JPH0610086B2 - Method for producing fine particles of bismuth titanate - Google Patents

Method for producing fine particles of bismuth titanate

Info

Publication number
JPH0610086B2
JPH0610086B2 JP8957885A JP8957885A JPH0610086B2 JP H0610086 B2 JPH0610086 B2 JP H0610086B2 JP 8957885 A JP8957885 A JP 8957885A JP 8957885 A JP8957885 A JP 8957885A JP H0610086 B2 JPH0610086 B2 JP H0610086B2
Authority
JP
Japan
Prior art keywords
fine particles
bismuth titanate
water
bismuth
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8957885A
Other languages
Japanese (ja)
Other versions
JPS61247622A (en
Inventor
暁 上平
博 山ノ井
真之 鈴木
英雅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8957885A priority Critical patent/JPH0610086B2/en
Priority to DE8585116614T priority patent/DE3584240D1/en
Priority to EP85116614A priority patent/EP0187383B1/en
Priority to US06/814,256 priority patent/US4668500A/en
Publication of JPS61247622A publication Critical patent/JPS61247622A/en
Publication of JPH0610086B2 publication Critical patent/JPH0610086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コンデンサ等の電子部品等に用いられる強誘
電体材料であるチタン酸ビスマス微粒子の製造方法に関
する。
TECHNICAL FIELD The present invention relates to a method for producing bismuth titanate fine particles, which is a ferroelectric material used for electronic parts such as capacitors.

〔発明の概要〕[Outline of Invention]

本発明は、強誘電体材料であるチタン酸ビスマス微粒子
を合成するにあたり、この合成をpH14.1〜14.8
5の水溶液中で150℃以上の温度条件で行い、熱処理
を施すことなく、粒子サイズが微小かつ均一なチタン酸
ビスマス微粒子を湿式合成し得るようにしたものであ
る。
According to the present invention, when bismuth titanate fine particles which are a ferroelectric material are synthesized, this synthesis is performed at pH 14.1 to 14.8.
This is carried out in an aqueous solution of No. 5 under a temperature condition of 150 ° C. or higher so that bismuth titanate fine particles having a fine and uniform particle size can be wet-synthesized without heat treatment.

〔従来の技術〕[Conventional technology]

近年、電子部品の小型化や高密度実装が急速に進んでい
る。これに伴って、その主要部品のひとつであるコンデ
ンサについても他の電子部品と同様に小型化及び軽量化
を図り、さらに大容量化及び耐高周波特性の向上を図る
ことが要望されている。
In recent years, miniaturization and high-density mounting of electronic parts have been rapidly progressing. Along with this, it has been desired to reduce the size and weight of the capacitor, which is one of the main components, like other electronic components, and to further increase the capacity and the high frequency resistance.

したがって、上記コンデンサ、例えばセラミックコンデ
ンサにおいて、上述の要望を満足させるためには、セラ
ミック層の厚みを薄くかつ均一にする必要があり、セラ
ミックコンデンサの材料である強誘電体材料には、その
微粒子化が強く望まれている。また、この微粒子化は、
電歪材料、圧電材料、透明セラミック材料等の原料とし
ても、焼結性や温度特性等を改善する上で強く期待され
ている。
Therefore, in the above-mentioned capacitor, for example, a ceramic capacitor, in order to satisfy the above-mentioned demands, it is necessary to make the thickness of the ceramic layer thin and uniform. Is strongly desired. In addition, this atomization is
As raw materials for electrostrictive materials, piezoelectric materials, transparent ceramic materials, etc., they are strongly expected to improve sinterability and temperature characteristics.

これら要望に応えるために、さまざまな研究機関におい
て、強誘電体材料の微粒子を得るための研究が種々の角
度から行われており、数々の優れた特性を有するチタン
酸ビスマスBi4(TiO43が注目を集めている。
In order to meet these demands, various research institutes are conducting research from various angles to obtain fine particles of a ferroelectric material, and bismuth titanate Bi 4 (TiO 4 ) having various excellent properties. 3 is drawing attention.

従来、このチタン酸ビスマスの微粒子を製造する方法と
しては、酸化ビスマスBi23と酸化チタンTiO2
をボールミル中で粉砕混合し、高温中で固相反応させた
後、ボールミル等を使用して微粉砕し、篩分けるという
方法が知られている。しかし、このような製法で得られ
るチタン酸ビスマス微粒子は、ボールミルで微粉砕して
得た微粒子の粒度分布が悪い上に、粗大粒子の混入が避
けられず、さらに粉砕に長時間要するために、不純物で
ある金属酸化物が混入してしまうという欠点があった。
Conventionally, as a method of producing the fine particles of bismuth titanate, bismuth oxide Bi 2 O 3 and titanium oxide TiO 2 are pulverized and mixed in a ball mill, and a solid phase reaction is performed at a high temperature, and then a ball mill or the like is used. A method is known in which pulverization is carried out, and sieving is performed. However, the bismuth titanate fine particles obtained by such a production method have a poor particle size distribution of the fine particles obtained by finely pulverizing with a ball mill, and the inclusion of coarse particles is unavoidable. There is a drawback that metal oxides that are impurities are mixed.

