WO2003004415A1 - Barium titanate powder and method for production thereof - Google Patents

Barium titanate powder and method for production thereof Download PDF

Info

Publication number
WO2003004415A1
WO2003004415A1 PCT/JP2002/006719 JP0206719W WO03004415A1 WO 2003004415 A1 WO2003004415 A1 WO 2003004415A1 JP 0206719 W JP0206719 W JP 0206719W WO 03004415 A1 WO03004415 A1 WO 03004415A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium titanate
titanate powder
powder
calcined
average particle
Prior art date
Application number
PCT/JP2002/006719
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Tokita
Matsuhide Horikawa
Original Assignee
Toho Titanium Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co., Ltd. filed Critical Toho Titanium Co., Ltd.
Priority to JP2003510393A priority Critical patent/JPWO2003004415A1/en
Publication of WO2003004415A1 publication Critical patent/WO2003004415A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to an improved barium titanate powder having excellent dielectric properties and used as a dielectric material for electronic components such as multilayer ceramic capacitors and PTC thermistors, and a method for producing the same.
  • Barium titanate is widely used in electronic materials such as dielectric materials for multilayer ceramic capacitors.
  • the barium titanate particles which are the material for forming the dielectric layer, are as small as possible, specifically 0.5 m or less, in order to increase the number of layers, miniaturization, and capacity of capacitors.
  • a barium titanate material having a crystallinity of preferably 0.4 or less, high crystallinity, and a low content of alkaline metal components such as Na ions and K ions.
  • Barium titanate obtained by the solid phase method has disadvantages such as a large particle size of several meters and a wide particle size distribution even when crushed. For this reason, various liquid phase methods such as a hydrothermal synthesis method, a low-temperature direct synthesis method, a gel sol method, and an oxalic acid method have been proposed in many documents. Although the liquid phase method is costly, it has the advantage that spherical fine particles with a particle size of 1 m or less can be easily obtained, but the crystallinity is not easily increased. There is a problem that it is difficult to remove metal.
  • JP-A-5-330824 discloses that a titanium compound and a barium compound are mixed at a BaZTi ratio of 0.95 to 1.05, hydrogen peroxide is added thereto, and a wet reaction is carried out. It is disclosed that after obtaining a cubic barium titanate powder having a particle diameter of 0.2 to 5 and calcining at 900 to 1300 ° C., a truly spherical barium titanate can be obtained. Based on the advantages of the liquid phase method, which allows barium titanate with a small particle diameter to be obtained, there have been introduced many examples of methods for producing spherical fired barium titanate powder with a particle size of 0.1 to 0.2 m by low-temperature firing. I have.
  • JP-A-60-81023 and JP-A-60-90825 disclose that a reaction is carried out by reacting hydrous titanium oxide and barium hydroxide in a dilute aqueous solution at 60 to 110 ° C. : Calcined barium titanate powder of! ⁇ 0.2 at 800 ° C, then into tablets and fired at 1200 ° C to obtain calcined titanate with relative density of 93% and particle size of about 0.5m Examples of producing barium materials have been reported.
  • Japanese Patent Application Laid-Open No. 5-178619 discloses that the reaction product is not less than 300 ° C., preferably 400 ° C. It introduces a method of heating at ⁇ 700 ° C, washing with water of pH 7 ⁇ 10, and separating by filtration. Also, JP-A-61-146713 discloses that barium titanate obtained by a hydrothermal reaction is washed with hot water, the powder is calcined at 800 ° C, then washed with acetic acid water, and further washed with pure water. How to do is introduced. However, even with water washing or hot water washing, the Na content cannot be easily removed.
  • green calcined barium titanate refers to a so-called green material (green) to the extent that barium titanate obtained by synthesis is dried.
  • calcined barium titanate refers to It refers to raw material that has been subjected to heat treatment (also called calcination) at a higher temperature, that is, at least 500 ° C or more and 980 ° C or less. This includes those that have been crushed or have been crushed and washed.
  • the fired barium titanate powder of the present invention is appropriately mixed with other components and sintered at a normal firing temperature (about 110 to 1300 ° C.) to form a desired dielectric material. To be served.
  • the BaZT i atomic ratio (hereinafter referred to as the Ba / T i ratio unless otherwise specified) is in a very narrow range, specifically 1.003 to 1.009, especially 1. Obtaining a barium titanate powder controlled to 003 to 1.005 and firing it to obtain a fired barium titanate with high crystallinity;
  • the firing can be performed at a temperature much lower than conventionally known, so that the growth of particles can be suppressed, and the average particle size is not more than 0.5 m.
  • a first invention according to the present invention is an unfired barium titanate powder obtained by subjecting a titanium compound and a vacuum compound to a liquid phase reaction, and having an average particle size (here, 350 ° C The crystal is characterized by having a particle size of 0.05 to 0.5 / m and a BaZT i ratio of 1.003 to 1.009, measured by degassing for 30 minutes at a temperature. It is an unfired barium titanate powder having a cubic structure. The unburned The barium titanate powder is suitable as a raw material powder for producing the barium titanate powder of the second invention described below.
  • the second invention has an average particle size of 0.05 to 0.5 m, a BaZT i ratio of 1.003 to 1.006, a loss on ignition of 0.5% by weight or less, and a square crystal structure. It is a barium titanate powder that has been calcined.
  • the third invention of the present invention relates to a method for producing a highly crystalline and fine barium titanate powder, wherein (i) a titanium compound and a barium compound are subjected to a liquid phase reaction in an aqueous alkali solution to obtain an average particle diameter.
  • the loss on ignition (also referred to as L) in the present invention refers to the weight (W1) after the barium titanate powder is kept at 110 ⁇ 5 ° C for 60 minutes in the air. Then, the temperature is raised to 110 ° C in air at 10 ° C per minute, and the weight (W2) after holding at 1100 ⁇ 30 ° C for 60 minutes is calculated by the following formula. Value.
  • the cube as a shape display of the barium titanate powder of the present invention is observed with an electron microscope, and the appearance of the particles is a cube, a rectangular parallelepiped, or a pseudo cube in which the corners of individual particles are slightly missing, Alternatively, it means a pseudo-cuboid.
  • FIG. 1 is an electron micrograph showing an unfired barium titanate powder according to the present invention.
  • FIG. 2 is an electron micrograph showing the fired barium titanate powder according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the “green calcined barium titanate powder” of the first invention is a barium titanate powder obtained by a liquid phase reaction between a titanium compound and a vacuum compound.
  • the diameter is 0.05 to 0.5, preferably a fine powder of 0.07 to 0.4 m, and (b) the ratio of 8 & / 1.009, from the viewpoint of crystallinity, that is, dielectricity, preferably 1.003 to 1.007, particularly preferably 1.004 to 1.006, extremely close to 1.000, but the number of valence atoms is titanium atom It has a composition that is very slightly greater than the number.
  • the fired barium titanate powder produced therefrom has poor crystallinity.
  • the BaZT i ratio is from 1.003 to 1.007, more preferably from 1.003 to 1.006, as described above.
  • the unsintered barium titanate powder includes those subjected to a heat treatment of 250 or less mainly for drying. From the unfired barium titanate powder having such a Ba / T i ratio (that is, the raw material powder to be fired), a “fired barium titanate powder” of the second invention described below is obtained.
  • the specific unfired barium titanate powder is subjected to a heat treatment at 930 to 980 ° C, particularly 930 to 970 ° C, thereby obtaining a fired barium titanate powder having extremely high crystallinity as described later.
  • Can be Cubic crystals cannot be obtained below 930 ° C, and grain growth occurs above 980 ° C.
  • the contained aluminum metal such as Na can be removed very effectively.
  • the calcined barium titanate powder of the second invention has extremely high crystallinity while being extremely fine particles having an average particle diameter of 0.05 to 0.5 m.
  • the ratio of barium atoms is extremely slightly higher than titanium atoms, with a ratio of 1.003 to 1.006, preferably 1.003 to 1.005, and in a limited range.
  • the structure is tetragonal, and the shape observed with an electron microscope is square, ie, rectangular or cubic crystalline. This is a finely baked powder having a high particle size.
  • the calcined barium titanate powder has a loss on ignition (L) of 0.5% by weight or less, preferably 0.4% by weight or less, particularly preferably 0.4% by weight or less. 3% by weight or less.
  • L loss on ignition
  • the calcined barium titanate powder of the present invention is a fine particle having a particle size of 0.5 / m or less, but has a CZa ratio (C-axis length of tetragonal crystal axis length) Is an extremely high crystallinity of 1.009 or more.
  • the BET specific surface area, particle size 0.1 approximately at the 4 Paiiota ones 1. 5 ⁇ 2. 5m 2 / g, 0. intended for 2 m 3. 5 ⁇ 5.
  • the loss on ignition (L) when heated to 1100 ° C has an extremely thermally stable crystal structure of 0.5% by weight.
