JP3780405B2 - Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same - Google Patents

Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same Download PDF

Info

Publication number
JP3780405B2
JP3780405B2 JP2000244885A JP2000244885A JP3780405B2 JP 3780405 B2 JP3780405 B2 JP 3780405B2 JP 2000244885 A JP2000244885 A JP 2000244885A JP 2000244885 A JP2000244885 A JP 2000244885A JP 3780405 B2 JP3780405 B2 JP 3780405B2
Authority
JP
Japan
Prior art keywords
barium titanate
titanate powder
fine barium
calcium
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000244885A
Other languages
Japanese (ja)
Other versions
JP2002060219A (en
Inventor
智久 殿垣
宏浩 鳥井
健二郎 五味
高博 本河
謙次 田中
勝 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000244885A priority Critical patent/JP3780405B2/en
Priority to TW090118794A priority patent/TW539649B/en
Priority to KR10-2001-0047911A priority patent/KR100435073B1/en
Priority to CNB011249935A priority patent/CN1202014C/en
Publication of JP2002060219A publication Critical patent/JP2002060219A/en
Application granted granted Critical
Publication of JP3780405B2 publication Critical patent/JP3780405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品用誘電体材料である微粒チタン酸バリウム粉末、カルシウム変性微粒チタン酸バリウム粉末、ならびにその製造方法に関するもので、特に誘電体素子厚が1〜数μmの小型大容量積層チップコンデンサに適した、0.019〜0.300μmの平均粒径を持つ微粒チタン酸バリウム粉末、カルシウム変性微粒チタン酸バリウム粉末、ならびにその製造方法に関するものである。
【0002】
【従来の技術】
従来の微粒チタン酸バリウム粉末の製造方法は、例えば固相法,水熱合成法ならびに加水分解法が上げられ、加水分解法については特開昭61−146713号公報、特開平4−12020号公報に開示されている。特開昭61−146713号公報によれば、含水酸化チタンと水酸化バリウムと、アルカリ金属水酸化物とを、チタン換算で120〜10000倍モルの水の存在下60〜110℃で反応させることで、平均粒径が0.07〜0.5μmの微粒チタン酸バリウム粉末が得られることが開示されている。また、特開平4−12020号公報によれば、水酸化バリウムと、該水酸化バリウムに対し1:1〜1:4のモル比で少なくとも一種の水酸化アルカリもしくはアミンを含有する水溶液に、60〜90℃の温度で、水酸化バリウムと等モルのチタンアルコキシドを反応させ、生成した微粒チタン酸バリウム粉末を粒成長させない温度で焙焼することで、平均粒径が0.06〜0.1μmの微粒チタン酸バリウム粉末が得られることが開示されている。
【0003】
近年、電子機器の小型高集積化に伴い、構成部品である積層チップコンデンサを小型化大容量化するために誘電体素子の薄層化が進められている。しかしながら、内部電極間の誘電体層の薄層化に伴って欠陥構造があると、そこで内部電極がショートを引き起こし、誘電体素子の機能を果たさなくなる。高信頼性を維持するためには、内部電極間の誘電体層を構成するセラミックを欠陥のない均一な組織にする必要がある。同時に、薄層化による大容量化によって、セラミック粉末を0.10〜0.25μm程度まで微粒化することが求められている。
【0004】
【発明が解決しようとする課題】
微粒チタン酸バリウム粉末は、常温では正方晶の結晶型をもち、強誘電体のセラミック粉末である。しかし、セラミック粉末の平均粒径が0.25μm以下まで小さくなると、微粒化による結晶格子の歪みのためにc/a軸比が小さくなって立方晶に近づき、同時に強誘電性は減少していくことが、サイズ効果に起因する問題として一般的に知られている。また、セラミック粉末の正方晶性が低い場合、これを用いて得られる積層セラミックコンデンサの静電容量が小さくなり、静電容量温度特性がずれるという問題もある。
【0005】
現在市販の微粒原料、例えば水熱合成法のチタン酸バリウムの場合、最も微粒の粉末で0.13〜0.20μmであり、セラミック粉末の結晶性の指標である正方晶性(X線回折によるc/a軸比)は1.0055〜1.008である。このようにセラミック粉末の微粒化と正方晶性は相関する関係にあり、セラミック粉末が微粒であるほど正方晶性は減少し、セラミック粉末の微粒化における問題点となっている。
【0006】
また、従来の加水分解法は、反応を促進するために強アルカリ溶媒を用いており、強塩基であるNa(OH)等を反応溶液中に添加していた。しかし、生成したセラミック粉末中にNaが数百ppm残留し、これが積層チップコンデンサに加工した後にマイグレーションを引き起こし、誘電体素子の絶縁性を悪化させる問題がある。この問題は、誘電体層を薄層化すると、より顕著になる。
【0007】
上述した要因により、電子機器の小型化ならびに高密度化に必要な、誘電体素子厚が1μm前後から数μmの小型大容量積層チップコンデンサ用のセラミック粉末が得られにくいという問題がある。
【0008】
本発明の目的は、上述の問題点を解消すべくなされたもので、誘電体素子の絶縁不良を起こしにくい高信頼性のチタン酸バリウム系セラミック粉末を、加水分解法によって得ることにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の微粒チタン酸バリウム粉末の一つの製造方法は、0.20〜1.20モル/lの水酸化バリウム水溶液と、0.088〜1.235モル/lのチタンアルコキシドのアルコール溶液と、を準備する工程と、水酸化バリウム溶液と、チタンアルコキシドのアルコール溶液とを、Ba/Tiモル比が1.00〜1.20となるよう調合して、他のアルカリ元素を混入させることなく混合溶液を得る工程と、混合溶液を60〜100℃で反応させる工程と、を備えることを特徴とする。
【0010】
また、本発明の微粒チタン酸バリウム粉末の他の製造方法は、上述の微粒チタン酸バリウム粉末の一つの製造方法における、混合溶液を反応させる工程の後に、850〜1000℃で熱処理する工程を備えることを特徴とする。
【0011】
また、本発明のカルシウム変性微粒チタン酸バリウム粉末の一つの製造方法は、0.2〜1.2モル/lの水酸化バリウム水溶液と、0.088〜1.235モル/lのチタンアルコキシドのアルコール溶液と、カルシウム塩のアルコール溶液と、を準備する工程と、Ba/Tiモル比が0.980〜1.020、Ca/Tiモル比が0.160以下となるよう調合して、他のアルカリ元素を混入させることなく混合溶液を得る工程と、混合溶液を60〜100℃で反応させる工程と、を備えることを特徴とする。
【0012】
また、本発明のカルシウム変性微粒チタン酸バリウム粉末の他の製造方法は、上述のカルシウム変性微粒チタン酸バリウム粉末の一つの製造方法における、混合溶液を反応させる工程の後に、950〜1100℃で熱処理する工程を備えることを特徴とする。
【0013】
また、本発明の微粒チタン酸バリウム粉末の一つの形態は、本発明の微粒チタン酸バリウム粉末の一つの製造方法によって得られる微粒チタン酸バリウム粉末であって、平均粒径が0.019〜0.056μm、比表面積が17.99〜52.64m2/g、合成後のBa/Tiモル比が0.9979〜1.0060であることを特徴とする。
【0014】
また、本発明の微粒チタン酸バリウム粉末の他の形態は、本発明の微粒チタン酸バリウム粉末の他の製造方法によって得られる微粒チタン酸バリウム粉末であって、平均粒径が0.105〜0.300μm、X線回折によるc/a軸比が1.008〜1.010であることを特徴とする。
【0015】
また、本発明のカルシウム変性微粒チタン酸バリウム粉末の一つの形態は、本発明のカルシウム変性微粒チタン酸バリウム粉末の一つの製造方法によって得られるカルシウム変性微粒チタン酸バリウム粉末であって、平均粒径が0.019〜0.025μm、比表面積が40.36〜54.05m2/g、合成後の(Ba+Ca)/Tiモル比が0.994〜1.004であることを特徴とする。
【0016】
また、本発明のカルシウム変性微粒チタン酸バリウム粉末の他の形態は、本発明のカルシウム変性微粒チタン酸バリウム粉末の他の製造方法によって得られるカルシウム変性微粒チタン酸バリウム粉末であって、平均粒径が0.145〜0.250μm、X線回折によるc/a軸比が1.008〜1.010であることを特徴とする。
【0017】
【発明の実施の形態】
本発明の微粒チタン酸バリウム粉末の製造方法の一つの実施形態について、以下に順に説明する。
まず、0.20〜1.20モル/lの水酸化バリウム水溶液と、0.088〜1.235モル/lのチタンアルコキシドのアルコール溶液とを準備する。なお、水酸化バリウム水溶液が0.20モル/lを下回ると、合成反応が進みにくく、合成後の平均粒径が大きくなる。他方、水酸化バリウム水溶液が1.20モル/lを上回ると、合成過程において炭酸バリウムが生成し、得られるチタン酸バリウムのモル比が不安定になる。また、チタンアルコキシドのアルコール溶液が0.088モル/lを下回ると、大量のアルコールが必要となるため、生産性が悪くなる。他方、チタンアルコキシドのアルコール溶液が1.235モル/lを上回ると、空気中の水分と加水分解反応を起こし、酸化チタンが生成されやすくなり、また、合成後の微粒チタン酸バリウム粉末の平均粒径が大きくなるため、合成後のモル比が1.00付近で合成できない。
【0018】
次いで、水酸化バリウム溶液とチタンアルコキシドのアルコール溶液とを、Ba/Tiモル比が1.0〜1.2となるよう調合して混合溶液を得る。なお、Ba/Tiモル比が1.0を下回ると、Tiリッチとなり、積層チップコンデンサに用いる誘電体セラミック粉末としては不適当となる。他方、Ba/Tiモル比が1.2を上回ると、Baリッチとなりc/a軸比が低くなるため、積層セラミックコンデンサに用いる誘電体セラミック粉末としては不適当となる。
【0019】
なお、上述の混合溶液中に他のアルカリ元素、例えばNa等が混入することを防ぐ必要がある。他のアルカリ元素が混入すると、生成した微粒チタン酸バリウム粉末中にアルカリ元素が残留し、わずか数百ppm残留したとしても、積層チップコンデンサに加工した後にマイグレーションを引き起こし、誘電体素子の絶縁性を悪化するからである。なお、不可避不純物として他のアルカリ元素が存在することを妨げない。
【0020】
次いで、上述の混合溶液を60〜100℃で反応させて熱処理前の微粒チタン酸バリウム粉末を生成する。反応温度が60℃を下回ると、合成反応が進みにくくなる。他方、水とイソプロパノールの混合溶液の反応温度が100℃を上回ることはない。こうして得られた熱処理前の微粒チタン酸バリウム粉末は、平均粒径が0.019〜0.056μm、比表面積が17.99〜52.64m2/g、合成後のBa/Tiモル比が0.9979〜1.0060となる。
【0021】
次いで、上述の熱処理前の微粒チタン酸バリウム粉末を850〜1000℃で熱処理して、熱処理後の微粒チタン酸バリウム粉末を得る。本発明の熱処理前の微粒チタン酸バリウム粉末は、上述の温度域で熱処理を施しても異常粒成長しにくい特徴がある。こうして得られた熱処理後の微粒チタン酸バリウム粉末は、平均粒径が0.105〜0.300μm、X線回折によるc/a軸比が1.008〜1.010となる。
【0022】
次に、本発明のカルシウム変性微粒チタン酸バリウム粉末の製造方法の他の実施形態について、以下に順に説明する。
まず、0.20〜1.20モル/lの水酸化バリウム水溶液と、チタンアルコキシドのアルコール溶液として0.088〜1.235モル/lのチタンイソプロポキシドイソプロパノール溶液と、カルシウム変性量に対応した量の硝酸カルシウムと、を準備し、まず硝酸カルシウムを上述のイソプロパノール溶液中に溶解させる。なお、水酸化バリウム水溶液が0.20モル/lを下回ると、合成反応が進みにくく、合成後の平均粒径が大きくなる。他方、水酸化バリウム水溶液が1.20モル/lを上回ると、合成過程において炭酸バリウムが生成し、得られるチタン酸バリウムのモル比が不安定になる。また、チタンアルコキシドのアルコール溶液が0.088モル/lを下回ると、大量のアルコールが必要となるため、生産性が悪くなる。他方、チタンアルコキシドのアルコール溶液が1.235モル/lを上回ると、空気中の水分と加水分解反応を起こし、酸化チタンが生成されやすくなり、また、合成後の微粒チタン酸バリウム粉末の平均粒径が大きくなるため、合成後のモル比が1.00付近で合成できない。
【0023】
次いで、水酸化バリウム水溶液とチタンイソプロポキシドと硝酸カルシウムのイソプロパノール溶液とを、Ba/Tiモル比が0.980〜1.020、Ca/Tiモル比が0.160以下となるように調合して混合溶液を得る。なお、Ba/Tiモル比が0.980を下回ると、Tiリッチとなり、積層チップコンデンサに用いる誘電体セラミック粉末としては不適当となる。他方、Ba/Tiモル比が1.020を上回ると、Aサイト(Ba+Ca)リッチとなりc/a軸比が低くなるため、積層セラミックコンデンサに用いる誘電体セラミック粉末としては不適当となる。
【0024】
なお、上述の混合溶液中に他のアルカリ元素、例えばNa等が混入することを防ぐ必要がある。他のアルカリ元素が混入すると、生成した微粒チタン酸バリウム粉末中にアルカリ元素が残留し、わずか数百ppm残留したとしても、積層チップコンデンサに加工した後にマイグレーションを引き起こし、誘電体素子の絶縁性を悪化するからである。なお、不可避不純物として他のアルカリ元素が存在することを妨げない。
【0025】
次いで、上述の混合溶液を60〜100℃で反応させて熱処理前の微粒チタン酸バリウム粉末を生成する。反応温度が60℃を下回ると、合成反応が進みにくくなる。他方、水とイソプロパノールの混合溶液の反応温度が100℃を上回ることはない。こうして得られた熱処理前のカルシウム変性微粒チタン酸バリウム粉末は、平均粒径が0.019〜0.025μm、比表面積が40.36〜54.05m2/g、合成後のBa/Tiモル比が0.994〜1.004となる。
【0026】
次いで、上述の熱処理前のカルシウム変性微粒チタン酸バリウム粉末を950〜1100℃で熱処理して、熱処理後の微粒チタン酸バリウム粉末を得る。本発明の熱処理前のカルシウム変性微粒チタン酸バリウム粉末は、上述の温度域で熱処理を施しても異常粒成長しにくい特徴がある。こうして得られた熱処理後のカルシウム変性微粒チタン酸バリウム粉末は、平均粒径が0.145〜0.250μm、X線回折によるc/a軸比が1.008〜1.010となる。
【0027】
なお、チタンアルコキシドならびにアルコール溶液は、上述の実施形態に限定されることなく、例えばエトキシド,ブトキシド、およびエタノール,ブタノール等が適宜選択される。
【0028】
また、上述したカルシウム塩は、上述の実施形態に限定されることなく、例えば臭化カルシウム,塩化カルシウム,硝酸カルシウム等が適宜選択される。
【0029】
また、上述した本発明の微粒チタン酸バリウムの他の製造方法において、混合溶液は、水酸化バリウム水溶液と、チタンアルコキシドのアルコール溶液と、カルシウム塩のアルコール溶液とを同時に混合しても良く、また攪拌しながら各溶液を順次投入して混合しても良い。
【0030】
本発明の微粒チタン酸バリウム粉末の一つの製造方法における合成装置を図1に基づいて詳細に説明する。
合成装置1は、N2タンク2と、バブラー2b、2dと、Ba溶液槽3と、Ti溶液槽4と、ポンプ5a,5b,5cと、スタティックミキサー6a,6bと、熟成槽8と、パイプ2a,2c,3a,4a,7とからなる。
【0031】
2タンク2は、N2ガスをBa溶液槽3と熟成槽8に供給するためのガス貯蔵タンクである。バブラー2b,2dは、N2タンク2から供給されたN2ガスをBa溶液槽3中ならびにTi溶液槽4中で泡状に放出するための装置である。Ba溶液槽3は、水酸化バリウム水溶液の投入容器である。Ti溶液槽4は、チタンアルコキシドのアルコール溶液の投入容器である。ポンプ5a,5b,5cは、それぞれ、水酸化バリウム水溶液、チタンアルコキシドのアルコール溶液、チタン酸バリウム溶液を、スタティックミキサーへ液送するための装置である。スタティックミキサー6a,6bは、溶液を混合する混合機である。熟成槽8は、合成した微粒チタン酸バリウム粉末を熟成させる容器である。パイプ2a,2c,3a,4a,7は、N2ガスや溶液を気送または液送するための管である。
【0032】
まず、N2ガスを、N2タンク2に接続されたパイプ2aを通ってBa溶液槽3内に設置されたバブラー2bに気送する。同様に、N2ガスを、パイプ2cを通って熟成槽8内に設置されたバブラー2dに気送する。
【0033】
次に、Ba溶液槽3に水酸化バリウム水溶液を、Ti溶液槽4にチタンアルコキシドのアルコール溶液を、それぞれ投入し、パイプ3a,4aを通じてポンプ5a,5bに、それぞれ液送する。
【0034】
次に、ポンプ5a,5bから出た2溶液をスタティックミキサー6a内で混合し、混合液をパイプ7を通じて熟成槽8まで液送する。結晶格子の安定化のために、熟成槽8を60〜90℃に保ちながら1〜数時間の熟成を行う。熟成槽8において熟成を行う間も、熟成槽8内のチタン酸バリウム溶液を、パイプ8aを通じてポンプ5cに液送し、スタティックミキサー6bにかけて混合熟成させた後に、パイプ8bを通じて熟成槽8に戻し、熟成を重ねる。
【0035】
次に、熟成終了後に遠心分離機等で固液分離を行い、微粒チタン酸バリウム粉末を得る。これを沸騰純水で洗浄した後、固液分離する。
【0036】
次に、得られた微粒チタン酸バリウム粉末をエタノール等の水分と置換可能な溶媒で水分を置換除去したあと固液分離し次いで乾燥させ、最終的に所定のモル比の熱処理前の微粒チタン酸バリウム粉末を得る。
【0037】
【実施例】
(実施例1)
まず、水酸化バリウム水溶液として、水酸化バリウム8水和物を90℃に加温した純水に添加して攪拌し完全に溶解させた混合溶液を準備し、チタンアルコキシドのアルコール水溶液として、イソプロポキシチタンをイソプロピルアルコールに溶解させた混合溶液を準備した。
【0038】
次いで、水酸化バリウム水溶液を溶液槽3に投入し、チタンアルコキシドのアルコール水溶液をTi溶液槽4に投入し、これらを表1に示したBaモル量、Tiモル量、Ba/Tiモル比となるように調合し、上述の実施形態で説明した方法によって、熱処理前の試料A〜Kの微粒チタン酸バリウム粉末を得た。なお、反応条件は、熟成槽8は80℃に保ち、熟成時間は1時間とした。
【0039】
次いで、得られた熱処理前の試料A〜Kの微粒チタン酸バリウム粉末をX線回折により解析したところ、立方晶系チタン酸バリウム単相であった。また、合成後のBa/Tiモル比は0.9979〜1.0060であり、平均粒径(比表面積から計算した相当径)は0.019〜0.056μmであり、粒度分布は狭く均一であった。なお、熱処理前の試料Cの微粒チタン酸バリウム粉末の顕微鏡写真を図2に示す。
【0040】
【表1】

