JPH0339015B2 - - Google Patents

Info

Publication number
JPH0339015B2
JPH0339015B2 JP15124082A JP15124082A JPH0339015B2 JP H0339015 B2 JPH0339015 B2 JP H0339015B2 JP 15124082 A JP15124082 A JP 15124082A JP 15124082 A JP15124082 A JP 15124082A JP H0339015 B2 JPH0339015 B2 JP H0339015B2
Authority
JP
Japan
Prior art keywords
catio
amount
reaction
fine particles
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15124082A
Other languages
Japanese (ja)
Other versions
JPS5945927A (en
Inventor
Akira Kamihira
Hiroshi Yamanoi
Hidemasa Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP15124082A priority Critical patent/JPS5945927A/en
Priority to CA000435193A priority patent/CA1201575A/en
Priority to DE8383304893T priority patent/DE3376481D1/en
Priority to EP19830304893 priority patent/EP0104002B1/en
Publication of JPS5945927A publication Critical patent/JPS5945927A/en
Publication of JPH0339015B2 publication Critical patent/JPH0339015B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 この発明はチタン酸カルシウム(CaTiO3)微
粒子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing calcium titanate (CaTiO 3 ) fine particles.

近来、超微粒子のCaTiO3の製造が種々の角度
から要望されるようになつてきている。そして、
その1つは多層セラミツクに関するものである。
コンデンサにおいても、他の電子部品と同様に小
型化、軽量化が望まれている。コンデンサ固有の
点では大容量化も望まれている。このため、多層
セラミツクコンデンサが注目を集めている。そし
て、この多層セラミツクコンデンサでは強誘電体
としてCaTiO3が用いられ、厚みを薄く、均一に
するため、その超微粒子化が要望されるのであ
る。しかも、この多層セラミツクコンデンサで
は、焼結性や温度特性の関係で鉛を混入するよう
にしており、もし焼結温度が高いと鉛が一部蒸発
して均一の特性のものを得られない。CaTiO3
超微粒子であればあるほど焼結温度を低く抑えら
れるので、この点でもCaTiO3の超微粒子化が望
まれる。
In recent years, there has been a growing demand for the production of ultrafine CaTiO 3 particles from various angles. and,
One of them concerns multilayer ceramics.
Capacitors, like other electronic components, are also desired to be smaller and lighter. From the point of view of capacitors, there is also a desire for larger capacitance. For this reason, multilayer ceramic capacitors are attracting attention. In this multilayer ceramic capacitor, CaTiO 3 is used as a ferroelectric material, and in order to make the thickness thin and uniform, ultrafine particles are required. Moreover, lead is mixed in this multilayer ceramic capacitor due to its sinterability and temperature characteristics, and if the sintering temperature is high, some of the lead will evaporate, making it impossible to obtain uniform characteristics. The more ultrafine CaTiO 3 particles are, the lower the sintering temperature can be, so from this point of view as well, ultrafine CaTiO 3 particles are desirable.

また、電歪材料や圧電材料としても超微粒子の
CaTiO3が望まれる。これも特性を向上させるた
めである。さらに、透明セラミツク材料としても
超微粒子のCaTiO3が望まれる。上述したとお
り、粒子サイズが小さく均一であれば焼結温度が
低下すると期待されるからである。
Ultrafine particles can also be used as electrostrictive materials and piezoelectric materials.
CaTiO3 is preferred. This is also for improving the characteristics. Furthermore, ultrafine CaTiO 3 particles are desired as a transparent ceramic material. This is because, as described above, if the particle size is small and uniform, the sintering temperature is expected to be lower.

ところで、従前では固相反応でCaTiO3を製造
していた。すなわち、炭酸カルシウム(CaCO3
と酸化チタンとの粉末を混合し、1000〜1200℃で
固相反応させ、そののち機械的に粉砕して微細化
していた。このため、粒子サイズもかなり大き
く、また不均一であつた。
By the way, CaTiO 3 has previously been produced by solid-phase reaction. i.e. calcium carbonate (CaCO 3 )
Powders of titanium oxide and titanium oxide were mixed, subjected to a solid phase reaction at 1000 to 1200°C, and then mechanically crushed to make them fine. Therefore, the particle size was also quite large and non-uniform.