  • the particle shape is a cube or a rectangular parallelepiped, and has a shape different from a generally known spherical or potato-like shape. These clearly show excellent crystallinity. An even more excellent point is that, despite being obtained by the liquid phase method, the high purity of the metal component content of the aluminum alloy is not more than 50 ppm and not more than 40 ppm. Despite such a fine fired powder, a cubic or rectangular parallelepiped fired barium titanate powder having high crystallinity has not been known.
  • the third invention of the present invention is to produce the unfired barium titanate powder of the first invention by a liquid phase method, and to obtain the obtained raw material in 930 to 98 O: This is to produce the fired barium titanate powder of the second invention by firing. Dielectrics manufactured using the fired barium titanate powder of the present invention have extremely excellent dielectric properties and are effective in reducing the size of parts.
  • Titanium compounds as liquid phase reaction raw materials include titanium tetrachloride, oxytitanium chloride, titanium tetrachloride hydrolyzate (titanium hydroxide hydrate, orthotitanic acid, metatitanic acid), peroxotitanic acid, titanyl sulfate, etc. It is. Titanium tetrachloride hydrolyzate is hydrolyzed with alkaline water such as ammonia, or produced by adding water. The resulting hydrochloric acid is obtained by evaporation and separation as a solid or gel.
  • the solid is used as a slurry or a very dilute aqueous solution.
  • the barium compound include barium chloride, barium hydroxide, barium nitrate, barium sulfate, and barium acetate. Of these, barium chloride or barium hydroxide is preferably used.
  • an aqueous solution of titanium tetrachloride (concentration is about 0.2 to 2.0 mol and this is called liquid I) and an aqueous solution of barium chloride or barium hydroxide (concentration is 0.1 to 1.0 mol Zl, hereafter referred to as solution II), and bringing them into contact with each other in a reaction vessel at a temperature of 90 to 10 O: under strong alkaline conditions.
  • the pH is maintained at 13 or higher, preferably 13.5 or higher, more preferably 13.8 or higher. More preferably, it is preferable that the solution II is previously prepared as an aqueous alkali solution.
  • a necessary amount of an alkaline aqueous solution is supplied from another system as needed to maintain the predetermined PH. More preferably, before starting the supply of both liquids, an aqueous solution of an aqueous solution adjusted to a predetermined concentration is charged into the reaction vessel in advance, and then the both liquids are supplied to prevent local pH decrease. It is valid.
  • the supply amounts of both liquids to produce barium titanate with a BaZT i ratio of 1.03 to 1.009, which is the target product, the supply amounts of the titanium compound and the barium compound to the reaction system must be adjusted. Strict control is important.
  • the molar ratio of both compounds supplied to the reaction vessel is set in the range of 1.05 to 1.10, and both liquids are quantitatively supplied to the reaction vessel at this set value.
  • the total supply ratio of both liquids according to this that is, (barium concentration of liquid II x supply rate) Z (Titanium concentration X supply rate of liquid I) and instantaneous supply ratio are strictly controlled.
  • a premixing region having functions such as high-speed stirring and high-pressure spray contact may be provided in order to promote uniform contact.
  • the contacting and the reaction are preferably carried out at a temperature as close as possible to 100 ° C. under normal pressure, ie 80 to 98 t: 110 to 150 ° C. under pressure.
  • the solution I and the solution II are brought into contact in the reaction vessel with stirring.
  • the resulting slurry liquid containing solid titanium titanate may be continuously withdrawn from the reaction system and moved to another aging vessel (continuous reaction), or may be withdrawn after the reaction is completed in the reaction vessel. Good (batch reaction).
  • the barium titanate thus produced is desirably aged by heating it for a certain period of time while stirring it in a slurry state.
  • the aging treatment is performed at a temperature of 85 to 150 ° C.
  • the resulting barium titanate particles and water as a solvent are separated by decantation, centrifugation, filtration, or the like.
  • the barium titanate powder separated from the reaction system is washed with water to remove unreacted raw material compounds, alkali components, and the like attached thereto.
  • the production of the unfired barium titanate powder in the present invention is not limited to the above production method.
  • the reaction product obtained above is dried at 80 to 250 ° C, preferably 100 to 200 ° C, to obtain the unfired barium titanate powder of the present invention.
  • the above reaction products are spherical cubic particles having an average particle diameter of 0.05 to 0.5 ⁇ ⁇ ⁇ . Through the above operations, the unfired barium titanate powder of the present invention is obtained.
  • the fired barium titanate powder of the present invention is obtained by subjecting the unfired barium titanate powder to a heat treatment at 930 to 980 ° C., more preferably 940 to 975 (this heat treatment is referred to as firing in the present invention). It is obtained by doing.
  • the firing atmosphere may be any of air, vacuum, and inert gas. However, it is more suitable to remove chlorine, which is an impurity, in a vacuum or when water vapor is present at a partial pressure of 0.1 to 0.4.
  • the unfired barium titanate powder has a property of being fired at 930 to 980 ° C.
  • a tetragonal rectangular parallelepiped fired barium titanate powder having a loss on ignition of 0.5% by weight or less is obtained. Further, the firing temperature Another feature of the present invention is that alkali metals such as sodium ions contained in the crystals are very effectively removed. As a result, a fine baked barium titanate powder having a low purity and a low alkali metal content such as Na can be obtained.
  • the calcined barium titanate is pulverized by various means as necessary.
  • Preferred pulverizing means include pulverizing means by contact between powders, particularly wet pulverizing means, specifically wet pulverizing means in the presence of a medium such as water, rather than pulverizing using media such as balls and beads. It is preferable for maintaining crystallinity.
  • Sintering density The sintering density was determined based on Archimedes' principle.
  • Ba / Ti ratio The atomic ratio of Ba / Ti (BaZTi ratio) was determined by X-ray fluorescence analysis.
  • Example No. BT-12 an unfired barium titanate powder having a Ba / Ti ratio of 1.004 (sample No. BT-12) was obtained.
  • the Na metal content in the powder was 190 ppm.
  • An electron micrograph of the powder BT-12 is shown in FIG.
  • T i C 1 4 aqueous solution (T i C 1 4 concentration: 0.600 mol 1) and, B a C 1 2 / N a OH solution (B aC 1 2 concentration: 0.335 mol Z 1, Na_ ⁇ _H concentration : 3. 0 molar Z 1) and, T i C 1 4 aqueous 100 c cZ min, at B aC 1 2 / NaOH aqueous 2 1 7 cc / min flow rate, the reaction vessel in the same manner as in example 1 , And maintained at 90 ° C with stirring.
  • Molar ratio of B a C 1 2 / ⁇ i C 1 4 of the supplied raw material compound 1. was 2 1 2.
  • Subsequent washing and drying were performed under the same conditions as in Example 1.
  • an unfired barium titanate powder (sample No. BT-3) having 1.06 in & 8 was obtained.
  • Table 1 shows the properties of the unfired barium titanate powders obtained in Examples 1 to 4 and Comparative Examples 5 to 7.
  • Unfired barium titanate powder in Table 1 No. BT-1, BT-2, BT-5, and BT-7 were fired in an air atmosphere at 930 to 1100 for 1.5 hours. Next, 1.5 cc of aqueous ammonia was added per 100 g of the obtained calcined powder, and the mixture was wet-pulverized. After that, water was separated by filtration, and further heated to 120 ° C and dried. The fired barium titanate powders of Examples 5 to 8 and Comparative Examples 4 to 7 shown in Table 1 were obtained. Tables 2 and 3 show the sample numbers and properties of these calcined barium titanate powders.
  • FIG. 2 shows an electron micrograph of the calcined powder: CBT-2B obtained in Example 7. According to FIG. 2, it is clear that the particle shape is a cube or a rectangular parallelepiped. Table 2
  • Table 3 shows the crystallinity and dielectric properties of each fired powder in Table 2.
  • X (te t) as a crystallinity (tetragonality) scale shown in Table 3 is a value obtained by the following method. The closer this value is to 1.0, the higher the crystallinity.
  • the X-ray diffraction peak intensities of the (200) and (002) planes of the crystal are I (200) and I (002), respectively, and the Rabin intensity between the valleys of both peaks is I (ravine), and X (tet ) Is calculated by the following equation.
  • the lengths of the tetragonal C-axis and a-axis are determined by (002) and (200) times of the X-ray diffraction pattern. It is calculated from the folding peak position, and the ratio c / a ratio is calculated by the following formula.
  • MnCo3, MgO, MgCo3, CaCo3, SiO2 and a rare earth oxide were added to the calcined powder (No. CBT-2B) having a BaZTi ratio of 1.004 in Example 7.
  • the mixture was heated at 1300 ° C for 2 hours in a reducing atmosphere, and then sintered at 1,000 ° C for 10 hours under a nitrogen gas flow to obtain a sintered body of Example 9. I got
  • Example 9 instead of No. CBT-2B, calcined barium titanate powder (No. CBT-5) having a Ba / Ti ratio of 1.001 in Comparative Example 6 was used, and the comparison was performed in the same manner. A sintered body of Example 8 was obtained.
  • the dielectric properties (relative permittivity) of the sintered bodies of Example 9 and Comparative Example 8 were measured using an LCR meter (model: 4284A type) manufactured by Hewlett-Packard Company, frequency: 1 mm, and applied voltage: The measurement was performed under the conditions of IV. Table 4 shows the measurement results.
  • the sintered body (Example 9) manufactured using the fired barium titanate powder of the present invention has a high relative dielectric constant over a wide temperature range, and has a high dielectric constant. Proved to be very suitable as a forming material - ⁇ -