Figure 0003780405
【0041】
次いで、熱処理前の試料A〜Kの微粒チタン酸バリウム粉末を加熱炉を用いて850,900,950,1000℃で2時間熱処理し、強誘電体である正方晶性の大きい、試料1〜44の微粒チタン酸バリウム粉末を得た。
【0042】
そこで、試料1〜44の微粒チタン酸バリウム粉末の比表面積、平均粒径、c/a軸比を求め、これを表2にまとめた。また、試料3,25の微粒チタン酸バリウム粉末の顕微鏡写真を、それぞれ図3,4に示した。
【0043】
【表2】
Figure 0003780405
【0044】
表2から明らかであるように、試料1〜44の微粒チタン酸バリウム粉末は、平均粒径が0.105〜0.300μmであり、c/a軸比が1.008〜1.010となり、微粒であるにもかかわらず正方晶性の高いことがわかる。
【0045】
(実施例2)
まず、水酸化バリウム水溶液として、水酸化バリウム8水和物を90℃に加温した純水に添加して攪拌し完全に溶解させた混合溶液を準備し、チタンアルコキシドのアルコール水溶液として、イソプロポキシチタンをイソプロピルアルコールに溶解させた混合溶液を準備し、カルシウム塩のアルコール溶液として、塩化カルシウムをイソプロピルアルコールに溶解させた混合溶液を準備した。
【0046】
次いで、水酸化バリウム水溶液を溶液槽3に投入し、チタンアルコキシドのアルコール水溶液とカルシウム塩のアルコール溶液を予め混合し、これをTi溶液槽4に投入し、これらを表3に示したBaモル量,Tiモル量,Caモル量,Ba/Tiモル比,Ca/Tiモル比となるように調合し、上述の実施形態で説明した方法によって、熱処理前の試料L〜Qのカルシウム変性微粒チタン酸バリウム粉末を得た。なお、反応条件は、熟成槽8は80℃に保ち、熟成時間は1時間とした。
【0047】
次いで、得られた熱処理前の試料L〜Qのカルシウム変性微粒チタン酸バリウム粉末をX線回折により解析したところ、立方晶系チタン酸バリウム単相であった。また、合成後の(Ba+Ca)/Tiモル比は0.994〜1.004であり、平均粒径(比表面積から計算した相当径)は0.019〜0.025μmであり、粒度分布は狭く均一であった。
【0048】
【表3】
Figure 0003780405
【0049】
次いで、熱処理前の試料L〜Qのカルシウム変性微粒チタン酸バリウム粉末を加熱炉を用いて950,1000,1050,1100℃で2時間熱処理し、強誘電体である正方晶性の大きい、試料45〜58のカルシウム変性微粒チタン酸バリウム粉末を得た。
【0050】
そこで、試料37〜50のカルシウム変性微粒チタン酸バリウム粉末の比表面積、平均粒径、c/a軸比を求め、これを表4にまとめた。また、試料52,58の微粒チタン酸バリウム粉末の顕微鏡写真を、それぞれ図5,6に示した。
【0051】
【表4】
Figure 0003780405
【0052】
表4から明らかであるように、試料45〜58のカルシウム変性微粒チタン酸バリウム粉末は、平均粒径が0.145〜0.250μmであり、c/a軸比が1.008〜1.010となり、微粒であるにもかかわらず正方晶性の高いことがわかる。
【0053】
(実施例3)
まず、0.20〜1.20モル/lの水酸化バリウム水溶液と、0.088〜1.235モル/lのチタンアルコキシドのアルコール溶液とを準備し、水酸化バリウム溶液と、チタンアルコキシドのアルコール溶液とを、Ba/Tiモル比が1.00〜1.20となるよう調合して、他のアルカリ元素を混入させることなく作製した混合溶液を60〜100℃で反応させて、熱処理前の微粒チタン酸バリウム粉末を作製し、これを加熱炉を用いて850℃で熱処理して、表5に示した比表面積,平均粒径,c/a軸比からなる試料59,60の微粒チタン酸バリウム粉末を得た。
【0054】
次いで、上述のモル濃度範囲外の水酸化バリウム水溶液、あるいは上述のモル濃度範囲外のチタンアルコキシド溶液を準備し、これを調合した混合溶液を60〜100℃で反応させて、熱処理前の微粒チタン酸バリウム粉末を作製し、これを加熱炉を用いて850℃で熱処理して、表5に示した比表面積,平均粒径,c/a軸比からなる、比較例である試料61,62の微粒チタン酸バリウム粉末を得た。なお、試料61の微粒チタン酸バリウム粉末のc/a軸比は1.008を下回っており本発明の範囲外であり、試料62の微粒チタン酸バリウム粉末の平均粒径は0.300μmを上回っており本発明の範囲外である。
【0055】
【表5】
Figure 0003780405
【0056】
次いで、試料59〜62の微粒チタン酸バリウム粉末を主成分とする、厚み1.5μmである生のセラミック層を準備し、所定枚数の生のセラミック層の表面上に一方の端縁が生のセラミック層の何れかの端面側に露出するように、内部電極となるべき電極膜を印刷し、これら複数の生のセラミック層を所定枚数積層し圧着し、焼成して、試料59〜62のセラミック積層体を得た。なお、電極膜面積は1.23mm2とした。
【0057】
次いで、試料59〜62のセラミック積層体の両端面に、端子電極形成用の導電性ペーストを浸漬塗布し、これを乾燥させ焼付けして、内部電極に電気的かつ機械的に接合された一対の端子電極を形成した。次に、この一対の端子電極上にNiめっき膜を電解めっき処理により形成し、さらにNiめっき膜上にSnめっき膜を電解めっき処理により形成して、試料59〜62の積層セラミックコンデンサを得た。
【0058】
そこで、試料59〜62の積層セラミックコンデンサの比誘電率,誘電損失,静電容量,静電容量変化率,平均故障発生時間を測定し、n=75個の平均値を求めて、これらを表6にまとめた。なお、誘電率,誘電損失,静電容量変化率,静電容量は、何れも1kHz,0.5Vrms/μmの条件で測定した。また、静電容量変化率は、20℃における静電容量を基準として、−55℃,−25℃,85℃,125℃における静電容量の変化率を算出した。また、平均故障発生時間(MTTF)は、150℃,10V/μmの条件で加速寿命試験(HALT)により測定した。
【0059】
【表6】
Figure 0003780405
【0060】
表6から明らかであるように、試料59〜62の積層セラミックコンデンサの比誘電率,誘電損失,静電容量は、何れも優れる結果となった。
【0061】
また、本発明の範囲内の微粒チタン酸バリウム粉末を用いた試料59,60の積層セラミックコンデンサは、−55℃,−25℃,85℃における静電容量変化率が−7.0〜−2.1%で絶対値が小さく優れた。また125℃においても−21.6〜−20.5%であった。これに対して、比較例である試料61の積層セラミックコンデンサは、12.1〜22.1%であり絶対値が大きく劣る結果となった。また、125℃における静電容量変化率は、−52.3%で極めて劣る結果となった。
【0062】
また、本発明の範囲内の微粒チタン酸バリウム粉末を用いた試料59,60の積層セラミックコンデンサの平均故障発生時間は、56〜59時間であり長く優れたのに対して、比較例である試料62の積層セラミックコンデンサの平均故障発生時間は、19時間であり短く劣る結果となった。なお、本発明の実施例である試料59,60積層セラミックコンデンサの比誘電率ならびに静電容量は、比較例である試料61,62のそれを下回る結果となったが、これは主に微粒チタン酸バリウムの平均粒径ならびにc/a軸比に起因するものであり、また試料59,60の比誘電率ならびに静電容量であれば、実用上問題はない。
【0063】
(実施例4)
次に、比較例である水熱合成法を用いて微粒チタン酸バリウム粉末を作製した。すなわち、15℃の硫酸チタニル水溶液((Ti(SO42を120g/L))1Lを攪拌しながら液温を15℃に保ち、過酸化ナトリウム(Na22)117gを徐々に添加した。添加終了後、10規定の水酸化ナトリウム水溶液を添加して沈澱を生じさせ、添加後30分間攪拌を続けた。次いで、得られた水溶液を攪拌しながら50℃に昇温後、5時間保持して沈澱を得た。これを濾過、水洗して得られたケーキと塩化バリウムの2水塩(BaCl2・2H2O)244gを水に分散して2Lのスラリーを調製した後、密閉して窒素ガス置換を行い、150℃で10時間反応させた。反応終了後、冷却して得られたスラリーを濾過、水洗、乾燥して、Ba/Tiモル比が0.996であり、粒径が0.065μm、比表面積が15.3m2/gである、熱処理前の微粒チタン酸バリウム粉末を得た。次いで、熱処理前の微粒チタン酸バリウム粉末をそれぞれ800℃,850℃,900℃,1000℃で熱処理して、比較例である試料63〜66の微粒チタン酸バリウム粉末を得た。
【0064】
そこで、試料63〜66の微粒チタン酸バリウム粉末の比表面積,平均粒径,c/a軸比を測定し、これらを表7にまとめた。
【0065】
【表7】
Figure 0003780405
【0066】
表7から明らかであるように、試料63,64,66の微粒チタン酸バリウム粉末は、c/a軸比が1.008〜1.010の範囲外であり、試料66の微粒チタン酸バリウム粉末は、平均粒径が0.300μmを上回った。
【0067】
ここで、本発明の範囲内である加水分解法によって作製した試料1〜58の微粒チタン酸バリウム粉末と、比較例である水熱合成法によって作製した試料63〜66の微粒チタン酸バリウム粉末の平均粒径とc/a軸比の関係を、図7のグラフに示した。
【0068】
図7から明らかであるように、▲で示された試料65の微粒チタン酸バリウム粉末は、比表面積,平均粒径およびc/a軸比の何れもが本発明の微粒チタン酸バリウム粉末となる範囲内(図7で示した四角線の範囲内)であるが、同じく900℃で熱処理した□で示された本発明の試料と比較すると、平均粒径が同程度である場合、加水分解法によって作製した本発明の微粒チタン酸バリウム粉末は、水熱合成法によって作製した従来の微粒チタン酸バリウム粉末よりもc/a軸比が大きい傾向があり、c/a軸比が同程度である場合、加水分解法によって作製した本発明の微粒チタン酸バリウム粉末は、水熱合成法によって作製した従来の微粒チタン酸バリウム粉末よりも平均粒径が小さい傾向が見られる。
【0069】
(実施例5)
加水分解法で作製した本発明である試料25の微粒チタン酸バリウム粉末と、従来の水熱合成法で作製した比較例である試料64の微粒チタン酸バリウム粉末とを各々主成分とする、厚み1.5μmである生のセラミック層を準備し、所定枚数の生のセラミック層の表面上に一方の端縁が生のセラミック層の何れかの端面側に露出するように、内部電極となるべき電極膜を印刷し、これら複数の生のセラミック層を所定枚数積層し圧着し、1200℃で焼成して、試料25,64のセラミック積層体を得た。なお、電極膜面積は1.23mm2、サイズは2mm×1.25mm×1.2mmとした。
【0070】
次いで、試料25,64のセラミック積層体の両端面に、端子電極形成用の導電性ペーストを浸漬塗布し、これを乾燥させ焼付けして、内部電極に電気的かつ機械的に接合された一対の端子電極を形成した。次に、この一対の端子電極上にNiめっき膜を電解めっき処理により形成し、さらにNiめっき膜上にSnめっき膜を電解めっき処理により形成して、試料25,64の積層セラミックコンデンサを得た。
【0071】
そこで、試料25,64の積層セラミックコンデンサの比誘電率,誘電損失,静電容量,静電容量変化率,平均故障発生時間を測定し、n=75個の平均値を求めて、これらを表7にまとめた。なお、誘電率,誘電損失,静電容量変化率,静電容量,平均故障発生時間の測定条件は、上述した実施例3と同じとした。
【0072】
【表8】
Figure 0003780405
【0073】
表8から明らかであるように、本発明の範囲内の微粒チタン酸バリウム粉末を用いた試料25の積層セラミックコンデンサは、誘電損失が1.15%で小さく優れ、−55℃,−25℃,85℃の静電容量変化率が−7.2〜1.3%で絶対値が小さく優れ、また平均故障発生時間も428時間で長く優れた。また125℃における静電容量変化率も−14.5%で比較的低く優れた。これに対して、比較例である試料64の積層セラミックコンデンサは、誘電損失が4.41%で大きく、−55℃,−25℃,85℃の静電容量変化率が−17.9〜−7.2%で絶対値が大きく、平均故障発生時間が81時間で短く、何れも劣る結果となった。また、125℃における静電容量変化率は、−37.9%で極めて劣る結果となった。なお、本発明の実施例である試料25の比誘電率ならびに静電容量は、比較例である試料64のそれを下回る結果となったが、これは主に微粒チタン酸バリウムの平均粒径ならびにc/a軸比に起因するものであり、また試料25の比誘電率ならびに静電容量であれば、実用上問題はない。
【0074】
【発明の効果】
以上のように本発明の微粒チタン酸バリウム粉末の製造方法は、0.20〜1.20モル/lの水酸化バリウム水溶液と、0.088〜1.235モル/lのチタンアルコキシドのアルコール溶液と、を準備する工程と、水酸化バリウム溶液と、チタンアルコキシドのアルコール溶液とを、Ba/Tiモル比が1.00〜1.20となるよう調合して、他のアルカリ元素を混入させることなく混合溶液を得る工程と、混合溶液を60〜100℃で反応させる工程と、を備えることを特徴とすることで、誘電体素子の絶縁不良を起こしにくい高信頼性の微粒チタン酸バリウム粉末が得られ、小型高集積化ならびに大容量化を達成し得る積層セラミック電子部品が得られる効果がある。
【0075】
また、上述の混合溶液を反応させる工程の後に、850〜1000℃で熱処理してセラミック粉末を回収することを特徴とすることで、異常粒成長を伴わず適度に粒成長した、小型高集積化ならびに大容量化を達成し得る積層セラミック電子部品の製造により好適な微粒チタン酸バリウム粉末が得られる。
【0076】
また、本発明のカルシウム変性微粒チタン酸バリウム粉末の製造方法は、0.20〜1.20モル/lの水酸化バリウム水溶液と、0.088〜1.235モル/lのチタンアルコキシドのアルコール溶液と、カルシウム塩のアルコール溶液と、を準備する工程と、Ba/Tiモル比が0.980〜1.020、Ca/Tiモル比が0.160以下となるよう調合して、他のアルカリ元素を混入させることなく混合溶液を得る工程と、混合溶液を60〜100℃で反応させる工程と、を備えることを特徴とすることで、誘電体素子の絶縁不良を起こしにくい高信頼性のカルシウム変性微粒チタン酸バリウム粉末が得られ、小型高集積化ならびに大容量化を達成し得る積層セラミック電子部品が得られる効果がある。
【0077】
また、上述の混合溶液を反応させる工程の後に、950〜1100℃で熱処理してセラミック粉末を回収することを特徴とすることで、異常粒成長を伴わず適度に粒成長した、小型高集積化ならびに大容量化を達成し得る積層セラミック電子部品の製造により好適なカルシウム変性微粒チタン酸バリウム粉末が得られる。
【0078】
また、本発明の製造方法によって得られる微粒チタン酸バリウム粉末ならびにカルシウム変性微粒チタン酸バリウム粉末は、反応系内にNa,K等のアルカリ元素を液中に添加せずに湿式合成することができるため、不純物がなく高純度であって正方晶性が大きいという効果がある。
【図面の簡単な説明】
【図1】本発明に係る一つの実施の形態の微粒チタン酸バリウム粉末の製造方法における合成装置の説明図である。
【図2】本発明の実施例1における試料Cの微粒チタン酸バリウム粉末の顕微鏡写真である。
【図3】本発明の実施例1における試料3の微粒チタン酸バリウム粉末の顕微鏡写真である。
【図4】本発明の実施例1における試料25の微粒チタン酸バリウム粉末の顕微鏡写真である。
【図5】本発明の実施例2における試料52のカルシウム変性微粒チタン酸バリウム粉末の顕微鏡写真である。
【図6】本発明の実施例2における試料58のカルシウム変性微粒チタン酸バリウム粉末の顕微鏡写真である。
【図7】本発明の実施例である試料1〜58と、水熱合成法による比較例である試料63〜66の微粒チタン酸バリウム粉末の、平均粒径とc/a軸比の関係を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fine barium titanate powder, a calcium-modified fine barium titanate powder which are dielectric materials for electronic parts, and a method for producing the same, and in particular, a small and large capacity multilayer chip having a dielectric element thickness of 1 to several μm. The present invention relates to a fine barium titanate powder having an average particle diameter of 0.019 to 0.300 μm, a calcium-modified fine barium titanate powder suitable for capacitors, and a method for producing the same.
[0002]
[Prior art]
Conventional methods for producing finely divided barium titanate powder include, for example, a solid phase method, a hydrothermal synthesis method, and a hydrolysis method, and the hydrolysis methods are disclosed in JP-A Nos. 61-146713 and 4-12020. Is disclosed. According to Japanese Patent Application Laid-Open No. 61-146713, hydrous titanium oxide, barium hydroxide, and alkali metal hydroxide are reacted at 60 to 110 ° C. in the presence of 120 to 10,000 times moles of water in terms of titanium. It is disclosed that fine barium titanate powder having an average particle size of 0.07 to 0.5 μm can be obtained. Further, according to JP-A-4-12020, an aqueous solution containing barium hydroxide and at least one alkali hydroxide or amine in a molar ratio of 1: 1 to 1: 4 with respect to the barium hydroxide is added to the aqueous solution. By reacting barium hydroxide with equimolar titanium alkoxide at a temperature of ˜90 ° C. and roasting at a temperature at which the produced fine barium titanate powder does not grow, the average particle size becomes 0.06 to 0.1 μm. It is disclosed that a fine barium titanate powder can be obtained.
[0003]
2. Description of the Related Art In recent years, with the miniaturization and integration of electronic devices, dielectric elements have been made thinner in order to reduce the size and capacity of multilayer chip capacitors as component parts. However, if there is a defect structure along with the thinning of the dielectric layer between the internal electrodes, the internal electrode will cause a short circuit, and the function of the dielectric element will not be achieved. In order to maintain high reliability, it is necessary to make the ceramic constituting the dielectric layer between the internal electrodes a uniform structure without defects. At the same time, the ceramic powder is required to be atomized to about 0.10 to 0.25 μm by increasing the capacity by thinning.