また、最近、金属アルコキシドを使用して微粒
子CaTiO3の合成が試みられている。しかし、こ
の方法では製造コストが高く、実用化が阻まれて
いた。
Furthermore, recently, attempts have been made to synthesize fine particles of CaTiO 3 using metal alkoxides. However, this method has high manufacturing costs, which has prevented its practical application.

この発明はこのような事情を考慮してなされた
ものであり、粒子サイズが小さく、かつ均一な
CaTiOを安価に製造することを目的としている。
This invention was made in consideration of these circumstances, and it has a small and uniform particle size.
The aim is to produce CaTiO at low cost.

この発明では、このような目的を達成するため
に、Ti化合物の加水分解生成物と水溶性Ca塩と
を強アルカリ水溶液中で反応させてCaTiO3微粒
子を生成するようにしている。
In this invention, in order to achieve such an object, a hydrolysis product of a Ti compound and a water-soluble Ca salt are reacted in a strongly alkaline aqueous solution to produce CaTiO 3 fine particles.

以下、この発明を詳細に説明する。この発明で
は、まずTi化合物を用意する。Ti化合物として
は、たとえばTiCl4,Ti(SO42を用いうる。そし
て、このTi化合物を加水分解する。たとえば、
上述のTiCl4,Ti(SO42の水溶液を中性として
TiO2・xH2Oを得る。Ti(SO42を用いた場合に
は、硫酸根を除去するため、水洗を行つて
TiO2・xH2O濾別する。
This invention will be explained in detail below. In this invention, a Ti compound is first prepared. As the Ti compound, for example, TiCl 4 or Ti(SO 4 ) 2 can be used. Then, this Ti compound is hydrolyzed. for example,
The aqueous solution of TiCl 4 and Ti(SO 4 ) 2 mentioned above is set as neutral.
Obtain TiO 2 xH 2 O. When using Ti(SO 4 ) 2 , wash with water to remove sulfate radicals.
TiO 2 .xH 2 O is filtered off.

つぎに、水溶性Ca塩を用意し、これを上述の
加水分解生成物と強アルカリ水溶液中で反応させ
る。上述の加水分解反応で硫酸根の除去等濾別を
行う必要がないときには、この強アルカリ水溶液
中での反応を上述の加水分解反応と同時に行うこ
とができる。
Next, a water-soluble Ca salt is prepared and reacted with the above-mentioned hydrolysis product in a strong alkaline aqueous solution. When it is not necessary to perform filtration such as removal of sulfate groups in the above-mentioned hydrolysis reaction, the reaction in this strong alkaline aqueous solution can be carried out simultaneously with the above-mentioned hydrolysis reaction.

水溶性Ca塩としてはCa(NO32,Ca(OH)2
CaCl2,Ca(CH3COO)2,CaOを用いうる。アル
カリとしてはLiOH,KOH,NaOH,NH4OHを
用いうる。
Water-soluble Ca salts include Ca(NO 3 ) 2 , Ca(OH) 2 ,
CaCl 2 , Ca(CH 3 COO) 2 and CaO can be used. LiOH, KOH, NaOH, and NH 4 OH can be used as the alkali.

強アルカリ水溶液のPHは13.0以上、好ましくは
13.2以上とする。CaとTiのモル比(Ca/Ti)は
0.3以上、好ましくは0.6〜10とする。反応温度は
70℃以上、沸点までを可とし、好ましくは85℃以
上とする。反応時間は反応が進行するのに十分な
時間である。
The pH of the strong alkaline aqueous solution is 13.0 or higher, preferably
Must be 13.2 or higher. The molar ratio of Ca and Ti (Ca/Ti) is
0.3 or more, preferably 0.6 to 10. The reaction temperature is
Temperatures of 70°C or higher up to the boiling point are allowed, preferably 85°C or higher. The reaction time is sufficient time for the reaction to proceed.

以上の反応ののちには、必要に応じて濾別、水
洗、乾燥を行う。
After the above reaction, filtration, water washing, and drying are performed as necessary.

