydrothermal synthesis. In order to prevent this, an OH concentration of at least 4 times, preferably 6 times or more the charged concentration of Ba and Ti is required.
[0021]
Next, after the second step, washing is performed, but washing is performed several times with an alkaline aqueous solution in order to prevent Ba loss. The alkaline pH is at least 9 or more. Note that the number of cleanings affects the reduction of impurities such as Na, K, and Cl. Although Cl can be almost completely removed by washing 2 to 3 times, alkali metal impurities such as Na and K, when reaching a certain concentration, are constant without being reduced no matter how many times they are washed thereafter. In this example, the amount of residual Na remained at 1000 ppm after the third and subsequent washings. This is presumed that alkali metal impurities such as Na are incorporated in the crystal lattice of barium titanate.
[0022]
It has been found that this reduction of residual Na can be solved by performing a rehydrothermal treatment in the third step. This is a very new fact that could not be expected at all from the known examples. The higher the temperature as rehydrothermal treatment conditions, the better. However, when using a polyfluorinated ethylene resin beaker, 200 ° C. or lower is desirable. The reaction time is sufficient for 4 hours.
[0023]
In addition, the solution at the time of rehydrothermal treatment needs to be alkaline in order to prevent Ba loss. As what imparts alkalinity, aqueous solutions containing alkaline metals such as aqueous ammonia, sodium hydroxide solution and potassium hydroxide solution, and aqueous solutions containing alkaline earth metals such as barium hydroxide solution are conceivable.
[0024]
Among these, ammonia water is not preferable because ammonia is volatilized under hydrothermal treatment conditions, and Ba loss occurs due to a decrease in pH, and the volatilized ammonia reacts with a polyfluorinated ethylene resin beaker. In addition, an aqueous solution containing an alkali metal such as a sodium hydroxide solution cannot be used because it is one of the purposes to remove the alkali metal from the composition obtained in the present invention.
[0025]
Accordingly, an aqueous solution containing an alkaline earth metal such as a barium hydroxide solution is preferable. In particular, a barium hydroxide solution is preferable, and the pH at that time is preferably set to 7 to 10, preferably 9 to 10. When the pH exceeds 10, the Ba / Ti ratio of the finally obtained powder shifts to a higher Ba side, and if the pH is 9 or less, Ba loss occurs in hydrothermal treatment conditions.
[0026]
(Example 2)
0.1 mol of Ti (O—iC 3 H 7 ) 4 and 30 ml of IPA are placed in a beaker made of a polyfluorinated ethylene resin, and stirred with an ultradisperser, 0.6 mol of NaOH. Hydrolysis is carried out with 135 ml of an aqueous solution containing. Then, 0.1 mol of SrCl 2 is added (first step).
[0027]
A polyfluorinated ethylene resin beaker containing this mixture slurry was mounted on an autoclave apparatus, and the polyfluorinated ethylene resin was subjected to a temperature of 170 ° C. and a pressure of 16 kg / cm 2 for 4 hours. Hydrothermal treatment was performed while stirring at 150 rpm using a stirrer bar. The obtained precipitate was taken out, washed with water and filtered several times, and then dried and crushed to obtain a raw material powder (second step). The particle diameter of this powder was 0.1 to 0.2 μm, Sr / Ti ratio: 1.002, Na content: 900 ppm, and Cl content: 10 ppm.
[0028]
Next, 20 g of the above powder and 200 ml of an aqueous barium hydroxide solution adjusted to pH = 10 were placed in a polyfluorinated ethylene resin beaker, and this beaker was attached to an autoclave device. Hydrothermal treatment was performed for 4 hours under the conditions of temperature: 200 ° C. and pressure: 15 kg / cm 2 while stirring at 150 rpm using a stirring rod made of polyfluorinated ethylene resin. After completion of the treatment, the raw material powder was obtained through filtration, drying and crushing (third step).
[0029]
As a result of observation with an electron microscope, the particle diameter and particle shape of this powder were 0.1 to 0.2 μm and spherical, Sr / Ti ratio: 0.998, Na content: 80 ppm, Cl content: 10 ppm. It was. From the results of X-ray diffraction, strontium titanate having a cubic perovskite structure was generated.
[0030]
As described above, regarding the examples, the barium titanate (BaTiO 3 ) powder and the strontium titanate (SrTiO 3 ) powder have been described. For example, CaTiO 3 , (Ba, Ca) TiO 3 , Ba (Ti, Zr) Of course, powders such as O 3 , (Ba, Ca) (Ti, Zr) O 3 and the like can be produced by the same method.
[0031]
【The invention's effect】
The ABO 3 type powder produced according to the present invention has a particle size of 0.1 to 0.3 μm and a spherical shape, and an A / B ratio in the range of 1.000 ± 0.002. In addition, it has good crystallinity and contains very few alkali metal impurities. The ABO 3 type powder having these characteristics can cope with high functionality and high reliability in addition to thin and multi-layered multilayer ceramic capacitors.
[Brief description of the drawings]
1 is an X-ray diffraction pattern of barium titanate produced according to Example 1. FIG.