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

A method for producing a tetragonal fired barium titanate powder having an average particle diameter of 0.05 to 0.5 μm, a Ba/Ti atomic ratio of 1.003 to 1.006, particularly preferably 1.003 to 1.005 and an ignition loss of 0.5 % or less, which comprises preparing a tetragonal fine barium titanate powder having an average particle diameter of 0.05 to 0.5 μm, a Ba/Ti atomic ratio of 1.003 to 1.009 by means of the liquid phase process, and firing the powder at 930 to 980˚C. The fired barium titanate powder produced by the method has high crystallinity, exhibits high dielectric property, and is reduced in the content of an alkali metal component such as Na, and thus can be suitably used as a material for forming a dielectric layer of a monolithic ceramic capacitor or the like.

Description

明 細 書 チタン酸バリゥム粉末およびその製造方法 技術分野  Description Barium titanate powder and method for producing the same
本発明は、 積層セラミックコンデンサや PTCサーミス夕等の電子部品の誘電 体材料として用いられる誘電特性に優れた、 改良されたチタン酸バリウム粉末お よびその製造方法に関する。 背景技術  The present invention relates to an improved barium titanate powder having excellent dielectric properties and used as a dielectric material for electronic components such as multilayer ceramic capacitors and PTC thermistors, and a method for producing the same. Background art
チタン酸バリゥムは積層セラミックコンデンサ等の誘電体材料等、 電子材料に 幅広く用いられている。 最近では、 コンデンサ一の多層化、 小型化、 大容量化の ために、 誘電体層形成の材料であるチタン酸バリウム粒子の粒径は可能な限り小 さく、 具体的には 0. 5 m以下、 好ましくは 0. 4 以下で、 結晶性が高く、 しかも N aイオンや Kイオン等のアル力リ金属成分の含有量が少ないチタン酸バ リゥム材が要望されている。  Barium titanate is widely used in electronic materials such as dielectric materials for multilayer ceramic capacitors. Recently, the barium titanate particles, which are the material for forming the dielectric layer, are as small as possible, specifically 0.5 m or less, in order to increase the number of layers, miniaturization, and capacity of capacitors. There is a demand for a barium titanate material having a crystallinity of preferably 0.4 or less, high crystallinity, and a low content of alkaline metal components such as Na ions and K ions.
固相法によって得られるチタン酸バリウムは、 粒径が数 mと大きく、 粉砕し ても、 粒度分布が広いといった短所がある。 そのため、 水熱合成法、 低温直接合 成法、 ゲルゾル法、 蓚酸法等の各種液相法が、 多くの文献で提案されている。 液 相法はコスト高であるが、 粒径が 1 m以下の球状微粒子が得やすいといった利 点がある一方、 結晶性が高くなりにくく、 しかも、 生成物中に混入すると Na等 のアル力リ金属分を除去することが難しいといった問題がある。  Barium titanate obtained by the solid phase method has disadvantages such as a large particle size of several meters and a wide particle size distribution even when crushed. For this reason, various liquid phase methods such as a hydrothermal synthesis method, a low-temperature direct synthesis method, a gel sol method, and an oxalic acid method have been proposed in many documents. Although the liquid phase method is costly, it has the advantage that spherical fine particles with a particle size of 1 m or less can be easily obtained, but the crystallinity is not easily increased. There is a problem that it is difficult to remove metal.
例えば、 特開平 5— 330824号公報には、 チタン化合物とバリウム化合物 とを B aZT i比 0. 95〜1. 05に混ぜ、 これに過酸化水素を添加して湿式 反応させることにより、 二次粒子径 0. 2〜5 の立方晶チタン酸バリウム粉 末を得た後、 900〜 1 300°Cで仮焼することで、 真球状のチタン酸バリウム が得られることが開示されている。 小さな粒子径のチタン酸バリウムが得られる という液相法の良さを基本にして、 低温焼成により粒径 0. 1〜0. 2 mの球 状焼成チタン酸バリゥム粉末の製法例が数多く紹介されている。 特開昭 60 - 8 1023号公報や同 60 - 9082 5号公報には、 含水酸化チ タンと水酸化バリウムを、 希薄水溶液中、 60〜 1 1 0°Cで反応させ、 得られた 0. :!〜 0. 2 のチタン酸バリウム粉を 800°Cで仮焼し、 次いで錠剤にし て 1 200°C焼成することで、 相対密度 93 %、 粒子径約 0. 5 mの焼成チタ ン酸バリウム材を製造した例が報告されている。 For example, JP-A-5-330824 discloses that a titanium compound and a barium compound are mixed at a BaZTi ratio of 0.95 to 1.05, hydrogen peroxide is added thereto, and a wet reaction is carried out. It is disclosed that after obtaining a cubic barium titanate powder having a particle diameter of 0.2 to 5 and calcining at 900 to 1300 ° C., a truly spherical barium titanate can be obtained. Based on the advantages of the liquid phase method, which allows barium titanate with a small particle diameter to be obtained, there have been introduced many examples of methods for producing spherical fired barium titanate powder with a particle size of 0.1 to 0.2 m by low-temperature firing. I have. JP-A-60-81023 and JP-A-60-90825 disclose that a reaction is carried out by reacting hydrous titanium oxide and barium hydroxide in a dilute aqueous solution at 60 to 110 ° C. : Calcined barium titanate powder of! ~ 0.2 at 800 ° C, then into tablets and fired at 1200 ° C to obtain calcined titanate with relative density of 93% and particle size of about 0.5m Examples of producing barium materials have been reported.
また、 液相反応で得られたチタン酸バリウム粉から N a等のアルカリ金属を除 去するため、 特開平 5— 1 786 19には、 反応生成物を 300°C以上、 好まし くは 400〜700°Cにて加熱処理後、 pH 7〜 10の水にて洗浄し、 ろ過分離 する方法が紹介されている。 また、 特開昭 6 1— 1467 1 3には、 水熱反応で 得たチタン酸バリウムを熱水で洗浄し、 粉末を 800°Cで焼成し、 その後酢酸水 で洗浄し、 さらに純水洗浄する方法が紹介されている。 しかしながら、 水洗浄や 熱水洗浄でも、 N a分は容易に取り除けない。 また、 過酷な洗浄では、 焼成した チタン酸バリゥムであっても、 水洗浄時にバリゥムの溶出が起こる危険がある。 ちなみに J. Mater. Res., Vol.10, o.2, p.3106には、液相反応で得られるチタン酸バ リウムに N a分が 400 p pm含有されていたという例が報告されている。 以上のように、 液相法の製法は数多く報告されているが、 B aZT i比を厳密 に制御することにはあまり注目されていない。 また、 B aZT i比に配慮しない としても、 実際面では平均粒径 0. 5 / m以下で、 結晶性が高いチタン酸バリウ ム粉末を、 安定的に製造することは難しいのが実情である。 さらに、 不純物とし て存在する N a分を除去することが困難であった。 発明の開示  In order to remove alkali metals such as Na from the barium titanate powder obtained by the liquid phase reaction, Japanese Patent Application Laid-Open No. 5-178619 discloses that the reaction product is not less than 300 ° C., preferably 400 ° C. It introduces a method of heating at ~ 700 ° C, washing with water of pH 7 ~ 10, and separating by filtration. Also, JP-A-61-146713 discloses that barium titanate obtained by a hydrothermal reaction is washed with hot water, the powder is calcined at 800 ° C, then washed with acetic acid water, and further washed with pure water. How to do is introduced. However, even with water washing or hot water washing, the Na content cannot be easily removed. Also, in severe cleaning, there is a risk that even when baked titanium titanate is used, the leaching of the barrier occurs during water cleaning. Incidentally, J. Mater. Res., Vol. 10, o. 2, p. 3106 reported an example in which barium titanate obtained by a liquid phase reaction contained 400 ppm of Na. I have. As described above, although many liquid phase processes have been reported, little attention has been paid to strict control of the BaZT i ratio. Even if the BaZTi ratio is not taken into account, it is difficult to stably produce a highly crystalline barium titanate powder with an average particle size of 0.5 / m or less in practice. . Furthermore, it was difficult to remove the Na content as an impurity. Disclosure of the invention
以上の説明から明らかなように、 高結晶、 高純度、 高誘電率、 平均粒径 0. 0 5〜0. 5 の、 正方晶の焼成チタン酸バリウム粉末を液相法で製造すること が課題であった。 なかでも B a/T i比の制御と低温焼成の達成が最大の技術課 題であった。 したがって本発明の目的は、  As is clear from the above description, it is an issue to produce a fired tetragonal barium titanate powder having a high crystallinity, a high purity, a high dielectric constant, and an average particle size of 0.05 to 0.5 by a liquid phase method. Met. Above all, controlling the Ba / Ti ratio and achieving low-temperature firing were the biggest technical issues. Therefore, the object of the present invention is
1 ) 結晶性が高い焼成チタン酸バリゥム粉を製造するための原料体を提供するこ と、  1) To provide a raw material for producing fired barium titanate powder having high crystallinity;
2) 結晶性が高く、 誘電性が高い焼成チタン酸バリウム粉末を提供すること、 3) N a等のアルカリ金属成分が少ない焼成チタン酸バリウム粉末を提供するこ と、 2) To provide a fired barium titanate powder having high crystallinity and high dielectric properties; 3) To provide a calcined barium titanate powder having a small alkali metal component such as Na;
4) 該焼成粉末の液相法による製造方法を提供すること、  4) providing a method for producing the calcined powder by a liquid phase method,
にある。 It is in.
なお、 本発明で言う未焼成チタン酸バリウムとは、 合成で得られたチタン酸バ リウムを乾燥させた程度の、 いわゆる生材 (グリーン) を言い、 一方、 焼成チタ ン酸バリウムとは、 該生材を一層高い温度、 すなわち少なくとも 500°C以上、 980°C以下の加熱処理 (仮焼とも言う) を行ったものを言う。 なお、 これには 解碎あるいは解砕と洗浄処理を行ったものを含む。 本発明の焼成チタン酸バリゥ ム粉末は、 適宜に他成分と混合して、 通常行われている焼成温度 (およそ 1 1 0 0〜 1 300°C) で焼結され、 目的の誘電体材料形成に供される。  The term “green calcined barium titanate” as used in the present invention refers to a so-called green material (green) to the extent that barium titanate obtained by synthesis is dried. On the other hand, calcined barium titanate refers to It refers to raw material that has been subjected to heat treatment (also called calcination) at a higher temperature, that is, at least 500 ° C or more and 980 ° C or less. This includes those that have been crushed or have been crushed and washed. The fired barium titanate powder of the present invention is appropriately mixed with other components and sintered at a normal firing temperature (about 110 to 1300 ° C.) to form a desired dielectric material. To be served.