この発明のCaTiO3微粒子の製造方法によれ
ば、粒子サイズが1〜3μmと小さく、かつ均一
なCaTiO3微粒子を得ることができた。従前の固
相反応による合成では、機械的粉砕により微細化
を行うので、このような粒子サイズは望めなかつ
た。この発明によるCaTiO3の微粒子を多層セラ
ミツクコンデンサに用いたときには、焼結温度を
低下させることができるので鉛を均一に含有させ
ることができ、特性のバラツキをなくすことがで
きる。そして材料の比誘電率を常温で大とするこ
とができるので、コンデンサ自体の大容量化を図
ることができる。また、電歪材料、圧電材料およ
び透明セラミツク材料としても最適である。
According to the method for producing CaTiO 3 fine particles of the present invention, it was possible to obtain uniform CaTiO 3 fine particles having a small particle size of 1 to 3 μm. In the conventional synthesis by solid-phase reaction, such a particle size could not be expected because mechanical pulverization was used to refine the particles. When the CaTiO 3 fine particles according to the present invention are used in a multilayer ceramic capacitor, the sintering temperature can be lowered, so lead can be contained uniformly and variations in characteristics can be eliminated. Since the dielectric constant of the material can be increased at room temperature, the capacity of the capacitor itself can be increased. It is also suitable as an electrostrictive material, a piezoelectric material, and a transparent ceramic material.

また、この発明では無機物を材料としているた
め極めて製造コストを低く抑えることができる。
Furthermore, since the present invention uses an inorganic material, manufacturing costs can be kept extremely low.

また、上述のとおり固相反応による合成に対し
て粉砕工程が不要となるので、不純物の混入がな
い。
Furthermore, as described above, since a pulverization step is not necessary for synthesis by solid-phase reaction, there is no contamination of impurities.

なお、この発明では斜方晶系のCaTiO3が得ら
れた。
Note that in this invention, orthorhombic CaTiO 3 was obtained.

以下、実施例を示してこの発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail by showing examples.

実施例 1 50gのTiCl4を氷水50ml中に撹拌しながら加え
て水溶液をつくり、これにTiと等モル量の
(NO32水溶液を加え、さらにKOHを加えてPH
13.7にした。こののち、撹拌しながら反応温度
100℃のもとで、4時間反応を継続させた。この
反応による生成物に濾別、水洗を施こし、70℃で
1日乾燥させた。これにX線回析を行つた結果、
第1図に示す回折パターンを得た。このパターン
をASTMカードと比較して斜方晶系CaTiO3であ
ることが確められた。なお、X線回析は粉末法
で、銅ターゲツト、ニツケルフイルタとした。ま
た、第2図に暗視野照明による顕微鏡写真を示す
ように、この例のCaTiO3微粒子の粒子サイズは
1〜3μmで均一なものであつた。
Example 1 50 g of TiCl 4 was added to 50 ml of ice water with stirring to create an aqueous solution, and to this was added an aqueous solution of (NO 3 ) 2 in an amount equimolar to Ti, and then KOH was added to adjust the pH.
I set it to 13.7. After this, the reaction temperature was adjusted while stirring.
The reaction was continued for 4 hours at 100°C. The product from this reaction was filtered, washed with water, and dried at 70°C for one day. As a result of performing X-ray diffraction on this,
A diffraction pattern shown in FIG. 1 was obtained. This pattern was compared with an ASTM card and confirmed to be orthorhombic CaTiO 3 . Note that X-ray diffraction was performed using a powder method using a copper target and a nickel filter. Further, as shown in FIG. 2, a micrograph taken under dark-field illumination, the particle size of the CaTiO 3 fine particles of this example was 1 to 3 μm and uniform.

実施例 2 50gのTiCl4を100gの水中に撹拌しながら加
えて水溶液をつくり、これにNH4OHを加えて加
水分解させ、ほぼ中性とした。こののちTiとほ
ぼ等モル量1.05のCa(OH)2を加え、KOHでPH14
にした。これを95℃で4時間反応させた。このの
ち濾別、水洗を行い、100℃で1日乾燥させた。
これに上述と同様のX線回折を行つた結果、第1
図と同様の回折パターンを得た。また顕微鏡の観
察結果も第2図と同様であつた。
Example 2 50 g of TiCl 4 was added to 100 g of water with stirring to form an aqueous solution, and NH 4 OH was added to the solution to hydrolyze it to approximately neutrality. After this, add Ca(OH) 2 in an approximately equimolar amount of Ti and 1.05, and adjust the pH to 14 with KOH.
I made it. This was reacted at 95°C for 4 hours. Thereafter, it was filtered, washed with water, and dried at 100°C for one day.
As a result of performing X-ray diffraction on this in the same manner as described above, the first
A diffraction pattern similar to that shown in the figure was obtained. The microscopic observation results were also similar to those shown in FIG.