そこで、本願出願人は上述の欠点を解消するために、特
願昭59−278503号明細書(特開昭61−158
824号)において、チタン酸ビスマス微粒子の湿式合
成法を提案した。この製法は、チタン化合物の加水分解
生成物または水溶性チタン塩と、水溶性ビスマス化合物
とを、強アルカリ水溶液(pH14〜14.9)中で湿式
反応させて、アモルファス状態の微粒子沈殿を生成し、
得られた微粒子沈殿に対して熱処理を施すというもので
ある。この製法により、粒子サイズが微小かつ均一で、
しかも金属酸化物が混入しないチタン酸ビスマス微粒子
を作製することが可能となった。
Therefore, in order to solve the above-mentioned drawbacks, the applicant of the present invention has disclosed Japanese Patent Application No. 59-278503 (Japanese Patent Application Laid-Open No. 61-158).
No. 824) proposed a wet synthesis method of bismuth titanate fine particles. In this production method, a hydrolysis product of a titanium compound or a water-soluble titanium salt and a water-soluble bismuth compound are wet-reacted in a strong alkaline aqueous solution (pH 14 to 14.9) to produce fine particle precipitates in an amorphous state. ,
The obtained fine particle precipitate is heat-treated. By this manufacturing method, the particle size is minute and uniform,
Moreover, it has become possible to produce fine particles of bismuth titanate in which metal oxides are not mixed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、このように湿式合成でチタン酸ビスマス
微粒子を作製する方法では、アモルファス相のチタン酸
ビスマスを結晶微粒子として析出させるために400℃
を越える温度での熱処理が必要であり、加熱装置を必要
とし製造工程が煩雑なものとなり、さらにこの熱処理の
温度が低いと長時間の熱処理を要し、製造時間が長くな
ってしまう。
However, in the method for producing bismuth titanate fine particles by the wet synthesis as described above, in order to precipitate bismuth titanate in an amorphous phase as crystalline fine particles, 400 ° C.
A heat treatment at a temperature above 10 ° C. is required, a heating device is required, and the manufacturing process becomes complicated. Furthermore, if the temperature of this heat treatment is low, a long heat treatment is required, and the manufacturing time becomes long.

また、上記熱処理によって、アモルファス相から0.1μm
程度の結晶質物質Bi4(TiO43を析出させるわけ
であるが、この熱処理に伴い結晶質物質が焼結され、粒
径の大きな焼結粒子がチタン酸ビスマス微粒子中に混入
する虞れがある。
In addition, by the above heat treatment, 0.1 μm from the amorphous phase
The crystalline substance Bi 4 (TiO 4 ) 3 is deposited to some extent, but the crystalline substance is sintered by this heat treatment, and sintered particles having a large particle size may be mixed in the bismuth titanate fine particles. There is.

あるいは、湿式反応後のアモルファス状態の微粒子沈殿
が目的の組成、すなわちBi/Tiのモル比が一定にな
っていないと、Bi4(TiO43以外の物質が微粒子
中に不純物として混入してしまう虞れもある。
Alternatively, if the composition of the amorphous fine particles precipitates after the wet reaction is not constant, that is, the Bi / Ti molar ratio is not constant, substances other than Bi 4 (TiO 4 ) 3 are mixed in the fine particles as impurities. There is also a risk of being lost.

本発明は、上述の実情に鑑みて提案されたものであっ
て、粒子サイズが微小であって、しかも粒度分布が均一
で、かつ不純物の混入がないチタン酸ビスマス微粒子
を、湿式反応で、かつ熱処理なしに合成できるチタン酸
ビスマス微粒子の製造方法を提供することを目的とす
る。
The present invention has been proposed in view of the above-mentioned circumstances, the particle size is minute, and further, the particle size distribution is uniform, and bismuth titanate fine particles free of impurities are wet-reacted, and It is an object to provide a method for producing fine particles of bismuth titanate that can be synthesized without heat treatment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上述の目的を達成するために長期に亘り
鋭意研究の結果、チタン化合物の加水分解生成物または
水溶性チタン塩と水溶性ビスマス化合物とを水溶液中で
湿式反応する際、この水溶液のpH及び温度を所定の範囲
に設定することにより、チタン酸ビスマス合成後の熱処
理をしなくても、チタン酸ビスマス微粒子が単相で得ら
れ、その粒径も微細で均一であることを見出した。
The present inventors, as a result of extensive research over a long period of time to achieve the above-mentioned object, when a hydrolysis reaction of a titanium compound or a water-soluble titanium salt and a water-soluble bismuth compound are wet-reacted in an aqueous solution, By setting the pH and temperature of the aqueous solution within a predetermined range, it is possible to obtain fine particles of bismuth titanate in a single phase without heat treatment after bismuth titanate synthesis, and the particle diameter is fine and uniform. I found it.