本発明者らは、 上記目的を達成するため鋭意研究した結果、  The present inventors have conducted intensive studies to achieve the above object,
(i)液相反応によって B aZT i原子比(以下特にことわらない限り B a/T i 比で表す。) を極く狭い範囲、 具体的には 1. 003〜 1. 009、 とりわけ 1. 003〜1. 005に制御したチタン酸バリウム粉末を得て、 これを焼成すると 結晶性の高い焼成チタン酸バリウムが得られること、  (i) The BaZT i atomic ratio (hereinafter referred to as the Ba / T i ratio unless otherwise specified) is in a very narrow range, specifically 1.003 to 1.009, especially 1. Obtaining a barium titanate powder controlled to 003 to 1.005 and firing it to obtain a fired barium titanate with high crystallinity;
(ii) そして、 焼成が、 従来知られている温度よりもかなり低い温度で可能であ ること、 それにより粒子の成長が抑制でき、 平均粒径が 0. 5 m以下はもちろ んのこと、 0. 3〜0. 1 mのような極めて微細な、 特定の B a/T i比を持 つた、 正方晶の焼成チタン酸バリウム粉末が得られること、  (ii) The firing can be performed at a temperature much lower than conventionally known, so that the growth of particles can be suppressed, and the average particle size is not more than 0.5 m. To obtain a tetragonal calcined barium titanate powder having an extremely fine specific Ba / Ti ratio, such as 0.3 to 0.1 m,
(iii) そして、 その焼成の過程で N a分が極めて効果的に低減できること、 (iii) that the Na content can be extremely effectively reduced during the firing process;
(iv) 得られた焼成粉末は、 極めて高い結晶性を有し、 そのため極めて優れた誘 電特性を発揮することを見い出し、 本発明を完成するに至った。 (iv) The obtained calcined powder was found to have extremely high crystallinity, and to exhibit extremely excellent dielectric properties, thereby completing the present invention.
以下、 本発明の内容を説明する。  Hereinafter, the contents of the present invention will be described.
本発明における第 1の発明は、 チタン化合物とバリゥム化合物とを液相反応さ せて得られた焼成されていない状態のチタン酸バリウム粉末であって、 その平均 粒径 (ここでは 3 50 °Cで 30分間脱気して測定した B E T法による粒径を言 う。) が 0. 05〜 0. 5 / m、 B aZT i比が 1. 003〜 1. 009であるこ とを特徴とする結晶構造が立方晶の未焼成チタン酸バリゥム粉末である。 該未焼 成チタン酸バリゥム粉末は、 以下に述べる第 2の発明のチタン酸バリウム粉末の 製造用原料粉として好適である。 A first invention according to the present invention is an unfired barium titanate powder obtained by subjecting a titanium compound and a vacuum compound to a liquid phase reaction, and having an average particle size (here, 350 ° C The crystal is characterized by having a particle size of 0.05 to 0.5 / m and a BaZT i ratio of 1.003 to 1.009, measured by degassing for 30 minutes at a temperature. It is an unfired barium titanate powder having a cubic structure. The unburned The barium titanate powder is suitable as a raw material powder for producing the barium titanate powder of the second invention described below.
その第 2の発明は、 平均粒径が 0. 05〜0. 5 m、 B aZT i比が 1. 0 03〜1. 006、 強熱減量が 0. 5重量%以下の、 結晶構造が正方晶の焼成し たチタン酸バリウム粉末である。  The second invention has an average particle size of 0.05 to 0.5 m, a BaZT i ratio of 1.003 to 1.006, a loss on ignition of 0.5% by weight or less, and a square crystal structure. It is a barium titanate powder that has been calcined.
さらに、 本発明の第 3の発明は、 高結晶かつ微細なチタン酸バリウム粉末の製 造方法に係わり、 (i) チタン化合物とバリウム化合物とをアルカリ水溶液中で液 相反応させて、 平均粒径が 0. 05〜0. 5 ^m、 B aZT i比が 1. 003〜 1. 009の、 結晶構造が立方晶の未焼成チタン酸バリウム粉末を製造する第 1 の工程と、 (ii)該未焼成チタン酸バリウム粉末を、 930〜980°Cで焼成する 第 2の工程よりなることを特徴とする、 (iii)平均粒径が 0. 05〜0. 5 ΠΊ、 B a/T i比が 1. 003〜 1. 006、 強熱減量が 0. 5重量%以下の、 結晶 構造が正方晶の焼成チタン酸バリウム粉末の製造方法である。  Furthermore, the third invention of the present invention relates to a method for producing a highly crystalline and fine barium titanate powder, wherein (i) a titanium compound and a barium compound are subjected to a liquid phase reaction in an aqueous alkali solution to obtain an average particle diameter. A first step of producing a green cubic barium titanate powder having a cubic crystal structure having a 0.05 to 0.5 ^ m and a BaZT i ratio of 1.003 to 1.009; Baking the unfired barium titanate powder at 930 to 980 ° C, characterized by comprising a second step, (iii) an average particle size of 0.05 to 0.5 mm, Ba / Ti ratio This is a method for producing a calcined barium titanate powder having a tetragonal crystal structure with a loss on ignition of 1.003 to 1.006, a loss on ignition of 0.5 wt% or less.
なお、 本発明で言う強熱減量 (イダニッシヨンロスとも言い、 Lで表す) とは、 当該チタン酸バリウム粉末を大気中で 1 10 ± 5°Cに 60分間保持した後の重量 (W1) とし、 この後、 大気中にて 1 1 00°Cまで毎分 10°Cで昇温し、 1 10 0 ± 30°Cに 60分間保持した後の重量 (W2) とし、 以下の式で求めた値であ る。  The loss on ignition (also referred to as L) in the present invention refers to the weight (W1) after the barium titanate powder is kept at 110 ± 5 ° C for 60 minutes in the air. Then, the temperature is raised to 110 ° C in air at 10 ° C per minute, and the weight (W2) after holding at 1100 ± 30 ° C for 60 minutes is calculated by the following formula. Value.
L (重量%) = [(W 1 -W2) /W 1 ] X 100  L (% by weight) = [(W 1 -W2) / W 1] X 100
また、 本発明のチタン酸バリウム粉末の形状表示としての立方体とは、 電子顕 微鏡で観察されるもので、 粒子の外観が立方体、 直方体、 あるいは個々の粒子の 角が少し欠けた擬似立方体、 あるいは擬似直方体を意味する。 図面の簡単な説明  Further, the cube as a shape display of the barium titanate powder of the present invention is observed with an electron microscope, and the appearance of the particles is a cube, a rectangular parallelepiped, or a pseudo cube in which the corners of individual particles are slightly missing, Alternatively, it means a pseudo-cuboid. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る未焼成チタン酸バリウム粉末を示す電子顕微鏡写真で ある。  FIG. 1 is an electron micrograph showing an unfired barium titanate powder according to the present invention.
第 2図は、 本発明に係る焼成チタン酸バリゥム粉末を示す電子顕微鏡写真であ る。 発明を実施するための最良の形態 FIG. 2 is an electron micrograph showing the fired barium titanate powder according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described.
まず、 第 1の発明の 「未焼成チタン酸バリウム粉末」 は、 チタン化合物とバリ ゥム化合物とを液相反応して得られたチタン酸バリゥム粉末であり、その特徴は、 (a) 平均粒径が 0. 05〜0. 5 、 取扱いの容易性を考えると、 好ましく は 0. 07〜0. 4 mの微細な粉末であって、 (b) 8 &/丁 1比は1. 003 〜 1. 009、 結晶性すなわち誘電性の面から、 好ましくは 1. 003〜 1. 0 07、 とくに好ましくは 1. 004〜 1. 006の、 極めて 1. 000に近く、 しかしバリゥム原子数がチタン原子数に比べて極くわずか多い組成を有するもの である。 8 & 丁 1比が1. 003未満あるいは 1. 009を超えると、 それで 作られる焼成後の焼成チタン酸バリウム粉末は、 結晶性が劣る。 焼成粉の結晶性 を一層優れたものにするには、 上記のとおり B aZT i比は 1. 003〜1. 0 07、 より好ましくは 1. 003〜1. 006である。 該未焼成チタン酸バリウ ム粉末は、乾燥を主目的にした 250 以下の加熱処理を行ったものを包含する。 このような B a/T i比を有する未焼成チタン酸バリウム粉末 (すなわち焼成 に供される原料粉) から、 以下に述べる第 2の発明である 「焼成チタン酸バリウ ム粉末」 が得られる。 すなわち、 前記特定の未焼成チタン酸バリウム粉末は、 9 30〜 980°C、 とりわけ 930〜970°Cで加熱処理することにより、 後述す るように極めて結晶性の高い焼成チタン酸バリウム粉末が得られる。 930°C未 満では立方晶の結晶が得られず、 980°Cを超えると粒子成長が起こる。 さらに、 本発明の未焼成チタン酸バリゥム粉が有する特徴となる性質として、 この温度範 囲で焼成することにより、 含有されている N a等のアル力リ金属分が極めて効果 的に除去できる点に有る。  First, the “green calcined barium titanate powder” of the first invention is a barium titanate powder obtained by a liquid phase reaction between a titanium compound and a vacuum compound. Considering the ease of handling, the diameter is 0.05 to 0.5, preferably a fine powder of 0.07 to 0.4 m, and (b) the ratio of 8 & / 1.009, from the viewpoint of crystallinity, that is, dielectricity, preferably 1.003 to 1.007, particularly preferably 1.004 to 1.006, extremely close to 1.000, but the number of valence atoms is titanium atom It has a composition that is very slightly greater than the number. If the ratio is less than 1.003 or more than 1.009, the fired barium titanate powder produced therefrom has poor crystallinity. In order to further improve the crystallinity of the calcined powder, the BaZT i ratio is from 1.003 to 1.007, more preferably from 1.003 to 1.006, as described above. The unsintered barium titanate powder includes those subjected to a heat treatment of 250 or less mainly for drying. From the unfired barium titanate powder having such a Ba / T i ratio (that is, the raw material powder to be fired), a “fired barium titanate powder” of the second invention described below is obtained. That is, the specific unfired barium titanate powder is subjected to a heat treatment at 930 to 980 ° C, particularly 930 to 970 ° C, thereby obtaining a fired barium titanate powder having extremely high crystallinity as described later. Can be Cubic crystals cannot be obtained below 930 ° C, and grain growth occurs above 980 ° C. Further, as a characteristic feature of the unfired barium titanate powder of the present invention, by firing in this temperature range, the contained aluminum metal such as Na can be removed very effectively. In