[0004]
[Problems to be solved by the invention]
The fine barium titanate powder has a tetragonal crystal form at room temperature, and is a ferroelectric ceramic powder. However, when the average particle size of the ceramic powder is reduced to 0.25 μm or less, the c / a axial ratio becomes smaller due to the distortion of the crystal lattice due to atomization and approaches a cubic crystal, and at the same time the ferroelectricity decreases. This is generally known as a problem due to the size effect. In addition, when the tetragonal nature of the ceramic powder is low, there is also a problem that the capacitance of the multilayer ceramic capacitor obtained using the ceramic powder becomes small and the capacitance temperature characteristic is shifted.
[0005]
In the case of currently commercially available fine particle raw materials, such as hydrothermal barium titanate, the finest powder is 0.13 to 0.20 μm, and the crystallinity index of the ceramic powder is tetragonal (by X-ray diffraction). c / a axial ratio) is 1.0055 to 1.008. Thus, the atomization of the ceramic powder and the tetragonal nature are in a correlation, and the tetragonality decreases as the ceramic powder becomes finer, which is a problem in the atomization of the ceramic powder.
[0006]
Further, the conventional hydrolysis method uses a strong alkaline solvent to accelerate the reaction, and Na (OH), which is a strong base, is added to the reaction solution. However, several hundred ppm of Na remains in the produced ceramic powder, which causes migration after being processed into a multilayer chip capacitor, thereby deteriorating the insulation of the dielectric element. This problem becomes more prominent when the dielectric layer is thinned.
[0007]
Due to the above-described factors, there is a problem that it is difficult to obtain ceramic powder for a small-sized and large-capacity multilayer chip capacitor having a dielectric element thickness of about 1 μm to several μm, which is necessary for downsizing and increasing the density of electronic devices.
[0008]
An object of the present invention is to solve the above-mentioned problems, and is to obtain a highly reliable barium titanate-based ceramic powder that hardly causes insulation failure of a dielectric element by a hydrolysis method.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, one production method of the fine barium titanate powder of the present invention comprises 0.20 to 1.20 mol / l barium hydroxide aqueous solution and 0.088 to 1.235 mol / l. A step of preparing an alcohol solution of titanium alkoxide, a barium hydroxide solution, and an alcohol solution of titanium alkoxide so as to have a Ba / Ti molar ratio of 1.00 to 1.20. The method includes a step of obtaining a mixed solution without mixing an alkali element and a step of reacting the mixed solution at 60 to 100 ° C.
[0010]
Moreover, the other manufacturing method of the fine barium titanate powder of this invention is equipped with the process of heat-processing at 850-1000 degreeC after the process of making the mixed solution react in one manufacturing method of the above-mentioned fine barium titanate powder. It is characterized by that.
[0011]
In addition, one method for producing the calcium-modified fine barium titanate powder of the present invention comprises 0.2 to 1.2 mol / l barium hydroxide aqueous solution and 0.088 to 1.235 mol / l titanium alkoxide. A step of preparing an alcohol solution and an alcohol solution of a calcium salt, a Ba / Ti molar ratio of 0.980 to 1.020, and a Ca / Ti molar ratio of 0.160 or less; The method includes a step of obtaining a mixed solution without mixing an alkali element and a step of reacting the mixed solution at 60 to 100 ° C.
[0012]
Another method for producing the calcium-modified fine barium titanate powder of the present invention is a heat treatment at 950 to 1100 ° C. after the step of reacting the mixed solution in one method for producing the calcium-modified fine barium titanate powder described above. It is characterized by including the process to do.
[0013]
In addition, one form of the fine barium titanate powder of the present invention is a fine barium titanate powder obtained by one production method of the fine barium titanate powder of the present invention, and the average particle size is 0.019-0. 0.056 μm, specific surface area of 17.99 to 52.64 m 2 / G, Ba / Ti molar ratio after synthesis is 0.9979-1.0060.
[0014]
Another form of the fine barium titanate powder of the present invention is a fine barium titanate powder obtained by another production method of the fine barium titanate powder of the present invention, and the average particle size is 0.105 to 0. 300 [mu] m, and the c / a axial ratio by X-ray diffraction is 1.008 to 1.010.
[0015]
One form of the calcium-modified fine barium titanate powder of the present invention is a calcium-modified fine barium titanate powder obtained by one production method of the calcium-modified fine barium titanate powder of the present invention, and has an average particle size Is 0.019 to 0.025 μm, and the specific surface area is 40.36 to 54.05 m. 2 / G, (Ba + Ca) / Ti molar ratio after synthesis is 0.994 to 1.004.
[0016]
In addition, another form of the calcium-modified fine barium titanate powder of the present invention is a calcium-modified fine barium titanate powder obtained by another method for producing the calcium-modified fine barium titanate powder of the present invention, and has an average particle size Is 0.145 to 0.250 μm, and the c / a axial ratio by X-ray diffraction is 1.008 to 1.010.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of the method for producing the fine barium titanate powder of the present invention will be described in order below.
First, a 0.20 to 1.20 mol / l barium hydroxide aqueous solution and a 0.088 to 1.235 mol / l alcohol solution of titanium alkoxide are prepared. When the barium hydroxide aqueous solution is less than 0.20 mol / l, the synthesis reaction is difficult to proceed and the average particle size after synthesis becomes large. On the other hand, when the barium hydroxide aqueous solution exceeds 1.20 mol / l, barium carbonate is produced in the synthesis process, and the resulting barium titanate molar ratio becomes unstable. On the other hand, if the alcohol solution of titanium alkoxide is less than 0.088 mol / l, a large amount of alcohol is required, resulting in poor productivity. On the other hand, when the alcohol solution of titanium alkoxide exceeds 1.235 mol / l, it causes a hydrolysis reaction with moisture in the air, so that titanium oxide is easily generated, and the average particle size of the finely divided fine barium titanate powder Since the diameter becomes large, the composition cannot be synthesized when the molar ratio after synthesis is around 1.00.
[0018]
Next, a barium hydroxide solution and an alcohol solution of titanium alkoxide are prepared so that the Ba / Ti molar ratio is 1.0 to 1.2 to obtain a mixed solution. When the Ba / Ti molar ratio is less than 1.0, Ti is rich, and it is not suitable as a dielectric ceramic powder used for a multilayer chip capacitor. On the other hand, when the Ba / Ti molar ratio exceeds 1.2, Ba is rich and the c / a axial ratio is low, which is inappropriate as a dielectric ceramic powder for use in a multilayer ceramic capacitor.
[0019]
It is necessary to prevent other alkali elements such as Na from being mixed into the above mixed solution. When other alkali elements are mixed, even if alkali elements remain in the finely divided fine barium titanate powder, even if only a few hundred ppm remain, migration will occur after processing into a multilayer chip capacitor, and the dielectric element insulation will be improved. Because it gets worse. In addition, the presence of other alkali elements as inevitable impurities is not prevented.
[0020]
Next, the above mixed solution is reacted at 60 to 100 ° C. to produce fine barium titanate powder before heat treatment. When the reaction temperature is below 60 ° C., the synthesis reaction is difficult to proceed. On the other hand, the reaction temperature of the mixed solution of water and isopropanol does not exceed 100 ° C. The thus-obtained fine barium titanate powder before heat treatment has an average particle size of 0.019 to 0.056 μm and a specific surface area of 17.99 to 52.64 m. 2 / G, Ba / Ti molar ratio after synthesis is 0.9979 to 1.0060.
[0021]
Next, the fine barium titanate powder before heat treatment is heat treated at 850 to 1000 ° C. to obtain the fine barium titanate powder after heat treatment. The fine barium titanate powder before heat treatment of the present invention has a feature that abnormal grain growth hardly occurs even when heat treatment is performed in the above-mentioned temperature range. The heat-treated fine-grained barium titanate powder thus obtained has an average particle diameter of 0.105 to 0.300 μm and a c / a axial ratio by X-ray diffraction of 1.008 to 1.010.