Claims (2)

(a)Mg、Ca、Sr、Ba、及びPbよりなるA群元素から選ばれる少なくとも1種の塩と、Ti、Zr、Hf及びSnよりなるB群元素から選ばれる少なくとも1種の塩と、水またはアルカリ性水溶液との混合物スラリ−を得る第1工程、(b)前記混合物スラリ−を水熱反応させて水熱合成粉末を得る第2工程、(c)第2工程で得られた水熱合成粉末とアルカリ土類金属を含むアルカリ性水溶液との混合物を水熱反応させる第3工程、とからなることを特徴とするペロブスカイト型化合物を含有する組成物の製造方法。(A) at least one salt selected from group A elements consisting of Mg, Ca, Sr, Ba, and Pb; and at least one salt selected from group B elements consisting of Ti, Zr, Hf, and Sn; A first step for obtaining a mixture slurry with water or an aqueous alkaline solution, (b) a second step for hydrothermally reacting the mixture slurry to obtain a hydrothermal synthetic powder, and (c) hydrothermal power obtained in the second step. A third step of hydrothermally reacting a mixture of a synthetic powder and an alkaline aqueous solution containing an alkaline earth metal, and a method for producing a composition containing a perovskite type compound. 前記第3工程において、アルカリ土類金属を含むアルカリ性水溶液として、pHが7〜10の間に調整された水酸化バリウム水溶液を用いることを特徴とする請求項1記載の組成物の製造方法。The method for producing a composition according to claim 1, wherein, in the third step, an aqueous barium hydroxide solution having a pH adjusted between 7 and 10 is used as the alkaline aqueous solution containing an alkaline earth metal .
JP21287993A 1993-08-27 1993-08-27 Method for producing the composition Expired - Lifetime JP3838523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21287993A JP3838523B2 (en) 1993-08-27 1993-08-27 Method for producing the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21287993A JP3838523B2 (en) 1993-08-27 1993-08-27 Method for producing the composition

Publications (2)

Publication Number Publication Date
JPH0769634A JPH0769634A (en) 1995-03-14
JP3838523B2 true JP3838523B2 (en) 2006-10-25

Family

ID=16629779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21287993A Expired - Lifetime JP3838523B2 (en) 1993-08-27 1993-08-27 Method for producing the composition

Country Status (1)

Country Link
JP (1) JP3838523B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660935B2 (en) * 2001-02-05 2011-03-30 株式会社村田製作所 Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure
KR100451827B1 (en) * 2001-10-15 2004-10-08 (주)디오 Method for preparing barium titanates
KR100489403B1 (en) * 2002-05-30 2005-05-12 주식회사 나노 METHOD OF PREPARING BaTiO3 POWDER
JP2006298677A (en) * 2005-04-18 2006-11-02 National Institute Of Advanced Industrial & Technology Method for synthesizing ceramic powder
JP4967599B2 (en) * 2006-10-23 2012-07-04 Tdk株式会社 Barium titanate powder, dielectric ceramic composition and electronic component
JP2012523369A (en) * 2009-04-10 2012-10-04 イーストー,インコーポレイティド Hydrothermal process for wet chemical preparation of mixed metal oxide ceramic powders
JP2020034654A (en) * 2018-08-28 2020-03-05 キヤノン株式会社 Image forming device

Also Published As

Publication number Publication date
JPH0769634A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
US4520004A (en) Method of manufacturing metal titanate fine powder
EP0641740B1 (en) Process for the synthesis of crystalline ceramic powders of perovskite compounds
US5445806A (en) Process for preparing fine powder of perovskite-type compound
EP0150135B1 (en) Dielectric barium-strontium titanate fine powders
JP4240190B2 (en) Spherical barium titanate particle powder and production method thereof
CN101675005B (en) Amorphous fine-particle powder, process for production thereof and perovskite-type barium titanate powder made by using the same
JP5353728B2 (en) Method for producing the composition
JP4556398B2 (en) Method for producing the composition
KR101158953B1 (en) Method for producing composition
JP3838523B2 (en) Method for producing the composition
JPH0339018B2 (en)
EP0439620B1 (en) Method of producing pulverized perovskite compound
EP0104002B1 (en) Methods of manufacturing metal titanate fine powders
US20020146365A1 (en) Method for the preparation of oxide powders
JP3772354B2 (en) Manufacturing method of ceramic powder
JPH0339014B2 (en)
JP3668985B2 (en) Manufacturing method of ceramic powder
JPH0246531B2 (en)
KR102190834B1 (en) Method for producing barium titanate powder
KR100596519B1 (en) Method for manufacturing ceramic composition
JPH0769645A (en) Production of lead-containing multiple oxide
CN113307305B (en) Preparation method and application of barium titanate powder
JPH0339015B2 (en)
KR100647247B1 (en) Method for Synthesizing Barium Titanate Powder by solvothermal technique
JP2999821B2 (en) Method for producing fine powder of perovskite compound

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

EXPY Cancellation because of completion of term