本発明は、このような知見に基づいて完成されたもので
あって、チタン化合物の加水分解生成物または水溶性チ
タン塩と水溶性ビスマス化合物とを、水溶液中でpH1
4.1〜14.85,温度150℃以上で反応させるこ
とを特徴とするものである。
The present invention has been completed based on such findings, and a hydrolysis product of a titanium compound or a water-soluble titanium salt and a water-soluble bismuth compound are mixed in an aqueous solution at pH 1
The reaction is performed at 4.1 to 14.85 and a temperature of 150 ° C. or higher.

すなわち、本発明においてチタン酸ビスマス微粒子を製
造するには、チタン化合物の加水分解生成物または水溶
性チタン塩と、水溶性ビスマス化合物とを、オートクレ
ーブ等を使用して高温度,強アルカリ水溶液中で湿式反
応させて微粒子沈殿を生成し、得られた微粒子沈殿を水
または温水で洗浄してK,Na,Li等のアルカ
リイオンを除去して濾過・乾燥を施せば良い。
That is, in order to produce bismuth titanate fine particles in the present invention, a hydrolysis product of a titanium compound or a water-soluble titanium salt and a water-soluble bismuth compound are used in an autoclave or the like at high temperature in a strong alkaline aqueous solution. Wet reaction may be carried out to generate a fine particle precipitate, and the obtained fine particle precipitate may be washed with water or warm water to remove alkali ions such as K + , Na + , Li +, and then filtered and dried.

ここで、上記湿式反応時の水溶液のpHと温度が重要で
あって、pH14.1〜14.85、温度150℃以上に
設定することによりチタン酸ビスマスBi4(TiO4
3微粒子が単相として得られる。
Here, the pH and temperature of the aqueous solution at the time of the wet reaction are important, and bismuth titanate Bi 4 (TiO 4 ) can be obtained by setting the pH to 14.1 to 14.85 and the temperature to 150 ° C. or higher.
3 fine particles are obtained as a single phase.

本発明者等の実験によれば、上記湿式反応において、水
溶液がpH12.0以下ではBiOClが生成し、また
pH14.9以上ではBi23が生成することが分かっ
た。例えば、水溶液のpHを変えながら、BiとTiのモ
ル比(以下Bi/Tiと略す)を4/3とし、オートク
レーブ中で220℃で4時間の湿式反応を行い濾過・乾
燥して得たチタン酸ビスマス微粒子の相対生成量を測定
したところ、第1図に示すような結果を得た。なお、こ
こでチタン酸ビスマス微粒子の相対生成量は銅ターゲッ
ト,ニッケルフィルタを使用してX線回折を行い得られ
た回折X線ピークの(171)ピーク面積から求めた値であ
る(以下同じ)。この第1図より、pH14.1〜14.
85の範囲内であれば、チタン酸ビスマス微粒子が単相
として、高収率で合成されることが確認された。
According to the experiments of the present inventors, in the above wet reaction, BiOCl is produced when the aqueous solution has a pH of 12.0 or less, and
It was found that Bi 2 O 3 was produced at pH 14.9 or higher. For example, while changing the pH of the aqueous solution, the molar ratio of Bi and Ti (hereinafter abbreviated as Bi / Ti) is set to 4/3, titanium is obtained by performing a wet reaction in an autoclave at 220 ° C. for 4 hours, filtering and drying. When the relative amount of the bismuth acid fine particles produced was measured, the results shown in FIG. 1 were obtained. The relative production amount of bismuth titanate fine particles is a value calculated from the (171) peak area of the diffracted X-ray peak obtained by performing X-ray diffraction using a copper target and a nickel filter (the same applies below). . From this FIG. 1, pH 14.1 to 14.
Within the range of 85, it was confirmed that the bismuth titanate fine particles were synthesized as a single phase in a high yield.