[0022]
Next, other embodiments of the method for producing the calcium-modified fine barium titanate powder of the present invention will be described in order below.
First, 0.20-1.20 mol / l barium hydroxide aqueous solution, titanium alkoxide alcohol solution 0.088-1.235 mol / l titanium isopropoxide isopropanol solution, and corresponding to the amount of calcium modification An amount of calcium nitrate is prepared, and calcium nitrate is first dissolved in the isopropanol solution described above. When the barium hydroxide aqueous solution is less than 0.20 mol / l, the synthesis reaction is difficult to proceed and the average particle size after synthesis becomes large. On the other hand, when the barium hydroxide aqueous solution exceeds 1.20 mol / l, barium carbonate is produced in the synthesis process, and the resulting barium titanate molar ratio becomes unstable. On the other hand, if the alcohol solution of titanium alkoxide is less than 0.088 mol / l, a large amount of alcohol is required, resulting in poor productivity. On the other hand, when the alcohol solution of titanium alkoxide exceeds 1.235 mol / l, it causes a hydrolysis reaction with moisture in the air, so that titanium oxide is easily generated, and the average particle size of the finely divided fine barium titanate powder Since the diameter becomes large, the composition cannot be synthesized when the molar ratio after synthesis is around 1.00.
[0023]
Next, an aqueous barium hydroxide solution, titanium isopropoxide, and an isopropanol solution of calcium nitrate were prepared so that the Ba / Ti molar ratio was 0.980 to 1.020 and the Ca / Ti molar ratio was 0.160 or less. To obtain a mixed solution. When the Ba / Ti molar ratio is less than 0.980, Ti is rich, which is inappropriate as a dielectric ceramic powder for use in a multilayer chip capacitor. On the other hand, when the Ba / Ti molar ratio exceeds 1.020, the A / site (Ba + Ca) is rich and the c / a axial ratio is low, which is inappropriate as a dielectric ceramic powder for use in a multilayer ceramic capacitor.
[0024]
It is necessary to prevent other alkali elements such as Na from being mixed into the above mixed solution. When other alkali elements are mixed, even if alkali elements remain in the finely divided fine barium titanate powder, even if only a few hundred ppm remain, migration will occur after processing into a multilayer chip capacitor, and the dielectric element insulation will be improved. Because it gets worse. In addition, the presence of other alkali elements as inevitable impurities is not prevented.
[0025]
Next, the above mixed solution is reacted at 60 to 100 ° C. to produce fine barium titanate powder before heat treatment. When the reaction temperature is below 60 ° C., the synthesis reaction is difficult to proceed. On the other hand, the reaction temperature of the mixed solution of water and isopropanol does not exceed 100 ° C. The calcium-modified fine barium titanate powder before heat treatment thus obtained has an average particle size of 0.019 to 0.025 μm and a specific surface area of 40.36 to 54.05 m. 2 / G, Ba / Ti molar ratio after synthesis is 0.994 to 1.004.
[0026]
Next, the calcium-modified fine barium titanate powder before heat treatment is heat-treated at 950 to 1100 ° C. to obtain fine heat-treated fine barium titanate powder. The calcium-modified fine barium titanate powder before heat treatment of the present invention has a feature that abnormal grain growth is difficult even when heat treatment is performed in the above temperature range. The heat-treated calcium-modified fine barium titanate powder thus obtained has an average particle size of 0.145 to 0.250 μm and a c / a axial ratio by X-ray diffraction of 1.008 to 1.010.
[0027]
The titanium alkoxide and the alcohol solution are not limited to the above-described embodiment, and ethoxide, butoxide, ethanol, butanol, and the like are appropriately selected.
[0028]
Moreover, the calcium salt mentioned above is not limited to the above-mentioned embodiment, For example, calcium bromide, calcium chloride, calcium nitrate etc. are selected suitably.
[0029]
Further, in another method for producing the fine barium titanate of the present invention described above, the mixed solution may be a barium hydroxide aqueous solution, a titanium alkoxide alcohol solution, and a calcium salt alcohol solution simultaneously mixed. Each solution may be sequentially added and mixed while stirring.
[0030]
A synthesizing apparatus in one method for producing fine barium titanate powder of the present invention will be described in detail with reference to FIG.
The synthesizer 1 is N 2 Tank 2, bubblers 2b, 2d, Ba solution tank 3, Ti solution tank 4, pumps 5a, 5b, 5c, static mixers 6a, 6b, aging tank 8, and pipes 2a, 2c, 3a, 4a , 7.
[0031]
N 2 Tank 2 is N 2 It is a gas storage tank for supplying gas to the Ba solution tank 3 and the aging tank 8. Bubblers 2b and 2d are N 2 N supplied from tank 2 2 It is an apparatus for releasing gas in the form of bubbles in the Ba solution tank 3 and in the Ti solution tank 4. The Ba solution tank 3 is a charging container for an aqueous barium hydroxide solution. The Ti solution tank 4 is a charging container for an alcohol solution of titanium alkoxide. The pumps 5a, 5b, and 5c are devices for feeding a barium hydroxide aqueous solution, a titanium alkoxide alcohol solution, and a barium titanate solution, respectively, to a static mixer. The static mixers 6a and 6b are mixers for mixing solutions. The aging tank 8 is a container for aging the synthesized fine barium titanate powder. Pipes 2a, 2c, 3a, 4a, 7 are N 2 This is a tube for gas or liquid gas or liquid.
[0032]
First, N 2 Gas, N 2 Air is sent to a bubbler 2b installed in the Ba solution tank 3 through a pipe 2a connected to the tank 2. Similarly, N 2 The gas is sent to the bubbler 2d installed in the aging tank 8 through the pipe 2c.
[0033]
Next, an aqueous solution of barium hydroxide is introduced into the Ba solution tank 3, and an alcohol solution of titanium alkoxide is introduced into the Ti solution tank 4, and liquids are fed to the pumps 5a and 5b through the pipes 3a and 4a, respectively.
[0034]
Next, the two solutions discharged from the pumps 5 a and 5 b are mixed in the static mixer 6 a, and the mixed solution is fed to the aging tank 8 through the pipe 7. In order to stabilize the crystal lattice, aging is performed for 1 to several hours while maintaining the aging tank 8 at 60 to 90 ° C. During the aging in the aging tank 8, the barium titanate solution in the aging tank 8 is fed to the pump 5c through the pipe 8a, mixed and aged through the static mixer 6b, and then returned to the aging tank 8 through the pipe 8b. Repeat aging.
[0035]
Next, after completion of ripening, solid-liquid separation is performed with a centrifugal separator or the like to obtain fine barium titanate powder. This is washed with boiling pure water and then separated into solid and liquid.
[0036]
Next, the obtained fine barium titanate powder is subjected to displacement removal with a solvent capable of substituting with moisture such as ethanol, then solid-liquid separation and drying, and finally the fine titanic acid before heat treatment at a predetermined molar ratio. Barium powder is obtained.
[0037]
【Example】
Example 1
First, as a barium hydroxide aqueous solution, a mixed solution in which barium hydroxide octahydrate was added to pure water heated to 90 ° C. and stirred to be completely dissolved was prepared. As an alcohol aqueous solution of titanium alkoxide, isopropoxy was prepared. A mixed solution in which titanium was dissolved in isopropyl alcohol was prepared.
[0038]
Next, an aqueous barium hydroxide solution is charged into the solution tank 3, and an alcohol aqueous solution of titanium alkoxide is charged into the Ti solution tank 4, which results in the Ba molar amount, Ti molar amount, and Ba / Ti molar ratio shown in Table 1. Thus, by the method described in the above embodiment, fine barium titanate powders of samples AK before heat treatment were obtained. The reaction conditions were such that the aging tank 8 was kept at 80 ° C. and the aging time was 1 hour.
[0039]
Subsequently, when the obtained fine particle barium titanate powders of samples A to K before heat treatment were analyzed by X-ray diffraction, it was a cubic barium titanate single phase. The Ba / Ti molar ratio after synthesis is 0.9979 to 1.0060, the average particle size (equivalent diameter calculated from the specific surface area) is 0.019 to 0.056 μm, and the particle size distribution is narrow and uniform. there were. In addition, the microscope picture of the fine-grain barium titanate powder of the sample C before heat processing is shown in FIG.
[0040]
[Table 1]
Figure 0003780405
[0041]
Next, the fine barium titanate powders of Samples A to K before heat treatment were heat treated at 850, 900, 950, and 1000 ° C. for 2 hours using a heating furnace, and Samples 1 to 44 having a large tetragonal property as ferroelectrics. Of fine barium titanate powder was obtained.
[0042]