実施例 3 50gのTiCl4を200gの水中に撹拌しながら加
えて水溶液をつくり、これにNaOHを加えてほ
ぼ中性(PH7)にした。こののち、Tiと等モル
量のCaCl2を加え、さらにNaOHでPH14にした。
これを100℃で3時間反応させた。こののち濾別、
水洗を行い、100で1日乾燥させた。これに上述
と同様のX線回折を行つた結果、第1図と同様の
回折パターンを得た。また顕微鏡の観察結果も第
2図と同様であつた。
Example 3 50 g of TiCl 4 was added to 200 g of water with stirring to form an aqueous solution, and NaOH was added to the solution to make it nearly neutral (PH 7). After this, CaCl 2 in an amount equimolar to Ti was added, and the pH was adjusted to 14 with NaOH.
This was reacted at 100°C for 3 hours. After this, filtration,
It was washed with water and dried at 100℃ for one day. This was subjected to X-ray diffraction in the same manner as described above, and as a result, a diffraction pattern similar to that shown in FIG. 1 was obtained. The microscopic observation results were also similar to those shown in FIG.

また、本例のCaTiO3微粒子については20℃/
分の示差熱分析および熱重量分析を行つた。これ
らの結果はそれぞれ第3図および第4図に示すと
おりであり、これらからCaTiO3微粒子が不純物
を含まないことがわかる。なお、第3図でイに示
す落ち込みは吸着水の脱けに起因するものと思わ
れる。
In addition, for the CaTiO 3 fine particles in this example, 20℃/
Differential thermal analysis and thermogravimetric analysis were performed. These results are shown in FIGS. 3 and 4, respectively, and it can be seen from these that the CaTiO 3 fine particles do not contain impurities. Incidentally, the drop shown in A in Figure 3 is thought to be caused by the removal of adsorbed water.

実施例 4 30%のTi(SO42水溶液200mlにNH4OHを加え
PH7としてほぼ中性とし、濾過、水洗を行つた。
こののち、これを1の水に入れ、Tiと等モル
量CaCl2を加え、さらにKOHによりPH14とし、
100℃4時間反応を継続させた。こののち、濾別、
水洗を行い、さらに乾燥を行つた。これに上述と
同様のX線回折を行つた結果、第1図と同様の回
折パターンを得た。また顕微鏡の観察結果も第2
図と同様であつた。
Example 4 NH 4 OH was added to 200 ml of 30% Ti(SO 4 ) 2 aqueous solution.
The pH was set to approximately neutral, and the mixture was filtered and washed with water.
After that, put this in 1 water, add an equimolar amount of CaCl 2 with Ti, and further adjust the pH to 14 with KOH.
The reaction was continued at 100°C for 4 hours. After this, filtration,
It was washed with water and further dried. This was subjected to X-ray diffraction in the same manner as described above, and as a result, a diffraction pattern similar to that shown in FIG. 1 was obtained. In addition, the results of microscopic observations are also shown in the second
It was similar to the figure.

実施例 5 この例ではCaTiO3の生成量のPH依存を調べ
た。TiCl4の加水分解生成物に、そのTiと等モル
量のCa塩を加え、こののちKOHを加えた。これ
を100℃で3時間反応させたときのCaTiO3の生
成量を求めた。そして、KOHを加減してPHを変
え、その都度CaTiO3の生成量を求めた。これを
第5図に示す。この図からPHは13.0以上、好まし
くは13.2以上であることがわかる。なお、
CaTiO3の生成量は斜方晶系CaTiO3のX線回折
ピーク(200)、(002、121)の面積から求めた。
X線回折はほぼ上述と同様である。
Example 5 In this example, the PH dependence of the amount of CaTiO 3 produced was investigated. To the hydrolysis product of TiCl 4 was added a Ca salt in an equimolar amount to the Ti, and then KOH was added. The amount of CaTiO 3 produced when this was reacted at 100° C. for 3 hours was determined. Then, the pH was changed by adding or subtracting KOH, and the amount of CaTiO 3 produced was determined each time. This is shown in FIG. This figure shows that the PH is 13.0 or higher, preferably 13.2 or higher. In addition,
The amount of CaTiO 3 produced was determined from the areas of the X-ray diffraction peaks (200) and (002, 121) of orthorhombic CaTiO 3 .
X-ray diffraction is almost the same as described above.