また、上記湿式反応において、反応温度は150℃以上
にすれば良い。例えば、反応温度を変えて、pHを14.
47,Bi/Ti=4/3とし、オートクレーブ中で3
時間湿式反応を行い濾過・乾燥して得たチタン酸ビスマ
ス微粒子の相対生成量を測定したところ、第2図に示す
ような結果を得た。この第2図より、チタン酸ビスマス
微粒子の生成量は反応温度が高くなるに従って増加し、
反応温度は150℃以上、好ましくは170℃以上にす
れば良いことが確認された。
In the wet reaction, the reaction temperature may be 150 ° C or higher. For example, changing the reaction temperature to adjust the pH to 14.
47, Bi / Ti = 4/3, 3 in autoclave
When the relative amount of bismuth titanate fine particles obtained by carrying out a wet reaction for a time, filtering and drying was measured, the results shown in FIG. 2 were obtained. From this FIG. 2, the production amount of bismuth titanate fine particles increases as the reaction temperature increases,
It was confirmed that the reaction temperature should be 150 ° C. or higher, preferably 170 ° C. or higher.

一方、出発原料に含まれるBiとTiのモル比Bi/T
iは、Bi/Ti=1.1〜1.6の範囲内であるこが
好ましい。例えば、出発原料のBiとTiの混合モル比
を変えて、水溶液のPHを14.47とし、オートクレー
ブ中で220℃で8時間湿式反応を行い濾過・乾燥して
得たチタン酸ビスマス微粒子の相対生成量を測定したと
ころ、第3図に示すような結果を得た。この第3図よ
り、Bi/Tiが1.0以下ではNa1/2Bi1/2TiO
3が混在し、またBi/Tiが1.7以上ではBi23
が混在し、チタン酸ビスマス微粒子の生成量も低下する
ことが分かる。これに対して、Bi/Ti=1.1〜
1.6の範囲内とすれば、チタン酸ビスマス微粒子Bi
4(TiO43が単相で、しかも高収率で合成でき、特
にBi/Ti=1.3近傍で生成量が最大になることが
確認された。
On the other hand, the molar ratio of Bi and Ti contained in the starting material Bi / T
It is preferable that i is in the range of Bi / Ti = 1.1 to 1.6. For example, the relative molar ratio of bismuth titanate fine particles obtained by changing the mixing molar ratio of the starting materials Bi and Ti to adjust the pH of the aqueous solution to 14.47, performing a wet reaction at 220 ° C. for 8 hours in an autoclave, and filtering and drying. When the amount produced was measured, the results shown in FIG. 3 were obtained. From FIG. 3, when Bi / Ti is 1.0 or less, Na 1/2 Bi 1/2 TiO 2
When 3 and 3 are mixed and Bi / Ti is 1.7 or more, Bi 2 O 3
It can be seen that the amount of bismuth titanate fine particles produced is also reduced due to the inclusion of the above. On the other hand, Bi / Ti = 1.1-
Within the range of 1.6, bismuth titanate fine particles Bi
It was confirmed that 4 (TiO 4 ) 3 is a single phase and can be synthesized in a high yield, and the maximum production amount is obtained particularly near Bi / Ti = 1.3.

さらに、上記湿式反応において、反応時間をかえて、B
i/Ti=4/3とし、水溶液のpHを14.47とし
て、オートクレーブ中で220℃で湿式反応させた後、
濾過・乾燥したチタン酸ビスマス微粒子の相対生成量を
測定したところ、第4図に示すような結果を得た。この
第4図より、微粒子の相対生成量は、時間に依存して増
加し、反応時間が約20分以上になると、95%以上で
略一定となることがわかった。
Furthermore, in the above-mentioned wet reaction, the reaction time is changed to
i / Ti = 4/3, the pH of the aqueous solution was set to 14.47, and after wet reaction at 220 ° C. in an autoclave,
When the relative amount of the filtered and dried bismuth titanate particles produced was measured, the results shown in FIG. 4 were obtained. From this FIG. 4, it was found that the relative production amount of fine particles increased depending on the time, and became substantially constant at 95% or more when the reaction time was about 20 minutes or more.

〔作用〕[Action]

チタン化合物の加水分解生成物または水溶性チタン塩
と、水溶性ビスマス化合物とを、水溶液中でpH14.
1〜14.85、温度150℃以上の条件のもとで湿式
反応させることにより、粒子サイズが微小かつ均一で、
不純物の混入がないチタン酸ビスマス微粒子が熱処理を
施すことなく合成できる。
A hydrolysis product of a titanium compound or a water-soluble titanium salt and a water-soluble bismuth compound are added in an aqueous solution to pH 14.
By the wet reaction under the conditions of 1 to 14.85 and a temperature of 150 ° C. or more, the particle size is fine and uniform,
Bismuth titanate fine particles free of impurities can be synthesized without heat treatment.

〔実施例〕〔Example〕

以下、本発明をより具体的な実施例により説明する。な
お、本発明が以下の実施例に限定されるものではないこ
とを言うまでもない。
Hereinafter, the present invention will be described with reference to more specific examples. Needless to say, the present invention is not limited to the examples below.

実施例1 50gの塩化チタンTiC4を氷水100m中に2
〜3分かけて滴下して塩化チタン水溶液を調製した。こ
の水溶液に水酸化ナトリウムNaOH溶液を加えてpH
7.0とした後、水を加えて500mとした。
Example 1 50 g of titanium chloride TiC 4 was added to 100 m of ice water.
A titanium chloride aqueous solution was prepared by dropwise addition over 3 minutes. To this aqueous solution, add sodium hydroxide NaOH solution and
After adjusting to 7.0, water was added to make the length 500 m.

次に、この溶液を50m採取し、硝酸ビスマスBi
(NO33・5H2Oを17.0g加え、続いて水酸化
ナトリウムNaOHを加えてpH7.0とし、さらに水酸
化ナトリウムNaOHを12g加えた後、水を加えて1
00mとした。この水溶液のpHは14.5であった。
Next, 50 m of this solution was sampled and bismuth nitrate Bi was added.
(NO 3 ) 3 .5H 2 O was added in an amount of 17.0 g, sodium hydroxide NaOH was added to adjust the pH to 7.0, and 12 g of sodium hydroxide NaOH was further added.
It was set to 00m. The pH of this aqueous solution was 14.5.

次いで、この水溶液をオートクレーブを用いた密閉容器
中で撹拌しながら、250℃で3時間反応させた。反応
後、生成した白色沈殿に対してデカンテーションを繰り
返すことによりアルカリイオン等の不純物を除去し、さ
らに濾過・水洗いを行った後、100℃で一晩乾燥させ
た。
Next, this aqueous solution was reacted at 250 ° C. for 3 hours while stirring in a closed container using an autoclave. After the reaction, the white precipitate formed was repeatedly decanted to remove impurities such as alkali ions, further filtered and washed with water, and then dried at 100 ° C. overnight.

上述の操作で得られた微粒子をX線回折法で分析した。
結果を第5図に示す。この第5図に示す回折パターンは
ASTM(The American Society for Testing Material
s)カ−ドの12−213と一致しており斜方晶系(オル
ソロンビック相)のチタン酸ビスマス微粒子であること
が分かった。このチタン酸ビスマス微粒子の電子顕微鏡
(TEM)写真を第6図に示す。
The fine particles obtained by the above operation were analyzed by the X-ray diffraction method.
Results are shown in FIG. The diffraction pattern shown in FIG. 5 is ASTM (The American Society for Testing Material).
It was found that the fine particles were orthorhombic (orthorhombic phase) bismuth titanate fine particles, which was in agreement with s) card 12-213. An electron microscope (TEM) photograph of the bismuth titanate fine particles is shown in FIG.

なお、上記チタン酸ビスマス微粒子のX線回折データよ
り格子定数を算出した。この結果、得られたチタン酸ビ
スマス微粒子は、ao=5.438,bo=32.70,
o=5.415の斜方晶系の結晶であることが確認さ
れた。
The lattice constant was calculated from the X-ray diffraction data of the bismuth titanate fine particles. As a result, the obtained bismuth titanate fine particles had a o = 5.438, b o = 32.70,
It was confirmed to be an orthorhombic crystal with c o = 5.415.

実施例2 50gの塩化チタンTiC4中に水100mを2〜
3分けて滴下して塩化チタン水溶液を調製した。この水
溶液に40gの水酸化ナトリウムNaOHを加えて白色
懸濁液をつくり、この懸濁液に硫酸ビスマスBi2(S
43を24.81g加え、水酸化ナトリウムNaOH
を加えてpH7とした後、水を加えて500mとした。
Example 2 2 to 100 m of water in 50 g of titanium chloride TiC 4 .
An aqueous solution of titanium chloride was prepared by dropping in three portions. To this aqueous solution, 40 g of sodium hydroxide NaOH was added to form a white suspension, and bismuth sulfate Bi 2 (S
24.81 g of O 4 ) 3 was added, and sodium hydroxide NaOH
Was added to adjust the pH to 7, and then water was added to 500 m.

次に、この溶液を50m採取し、水酸化ナトリウムN
aOHを8g加え、さらに水を加えて100mとし
た。この水溶液のpHは14.3であった。
Next, 50 m of this solution was sampled, and sodium hydroxide N
8 g of aOH was added, and water was further added to make 100 m. The pH of this aqueous solution was 14.3.

次いで、この水溶液をオートクレーブを用いた密閉容器
中で撹拌しながら、220℃で1時間反応させた。反応
後、生成した白色沈殿に対してデカンデーションを繰り
返すことによりアルカリイオン等の不純物を除去し、さ
らに濾過・水洗いを行った後、80℃で一昼夜乾燥させ
た。
Next, this aqueous solution was reacted at 220 ° C. for 1 hour while stirring in a closed container using an autoclave. After the reaction, the white precipitate formed was repeatedly decanted to remove impurities such as alkali ions, further filtered and washed with water, and then dried at 80 ° C. overnight.

上述の操作により得られた微粒子を、X線回折法により
分析したところ、第5図に示すチタン酸ビスマス微粒子
Bi4(TiO43の回折パターンと全く同じであっ
た。また、この微粒子のTEM写真は、第6図に示す結
晶と類似の形状及び大きさの結晶であった。したがっ
て、この微粒子は斜方晶系のチタン酸ビスマス微粒子B
4(TiO43であることが分かった。
When the fine particles obtained by the above operation were analyzed by the X-ray diffraction method, the diffraction pattern was exactly the same as that of the bismuth titanate fine particles Bi 4 (TiO 4 ) 3 shown in FIG. In addition, the TEM photograph of the fine particles was a crystal having a shape and size similar to the crystal shown in FIG. Therefore, the fine particles are orthorhombic bismuth titanate fine particles B.
It was found to be i 4 (TiO 4 ) 3 .

実施例3 50gの塩化チタンTiC4を氷水200m中に3
〜5分かけて滴下して塩化チタン水溶液を調製した。こ
の水溶液に濃アンモニア水NH4OHを加えて白色懸濁
液をつくり、この懸濁液にアンモニア水NH4OHを加
えてpH8とし、水を加えて500mとした。
Example 3 50 g of titanium chloride TiC 4 was added to 200 m of ice water.
A titanium chloride aqueous solution was prepared by dropwise addition over 5 minutes. Concentrated ammonia water NH 4 OH was added to this aqueous solution to form a white suspension, and ammonia water NH 4 OH was added to this suspension to adjust the pH to 8, and water was added to adjust the volume to 500 m.

次に、この溶液を50m採取し、塩化ビスマスBiC
3を11.08g加えた後、水酸化ナトリウムNaO
H溶液と水を加えて100mとした。この水溶液のpH
は14.7であった。
Next, 50 m of this solution was sampled, and bismuth chloride BiC was collected.
After adding 11.08 g of 3 , sodium hydroxide NaO
H solution and water were added to make 100 m. PH of this aqueous solution
Was 14.7.

次いで、上記水溶液をオートクレーブを用いた密閉容器
中で撹拌しながら、290℃で3時間反応させた。反応
後、生成した白色沈殿に対してデカンテーションを繰り
返すことによりアルカリイオン等の不純物を除去し、さ
らに濾過・水洗いを行った後、90℃で一昼夜乾燥させ
た。
Then, the above aqueous solution was reacted at 290 ° C. for 3 hours while stirring in a closed container using an autoclave. After the reaction, impurities such as alkali ions were removed by repeating decantation with respect to the produced white precipitate, further filtered and washed with water, and then dried at 90 ° C. overnight.

上述の操作により得られた微粒子を、X線回折法により
分析したところ、第5図に示すチタン酸ビスマス微粒子
Bi4(TiO43の回折パターンと全く同じであり、
また、この微粒子のTEM写真は、第6図に示す結晶と
類似の形状及び大きさの結晶であった。したがって、こ
の微粒子は斜方晶系のチタン酸ビスマス微粒子Bi
4(TiO43であることが分かった。
When the fine particles obtained by the above operation were analyzed by the X-ray diffraction method, the diffraction pattern was exactly the same as that of the bismuth titanate fine particles Bi 4 (TiO 4 ) 3 shown in FIG.
In addition, the TEM photograph of the fine particles was a crystal having a shape and size similar to the crystal shown in FIG. Therefore, the fine particles are orthorhombic bismuth titanate fine particles Bi.
It was found to be 4 (TiO 4 ) 3 .

実施例4 50gの塩化チタンTiC4中に水100mを3〜
5分けて滴下して塩化チタン水溶液を調製した。この水
溶液に140g/の水酸化ナトリウムNaOH溶液を
約200m加えて白色懸濁液をつくり、この懸濁液に
硫酸ビスマスBiC3を11.08g及び水酸化ナト
リウムNaOHを所定量を加えてpH7.0とし、さらに
水を加えて500mとした。
Example 4 3 to 100 m of water was added to 50 g of titanium chloride TiC 4.
An aqueous solution of titanium chloride was prepared by dropwise addition in five portions. About 200 g of 140 g / sodium hydroxide NaOH solution was added to this aqueous solution to form a white suspension, and 11.08 g of bismuth bisulfate BiC 3 and a predetermined amount of sodium hydroxide NaOH were added to this suspension to adjust the pH to 7.0. Then, water was further added to make the length 500 m.

次に、この溶液に水酸化ナトリウムNaOHを120g
加えた後、水を加えて1000mに調製した。
Next, 120 g of sodium hydroxide NaOH was added to this solution.
After the addition, water was added to adjust the thickness to 1000 m.

次いで、この水溶液を100m採取し、オートクレー
ブを用いた密閉容器中で撹拌しながら、1時間反応させ
た。反応後、生成した白色沈殿に対してデカンテーショ
ンを繰り返すことによりアルカリイオン等の不純物を除
去し、さらに濾過・水洗いを行った後、100℃で一晩
乾燥させた。
Next, 100 m of this aqueous solution was sampled and reacted for 1 hour while stirring in a closed container using an autoclave. After the reaction, the white precipitate formed was repeatedly decanted to remove impurities such as alkali ions, further filtered and washed with water, and then dried at 100 ° C. overnight.

上述の操作において、反応温度を変えてチタン酸ビスマ
ス微粒子を合成し、得られたチタン酸ビスマス微粒子に
ついて、それぞれX線回折を行った。結果を第1表に示
す。
In the above operation, bismuth titanate fine particles were synthesized by changing the reaction temperature, and the obtained bismuth titanate fine particles were subjected to X-ray diffraction. The results are shown in Table 1.

第1表からも明らかなように、上述の操作により得られ
た微粒子は、X線回折法により分析し結果が、第5図に
示すチタン酸ビスマス微粒子Bi4(TiO43の回折
パターンと全く同じであり、また、この微粒子のTEM
写真が、第6図に示す結晶と類似の形状及び大きさの結
晶であった。したがって、この微粒子は斜方晶系のチタ
ン酸ビスマス微粒子Bi4(TiO43であることが分
かった。
As is clear from Table 1, the fine particles obtained by the above-mentioned operation were analyzed by the X-ray diffraction method and the results were as shown by the diffraction pattern of the bismuth titanate fine particles Bi 4 (TiO 4 ) 3 shown in FIG. Exactly the same, and TEM of this fine particle
The photograph was a crystal of similar shape and size to the crystal shown in FIG. Therefore, it was found that the fine particles were orthorhombic bismuth titanate fine particles Bi 4 (TiO 4 ) 3 .

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明によれば、チ
タン化合物の加水分解生成物または水溶性チタン塩と、
水溶性ビスマス化合物とを、水溶液中でpH14.1〜1
4.85、温度150℃以上の条件のもとで湿式反応さ
せてチタン酸ビスマス微粒子を合成しているので、粒度
サイズが微小で、かつ粒度分布が均一なチタン酸ビスマ
ス微粒子を熱処理を加えることなく合成することができ
る。したがって、得られるチタン酸ビスマス微粒子は、
電歪材料,圧電材料あるいは透明セラミック材料等の種
々の電子材料に好適なものとなる。
As is clear from the above description, according to the present invention, a hydrolysis product of a titanium compound or a water-soluble titanium salt,
A water-soluble bismuth compound and a pH of 14.1-1 in an aqueous solution
Since bismuth titanate fine particles are synthesized by a wet reaction under the conditions of 4.85 and a temperature of 150 ° C or higher, bismuth titanate fine particles having a fine particle size and a uniform particle size distribution should be subjected to heat treatment. Can be synthesized without. Therefore, the obtained bismuth titanate fine particles are
It is suitable for various electronic materials such as electrostrictive materials, piezoelectric materials and transparent ceramic materials.

また、上記湿式反応後は熱処理をする必要がないので、
熱処理によって生じる焼結した粒子等の混入がなくな
り、不純物の混入がなく、組成変動の少ないチタン酸ビ
スマス微粒子Bi4(TiO43が得られる。さらに、
加熱装置が不要となるとともに、製造時間の短縮、ある
いは生産性の向上が図れる。
Further, since it is not necessary to perform heat treatment after the wet reaction,
Bismuth titanate fine particles Bi 4 (TiO 4 ) 3 having no composition variation and no mixing of sintered particles and the like caused by heat treatment are obtained. further,
A heating device is not required, and manufacturing time can be shortened or productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図はチタン酸ビスマス微粒子の相対生成量のpH依存
性を示す特性図、第2図はチタン酸ビスマス微粒子の相
対生成量の温度依存性を示す特性図,第3図はチタン酸
ビスマス微粒子の相対生成量のBi/Ti(モル比)依
存性を示す特性図、第4図はチタン酸ビスマス微粒子の
相対生成量の湿式反応時間依存性を示す特性図、第5図
は本発明の製造方法により製造されたチタン酸ビスマス
微粒子の回折X線スペクトル、第6図は得られたチタン
酸ビスマス微粒子の電子顕微鏡写真である。
1 is a characteristic diagram showing the pH dependence of the relative production amount of bismuth titanate fine particles, FIG. 2 is a characteristic diagram showing the temperature dependence of the relative production amount of bismuth titanate fine particles, and FIG. 3 is a bismuth titanate fine particle. Fig. 4 is a characteristic diagram showing the Bi / Ti (molar ratio) dependency of the relative production amount of bismuth, Fig. 4 is a characteristic diagram showing the wet reaction time dependency of the relative production amount of bismuth titanate fine particles, and Fig. 5 is the production of the invention. The diffraction X-ray spectrum of the bismuth titanate fine particles produced by the method is shown in FIG. 6, and FIG. 6 is an electron micrograph of the obtained bismuth titanate fine particles.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】チタン化合物の加水分解生成物または水溶
性チタン塩と水溶性ビスマス化合物とを、水溶液中でpH
14.1〜14.85,温度150℃以上で反応させる
ことを特徴とするチタン酸ビスマス微粒子の製造方法
1. A pH value of a hydrolysis product of a titanium compound or a water-soluble titanium salt and a water-soluble bismuth compound in an aqueous solution.
14.1 to 14.85, a method for producing bismuth titanate fine particles, characterized by reacting at a temperature of 150 ° C or higher
JP8957885A 1984-12-29 1985-04-25 Method for producing fine particles of bismuth titanate Expired - Lifetime JPH0610086B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8957885A JPH0610086B2 (en) 1985-04-25 1985-04-25 Method for producing fine particles of bismuth titanate
DE8585116614T DE3584240D1 (en) 1984-12-29 1985-12-27 METHOD FOR PRODUCING FINE WISMUT TITANATE POWDERS.
EP85116614A EP0187383B1 (en) 1984-12-29 1985-12-27 Method for producing bismuth titanate fine powders
US06/814,256 US4668500A (en) 1984-12-29 1985-12-30 Method of producing bismuth titanate fine powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8957885A JPH0610086B2 (en) 1985-04-25 1985-04-25 Method for producing fine particles of bismuth titanate

Publications (2)

Publication Number Publication Date
JPS61247622A JPS61247622A (en) 1986-11-04
JPH0610086B2 true JPH0610086B2 (en) 1994-02-09

Family

ID=13974677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8957885A Expired - Lifetime JPH0610086B2 (en) 1984-12-29 1985-04-25 Method for producing fine particles of bismuth titanate

Country Status (1)

Country Link
JP (1) JPH0610086B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699153B2 (en) * 1985-11-28 1994-12-07 ソニー株式会社 Method for producing fine particles of sodium bismuth titanate

Also Published As

Publication number Publication date
JPS61247622A (en) 1986-11-04

Similar Documents

Publication Publication Date Title
US4677083A (en) Method for manufacturing dielectric fine powder of Ba1-x Srx TiO3
JPH0339016B2 (en)
JPH0339018B2 (en)
JPS61158820A (en) Lead titanate crystallite and production thereof
EP0187383B1 (en) Method for producing bismuth titanate fine powders
JPH0339014B2 (en)
JPH0610086B2 (en) Method for producing fine particles of bismuth titanate
JPH0699153B2 (en) Method for producing fine particles of sodium bismuth titanate
JP3928023B2 (en) Method for producing bismuth oxide powder
JPH0651569B2 (en) Bi (bottom 2) Ti (bottom 2) O (bottom 7) Method for producing fine particles
JPS59156915A (en) Manufacture of fine calcium stannate particle
JPH0769645A (en) Production of lead-containing multiple oxide
JPH0621035B2 (en) Method for producing mixed fine particles comprising BaTiO 3) and BaSn (OH) 6)
US4889706A (en) Method of manufacturing fine powder of lead stannate
JPH0471848B2 (en)
JP2716197B2 (en) Method for producing barium titanate powder
JPH0339015B2 (en)
JPH0621038B2 (en) Method for producing lead zirconate fine particles
JPS61158824A (en) Production of bismuth titanate fine powder
JPH0688789B2 (en) Method for producing lead zirconate fine particles
KR20060102928A (en) Manufacturing method of barium titanate powder
JPS59156916A (en) Manufacture of fine strontium stannate particle
JPS6071525A (en) Manufacture of fine mgsn(oh)6 particle
JPH0361609B2 (en)
JP2000044234A (en) Rare earth oxide and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term