Accordingly, the specific surface area, average particle diameter, and c / a axial ratio of the fine barium titanate powders of Samples 1 to 44 were determined and are summarized in Table 2. In addition, micrographs of the fine barium titanate powders of Samples 3 and 25 are shown in FIGS.
[0043]
[Table 2]
Figure 0003780405
[0044]
As is clear from Table 2, the fine barium titanate powders of Samples 1 to 44 have an average particle diameter of 0.105 to 0.300 μm and a c / a axial ratio of 1.008 to 1.010. It can be seen that it is highly tetragonal despite being fine.
[0045]
(Example 2)
First, as a barium hydroxide aqueous solution, a mixed solution in which barium hydroxide octahydrate was added to pure water heated to 90 ° C. and stirred to be completely dissolved was prepared. As an alcohol aqueous solution of titanium alkoxide, isopropoxy was prepared. A mixed solution in which titanium was dissolved in isopropyl alcohol was prepared, and a mixed solution in which calcium chloride was dissolved in isopropyl alcohol was prepared as a calcium salt alcohol solution.
[0046]
Next, an aqueous solution of barium hydroxide was put into the solution tank 3, an alcohol aqueous solution of titanium alkoxide and an alcohol solution of calcium salt were mixed in advance, and this was put into the Ti solution tank 4. , Ti molar amount, Ca molar amount, Ba / Ti molar ratio, Ca / Ti molar ratio, and by the method described in the above embodiment, calcium modified fine titanic acid samples L to Q before heat treatment Barium powder was obtained. The reaction conditions were such that the aging tank 8 was kept at 80 ° C. and the aging time was 1 hour.
[0047]
Next, when the calcium-modified fine barium titanate powders of the obtained samples L to Q before heat treatment were analyzed by X-ray diffraction, it was a cubic barium titanate single phase. The (Ba + Ca) / Ti molar ratio after synthesis is 0.994 to 1.004, the average particle size (equivalent diameter calculated from the specific surface area) is 0.019 to 0.025 μm, and the particle size distribution is narrow. It was uniform.
[0048]
[Table 3]
Figure 0003780405
[0049]
Next, the calcium-modified fine barium titanate powders of samples L to Q before heat treatment were heat-treated at 950, 1000, 1050, and 1100 ° C. for 2 hours using a heating furnace, and sample 45 having a large tetragonality as a ferroelectric material was obtained. ˜58 calcium-modified fine barium titanate powders were obtained.
[0050]
Therefore, the specific surface area, average particle diameter, and c / a axial ratio of the calcium-modified fine barium titanate powders of Samples 37 to 50 were determined and summarized in Table 4. Further, micrographs of the fine barium titanate powders of Samples 52 and 58 are shown in FIGS.
[0051]
[Table 4]
Figure 0003780405
[0052]
As is apparent from Table 4, the calcium-modified fine barium titanate powders of Samples 45 to 58 have an average particle size of 0.145 to 0.250 μm and a c / a axial ratio of 1.008 to 1.010. It turns out that it is highly tetragonal despite being fine.
[0053]
Example 3
First, a 0.20 to 1.20 mol / l barium hydroxide aqueous solution and a 0.088 to 1.235 mol / l alcohol solution of titanium alkoxide were prepared, and a barium hydroxide solution and an alcohol of titanium alkoxide were prepared. The solution is prepared so that the Ba / Ti molar ratio is 1.00 to 1.20, and the mixed solution prepared without mixing other alkali elements is reacted at 60 to 100 ° C. Fine barium titanate powder was prepared and heat-treated at 850 ° C. using a heating furnace, and the fine titanic acid samples 59 and 60 having the specific surface area, average particle diameter, and c / a axial ratio shown in Table 5 were used. Barium powder was obtained.
[0054]
Next, a barium hydroxide aqueous solution outside the above-mentioned molar concentration range or a titanium alkoxide solution outside the above-mentioned molar concentration range is prepared, and a mixed solution prepared by reacting this at 60 to 100 ° C. to give fine titanium before heat treatment A barium acid powder was prepared, heat-treated at 850 ° C. using a heating furnace, and composed of the specific surface areas, average particle diameters, and c / a axial ratios shown in Table 5. A fine barium titanate powder was obtained. The c / a axial ratio of the fine barium titanate powder of sample 61 is less than 1.008, which is outside the scope of the present invention, and the average particle size of the fine barium titanate powder of sample 62 is more than 0.300 μm. This is outside the scope of the present invention.
[0055]
[Table 5]
Figure 0003780405
[0056]
Next, a raw ceramic layer having a thickness of 1.5 μm, which is mainly composed of fine particles of barium titanate powder of samples 59 to 62, is prepared, and one edge is raw on the surface of a predetermined number of raw ceramic layers. An electrode film to be an internal electrode is printed so as to be exposed on any end face side of the ceramic layer, and a predetermined number of these raw ceramic layers are laminated, pressure-bonded, fired, and ceramics of samples 59 to 62 A laminate was obtained. The electrode membrane area is 1.23 mm 2 It was.
[0057]
Next, a pair of conductive pastes for forming terminal electrodes is dip-applied to both end faces of the ceramic laminates of samples 59 to 62, dried and baked, and electrically and mechanically joined to the internal electrodes. A terminal electrode was formed. Next, an Ni plating film was formed on the pair of terminal electrodes by electrolytic plating treatment, and an Sn plating film was formed on the Ni plating film by electrolytic plating treatment to obtain multilayer ceramic capacitors of samples 59 to 62. .
[0058]
Therefore, the relative dielectric constant, dielectric loss, capacitance, capacitance change rate, and average failure occurrence time of the multilayer ceramic capacitors of Samples 59 to 62 were measured, and the average value of n = 75 was obtained, and these were expressed as a table. 6 The dielectric constant, dielectric loss, capacitance change rate, and capacitance were all measured under the conditions of 1 kHz and 0.5 Vrms / μm. The capacitance change rate was calculated by changing the capacitance at −55 ° C., −25 ° C., 85 ° C., and 125 ° C. with reference to the capacitance at 20 ° C. The average failure occurrence time (MTTF) was measured by an accelerated life test (HALT) under the conditions of 150 ° C. and 10 V / μm.
[0059]
[Table 6]
Figure 0003780405
[0060]
As is clear from Table 6, the dielectric constant, dielectric loss, and capacitance of the multilayer ceramic capacitors of Samples 59 to 62 were all excellent.
[0061]
In addition, the multilayer ceramic capacitors of Samples 59 and 60 using the fine barium titanate powder within the scope of the present invention have a capacitance change rate of −7.0 to −2 at −55 ° C., −25 ° C., and 85 ° C. The absolute value was small and excellent at 1%. Also at 125 ° C., it was −21.6 to −20.5%. On the other hand, the multilayer ceramic capacitor of Sample 61 as a comparative example was 12.1 to 22.1%, and the absolute value was greatly inferior. The capacitance change rate at 125 ° C. was extremely inferior at −52.3%.
[0062]
In addition, the average failure occurrence time of the multilayer ceramic capacitors of Samples 59 and 60 using fine barium titanate powder within the scope of the present invention was 56 to 59 hours, which was long and excellent, whereas the sample which is a comparative example The average failure occurrence time of 62 multilayer ceramic capacitors was 19 hours, which was short and inferior. The specific dielectric constant and the capacitance of the samples 59 and 60 which were the examples of the present invention were lower than those of the samples 61 and 62 which were the comparative examples. This is due to the average particle diameter and c / a axial ratio of barium acid, and there is no practical problem if the relative dielectric constant and capacitance of the samples 59 and 60 are used.
[0063]
(Example 4)
Next, the fine barium titanate powder was produced using the hydrothermal synthesis method which is a comparative example. That is, an aqueous solution of titanyl sulfate ((Ti (SO Four ) 2 120 g / L)) While stirring 1 L, the liquid temperature was kept at 15 ° C., and sodium peroxide (Na 2 O 2 ) 117 g was gradually added. After completion of the addition, a 10N aqueous sodium hydroxide solution was added to cause precipitation, and stirring was continued for 30 minutes after the addition. Next, the resulting aqueous solution was heated to 50 ° C. with stirring, and maintained for 5 hours to obtain a precipitate. The cake obtained by filtration and washing with water and a dihydrate of barium chloride (BaCl 2 ・ 2H 2 O) 244 g was dispersed in water to prepare a 2 L slurry, which was then sealed and purged with nitrogen gas, and reacted at 150 ° C. for 10 hours. After completion of the reaction, the slurry obtained by cooling is filtered, washed with water, and dried. The Ba / Ti molar ratio is 0.996, the particle size is 0.065 μm, and the specific surface area is 15.3 m. 2 / G of fine barium titanate powder before heat treatment was obtained. Subsequently, the fine barium titanate powder before heat treatment was heat-treated at 800 ° C., 850 ° C., 900 ° C., and 1000 ° C., respectively, to obtain fine particles of barium titanate powder of Samples 63 to 66 as comparative examples.