実施例 6 この例ではCaTiO3の生成量のモル比依存を調
べた。TiCl4の加水分解生成物に所定量のCa
(OH)2を加え、こののちKOHによりPH14.0とし
た。そして、100℃で3時間反応させ、こののち
CaTiO3の生成量を求めた。そして、Ca(OH)2
量を変化させていき、モル比(Ca/Ti)依存を
求めた。これを第6図に示す。この図から、モル
比(Ca/Ti)は0.3以上、好ましくは0.6〜10であ
ることがわかる。なお、CaTiO3の生成量は実施
例5と同様にして求めた。
Example 6 In this example, the dependence of the amount of CaTiO 3 produced on the molar ratio was investigated. A predetermined amount of Ca is added to the hydrolysis product of TiCl4 .
(OH) 2 was added, and then the pH was adjusted to 14.0 with KOH. Then, react at 100℃ for 3 hours, and then
The amount of CaTiO 3 produced was determined. Then, the amount of Ca(OH) 2 was varied, and the dependence on the molar ratio (Ca/Ti) was determined. This is shown in FIG. This figure shows that the molar ratio (Ca/Ti) is 0.3 or more, preferably 0.6 to 10. Note that the amount of CaTiO 3 produced was determined in the same manner as in Example 5.

実施例 7 この例ではCaTiO3の生成量の反応温度依存を
調べた。TiCl4の加水分解生成物に、そのTiとほ
ぼ等モル量(1.05)のCa溶液を加え、こののち
KOHでPH14とし3時間反応させた。そして、反
応温度ごとにCaTiO3の生成量を求めた。これを
第7図に示す。この図から、反応温度は70℃〜沸
点、好ましくは85℃以上であることがわかる。な
お、CaTiO3の生成量は実施例5と同様にして求
めた。
Example 7 In this example, the dependence of the amount of CaTiO 3 produced on the reaction temperature was investigated. To the hydrolyzed product of TiCl 4 , a Ca solution with approximately equimolar amount (1.05) as that of Ti is added, and then
The pH was adjusted to 14 with KOH and the mixture was reacted for 3 hours. Then, the amount of CaTiO 3 produced was determined for each reaction temperature. This is shown in FIG. This figure shows that the reaction temperature is 70°C to the boiling point, preferably 85°C or higher. Note that the amount of CaTiO 3 produced was determined in the same manner as in Example 5.

実施例 8 この例ではCaTiO3の生成量の反応時間依存性
を求めた。TiCl4の加水分解生成物に、そのTiと
ほぼ等モル量(1.05)のCa溶液を加え、こののち
KOHでPH14とし100℃で反応させた。そして反応
時間ごとのCaTiO3の生成量を求めた。これを第
8図に示す。この図から反応が進行するのに十分
な時間を求めることができる。この例でも
CaTiO3の生成量実施例5と同様にして求めた。
Example 8 In this example, the reaction time dependence of the amount of CaTiO 3 produced was determined. To the hydrolyzed product of TiCl 4 , a Ca solution with approximately equimolar amount (1.05) as that of Ti is added, and then
The pH was adjusted to 14 with KOH and the reaction was carried out at 100°C. Then, the amount of CaTiO 3 produced for each reaction time was determined. This is shown in FIG. From this figure, it is possible to determine the sufficient time for the reaction to proceed. Even in this example
The amount of CaTiO 3 produced was determined in the same manner as in Example 5.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるCaTiO3微粒子のX線
回折パターンを示す図、第2図はこの発明による
CaTiO3微粒子の暗視野像を示す顕微鏡写真、第
3図はこの発明によるCaTiO3微粒子の示差熱分
析結果を示すグラフ、第4図はこの発明の熱重量
分析結果を示すグラフ、第5図はこの発明の
CaTiO3微粒子合成のPH依存を示すグラフ、第6
図はこの発明のCaTiO3微粒子合成の(Ca/Ti)
モル比依存を示すグラフ、第7図はこの発明の
CaTiO3微粒子合成の反応温度依存を示すグラ
フ、第8図はこの発明のCaTiO3微粒子合成の反
応時間依存を示すグラフである。
Figure 1 is a diagram showing the X-ray diffraction pattern of CaTiO 3 fine particles according to the present invention, and Figure 2 is a diagram showing the X-ray diffraction pattern of CaTiO 3 fine particles according to the present invention.
A micrograph showing a dark field image of CaTiO 3 fine particles, FIG. 3 is a graph showing the results of differential thermal analysis of CaTiO 3 fine particles according to the present invention, FIG. 4 is a graph showing the results of thermogravimetric analysis according to the present invention, and FIG. of this invention
Graph showing PH dependence of CaTiO 3 fine particle synthesis, No. 6
The figure shows the synthesis of CaTiO 3 particles (Ca/Ti) of this invention.
A graph showing the molar ratio dependence, FIG.
FIG. 8 is a graph showing the reaction temperature dependence of CaTiO 3 fine particle synthesis. FIG. 8 is a graph showing the reaction time dependence of CaTiO 3 fine particle synthesis of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン化合物の加水分解生成物と水溶性カル
シウム塩とを強アルカリ水溶液中で反応させてチ
タン酸カルシウム微粒子を生成するチタン酸カル
シウム微粒子の製造方法。
1. A method for producing calcium titanate fine particles by reacting a hydrolysis product of a titanium compound with a water-soluble calcium salt in a strongly alkaline aqueous solution to produce calcium titanate fine particles.
JP15124082A 1982-08-25 1982-08-31 Preparation of fine particle from calcium titanate Granted JPS5945927A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15124082A JPS5945927A (en) 1982-08-31 1982-08-31 Preparation of fine particle from calcium titanate
CA000435193A CA1201575A (en) 1982-08-25 1983-08-23 Method of manufacturing metal titanate fine powder
DE8383304893T DE3376481D1 (en) 1982-08-25 1983-08-24 Methods of manufacturing metal titanate fine powders
EP19830304893 EP0104002B1 (en) 1982-08-25 1983-08-24 Methods of manufacturing metal titanate fine powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15124082A JPS5945927A (en) 1982-08-31 1982-08-31 Preparation of fine particle from calcium titanate