次に、 第 2の発明である焼成チタン酸バリウム粉末は、 平均粒径が 0. 05〜 0. 5 mという極めて微細な粒子でありながら極めて高い結晶性を有するもの であり、 その特徴は、 8 &/丁 1比が1. 003〜 1. 006、 好ましくは 1. 003〜 1. 005という、 バリウム原子の割合がチタン原子より極くわずかに 多く、 しかも限られた範囲にあり、 その結晶構造は正方晶であり、 また、 電子顕 微鏡により観察される形状が、 角型すなわち直方体あるいは立方体をした結晶性 の高い微粒の焼成粉末である。 Next, the calcined barium titanate powder of the second invention has extremely high crystallinity while being extremely fine particles having an average particle diameter of 0.05 to 0.5 m. The ratio of barium atoms is extremely slightly higher than titanium atoms, with a ratio of 1.003 to 1.006, preferably 1.003 to 1.005, and in a limited range. The structure is tetragonal, and the shape observed with an electron microscope is square, ie, rectangular or cubic crystalline. This is a finely baked powder having a high particle size.
本発明のさらに好ましい態様は、 前記に加えて、 焼成チタン酸バリウム粉末の 強熱減量値 (L) が 0. 5重量%以下、 好ましくは 0. 4重量%以下、 とくに好 ましくは 0. 3重量%以下になつている点.である。 本発明の焼成チタン酸バリウ ム粉末は、 0. 5 / m以下の微粒子でありながら、 結晶性 (テトラゴナリティ一 と言う) を表す尺度としての CZa比 (正方晶の C軸長さ 軸長さの比) が、 1. 009以上と極めて高い結晶性を有している点が特徴である。 しかも、 その BET比表面積は、 粒径 0. 4 ΠΙのものでおよそ 1. 5〜2. 5m2/g、 0. 2 mのものでは 3. 5〜5. 0m2/g、 0. 1 mのものでも 8〜: L 0 m2Z gと、 相対的に小さい。 さらに、 1 100°Cまで加熱した場合の強熱減量値 (L) は、 小さな粒子であるにもかかわらず 0. 5重量%という極めて熱的に安定な結 晶構造を有する。 また、 粒子形状は立方体または直方体であって、 通常知られて いる球状あるいはじゃがいも状のものとは異なる形状をもっている。 これらは明 らかに結晶性が優れていることを示している。 さらに優れた点は、 液相法で得ら れたものでありながら、 アル力リ金属成分含有量が 50 p pm以下はもとより、 40 p pm以下の高純度であることである。 このような微細な焼成粉末でありな がら、結晶性が高く、立方体乃至直方体状の正方晶焼成チタン酸バリウム粉末は、 従来知られていない。 In a further preferred embodiment of the present invention, in addition to the above, the calcined barium titanate powder has a loss on ignition (L) of 0.5% by weight or less, preferably 0.4% by weight or less, particularly preferably 0.4% by weight or less. 3% by weight or less. The calcined barium titanate powder of the present invention is a fine particle having a particle size of 0.5 / m or less, but has a CZa ratio (C-axis length of tetragonal crystal axis length) Is an extremely high crystallinity of 1.009 or more. Moreover, the BET specific surface area, particle size 0.1 approximately at the 4 Paiiota ones 1. 5~2. 5m 2 / g, 0. intended for 2 m 3. 5~5. 0m 2 / g, 0. 1 Even with m, 8 ~: L 0 m 2 Z g, relatively small. In addition, despite having small particles, the loss on ignition (L) when heated to 1100 ° C has an extremely thermally stable crystal structure of 0.5% by weight. The particle shape is a cube or a rectangular parallelepiped, and has a shape different from a generally known spherical or potato-like shape. These clearly show excellent crystallinity. An even more excellent point is that, despite being obtained by the liquid phase method, the high purity of the metal component content of the aluminum alloy is not more than 50 ppm and not more than 40 ppm. Despite such a fine fired powder, a cubic or rectangular parallelepiped fired barium titanate powder having high crystallinity has not been known.
次に、 本発明の第 3の発明は、 既に説明のとおり、 前記第 1の発明の未焼成チ タン酸バリウム粉末を液相法により製造し、 得られた生材を 930〜98 O :で 焼成して、 第 2の発明の焼成チタン酸バリウム粉末を製造するものである。 本発 明の焼成チタン酸バリゥム粉末を用いて製造した誘電体は、 極めて優れた誘電特 性を有するとともに、 部品サイズの小型化に有効である。  Next, as already described, the third invention of the present invention is to produce the unfired barium titanate powder of the first invention by a liquid phase method, and to obtain the obtained raw material in 930 to 98 O: This is to produce the fired barium titanate powder of the second invention by firing. Dielectrics manufactured using the fired barium titanate powder of the present invention have extremely excellent dielectric properties and are effective in reducing the size of parts.
(未焼成チタン酸バリウムの製造)  (Production of unfired barium titanate)
以下、 本発明の未焼成チタン酸バリゥムの製造例をより具体的に説明する。 液相反応原料としてのチタン化合物としては、 四塩化チタンをはじめとして、 ォキシチタン塩化物、 四塩化チタン加水分解物 (水酸化チタン水和物、 オルトチ タン酸、 メタチタン酸)、 ペルォクソチタン酸、 硫酸チタニル等である。 四塩化チ タン加水分解物は、 アンモニア等、 アルカリ水で加水分解するか、 水を加えて生 成する塩酸を蒸発分離することで、 固体またはゲルとして得られる。 反応の際に は固体をスラリーとして使用する力 または極めて希薄な水溶液として使用する。 また、 バリウム化合物としては、 塩化バリウム、 水酸化バリウム、 硝酸バリウム、 硫酸バリウム、 酢酸バリウム等が挙げられ、 この中でも塩化バリウム、 または水 酸化バリゥムが好ましく用いられる。 Hereinafter, a production example of the unfired barium titanate of the present invention will be described more specifically. Titanium compounds as liquid phase reaction raw materials include titanium tetrachloride, oxytitanium chloride, titanium tetrachloride hydrolyzate (titanium hydroxide hydrate, orthotitanic acid, metatitanic acid), peroxotitanic acid, titanyl sulfate, etc. It is. Titanium tetrachloride hydrolyzate is hydrolyzed with alkaline water such as ammonia, or produced by adding water. The resulting hydrochloric acid is obtained by evaporation and separation as a solid or gel. During the reaction, the solid is used as a slurry or a very dilute aqueous solution. Examples of the barium compound include barium chloride, barium hydroxide, barium nitrate, barium sulfate, and barium acetate. Of these, barium chloride or barium hydroxide is preferably used.
以下に 1つの反応例を説明する。  One reaction example is described below.
基本は、 四塩化チタンの水溶液 (濃度は約 0. 2〜2. 0モル し これを液 I と言う。) と、 塩化バリウムあるいは水酸化バリウムの水溶液 (濃度は 0. 1〜 1 · 0モル Z l、 以下液 IIと言う。) を別々に用意し、 両者を反応容器中で、 強アル力 リ性のもとで、 90〜 10 O :の温度で接触させる方法である。  Basically, an aqueous solution of titanium tetrachloride (concentration is about 0.2 to 2.0 mol and this is called liquid I) and an aqueous solution of barium chloride or barium hydroxide (concentration is 0.1 to 1.0 mol Zl, hereafter referred to as solution II), and bringing them into contact with each other in a reaction vessel at a temperature of 90 to 10 O: under strong alkaline conditions.
反応を促進し、 かつ生成物の性能を確保する上で、 反応系は常に強アルカリ性 に保持することが重要である。 具体的には pH 1 3以上、 好ましくは 13. 5以 上、 より好ましくは 13. 8以上に保持する。 さらに好ましくは、 液 IIを予めァ ルカリ水溶液としておくのが好ましい。 反応中、 このように所定の PHを保持す るため、 必要に応じ別系統から適宜アルカリ水溶液を必要量供給する。 さらに好 ましくは、 両液を供給開始する前に、 予め反応容器に所定濃度に調整したアル力 リ水溶液を投入しておき、 その後両液を供給するのが、 局所的な pH低下防止に 有効である。 両液の供給量に関しては、 目的とする生成物の B aZT i比である 1. 003〜 1. 009のチタン酸バリウムを製造するには、 反応系へのチタン 化合物とバリウム化合物の供給量を厳密に制御することが重要である。  In order to promote the reaction and ensure the performance of the product, it is important to always keep the reaction system strongly alkaline. Specifically, the pH is maintained at 13 or higher, preferably 13.5 or higher, more preferably 13.8 or higher. More preferably, it is preferable that the solution II is previously prepared as an aqueous alkali solution. During the reaction, a necessary amount of an alkaline aqueous solution is supplied from another system as needed to maintain the predetermined PH. More preferably, before starting the supply of both liquids, an aqueous solution of an aqueous solution adjusted to a predetermined concentration is charged into the reaction vessel in advance, and then the both liquids are supplied to prevent local pH decrease. It is valid. Regarding the supply amounts of both liquids, to produce barium titanate with a BaZT i ratio of 1.03 to 1.009, which is the target product, the supply amounts of the titanium compound and the barium compound to the reaction system must be adjusted. Strict control is important.
具体的には、 反応容器へ供給する両化合物のモル比を 1. 05〜 1. 10の範 囲に設定し、 両液をこの設定値で定量的に反応容器に供給する。 例えば B aZT i比 1. 003〜 1. 005の未焼成チタン酸バリウム粉末を製造するには、 こ れに応じた両液の合計供給量比、 すなわち (液 IIのバリウム濃度 X供給速度) Z (液 Iのチタン濃度 X供給速度) と、 瞬間の供給量比とを厳密に制御する。  Specifically, the molar ratio of both compounds supplied to the reaction vessel is set in the range of 1.05 to 1.10, and both liquids are quantitatively supplied to the reaction vessel at this set value. For example, in order to produce an unfired barium titanate powder having a BaZT i ratio of 1.003 to 1.005, the total supply ratio of both liquids according to this, that is, (barium concentration of liquid II x supply rate) Z (Titanium concentration X supply rate of liquid I) and instantaneous supply ratio are strictly controlled.