[0064]
Therefore, the specific surface area, average particle diameter, and c / a axial ratio of the fine barium titanate powders of Samples 63 to 66 were measured, and these are summarized in Table 7.
[0065]
[Table 7]
Figure 0003780405
[0066]
As apparent from Table 7, the fine barium titanate powders of Samples 63, 64 and 66 have a c / a axial ratio outside the range of 1.008 to 1.010, and the fine barium titanate powder of Sample 66 The average particle size exceeded 0.300 μm.
[0067]
Here, the fine barium titanate powders of samples 1 to 58 produced by the hydrolysis method within the scope of the present invention and the fine barium titanate powders of samples 63 to 66 produced by the hydrothermal synthesis method which is a comparative example. The relationship between the average particle diameter and the c / a axial ratio is shown in the graph of FIG.
[0068]
As is clear from FIG. 7, the fine-grained barium titanate powder of Sample 65 indicated by ▲ is the fine-grained barium titanate powder of the present invention in terms of specific surface area, average particle diameter and c / a axial ratio. When the average particle diameter is within the range (within the square line shown in FIG. 7) but the average particle size is the same as that of the sample of the present invention indicated by □, which is also heat treated at 900 ° C. The fine barium titanate powder of the present invention produced by the above has a tendency to have a larger c / a axial ratio than the conventional fine barium titanate powder produced by the hydrothermal synthesis method, and the c / a axial ratio is comparable. In this case, the fine barium titanate powder of the present invention produced by the hydrolysis method tends to have a smaller average particle diameter than the conventional fine barium titanate powder produced by the hydrothermal synthesis method.
[0069]
(Example 5)
Thickness containing, as main components, the fine particle barium titanate powder of Sample 25 of the present invention prepared by the hydrolysis method and the fine particle barium titanate powder of Sample 64 which is a comparative example prepared by the conventional hydrothermal synthesis method. A raw ceramic layer having a thickness of 1.5 μm is prepared, and an internal electrode should be formed so that one end edge is exposed on any end side of the raw ceramic layer on the surface of a predetermined number of raw ceramic layers. An electrode film was printed, a predetermined number of these raw ceramic layers were laminated, pressure-bonded, and fired at 1200 ° C. to obtain ceramic laminates of Samples 25 and 64. The electrode membrane area is 1.23 mm 2 The size was 2 mm × 1.25 mm × 1.2 mm.
[0070]
Next, a pair of conductive pastes for forming terminal electrodes is dip-coated on both end faces of the ceramic laminates of Samples 25 and 64, dried and baked, and electrically and mechanically joined to the internal electrodes. A terminal electrode was formed. Next, a Ni plating film was formed on the pair of terminal electrodes by electrolytic plating treatment, and an Sn plating film was formed on the Ni plating film by electrolytic plating treatment to obtain multilayer ceramic capacitors of samples 25 and 64. .
[0071]
Therefore, the relative dielectric constant, dielectric loss, capacitance, capacitance change rate, and average failure occurrence time of the multilayer ceramic capacitors of Samples 25 and 64 were measured, and the average value of n = 75 was obtained, and these were expressed as a table. 7 Note that the measurement conditions for the dielectric constant, dielectric loss, capacitance change rate, capacitance, and average failure occurrence time were the same as those in Example 3 described above.
[0072]
[Table 8]
Figure 0003780405
[0073]
As is clear from Table 8, the multilayer ceramic capacitor of Sample 25 using the fine barium titanate powder within the scope of the present invention has a small dielectric loss of 1.15% and is excellent at −55 ° C., −25 ° C., The capacitance change rate at 85 ° C. was −7.2 to 1.3%, the absolute value was small and excellent, and the average failure occurrence time was long and excellent at 428 hours. The capacitance change rate at 125 ° C. was −14.5%, which was relatively low and excellent. In contrast, the multilayer ceramic capacitor of Sample 64, which is a comparative example, has a large dielectric loss of 4.41%, and the capacitance change rate at −55 ° C., −25 ° C., and 85 ° C. is −17.9 to − The absolute value was large at 7.2%, and the average failure occurrence time was short at 81 hours, both of which were inferior. The capacitance change rate at 125 ° C. was extremely inferior at −37.9%. In addition, although the specific dielectric constant and the electrostatic capacity of the sample 25 which is an example of the present invention were lower than that of the sample 64 which is a comparative example, this is mainly due to the average particle size of the fine barium titanate and This is due to the c / a axial ratio, and there is no practical problem if the relative permittivity and capacitance of the sample 25 are used.
[0074]
【The invention's effect】
As described above, the method for producing the fine barium titanate powder of the present invention comprises an aqueous solution of 0.20 to 1.20 mol / l of barium hydroxide and an alcohol solution of 0.088 to 1.235 mol / l of titanium alkoxide. And preparing a barium hydroxide solution and an alcohol solution of titanium alkoxide so that the Ba / Ti molar ratio is 1.00 to 1.20, and mixing other alkali elements. A highly reliable fine-grained barium titanate powder that is unlikely to cause poor insulation of the dielectric element by providing a mixed solution and a step of reacting the mixed solution at 60 to 100 ° C. As a result, it is possible to obtain a multilayer ceramic electronic component that can achieve a small size, high integration, and large capacity.
[0075]
In addition, after the step of reacting the above mixed solution, the ceramic powder is recovered by heat treatment at 850 to 1000 ° C., so that the grains grow appropriately without accompanying abnormal grain growth. In addition, suitable fine barium titanate powder can be obtained by manufacturing a multilayer ceramic electronic component capable of achieving a large capacity.
[0076]
Further, the method for producing the calcium-modified fine barium titanate powder of the present invention comprises an aqueous solution of 0.20 to 1.20 mol / l barium hydroxide and an alcohol solution of 0.088 to 1.235 mol / l titanium alkoxide. A step of preparing an alcohol solution of calcium salt, and a Ba / Ti molar ratio of 0.980 to 1.020 and a Ca / Ti molar ratio of 0.160 or less, and other alkali elements A highly reliable calcium modification that is unlikely to cause insulation failure of a dielectric element by comprising a step of obtaining a mixed solution without mixing a mixture and a step of reacting the mixed solution at 60 to 100 ° C. Fine barium titanate powder is obtained, and there is an effect that a multilayer ceramic electronic component capable of achieving small size, high integration and large capacity is obtained.
[0077]
In addition, after the step of reacting the above-mentioned mixed solution, heat treatment is performed at 950 to 1100 ° C. to collect the ceramic powder, so that the grains grow moderately without abnormal grain growth, and are highly integrated. In addition, a suitable calcium-modified fine barium titanate powder can be obtained by manufacturing a multilayer ceramic electronic component capable of achieving a large capacity.
[0078]
The fine barium titanate powder and calcium-modified fine barium titanate powder obtained by the production method of the present invention can be wet-synthesized without adding alkaline elements such as Na and K into the reaction system. Therefore, there is an effect that there is no impurity and the purity is high and the tetragonality is large.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a synthesis apparatus in a method for producing a fine barium titanate powder according to an embodiment of the present invention.
FIG. 2 is a photomicrograph of fine barium titanate powder of Sample C in Example 1 of the present invention.
FIG. 3 is a photomicrograph of fine barium titanate powder of Sample 3 in Example 1 of the present invention.
FIG. 4 is a photomicrograph of fine barium titanate powder of Sample 25 in Example 1 of the present invention.
FIG. 5 is a photomicrograph of a calcium-modified fine barium titanate powder of Sample 52 in Example 2 of the present invention.
FIG. 6 is a photomicrograph of calcium-modified fine barium titanate powder of Sample 58 in Example 2 of the present invention.
FIG. 7 shows the relationship between the average particle size and c / a axial ratio of fine barium titanate powders of Samples 1 to 58, which are examples of the present invention, and Samples 63 to 66, which are comparative examples by hydrothermal synthesis. It is the shown graph.