Publications (2)

Publication Number Publication Date
JPS5945927A JPS5945927A (en) 1984-03-15
JPH0339015B2 true JPH0339015B2 (en) 1991-06-12

Family

ID=15514313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15124082A Granted JPS5945927A (en) 1982-08-25 1982-08-31 Preparation of fine particle from calcium titanate

Country Status (1)

Country Link
JP (1) JPS5945927A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086024A (en) * 1983-10-15 1985-05-15 Nippon Chem Ind Co Ltd:The Production of titanic acid salt
JP4671618B2 (en) * 2003-04-11 2011-04-20 昭和電工株式会社 Calcium titanate and method for producing the same
CN100509637C (en) * 2003-04-11 2009-07-08 昭和电工株式会社 Perovskite titanium-containing composite oxide particle, production process and uses thereof
JP7177614B2 (en) 2018-07-17 2022-11-24 チタン工業株式会社 Calcium titanate powder, method for producing the same, and external additive for electrophotographic toner

Also Published As

Publication number Publication date
JPS5945927A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
JPH0339016B2 (en)
US4677083A (en) Method for manufacturing dielectric fine powder of Ba1-x Srx TiO3
JP3780405B2 (en) Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same
US4670243A (en) Method of precipitating metal titanate powders
JPH0339018B2 (en)
JPH0339014B2 (en)
US4547355A (en) Method for manufacturing fine powder of SrZrO3
EP0104002B1 (en) Methods of manufacturing metal titanate fine powders
KR101556678B1 (en) Crystalline titanic acid strontium powder, and preparing method of the same
JPH0339015B2 (en)
JP3838523B2 (en) Method for producing the composition
JP3772354B2 (en) Manufacturing method of ceramic powder
JPH0246531B2 (en)
JP3668985B2 (en) Manufacturing method of ceramic powder
JPS59174528A (en) Manufacture of fine barium stannate particle
JPS59156915A (en) Manufacture of fine calcium stannate particle
EP0163739A1 (en) Process for preparing fine particles of ba (zrx ti 1-x)o3-solid solution
EP0200176B1 (en) Method for producing fine particles of lead zirconate
JPS59174527A (en) Manufacture of fine mgsn(oh)6 particle
JPS63206316A (en) Production of lead titanate zirconate fine particle
JPH0651569B2 (en) Bi (bottom 2) Ti (bottom 2) O (bottom 7) Method for producing fine particles
JPS59156916A (en) Manufacture of fine strontium stannate particle
JPH0610086B2 (en) Method for producing fine particles of bismuth titanate
JPH01239025A (en) Production of particulate lanthanum-incorporated lead titanium zirconate
JPH0688789B2 (en) Method for producing lead zirconate fine particles