上記割合で、 両液を反応容器に連続的に供給する際、 均一な接触を促進するた めに、 高速撹拌や高圧噴霧接触等の機能を有する予備混合領域を設けても良い。 接触および反応は、 常圧下では 1 00°Cにできるだけ近い温度、 すなわち 80〜 98t:、 圧力下では 1 10〜 1 50°Cで行うのが好ましい。 上記のようにして、反応容器内で液 Iと液 IIとを撹拌下で接触させる。 生成した 固体チタン酸バリゥムを含むスラリー液は、 反応系から連続的に抜き出して別の 熟成容器に移動してもよく (連続反応)、 あるいは反応容器内で反応を終了させた 後、 抜き出しても良い (バッチ反応)。 このようにして生成したチタン酸バリウム は、 スラリー状態で、 撹拌しながら一定時間加熱を行うことで熟成させることが 望ましい。 熟成処理の温度は、 85〜 1 50°Cで行われる。 熟成後、 生成したチ タン酸バリウム粒子と溶媒である水とを、 デカンテーシヨン、 遠心分離、 ろ過等 で分離する。 該反応系から分離されたチタン酸バリウム粉末は、 水洗浄を行い、 付着している未反応の原料化合物やアルカリ成分等を除去する。 なお、 本発明に おける未焼成チタン酸バリウム粉末の製造は、 前記製造方法に限定されるもので はない。 When the two liquids are continuously supplied to the reaction vessel at the above ratio, a premixing region having functions such as high-speed stirring and high-pressure spray contact may be provided in order to promote uniform contact. The contacting and the reaction are preferably carried out at a temperature as close as possible to 100 ° C. under normal pressure, ie 80 to 98 t: 110 to 150 ° C. under pressure. As described above, the solution I and the solution II are brought into contact in the reaction vessel with stirring. The resulting slurry liquid containing solid titanium titanate may be continuously withdrawn from the reaction system and moved to another aging vessel (continuous reaction), or may be withdrawn after the reaction is completed in the reaction vessel. Good (batch reaction). The barium titanate thus produced is desirably aged by heating it for a certain period of time while stirring it in a slurry state. The aging treatment is performed at a temperature of 85 to 150 ° C. After aging, the resulting barium titanate particles and water as a solvent are separated by decantation, centrifugation, filtration, or the like. The barium titanate powder separated from the reaction system is washed with water to remove unreacted raw material compounds, alkali components, and the like attached thereto. The production of the unfired barium titanate powder in the present invention is not limited to the above production method.
上記で得られた反応生成物を、 80〜 250°C、 好ましくは 100〜200°C で乾燥させて本発明の未焼成チタン酸バリウム粉末が得られる。 上記反応生成物 は、 平均粒径が 0. 05〜0. δ ^πι, 球状の立方晶の粒子である。 以上の操作 により、 本発明の未焼成チタン酸バリゥム粉末が得られる。  The reaction product obtained above is dried at 80 to 250 ° C, preferably 100 to 200 ° C, to obtain the unfired barium titanate powder of the present invention. The above reaction products are spherical cubic particles having an average particle diameter of 0.05 to 0.5 δ ^ πι. Through the above operations, the unfired barium titanate powder of the present invention is obtained.
(焼成チタン酸バリウム粉末の製造)  (Production of calcined barium titanate powder)
以下、 本発明の第 2の発明である焼成チタン酸バリゥム粉末の製造例について 説明する。 本発明の焼成チタン酸バリウム粉末は、 前記未焼成チタン酸バリウム 粉末を、 930〜980°C、 より好ましくは 940〜 975 で加熱処理 (本発 明では、 この加熱処理を焼成と表現する。) することで得られる。 焼成の雰囲気は 大気、 真空、 不活性ガス下のいずれでも良いが、 真空下あるいは水蒸気を分圧 0. 1〜0. 4で存在させると、 不純物である塩素分の除去に一層好適である。 該未 焼成チタン酸バリウム粉は、 930〜 980°Cで焼成できる特性を有する。 この ように低い温度で焼結できるため、 加熱時に起き易い粒子成長が防止でき、 小さ なサイズの焼結粉を製造する上で、 極めて好ましい原料である。 なお、 980°C を超えると、 粒子の成長が起こるとともに結晶性が低下する。 また、 930°C未 満では結晶性が向上しない。  Hereinafter, a production example of the fired barium titanate powder according to the second invention of the present invention will be described. The fired barium titanate powder of the present invention is obtained by subjecting the unfired barium titanate powder to a heat treatment at 930 to 980 ° C., more preferably 940 to 975 (this heat treatment is referred to as firing in the present invention). It is obtained by doing. The firing atmosphere may be any of air, vacuum, and inert gas. However, it is more suitable to remove chlorine, which is an impurity, in a vacuum or when water vapor is present at a partial pressure of 0.1 to 0.4. The unfired barium titanate powder has a property of being fired at 930 to 980 ° C. Since sintering can be performed at such a low temperature, particle growth that tends to occur during heating can be prevented, and this is an extremely preferable raw material for producing a small-sized sintered powder. If the temperature exceeds 980 ° C, grain growth occurs and crystallinity decreases. In addition, the crystallinity is not improved below 930 ° C.
該原料粉を 930〜 980°Cで加熱処理すると、 強熱減量が 0. 5重量%以下 の、 正方晶の直方体の焼成チタン酸バリウム粉末が得られる。 さらに、 該焼成温 度において、 結晶内に含有されるナトリウムイオン等、 アルカリ金属分が極めて 有効に除去される点も本発明の特徴である。 これらの結果、 N a等のアルカリ金 属分が低く、 かつ純度が高い微細な焼成チタン酸バリウム粉末が得られるのであ る。焼成されたチタン酸バリゥムは、必要に応じて各種の手段で粉碎処理される。 好ましい粉砕手段としては、 ボールやビーズ等のメディアを用いる粉砕よりも、 粉どうしの接触による粉砕手段、 とりわけ湿式による粉砕手段、 具体的には水等 の媒体の存在下での湿式ジエツトミル等が、 結晶性の維持のために好ましい。 次に、 本発明の実施例を説明して本発明の効果をより明らかにする。 なお、 以 下の実施例および比較例における各物性および性能の測定は、 以下の方法によつ て測定した。 When the raw material powder is heat-treated at 930 to 980 ° C, a tetragonal rectangular parallelepiped fired barium titanate powder having a loss on ignition of 0.5% by weight or less is obtained. Further, the firing temperature Another feature of the present invention is that alkali metals such as sodium ions contained in the crystals are very effectively removed. As a result, a fine baked barium titanate powder having a low purity and a low alkali metal content such as Na can be obtained. The calcined barium titanate is pulverized by various means as necessary. Preferred pulverizing means include pulverizing means by contact between powders, particularly wet pulverizing means, specifically wet pulverizing means in the presence of a medium such as water, rather than pulverizing using media such as balls and beads. It is preferable for maintaining crystallinity. Next, examples of the present invention will be described to further clarify the effects of the present invention. In addition, the measurement of each physical property and performance in the following Examples and Comparative Examples was measured by the following methods.
•焼結密度: アルキメデスの原理に基づき焼結密度を求めた。  • Sintering density: The sintering density was determined based on Archimedes' principle.
•形状:粉の形態を透過電子顕微鏡 (TEM) および走査電子顕微鏡 (S EM) により解析した。  • Shape: The morphology of the powder was analyzed by transmission electron microscope (TEM) and scanning electron microscope (SEM).
•平均粒径: B ET比表面積から求めた。  • Average particle size: determined from the BET specific surface area.
• B a/T i比:蛍光 X線分析により B a/T iの原子比 (B aZT i比) を求 めた。  • Ba / Ti ratio: The atomic ratio of Ba / Ti (BaZTi ratio) was determined by X-ray fluorescence analysis.
•強熱減量: 1 1 0 0°C、 3 0分加熱後の重量減少により求めた。  • Loss on ignition: Determined by weight loss after heating at 110 ° C for 30 minutes.
[実施例 1 ]  [Example 1]
(未焼成 B aZT i粉末の製造)  (Manufacture of unfired BaZT i powder)
撹拌装置を備えた 2リットルの S US製反応容器に、 0. 9 2規定の N a OH 水溶液を投入し、 9 0°Cに保持した。 次いで、 4 Ot:に加熱保持した T i C 1 4 水溶液 (T i C 1 4濃度: 0. 4 7 2モル/ 1 ) と、 9 5°Cに保持した B a C 1 2 /N a〇H水溶液 (B a C 1 2濃度: 0. 2 7 8モル/ 1 、 N a OH濃度: 2. 7 3モルノ 1 ) とを、 T i C 1 4水溶液: 7 7 c c /分、 B a C 1 2/N a OH水溶 液: 1 5 4 c c Z分の流量で、反応容器内に連続的に供給し、撹拌しながら 9 0°C に保持した。 供給した B a C 1 2/Ύ i C 1 4のモル比は 1. 1 8 0であった。 次いで、 生成したチタン酸バリウムを含むスラリーを熟成槽に移送し、撹拌下、 9 で 6 0分間保持した。 この後、 アンモニア水を添加し、 デカンテーシヨン にて上澄みと沈殿物を分離し、 さらに遠心分離を行い、 チタン酸バリウム粉末を 回収した。 次に、 回収したチタン酸バリウム粉末をアンモニア水 (PH9) で常 温にて洗浄した後、 水で洗浄し、 その後、 真空雰囲気下において 200°Cで加熱 することにより乾燥し、 B aZT i比が 1. 003の未焼成チタン酸バリウム粉 末 (試料 No. BT- 1) を得た。 A 0.92N aqueous NaOH solution was charged into a 2-liter reaction vessel made of SUS equipped with a stirrer and kept at 90 ° C. Then, 4 Ot: the heat retained T i C 1 4 aqueous solution (T i C 1 4 concentration: 0.4 7 2 mol / 1) and, 9 5 ° and held at C B a C 1 2 / N A_〇 H solution (B a C 1 2 concentration: 0. 2 7 8 mol / 1, N a OH concentration: 2.7 3 Moruno 1) and, T i C 1 4 aqueous solution: 7 7 cc / min, B a C 1 2 / N a OH aqueous solution: at 1 5 4 cc Z min of the flow rate, and continuously fed into the reaction vessel and held with stirring 9 0 ° C. The molar ratio of the supplied B a C 1 2 / Ύ i C 1 4 1. was 1 8 0. Next, the slurry containing the produced barium titanate was transferred to an aging tank, and kept at 9 for 60 minutes with stirring. Thereafter, ammonia water was added, the supernatant and the precipitate were separated by decantation, and further centrifuged to separate the barium titanate powder. Collected. Next, the recovered barium titanate powder is washed with ammonia water (PH9) at room temperature, washed with water, and then dried by heating at 200 ° C. in a vacuum atmosphere to obtain a BaZT i ratio. However, unfired barium titanate powder (Sample No. BT-1) of 1.003 was obtained.
[実施例 2]  [Example 2]
実施例 1の B a C 12液の供給速度を 156. 0 c c/分で供給した以外は、 実施例 1と同じ条件で反応を行い、 次いで、 実施例 1と同じ条件で洗净と乾燥を 行った。 供給した B a C 12/T i C 14のモル比は 1. 1 93であった。 その結 果、 B a/T i比が 1. 004の未焼成チタン酸バリウム粉末 (試料 N o. BT 一 2) を得た。 該粉末中の Na金属含有量は 1 90 p pmであった。 該粉末 BT 一 2の電子顕微鏡写真を、 第 1図に示す。 Drying except that supplying the feed rate of B a C 1 2 solution of Example 1 in 156. 0 cc / min, the reaction was carried out in the same conditions as in Example 1, then, a washing净under the same conditions as in Example 1 Was conducted. The molar ratio of the supplied B a C 1 2 / T i C 1 4 1. was 1 93. As a result, an unfired barium titanate powder having a Ba / Ti ratio of 1.004 (sample No. BT-12) was obtained. The Na metal content in the powder was 190 ppm. An electron micrograph of the powder BT-12 is shown in FIG.
[実施例 3]  [Example 3]