Claims (8)

0.20〜1.20モル/lの水酸化バリウム水溶液と、0.088〜1.235モル/lのチタンアルコキシドのアルコール溶液と、を準備する工程と、
前記水酸化バリウム溶液と、前記チタンアルコキシドのアルコール溶液とを、Ba/Tiモル比が1.00〜1.20となるよう調合して、他のアルカリ元素を混入させることなく混合溶液を得る工程と、
前記混合溶液を60〜100℃で反応させる工程と、を備えることを特徴とする、微粒チタン酸バリウム粉末の製造方法。
Preparing 0.20 to 1.20 mol / l aqueous barium hydroxide solution and 0.088 to 1.235 mol / l alcohol solution of titanium alkoxide;
A step of preparing the barium hydroxide solution and the alcohol solution of the titanium alkoxide so as to have a Ba / Ti molar ratio of 1.00 to 1.20 to obtain a mixed solution without mixing other alkali elements. When,
And a step of reacting the mixed solution at 60 to 100 ° C., and a method for producing fine barium titanate powder.
前記混合溶液を反応させる工程の後に、850〜1000℃で熱処理してセラミック粉末を回収する工程を備えることを特徴とする、請求項1に記載の微粒チタン酸バリウム粉末の製造方法。The method for producing fine barium titanate powder according to claim 1, further comprising a step of recovering the ceramic powder by heat treatment at 850 to 1000 ° C after the step of reacting the mixed solution. 0.20〜1.20モル/lの水酸化バリウム水溶液と、0.088〜1.235モル/lのチタンアルコキシドのアルコール溶液と、カルシウム塩のアルコール溶液と、を準備する工程と、
Ba/Tiモル比が0.980〜1.020、Ca/Tiモル比が0.160以下となるよう調合して、他のアルカリ元素を混入させることなく混合溶液を得る工程と、
前記混合溶液を60〜100℃で反応させる工程と、を備えることを特徴とする、カルシウム変性微粒チタン酸バリウム粉末の製造方法。
Preparing 0.20 to 1.20 mol / l aqueous barium hydroxide solution, 0.088 to 1.235 mol / l alcohol solution of titanium alkoxide, and an alcohol solution of calcium salt;
A step of preparing a Ba / Ti molar ratio of 0.980 to 1.020 and a Ca / Ti molar ratio of 0.160 or less to obtain a mixed solution without mixing other alkali elements;
And a step of reacting the mixed solution at 60 to 100 ° C. A method for producing calcium-modified fine barium titanate powder.
前記混合溶液を反応させる工程の後に、950〜1100℃で熱処理する工程を備えることを特徴とする、請求項3に記載のカルシウム変性微粒チタン酸バリウム粉末の製造方法。The method for producing a calcium-modified fine barium titanate powder according to claim 3, comprising a step of heat-treating at 950 to 1100 ° C after the step of reacting the mixed solution. 請求項1に記載の製造方法によって得られる微粒チタン酸バリウム粉末であって、平均粒径が0.019〜0.056μm、比表面積が17.99〜52.64m2/g、合成後のBa/Tiモル比が0.9979〜1.0060であることを特徴とする、微粒チタン酸バリウム粉末。A fine barium titanate powder obtained by the production method according to claim 1, wherein the average particle size is 0.019 to 0.056 μm, the specific surface area is 17.99 to 52.64 m 2 / g, and Ba after synthesis. A fine barium titanate powder characterized by having a / Ti molar ratio of 0.9979 to 1.0060. 請求項2に記載の製造方法によって得られる微粒チタン酸バリウム粉末であって、平均粒径が0.105〜0.300μm、X線回折によるc/a軸比が1.008〜1.010であることを特徴とする、微粒チタン酸バリウム粉末。A fine barium titanate powder obtained by the production method according to claim 2, wherein the average particle size is 0.105 to 0.300 μm, and the c / a axial ratio by X-ray diffraction is 1.008 to 1.010. Fine barium titanate powder, characterized in that 請求項3に記載の製造方法によって得られるカルシウム変性微粒チタン酸バリウム粉末であって、平均粒径が0.019〜0.025μm、比表面積が40.36〜54.05m2/g、合成後の(Ba+Ca)/Tiモル比が0.994〜1.004であることを特徴とする、カルシウム変性微粒チタン酸バリウム粉末。A calcium-modified fine barium titanate powder obtained by the production method according to claim 3, wherein the average particle size is 0.019 to 0.025 μm, the specific surface area is 40.36 to 54.05 m 2 / g, after synthesis (Ba + Ca) / Ti molar ratio of 0.994 to 1.004 in calcium modified fine-grained barium titanate powder. 請求項4に記載の製造方法によって得られるカルシウム変性微粒チタン酸バリウム粉末であって、平均粒径が0.145〜0.250μm、X線回折によるc/a軸比が1.008〜1.010であることを特徴とする、カルシウム変性微粒チタン酸バリウム粉末。5. A calcium-modified fine barium titanate powder obtained by the production method according to claim 4, wherein the average particle size is 0.145 to 0.250 μm, and the c / a axial ratio by X-ray diffraction is 1.008 to 1. Calcium-modified fine barium titanate powder characterized by being 010.
JP2000244885A 2000-08-11 2000-08-11 Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same Expired - Lifetime JP3780405B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000244885A JP3780405B2 (en) 2000-08-11 2000-08-11 Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same
TW090118794A TW539649B (en) 2000-08-11 2001-08-01 Particulate barium titanate powder, particulate calcium-modified barium titanate powder, and production method thereof
KR10-2001-0047911A KR100435073B1 (en) 2000-08-11 2001-08-09 Particulate barium titanate powder, particulate calcium-modified barium titanate powder, and production method of these
CNB011249935A CN1202014C (en) 2000-08-11 2001-08-10 Micro-powders of barium tilanate and of calcium modified barium titanate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000244885A JP3780405B2 (en) 2000-08-11 2000-08-11 Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002060219A JP2002060219A (en) 2002-02-26
JP3780405B2 true JP3780405B2 (en) 2006-05-31

Family

ID=18735509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000244885A Expired - Lifetime JP3780405B2 (en) 2000-08-11 2000-08-11 Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same

Country Status (4)

Country Link
JP (1) JP3780405B2 (en)
KR (1) KR100435073B1 (en)
CN (1) CN1202014C (en)
TW (1) TW539649B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660935B2 (en) * 2001-02-05 2011-03-30 株式会社村田製作所 Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure
WO2003004415A1 (en) * 2001-07-04 2003-01-16 Toho Titanium Co., Ltd. Barium titanate powder and method for production thereof
WO2004096712A1 (en) * 2003-04-25 2004-11-11 Sumitomo Chemical Company, Limited Barium titanate powder and method for producing same
DE10323816A1 (en) * 2003-05-23 2004-12-09 Basf Ag Process for the production of mixed oxides with average diameters less than 10 nanometers
KR20070001918A (en) * 2003-12-05 2007-01-04 제이에스알 가부시끼가이샤 Method for producing composition for forming dielectric film, composition for forming dielectric film, dielectric film and method for producing same
KR100616542B1 (en) 2004-03-31 2006-08-29 삼성전기주식회사 Oxide Powder Using A Material To Make A Dielectrics and Method for Producing A Perovskite Structure Oxide Powder Using A Material To Make A Dielectrics and Multilayer Ceramic Condenser
WO2006022447A1 (en) 2004-08-27 2006-03-02 Showa Denko K.K. Barium calcium titanate, production process thereof and capacitor
JP5089870B2 (en) * 2004-08-27 2012-12-05 昭和電工株式会社 Barium calcium titanate, method for producing the same, and capacitor
JP4789449B2 (en) * 2004-10-27 2011-10-12 京セラ株式会社 Dielectric porcelain and multilayer ceramic capacitor using the same
JP4684657B2 (en) * 2005-01-07 2011-05-18 日本化学工業株式会社 Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder
JP2006298680A (en) * 2005-04-18 2006-11-02 Taiyo Yuden Co Ltd Dielectric ceramic and laminated ceramic capacitor
KR100633723B1 (en) * 2005-08-04 2006-10-13 한화석유화학 주식회사 Process for preparing barium titanate
JP4827011B2 (en) * 2006-03-10 2011-11-30 Tdk株式会社 Ceramic powder, dielectric paste using the same, multilayer ceramic electronic component, and manufacturing method thereof
JP4578428B2 (en) * 2006-03-28 2010-11-10 京セラ株式会社 Barium titanate powder and production method thereof
CN100345765C (en) * 2006-03-29 2007-10-31 山西大学 Preparation method of cubic phase barium titanate
TW200838805A (en) * 2007-02-20 2008-10-01 Nippon Chemical Ind Amorphous fine-particle powder, process for production thereof and perovskite-type barium titanate powder made by using the same
CA2757626A1 (en) * 2009-04-10 2010-10-14 Eestor, Inc. Hydrothermal processing in the wet-chemical preparation of mixed metal oxide ceramic powders
JP2013523574A (en) * 2010-03-31 2013-06-17 Tdk株式会社 Dielectric ceramic composition, method for producing dielectric ceramic composition, and electronic component
JP5299400B2 (en) * 2010-10-26 2013-09-25 株式会社村田製作所 Method for producing composite oxide powder
CN106458630A (en) * 2014-06-13 2017-02-22 户田工业株式会社 Barium titanate fine particle powder, dispersion, and coating film
CN106430295B (en) * 2016-09-12 2017-12-26 天津城建大学 A kind of micro-nano hierarchy BaTiO3Crystal and preparation method thereof
KR20220035115A (en) * 2019-07-16 2022-03-21 니폰 가가쿠 고교 가부시키가이샤 Me element substituted organic acid barium titanyl, method for producing same, and method for producing titanium-based perovskite-type ceramic raw material powder
JP7438867B2 (en) 2019-07-16 2024-02-27 日本化学工業株式会社 Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087437A (en) * 1988-01-15 1992-02-11 E. I. Du Pont De Nemours And Company Process for preparing crystalline mixed metal oxides
US5445806A (en) * 1989-08-21 1995-08-29 Tayca Corporation Process for preparing fine powder of perovskite-type compound

Also Published As

Publication number Publication date
CN1338430A (en) 2002-03-06
KR100435073B1 (en) 2004-06-09
KR20020013740A (en) 2002-02-21
TW539649B (en) 2003-07-01
JP2002060219A (en) 2002-02-26
CN1202014C (en) 2005-05-18

Similar Documents

Publication Publication Date Title
JP3780405B2 (en) Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same
TWI290539B (en) Barium titanate and capacitor
KR100497938B1 (en) Method for producing complex oxide powder and complex oxide powder
JPH0339016B2 (en)
JP5089870B2 (en) Barium calcium titanate, method for producing the same, and capacitor
JP4743481B2 (en) Titanium-containing perovskite type compound and method for producing the same
US20140322537A1 (en) Method of manufacturing ceramic powder having perovskite structure and ceramic powder having perovskite structure manufactured using the same
US7001585B2 (en) Method of making barium titanate
US9842696B2 (en) Composite perovskite powder, preparation method thereof, and paste composition for internal electrode having the same
CN1800099B (en) Barium titanium oxalate power and method for manufacturing titanium type perovskite ceramic raw material powder
EP1362008A1 (en) Method for preparing high quality barium-titanate based powder
JP5410124B2 (en) Method for manufacturing dielectric material
JPH0246531B2 (en)
JPH0339014B2 (en)
JP3772354B2 (en) Manufacturing method of ceramic powder
JP4643443B2 (en) Method for producing barium titanate powder
JPH0517150A (en) Production of ceramic raw material powder
JP2010047428A (en) Titanium composite salt powder, method for producing the same, and method for producing perovskite type titanium composite oxide powder using the same
JPH0210089B2 (en)
JPH0210091B2 (en)
JPH069218A (en) Production of solid solution of barium strontium titanate
KR100647247B1 (en) Method for Synthesizing Barium Titanate Powder by solvothermal technique
JP4441306B2 (en) Method for producing calcium-doped barium titanate
JPH0873219A (en) Production of powdery ceramic
JPS6328844B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Ref document number: 3780405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

EXPY Cancellation because of completion of term