T i C 14水溶液 (T i C 14濃度: 0. 600モル 1 ) と、 B a C 12/N a OH水溶液 (B aC 12濃度: 0. 335モル Z 1、 Na〇H濃度: 3. 0モ ル Z 1 ) とを、 T i C 14水溶液 100 c cZ分、 B aC 12/NaOH水溶液 2 1 7 c c/分の流量で、 実施例 1と同様にして反応容器内に連続的に供給し、 撹 拌しながら 90°Cに保持した。供給した原料化合物の B a C 12/Ί i C 14のモ ル比は、 1. 2 1 2であった。 その後の洗浄と乾燥は、 実施例 1と同じ条件で行 つた。 その結果、 8 & 丁 1が1. 006の未焼成チタン酸バリウム粉末 (試料 No. BT- 3) を得た。 T i C 1 4 aqueous solution (T i C 1 4 concentration: 0.600 mol 1) and, B a C 1 2 / N a OH solution (B aC 1 2 concentration: 0.335 mol Z 1, Na_〇_H concentration : 3. 0 molar Z 1) and, T i C 1 4 aqueous 100 c cZ min, at B aC 1 2 / NaOH aqueous 2 1 7 cc / min flow rate, the reaction vessel in the same manner as in example 1 , And maintained at 90 ° C with stirring. Molar ratio of B a C 1 2 / Ί i C 1 4 of the supplied raw material compound 1. was 2 1 2. Subsequent washing and drying were performed under the same conditions as in Example 1. As a result, an unfired barium titanate powder (sample No. BT-3) having 1.06 in & 8 was obtained.
[実施例 4]  [Example 4]
T i C 14水溶液と B a C 12/N a〇H水溶液とを反応容器内に連続的に供 給する際の T i C 14/B a C 12のモル比を 1. 230とした以外は、 実施例 3 と同様にして未焼成チタン酸バリウム粉末 (試料 No. BT— 4) を得た。 T i C 1 4 solution and B a C 1 2 / N A_〇_H solution and T i C 1 when continuously subjected feeding into the reactor the 4 / B a C 1 2 molar ratio of 1.230 An unfired barium titanate powder (sample No. BT-4) was obtained in the same manner as in Example 3, except that
[比較例 1]  [Comparative Example 1]
T i C 14水溶液と B a C 12/N a OH水溶液とを反応容器内に連続的に供 給する際の T i C 14/B a C 12のモル比を 1. 160とした以外は、 実施例 1 と同様にしてチタン酸バリウム粉末 (試料 No. BT- 5) を得た。 この粉末: No. BT— 5の Na含有量は、 220 p pmであった。 [比較例 2] And T i C 1 4 solution and B a C 1 2 / N a OH solution and the time of continuously subjected feeding into the reaction vessel T i C 1 4 / B a C 1 2 molar ratio of 1.160 A barium titanate powder (sample No. BT-5) was obtained in the same manner as in Example 1 except for the above. The Na content of this powder: No. BT-5 was 220 ppm. [Comparative Example 2]
T i C 14水溶液と B a C 12/N a〇H水溶液とを反応容器内に連続的に 供給する際の T i C 14/B a C 12のモル比を 1. 250とした以外は、 実施例 1と同様にして比較例 2のチタン酸バリウム粉末(試料 No. BT— 6)を得た。 And T i C 1 4 solution and B a C 1 2 / N A_〇_H T i C 1 4 / B a C 1 2 molar ratio 1. 250 when an aqueous solution is continuously supplied to the reaction vessel A barium titanate powder of Comparative Example 2 (Sample No. BT-6) was obtained in the same manner as in Example 1 except for performing the above.
[比較例 3]  [Comparative Example 3]
T i C 14水溶液と B a C 12/N a O H水溶液とを反応容器内に連続的に供 給する際の T i C 14/B a C 12のモル比を 1. 320とした以外は、 実施例 1 と同様にして未焼成チタン酸バリウム粉末 (試料 No. BT- 7) を得た。 この 粉末: No. BT— 7の Na含有量は、 1 90 p pmであった。 And T i C 1 4 solution and B a C 1 2 / N a OH solution and the time of feeding continuously subjected to a reaction container T i C 1 4 / B a C 1 2 molar ratio of 1.320 An unfired barium titanate powder (sample No. BT-7) was obtained in the same manner as in Example 1 except for the above. The Na content of this powder: No. BT-7 was 190 ppm.
上記実施例 1〜 4、 比較例 5〜 7で得られた未焼成チタン酸バリゥム粉末の性 状を第 1表に示す。  Table 1 shows the properties of the unfired barium titanate powders obtained in Examples 1 to 4 and Comparative Examples 5 to 7.
第 1表  Table 1
Figure imgf000013_0001
Figure imgf000013_0001
(焼成チタン酸バリウム粉末の製造)  (Production of calcined barium titanate powder)
[実施例 5〜8]、 [比較例 4〜7]  [Examples 5 to 8], [Comparative Examples 4 to 7]
第 1表の未焼成チタン酸バリウム粉末: No. BT— 1、 BT- 2, BT- 5 および BT— 7を、 930〜 1 100 、 空気雰囲気下で 1. 5時間焼成した。 次いで、 得られた焼成粉 1 00グラムあたりアンモニア水 1. 5 c cを加えて湿 式粉碎し、 その後、 ろ過で水を分離し、 さらに 1 20°Cに加熱して乾燥して、 第 2表に示す実施例 5〜 8、 比較例 4〜 7の焼成チタン酸バリウム粉末を得た。 こ れら焼成チタン酸バリウム粉末の試料番号ならびに性状を、 第 2表および第 3表 に示す。また、実施例 7で得られた焼成粉末: CBT— 2 Bの電子顕微鏡写真を、 第 2図に示す。 第 2図によれば、 粒子形状が立方体もしくは直方体であることが 明らかである。 第 2表 Unfired barium titanate powder in Table 1: No. BT-1, BT-2, BT-5, and BT-7 were fired in an air atmosphere at 930 to 1100 for 1.5 hours. Next, 1.5 cc of aqueous ammonia was added per 100 g of the obtained calcined powder, and the mixture was wet-pulverized. After that, water was separated by filtration, and further heated to 120 ° C and dried. The fired barium titanate powders of Examples 5 to 8 and Comparative Examples 4 to 7 shown in Table 1 were obtained. Tables 2 and 3 show the sample numbers and properties of these calcined barium titanate powders. FIG. 2 shows an electron micrograph of the calcined powder: CBT-2B obtained in Example 7. According to FIG. 2, it is clear that the particle shape is a cube or a rectangular parallelepiped. Table 2
Figure imgf000014_0001
Figure imgf000014_0001
第 3表 Table 3
Figure imgf000014_0002
Figure imgf000014_0002
第 2表の各焼成粉末の結晶性および誘電特性を、 第 3表に示している。  Table 3 shows the crystallinity and dielectric properties of each fired powder in Table 2.
第 3表に示した結晶性(テトラゴナリティー)尺度としての X ( t e t ) とは、 以下の方法で求めた値であり、 これが 1. 0に近いほど結晶性が高いことを意味 する。  X (te t) as a crystallinity (tetragonality) scale shown in Table 3 is a value obtained by the following method. The closer this value is to 1.0, the higher the crystallinity.
[結晶性 X ( t e t )]  [Crystalline X (t e t)]
結晶の ( 200) 面と ( 002 ) 面の X線回折ピーク強度を、 それぞれ I (2 00)、 I (002) とし、 両ピークの谷間のラビン強度を I (r a v i n e) と し、 X ( t e t ) を以下の式で求める。  The X-ray diffraction peak intensities of the (200) and (002) planes of the crystal are I (200) and I (002), respectively, and the Rabin intensity between the valleys of both peaks is I (ravine), and X (tet ) Is calculated by the following equation.
X ( t e t ) = 1 - 1 (r a v i n e) / {( I ( 200) II ( 002 )} [結晶性 cZa比]  X (t e t) = 1-1 (r av i n e) / {(I (200) II (002)} [crystalline cZa ratio]
正方晶の C軸、 a軸の長さを、 X線回折パターンの (002) , ( 200 ) 回 折ピーク位置から算出し、 その比率 c/ a比を以下の式で求める。 The lengths of the tetragonal C-axis and a-axis are determined by (002) and (200) times of the X-ray diffraction pattern. It is calculated from the folding peak position, and the ratio c / a ratio is calculated by the following formula.
c Z a = c軸長さノ a軸長さ  c Z a = c-axis length a-axis length
第 2表およびだ第 3表から明らかなように、 本発明の未焼成粉末 BT— 1 , B T一 2を 930〜980°Cで焼成すると、 結晶性が高く、 比誘電率が大きい焼成 粉末が得られる。 さらには、 得られる焼成粉末中の N a分が大幅に低下すること が明らかである。 一方、 比較例 6および比較例 7のように、 8 & 丁 1が1. 0 0 1や 1. 0 17の未焼成チタン酸バリウム粉末を 950°Cで焼成して得た焼成 粉は、 実施例に比べて結晶性が十分でなかった。  As is clear from Table 2 and Table 3, when the unfired powders BT-1 and BT-12 of the present invention are fired at 930 to 980 ° C, a fired powder having high crystallinity and a large relative dielectric constant is obtained. can get. Furthermore, it is clear that the Na content in the obtained fired powder is significantly reduced. On the other hand, as in Comparative Example 6 and Comparative Example 7, the calcined powder obtained by calcining the unfired barium titanate powder of 1.01 and 1.017 at 950 ° C. The crystallinity was not sufficient as compared with the example.
(焼結体の製造)  (Manufacture of sintered body)
[実施例 9 ]  [Example 9]
実施例 7の B aZT i比 1. 004の焼成粉 (No. CBT- 2 B) に MnC o 3, MgO, Mg C o 3, C a C o 3 , S i O 2および希土類の酸化物を添加 し、 これを 1 300°Cで 2時間、 還元性雰囲気下で加熱処理した後、 1 000°C で 10時間、 窒素ガス流通のもとで焼結して、 実施例 9の焼結体を得た。  MnCo3, MgO, MgCo3, CaCo3, SiO2 and a rare earth oxide were added to the calcined powder (No. CBT-2B) having a BaZTi ratio of 1.004 in Example 7. The mixture was heated at 1300 ° C for 2 hours in a reducing atmosphere, and then sintered at 1,000 ° C for 10 hours under a nitrogen gas flow to obtain a sintered body of Example 9. I got
[比較例 8]  [Comparative Example 8]
実施例 9の試料: No. CBT- 2 Bの代わりに、比較例 6の B a/T i比 1. 00 1の焼成チタン酸バリウム粉 (No. CBT- 5) を用い、 同様にして比較 例 8の焼結体を得た。  Sample of Example 9: Instead of No. CBT-2B, calcined barium titanate powder (No. CBT-5) having a Ba / Ti ratio of 1.001 in Comparative Example 6 was used, and the comparison was performed in the same manner. A sintered body of Example 8 was obtained.
上記実施例 9および比較例 8の焼結体の誘電特性 (比誘電率) を、 ヒユーレツ トパッカ一ド社製の L CRメーター (モデル: 4284 A型) を用い、 周波数: 1 ΚΗζ、 印加電圧: I Vの条件で測定した。 その測定結果を、 第 4表に示す。  The dielectric properties (relative permittivity) of the sintered bodies of Example 9 and Comparative Example 8 were measured using an LCR meter (model: 4284A type) manufactured by Hewlett-Packard Company, frequency: 1 mm, and applied voltage: The measurement was performed under the conditions of IV. Table 4 shows the measurement results.
第 4表  Table 4
Figure imgf000015_0001
Figure imgf000015_0001
第 4表から明らかなように、 本発明の焼成チタン酸バリゥム粉末を用いて製造し た焼結体 (実施例 9) は、 広い温度領域にわたって比誘電率が高く、 積層セラミ ックコンデンザの誘電体層形成材料としてきわめて好適であることが確かめられ - ΐ- As is apparent from Table 4, the sintered body (Example 9) manufactured using the fired barium titanate powder of the present invention has a high relative dielectric constant over a wide temperature range, and has a high dielectric constant. Proved to be very suitable as a forming material -ΐ-
l.90/Z0df/X3d S 簡 £0 OAV l.90 / Z0df / X3d S Simple £ 0 OAV

Claims

請 求 の 範 囲 The scope of the claims
1. チタン化合物とバリゥム化合物とを液相反応させて得られた、平均粒径が 0. 05〜0. 5 zm、 8 &/ 丁 1原子比が1. 003〜: L. 009であることを特 徴とする未焼成チタン酸バリゥム粉末。 1. The average particle size obtained by subjecting a titanium compound and a vacuum compound to liquid phase reaction is 0.05-0.5 zm, and the atomic ratio of 8 & / c is 1.003-: L. 009 Unfired barium titanate powder characterized by:
2. 液相反応で得られたチタン酸バリウムを 930〜980°Cで焼成したもので あって、 平均粒径が 0. 05〜0. 5 ^m、 B aZT i原子比が 1. 003〜 1. 006、 強熱減量が 0. 5重量%以下の、 正方晶の焼成チタン酸バリウム粉末。 2. Barium titanate obtained by the liquid phase reaction is calcined at 930 to 980 ° C, the average particle size is 0.05 to 0.5 ^ m, and the BaZT i atomic ratio is 1.003 to 1. 006. A tetragonal calcined barium titanate powder having a loss on ignition of 0.5% by weight or less.
3. 平均粒径が 0. 07〜0. 4 m、 8 &7丁 1原子比が1. 003〜 1. 0 05、 強熱減量が 0. 3重量%以下、 アルカリ金属含有量が 50 p pm以下であ る請求項 2に記載の焼成チタン酸バリゥム粉末。 3. The average particle size is 0.07 ~ 0.4m, 8 & 7 1 atomic ratio is 1.003 ~ 1.005, loss on ignition is 0.3wt% or less, alkali metal content is 50ppm 3. The fired barium titanate powder according to claim 2, wherein
4. (a) チタン化合物とバリウム化合物とを液相反応させて、 平均粒径が 0.0 5〜0. 5 ΓΠ、 88/丁 1原子比が1. 003〜 1. 009の立方晶の未焼成 チタン酸バリゥム粉末を製造する第 1の工程と、  4. (a) Liquid phase reaction between titanium compound and barium compound, unfired cubic crystal with an average particle size of 0.05 to 0.5ΓΠ, 88 / choice and an atomic ratio of 1.003 to 1.009 A first step of producing a barium titanate powder;
(b) 該未焼成チタン酸バリウムを 930〜980°Cで焼成する第 2の工程よ りなることを特徴とする、 平均粒径が 0. 05〜0. 5 m、 B aZT i原子比 が 1. 003〜1. 006、 強熱減量が 0. 5重量%以下の、 正方晶の焼成チタ ン酸バリウム粉末の製造方法。  (b) a second step of firing the unfired barium titanate at 930 to 980 ° C., wherein the average particle size is 0.05 to 0.5 m and the BaZT i atomic ratio is 1. 003 to 1.006, a method for producing a tetragonal calcined barium titanate powder having a loss on ignition of 0.5% by weight or less.
5. 前記第 2の工程の焼成後に湿式粉砕を行うことを特徴とする請求項 4に記載 の焼成チタン酸バリゥム粉末の製造方法。  5. The method for producing a fired barium titanate powder according to claim 4, wherein wet pulverization is performed after the firing in the second step.
6. 前記焼成チタン酸バリウム粉末が、 平均粒径 0. 07〜0. 4 m、 B aZ 丁 1原子比1. 003〜 1. 005重量%以下、 アルカリ金属含有量が 40 p p m以下であることを特徴とする請求項 4または 5に記載の焼成チタン酸バリゥム 粉末の製造方法。  6. The calcined barium titanate powder has an average particle diameter of 0.07 to 0.4 m, a BaZ ratio of 1.003 to 1.005 wt% or less, and an alkali metal content of 40 ppm or less. The method for producing a calcined barium titanate powder according to claim 4 or 5, wherein:
PCT/JP2002/006719 2001-07-04 2002-07-03 Barium titanate powder and method for production thereof WO2003004415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003510393A JPWO2003004415A1 (en) 2001-07-04 2002-07-03 Barium titanate powder and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-203443 2001-07-04
JP2001203443 2001-07-04

Publications (1)

Publication Number Publication Date
WO2003004415A1 true WO2003004415A1 (en) 2003-01-16

Family

ID=19040079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006719 WO2003004415A1 (en) 2001-07-04 2002-07-03 Barium titanate powder and method for production thereof

Country Status (2)

Country Link
JP (1) JPWO2003004415A1 (en)
WO (1) WO2003004415A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156450A (en) * 2004-11-25 2006-06-15 Kyocera Corp Laminated ceramic capacitor and its manufacturing method
WO2006101059A1 (en) * 2005-03-22 2006-09-28 Nippon Chemical Industrial Co., Ltd Dielectric ceramic-forming composition and dielectric ceramic material
JP2007063056A (en) * 2005-08-30 2007-03-15 Tdk Corp Method of manufacturing dielectric ceramic composition
JP2007238407A (en) * 2006-03-10 2007-09-20 Tdk Corp Ceramic powder and dielectric paste obtained by using the same, laminated ceramic electronic component, and method for manufacturing the same
JP4965435B2 (en) * 2005-03-25 2012-07-04 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016372B2 (en) * 1980-11-07 1985-04-25 義治 尾崎 Manufacturing method of barium titanate (BaTio↓3)
JPH0873219A (en) * 1994-09-08 1996-03-19 Murata Mfg Co Ltd Production of powdery ceramic
JP2000344519A (en) * 1999-06-02 2000-12-12 Toho Titanium Co Ltd Method for manufacturing barium titanate
JP2002060219A (en) * 2000-08-11 2002-02-26 Murata Mfg Co Ltd Barium titanate fine powder, calcium-modified barium titanate fine powder and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016372B2 (en) * 1980-11-07 1985-04-25 義治 尾崎 Manufacturing method of barium titanate (BaTio↓3)
JPH0873219A (en) * 1994-09-08 1996-03-19 Murata Mfg Co Ltd Production of powdery ceramic
JP2000344519A (en) * 1999-06-02 2000-12-12 Toho Titanium Co Ltd Method for manufacturing barium titanate
JP2002060219A (en) * 2000-08-11 2002-02-26 Murata Mfg Co Ltd Barium titanate fine powder, calcium-modified barium titanate fine powder and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156450A (en) * 2004-11-25 2006-06-15 Kyocera Corp Laminated ceramic capacitor and its manufacturing method
JP4511323B2 (en) * 2004-11-25 2010-07-28 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
WO2006101059A1 (en) * 2005-03-22 2006-09-28 Nippon Chemical Industrial Co., Ltd Dielectric ceramic-forming composition and dielectric ceramic material
US7767608B2 (en) 2005-03-22 2010-08-03 Nippon Chemical Industrial Co., Ltd. Dielectric ceramic-forming composition
JP4965435B2 (en) * 2005-03-25 2012-07-04 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP2007063056A (en) * 2005-08-30 2007-03-15 Tdk Corp Method of manufacturing dielectric ceramic composition
JP4706398B2 (en) * 2005-08-30 2011-06-22 Tdk株式会社 Method for producing dielectric ceramic composition
JP2007238407A (en) * 2006-03-10 2007-09-20 Tdk Corp Ceramic powder and dielectric paste obtained by using the same, laminated ceramic electronic component, and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2003004415A1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
Ciftci et al. Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles
Boulos et al. Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics
US5900223A (en) Process for the synthesis of crystalline powders of perovskite compounds
US5445806A (en) Process for preparing fine powder of perovskite-type compound
US20070202036A1 (en) Production Of Barium Titanate Compounds
JP5361190B2 (en) Fine powder lead zirconate titanate, titanium zirconate hydrate, zirconium titanate and process for producing the same
US5009876A (en) Method of manufacturing barium titanate BaTiO3
Lee et al. Effects of KOH/BaTi and Ba/Ti ratios on synthesis of BaTiO3 powder by coprecipitation/hydrothermal reaction
WO2000035811A1 (en) Perovskite type composite oxide containing titanium
Katayama et al. Low‐Temperature Synthesis of Ba (Mg1/3Ta2/3) O3 Ceramics from Ba‐Mg‐Ta Alkoxide Precursor
KR20150084021A (en) Coated barium titanate particulate and production method for same
JP2726439B2 (en) Method for producing ceramic powder having perovskite structure
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
US7001585B2 (en) Method of making barium titanate
KR101158953B1 (en) Method for producing composition
JP5734741B2 (en) Method for producing crystalline titanate and crystalline titanate
JP3319807B2 (en) Perovskite-type compound fine particle powder and method for producing the same
KR20020068792A (en) Preparation of the high quality Barium-Titanate based powder
WO2003004415A1 (en) Barium titanate powder and method for production thereof
Her et al. Controlled double-jet precipitation of uniform colloidal crystalline particles of Zr-and Sr-doped barium titanates
JPH0246531B2 (en)
JP3772354B2 (en) Manufacturing method of ceramic powder
Golubko et al. Preparation of barium titanate and related materials by the alkoxide-hydroxide route
JP5142468B2 (en) Method for producing barium titanate powder
JPS63236713A (en) Production of inorganic fine powder of perovskite-type compound

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2003510393

Country of ref document: JP

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: JP

Ref document number: 2003 510393

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase