技術分野
本発明は、積層セラミックコンデンサやPTCサーミスタ等の電子部品の誘電体材料として用いられる誘電特性に優れた、改良されたチタン酸バリウム粉末およびその製造方法に関する。
背景技術
チタン酸バリウムは積層セラミックコンデンサ等の誘電体材料等、電子材料に幅広く用いられている。最近では、コンデンサーの多層化、小型化、大容量化のために、誘電体層形成の材料であるチタン酸バリウム粒子の粒径は可能な限り小さく、具体的には0.5μm以下、好ましくは0.4μm以下で、結晶性が高く、しかもNaイオンやKイオン等のアルカリ金属成分の含有量が少ないチタン酸バリウム材が要望されている。
固相法によって得られるチタン酸バリウムは、粒径が数μmと大きく、粉砕しても、粒度分布が広いといった短所がある。そのため、水熱合成法、低温直接合成法、ゲルゾル法、蓚酸法等の各種液相法が、多くの文献で提案されている。液相法はコスト高であるが、粒径が1μm以下の球状微粒子が得やすいといった利点がある一方、結晶性が高くなりにくく、しかも、生成物中に混入するとNa等のアルカリ金属分を除去することが難しいといった問題がある。
例えば、特開平5−330824号公報には、チタン化合物とバリウム化合物とをBa/Ti比0.95〜1.05に混ぜ、これに過酸化水素を添加して湿式反応させることにより、二次粒子径0.2〜5μmの立方晶チタン酸バリウム粉末を得た後、900〜1300℃で仮焼することで、真球状のチタン酸バリウムが得られることが開示されている。小さな粒子径のチタン酸バリウムが得られるという液相法の良さを基本にして、低温焼成により粒径0.1〜0.2μmの球状焼成チタン酸バリウム粉末の製法例が数多く紹介されている。
特開昭60−81023号公報や同60−90825号公報には、含水酸化チタンと水酸化バリウムを、希薄水溶液中、60〜110℃で反応させ、得られた0.1〜0.2μmのチタン酸バリウム粉を800℃で仮焼し、次いで錠剤にして1200℃焼成することで、相対密度93%、粒子径約0.5μmの焼成チタン酸バリウム材を製造した例が報告されている。
また、液相反応で得られたチタン酸バリウム粉からNa等のアルカリ金属を除去するため、特開平5−178619には、反応生成物を300℃以上、好ましくは400〜700℃にて加熱処理後、pH7〜10の水にて洗浄し、ろ過分離する方法が紹介されている。また、特開昭61−146713には、水熱反応で得たチタン酸バリウムを熱水で洗浄し、粉末を800℃で焼成し、その後酢酸水で洗浄し、さらに純水洗浄する方法が紹介されている。しかしながら、水洗浄や熱水洗浄でも、Na分は容易に取り除けない。また、過酷な洗浄では、焼成したチタン酸バリウムであっても、水洗浄時にバリウムの溶出が起こる危険がある。ちなみにJ.Mater.Res.,Vol.10,No.2,p.3106には、液相反応で得られるチタン酸バリウムにNa分が400ppm含有されていたという例が報告されている。
以上のように、液相法の製法は数多く報告されているが、Ba/Ti比を厳密に制御することにはあまり注目されていない。また、Ba/Ti比に配慮しないとしても、実際面では平均粒径0.5μm以下で、結晶性が高いチタン酸バリウム粉末を、安定的に製造することは難しいのが実情である。さらに、不純物として存在するNa分を除去することが困難であった。
発明の開示
以上の説明から明らかなように、高結晶、高純度、高誘電率、平均粒径0.05〜0.5μmの、正方晶の焼成チタン酸バリウム粉末を液相法で製造することが課題であった。なかでもBa/Ti比の制御と低温焼成の達成が最大の技術課題であった。したがって本発明の目的は、
1)結晶性が高い焼成チタン酸バリウム粉を製造するための原料体を提供すること、
2)結晶性が高く、誘電性が高い焼成チタン酸バリウム粉末を提供すること、
3)Na等のアルカリ金属成分が少ない焼成チタン酸バリウム粉末を提供すること、
4)該焼成粉末の液相法による製造方法を提供すること、
にある。
なお、本発明で言う未焼成チタン酸バリウムとは、合成で得られたチタン酸バリウムを乾燥させた程度の、いわゆる生材(グリーン)を言い、一方、焼成チタン酸バリウムとは、該生材を一層高い温度、すなわち少なくとも500℃以上、980℃以下の加熱処理(仮焼とも言う)を行ったものを言う。なお、これには解砕あるいは解砕と洗浄処理を行ったものを含む。本発明の焼成チタン酸バリウム粉末は、適宜に他成分と混合して、通常行われている焼成温度(およそ1100〜1300℃)で焼結され、目的の誘電体材料形成に供される。
本発明者らは、上記目的を達成するため鋭意研究した結果、
(i)液相反応によってBa/Ti原子比(以下特にことわらない限りBa/Ti比で表す。)を極く狭い範囲、具体的には1.003〜1.009、とりわけ1.003〜1.005に制御したチタン酸バリウム粉末を得て、これを焼成すると結晶性の高い焼成チタン酸バリウムが得られること、
(ii)そして、焼成が、従来知られている温度よりもかなり低い温度で可能であること、それにより粒子の成長が抑制でき、平均粒径が0.5μm以下はもちろんのこと、0.3〜0.1μmのような極めて微細な、特定のBa/Ti比を持った、正方晶の焼成チタン酸バリウム粉末が得られること、
(iii)そして、その焼成の過程でNa分が極めて効果的に低減できること、(iv)得られた焼成粉末は、極めて高い結晶性を有し、そのため極めて優れた誘電特性を発揮することを見い出し、本発明を完成するに至った。
以下、本発明の内容を説明する。
本発明における第1の発明は、チタン化合物とバリウム化合物とを液相反応させて得られた焼成されていない状態のチタン酸バリウム粉末であって、その平均粒径(ここでは350℃で30分間脱気して測定したBET法による粒径を言う。)が0.05〜0.5μm、Ba/Ti比が1.003〜1.009であることを特徴とする結晶構造が立方晶の未焼成チタン酸バリウム粉末である。該未焼成チタン酸バリウム粉末は、以下に述べる第2の発明のチタン酸バリウム粉末の製造用原料粉として好適である。
その第2の発明は、平均粒径が0.05〜0.5μm、Ba/Ti比が1.003〜1.006、強熱減量が0.5重量%以下の、結晶構造が正方晶の焼成したチタン酸バリウム粉末である。
さらに、本発明の第3の発明は、高結晶かつ微細なチタン酸バリウム粉末の製造方法に係わり、(i)チタン化合物とバリウム化合物とをアルカリ水溶液中で液相反応させて、平均粒径が0.05〜0.5μm、Ba/Ti比が1.003〜1.009の、結晶構造が立方晶の未焼成チタン酸バリウム粉末を製造する第1の工程と、(ii)該未焼成チタン酸バリウム粉末を、930〜980℃で焼成する第2の工程よりなることを特徴とする、(iii)平均粒径が0.05〜0.5μm、Ba/Ti比が1.003〜1.006、強熱減量が0.5重量%以下の、結晶構造が正方晶の焼成チタン酸バリウム粉末の製造方法である。
なお、本発明で言う強熱減量(イグニッションロスとも言い、Lで表す)とは、当該チタン酸バリウム粉末を大気中で110±5℃に60分間保持した後の重量(W1)とし、この後、大気中にて1100℃まで毎分10℃で昇温し、1100±30℃に60分間保持した後の重量(W2)とし、以下の式で求めた値である。
L(重量%)=[(W1−W2)/W1]×100
また、本発明のチタン酸バリウム粉末の形状表示としての立方体とは、電子顕微鏡で観察されるもので、粒子の外観が立方体、直方体、あるいは個々の粒子の角が少し欠けた擬似立方体、あるいは擬似直方体を意味する。
発明を実施するための最良の形態
以下、本発明の実施の形態を説明する。
まず、第1の発明の「未焼成チタン酸バリウム粉末」は、チタン化合物とバリウム化合物とを液相反応して得られたチタン酸バリウム粉末であり、その特徴は、(a)平均粒径が0.05〜0.5μm、取扱いの容易性を考えると、好ましくは0.07〜0.4μmの微細な粉末であって、(b)Ba/Ti比は1.003〜1.009、結晶性すなわち誘電性の面から、好ましくは1.003〜1.007、とくに好ましくは1.004〜1.006の、極めて1.000に近く、しかしバリウム原子数がチタン原子数に比べて極くわずか多い組成を有するものである。Ba/Ti比が1.003未満あるいは1.009を超えると、それで作られる焼成後の焼成チタン酸バリウム粉末は、結晶性が劣る。焼成粉の結晶性を一層優れたものにするには、上記のとおりBa/Ti比は1.003〜1.007、より好ましくは1.003〜1.006である。該未焼成チタン酸バリウム粉末は、乾燥を主目的にした250℃以下の加熱処理を行ったものを包含する。
このようなBa/Ti比を有する未焼成チタン酸バリウム粉末(すなわち焼成に供される原料粉)から、以下に述べる第2の発明である「焼成チタン酸バリウム粉末」が得られる。すなわち、前記特定の未焼成チタン酸バリウム粉末は、930〜980℃、とりわけ930〜970℃で加熱処理することにより、後述するように極めて結晶性の高い焼成チタン酸バリウム粉末が得られる。930℃未満では立方晶の結晶が得られず、980℃を超えると粒子成長が起こる。さらに、本発明の未焼成チタン酸バリウム粉が有する特徴となる性質として、この温度範囲で焼成することにより、含有されているNa等のアルカリ金属分が極めて効果的に除去できる点に有る。
次に、第2の発明である焼成チタン酸バリウム粉末は、平均粒径が0.05〜0.5μmという極めて微細な粒子でありながら極めて高い結晶性を有するものであり、その特徴は、Ba/Ti比が1.003〜1.006、好ましくは1.003〜1.005という、バリウム原子の割合がチタン原子より極くわずかに多く、しかも限られた範囲にあり、その結晶構造は正方晶であり、また、電子顕微鏡により観察される形状が、角型すなわち直方体あるいは立方体をした結晶性の高い微粒の焼成粉末である。
本発明のさらに好ましい態様は、前記に加えて、焼成チタン酸バリウム粉末の強熱減量値(L)が0.5重量%以下、好ましくは0.4重量%以下、とくに好ましくは0.3重量%以下になっている点である。本発明の焼成チタン酸バリウム粉末は、0.5μm以下の微粒子でありながら、結晶性(テトラゴナリティーと言う)を表す尺度としてのC/a比(正方晶のC軸長さ/a軸長さの比)が、1.009以上と極めて高い結晶性を有している点が特徴である。しかも、そのBET比表面積は、粒径0.4μmのものでおよそ1.5〜2.5m2/g、0.2μmのものでは3.5〜5.0m2/g、0.1μmのものでも8〜10m2/gと、相対的に小さい。さらに、1100℃まで加熱した場合の強熱減量値(L)は、小さな粒子であるにもかかわらず0.5重量%という極めて熱的に安定な結晶構造を有する。また、粒子形状は立方体または直方体であって、通常知られている球状あるいはじゃがいも状のものとは異なる形状をもっている。これらは明らかに結晶性が優れていることを示している。さらに優れた点は、液相法で得られたものでありながら、アルカリ金属成分含有量が50ppm以下はもとより、40ppm以下の高純度であることである。このような微細な焼成粉末でありながら、結晶性が高く、立方体乃至直方体状の正方晶焼成チタン酸バリウム粉末は、従来知られていない。
次に、本発明の第3の発明は、既に説明のとおり、前記第1の発明の未焼成チタン酸バリウム粉末を液相法により製造し、得られた生材を930〜980℃で焼成して、第2の発明の焼成チタン酸バリウム粉末を製造するものである。本発明の焼成チタン酸バリウム粉末を用いて製造した誘電体は、極めて優れた誘電特性を有するとともに、部品サイズの小型化に有効である。
(未焼成チタン酸バリウムの製造)
以下、本発明の未焼成チタン酸バリウムの製造例をより具体的に説明する。
液相反応原料としてのチタン化合物としては、四塩化チタンをはじめとして、オキシチタン塩化物、四塩化チタン加水分解物(水酸化チタン水和物、オルトチタン酸、メタチタン酸)、ペルオクソチタン酸、硫酸チタニル等である。四塩化チタン加水分解物は、アンモニア等、アルカリ水で加水分解するか、水を加えて生成する塩酸を蒸発分離することで、固体またはゲルとして得られる。反応の際には固体をスラリーとして使用するか、または極めて希薄な水溶液として使用する。また、バリウム化合物としては、塩化バリウム、水酸化バリウム、硝酸バリウム、硫酸バリウム、酢酸バリウム等が挙げられ、この中でも塩化バリウム、または水酸化バリウムが好ましく用いられる。
以下に1つの反応例を説明する。
基本は、四塩化チタンの水溶液(濃度は約0.2〜2.0モル/l、これを液Iと言う。)と、塩化バリウムあるいは水酸化バリウムの水溶液(濃度は0.1〜1.0モル/l、以下液IIと言う。)を別々に用意し、両者を反応容器中で、強アルカリ性のもとで、90〜100℃の温度で接触させる方法である。
反応を促進し、かつ生成物の性能を確保する上で、反応系は常に強アルカリ性に保持することが重要である。具体的にはpH13以上、好ましくは13.5以上、より好ましくは13.8以上に保持する。さらに好ましくは、液IIを予めアルカリ水溶液としておくのが好ましい。反応中、このように所定のpHを保持するため、必要に応じ別系統から適宜アルカリ水溶液を必要量供給する。さらに好ましくは、両液を供給開始する前に、予め反応容器に所定濃度に調整したアルカリ水溶液を投入しておき、その後両液を供給するのが、局所的なpH低下防止に有効である。両液の供給量に関しては、目的とする生成物のBa/Ti比である1.003〜1.009のチタン酸バリウムを製造するには、反応系へのチタン化合物とバリウム化合物の供給量を厳密に制御することが重要である。
具体的には、反応容器へ供給する両化合物のモル比を1.05〜1.10の範囲に設定し、両液をこの設定値で定量的に反応容器に供給する。例えばBa/Ti比1.003〜1.005の未焼成チタン酸バリウム粉末を製造するには、これに応じた両液の合計供給量比、すなわち(液IIのバリウム濃度×供給速度)/(液Iのチタン濃度×供給速度)と、瞬間の供給量比とを厳密に制御する。
上記割合で、両液を反応容器に連続的に供給する際、均一な接触を促進するために、高速撹拌や高圧噴霧接触等の機能を有する予備混合領域を設けても良い。接触および反応は、常圧下では100℃にできるだけ近い温度、すなわち80〜98℃、圧力下では110〜150℃で行うのが好ましい。
上記のようにして、反応容器内で液Iと液IIとを撹拌下で接触させる。生成した固体チタン酸バリウムを含むスラリー液は、反応系から連続的に抜き出して別の熟成容器に移動してもよく(連続反応)、あるいは反応容器内で反応を終了させた後、抜き出しても良い(バッチ反応)。このようにして生成したチタン酸バリウムは、スラリー状態で、撹拌しながら一定時間加熱を行うことで熟成させることが望ましい。熟成処理の温度は、85〜150℃で行われる。熟成後、生成したチタン酸バリウム粒子と溶媒である水とを、デカンテーション、遠心分離、ろ過等で分離する。該反応系から分離されたチタン酸バリウム粉末は、水洗浄を行い、付着している未反応の原料化合物やアルカリ成分等を除去する。なお、本発明における未焼成チタン酸バリウム粉末の製造は、前記製造方法に限定されるものではない。
上記で得られた反応生成物を、80〜250℃、好ましくは100〜200℃で乾燥させて本発明の未焼成チタン酸バリウム粉末が得られる。上記反応生成物は、平均粒径が0.05〜0.5μm、球状の立方晶の粒子である。以上の操作により、本発明の未焼成チタン酸バリウム粉末が得られる。
(焼成チタン酸バリウム粉末の製造)
以下、本発明の第2の発明である焼成チタン酸バリウム粉末の製造例について説明する。本発明の焼成チタン酸バリウム粉末は、前記未焼成チタン酸バリウム粉末を、930〜980℃、より好ましくは940〜975℃で加熱処理(本発明では、この加熱処理を焼成と表現する。)することで得られる。焼成の雰囲気は大気、真空、不活性ガス下のいずれでも良いが、真空下あるいは水蒸気を分圧0.1〜0.4で存在させると、不純物である塩素分の除去に一層好適である。該未焼成チタン酸バリウム粉は、930〜980℃で焼成できる特性を有する。このように低い温度で焼結できるため、加熱時に起き易い粒子成長が防止でき、小さなサイズの焼結粉を製造する上で、極めて好ましい原料である。なお、980℃を超えると、粒子の成長が起こるとともに結晶性が低下する。また、930℃未満では結晶性が向上しない。
該原料粉を930〜980℃で加熱処理すると、強熱減量が0.5重量%以下の、正方晶の直方体の焼成チタン酸バリウム粉末が得られる。さらに、該焼成温度において、結晶内に含有されるナトリウムイオン等、アルカリ金属分が極めて有効に除去される点も本発明の特徴である。これらの結果、Na等のアルカリ金属分が低く、かつ純度が高い微細な焼成チタン酸バリウム粉末が得られるのである。焼成されたチタン酸バリウムは、必要に応じて各種の手段で粉砕処理される。好ましい粉砕手段としては、ボールやビーズ等のメディアを用いる粉砕よりも、粉どうしの接触による粉砕手段、とりわけ湿式による粉砕手段、具体的には水等の媒体の存在下での湿式ジェットミル等が、結晶性の維持のために好ましい。
次に、本発明の実施例を説明して本発明の効果をより明らかにする。なお、以下の実施例および比較例における各物性および性能の測定は、以下の方法によって測定した。
・焼結密度:アルキメデスの原理に基づき焼結密度を求めた。
・形状:粉の形態を透過電子顕微鏡(TEM)および走査電子顕微鏡(SEM)により解析した。
・平均粒径:BET比表面積から求めた。
・Ba/Ti比:蛍光X線分析によりBa/Tiの原子比(Ba/Ti比)を求めた。
・強熱減量:1100℃、30分加熱後の重量減少により求めた。
[実施例1]
(未焼成Ba/Ti粉末の製造)
撹拌装置を備えた2リットルのSUS製反応容器に、0.92規定のNaOH水溶液を投入し、90℃に保持した。次いで、40℃に加熱保持したTiCl4水溶液(TiCl4濃度:0.472モル/l)と、95℃に保持したBaCl2/NaOH水溶液(BaCl2濃度:0.278モル/l、NaOH濃度:2.73モル/l)とを、TiCl4水溶液:77cc/分、BaCl2/NaOH水溶液:154cc/分の流量で、反応容器内に連続的に供給し、撹拌しながら90℃に保持した。供給したBaCl2/TiCl4のモル比は1.180であった。
次いで、生成したチタン酸バリウムを含むスラリーを熟成槽に移送し、撹拌下、90℃で60分間保持した。この後、アンモニア水を添加し、デカンテーションにて上澄みと沈殿物を分離し、さらに遠心分離を行い、チタン酸バリウム粉末を回収した。次に、回収したチタン酸バリウム粉末をアンモニア水(pH9)で常温にて洗浄した後、水で洗浄し、その後、真空雰囲気下において200℃で加熱することにより乾燥し、Ba/Ti比が1.003の未焼成チタン酸バリウム粉末(試料No.BT−1)を得た。
[実施例2]
実施例1のBaCl2液の供給速度を156.0cc/分で供給した以外は、実施例1と同じ条件で反応を行い、次いで、実施例1と同じ条件で洗浄と乾燥を行った。供給したBaCl2/TiCl4のモル比は1.193であった。その結果、Ba/Ti比が1.004の未焼成チタン酸バリウム粉末(試料No.BT−2)を得た。該粉末中のNa金属含有量は190ppmであった。該粉末BT−2の電子顕微鏡写真を、第1図に示す。
[実施例3]
TiCl4水溶液(TiCl4濃度:0.600モル/l)と、BaCl2/NaOH水溶液(BaCl2濃度:0.335モル/l、NaOH濃度:3.0モル/l)とを、TiCl4水溶液100cc/分、BaCl2/NaOH水溶液217cc/分の流量で、実施例1と同様にして反応容器内に連続的に供給し、撹拌しながら90℃に保持した。供給した原料化合物のBaCl2/TiCl4のモル比は、1.212であった。その後の洗浄と乾燥は、実施例1と同じ条件で行った。その結果、Ba/Tiが1.006の未焼成チタン酸バリウム粉末(試料No.BT−3)を得た。
[実施例4]
TiCl4水溶液とBaCl2/NaOH水溶液とを反応容器内に連続的に供給する際のTiCl4/BaCl2のモル比を1.230とした以外は、実施例3と同様にして未焼成チタン酸バリウム粉末(試料No.BT−4)を得た。
[比較例1]
TiCl4水溶液とBaCl2/NaOH水溶液とを反応容器内に連続的に供給する際のTiCl4/BaCl2のモル比を1.160とした以外は、実施例1と同様にしてチタン酸バリウム粉末(試料No.BT−5)を得た。この粉末:No.BT−5のNa含有量は、220ppmであった。
[比較例2]
TiCl4水溶液とBaCl2/NaOH水溶液とを反応容器内に連続的に供給する際のTiCl4/BaCl2のモル比を1.250とした以外は、実施例1と同様にして比較例2のチタン酸バリウム粉末(試料No.BT−6)を得た。
[比較例3]
TiCl4水溶液とBaCl2/NaOH水溶液とを反応容器内に連続的に供給する際のTiCl4/BaCl2のモル比を1.320とした以外は、実施例1と同様にして未焼成チタン酸バリウム粉末(試料No.BT−7)を得た。この粉末:No.BT−7のNa含有量は、190ppmであった。
上記実施例1〜4、比較例5〜7で得られた未焼成チタン酸バリウム粉末の性状を第1表に示す。
(焼成チタン酸バリウム粉末の製造)
[実施例5〜8]、[比較例4〜7]
第1表の未焼成チタン酸バリウム粉末:No.BT−1、BT−2、BT−5およびBT−7を、930〜1100℃、空気雰囲気下で1.5時間焼成した。次いで、得られた焼成粉100グラムあたりアンモニア水1.5ccを加えて湿式粉砕し、その後、ろ過で水を分離し、さらに120℃に加熱して乾燥して、第2表に示す実施例5〜8、比較例4〜7の焼成チタン酸バリウム粉末を得た。これら焼成チタン酸バリウム粉末の試料番号ならびに性状を、第2表および第3表に示す。また、実施例7で得られた焼成粉末:CBT−2Bの電子顕微鏡写真を、第2図に示す。第2図によれば、粒子形状が立方体もしくは直方体であることが明らかである。
第2表の各焼成粉末の結晶性および誘電特性を、第3表に示している。
第3表に示した結晶性(テトラゴナリティー)尺度としてのX(tet)とは、以下の方法で求めた値であり、これが1.0に近いほど結晶性が高いことを意味する。
[結晶性X(tet)]
結晶の(200)面と(002)面のX線回折ピーク強度を、それぞれI(200)、I(002)とし、両ピークの谷間のラビン強度をI(ravine)とし、X(tet)を以下の式で求める。
X(tet)=1−I(ravine)/{(I(200)+I(002)}[結晶性c/a比]
正方晶のC軸、a軸の長さを、X線回折パターンの(002),(200)回折ピーク位置から算出し、その比率c/a比を以下の式で求める。
c/a=c軸長さ/a軸長さ
第2表およびだ第3表から明らかなように、本発明の未焼成粉末BT−1,BT−2を930〜980℃で焼成すると、結晶性が高く、比誘電率が大きい焼成粉末が得られる。さらには、得られる焼成粉末中のNa分が大幅に低下することが明らかである。一方、比較例6および比較例7のように、Ba/Tiが1.001や1.017の未焼成チタン酸バリウム粉末を950℃で焼成して得た焼成粉は、実施例に比べて結晶性が十分でなかった。
(焼結体の製造)
[実施例9]
実施例7のBa/Ti比1.004の焼成粉(No.CBT−2B)にMnCo3,MgO,MgCo3,CaCo3,SiO2および希土類の酸化物を添加し、これを1300℃で2時間、還元性雰囲気下で加熱処理した後、1000℃で10時間、窒素ガス流通のもとで焼結して、実施例9の焼結体を得た。
[比較例8]
実施例9の試料:No.CBT−2Bの代わりに、比較例6のBa/Ti比1.001の焼成チタン酸バリウム粉(No.CBT−5)を用い、同様にして比較例8の焼結体を得た。
上記実施例9および比較例8の焼結体の誘電特性(比誘電率)を、ヒューレットパッカード社製のLCRメーター(モデル:4284A型)を用い、周波数:1KHz、印加電圧:1Vの条件で測定した。その測定結果を、第4表に示す。
第4表から明らかなように、本発明の焼成チタン酸バリウム粉末を用いて製造した焼結体(実施例9)は、広い温度領域にわたって比誘電率が高く、積層セラミックコンデンサの誘電体層形成材料としてきわめて好適であることが確かめられた。
【図面の簡単な説明】
第1図は、本発明に係る未焼成チタン酸バリウム粉末を示す電子顕微鏡写真である。
第2図は、本発明に係る焼成チタン酸バリウム粉末を示す電子顕微鏡写真である。Technical field
The present invention relates to an improved barium titanate powder having excellent dielectric properties and used as a dielectric material for electronic components such as multilayer ceramic capacitors and PTC thermistors, and a method for producing the same.
Background art
Barium titanate is widely used in electronic materials such as dielectric materials such as multilayer ceramic capacitors. Recently, the barium titanate particles, which are the material for forming the dielectric layer, have the smallest possible particle size, specifically 0.5 μm or less, preferably A barium titanate material having a crystallinity of 0.4 μm or less and having high crystallinity and a low content of alkali metal components such as Na ions and K ions is demanded.
Barium titanate obtained by the solid phase method has disadvantages such as a large particle size of several μm and a wide particle size distribution even when pulverized. Therefore, various liquid phase methods such as a hydrothermal synthesis method, a low-temperature direct synthesis method, a gel sol method, and an oxalic acid method have been proposed in many documents. Although the liquid phase method is expensive, it has the advantage that spherical fine particles having a particle size of 1 μm or less are easily obtained, but the crystallinity is not easily increased, and when mixed into the product, the alkali metal such as Na is removed. There is a problem that it is difficult to do.
For example, JP-A-5-330824 discloses that a titanium compound and a barium compound are mixed at a Ba / Ti ratio of 0.95 to 1.05, hydrogen peroxide is added thereto, and a wet reaction is performed. It is disclosed that after obtaining a cubic barium titanate powder having a particle diameter of 0.2 to 5 μm and calcining at 900 to 1300 ° C., truly spherical barium titanate can be obtained. Many examples of methods for producing spherical fired barium titanate powder having a particle size of 0.1 to 0.2 μm by low-temperature firing have been introduced based on the goodness of the liquid phase method that barium titanate having a small particle diameter can be obtained.
JP-A-60-81023 and JP-A-60-90825 disclose that a hydrous titanium oxide and barium hydroxide are reacted in a dilute aqueous solution at 60 to 110 ° C. to obtain a 0.1 to 0.2 μm There has been reported an example in which barium titanate powder was calcined at 800 ° C., then tableted and calcined at 1200 ° C. to produce a calcined barium titanate material having a relative density of 93% and a particle diameter of about 0.5 μm.
Further, in order to remove alkali metals such as Na from barium titanate powder obtained by a liquid phase reaction, Japanese Patent Application Laid-Open No. HEI 5-178419 discloses that a reaction product is heat-treated at 300 ° C. or more, preferably 400 to 700 ° C. Thereafter, a method of washing with water having a pH of 7 to 10 and separating by filtration is introduced. JP-A-61-146713 introduces a method of washing barium titanate obtained by a hydrothermal reaction with hot water, baking the powder at 800 ° C., washing with acetic acid water, and further washing with pure water. Have been. However, even with water washing or hot water washing, the Na content cannot be easily removed. Moreover, in severe cleaning, there is a risk that barium may be eluted at the time of washing with water, even with baked barium titanate. By the way, J. Mater. Res. , Vol. 10, No. 2, p. No. 3106 reports that barium titanate obtained by a liquid phase reaction contained 400 ppm of Na.
As described above, many production methods of the liquid phase method have been reported, but little attention has been paid to strict control of the Ba / Ti ratio. Further, even if the Ba / Ti ratio is not considered, it is difficult to stably produce barium titanate powder having an average particle diameter of 0.5 μm or less and high crystallinity in practical terms. Furthermore, it was difficult to remove the Na content as an impurity.
Disclosure of the invention
As is clear from the above description, it is an issue to produce a tetragonal fired barium titanate powder having a high crystallinity, a high purity, a high dielectric constant, an average particle diameter of 0.05 to 0.5 μm by a liquid phase method. there were. Above all, control of the Ba / Ti ratio and achievement of low-temperature sintering were the biggest technical issues. Therefore, the object of the present invention is
1) To provide a raw material for producing fired barium titanate powder having high crystallinity;
2) providing a fired barium titanate powder having high crystallinity and high dielectric properties;
3) providing a calcined barium titanate powder having a small amount of an alkali metal component such as Na;
4) providing a method for producing the fired powder by a liquid phase method;
It is in.
The unfired barium titanate referred to in the present invention refers to a so-called green material (green) that is obtained by drying barium titanate obtained by synthesis. On the other hand, the fired barium titanate refers to the green material. Is subjected to a heat treatment (also called calcination) at a higher temperature, that is, at least 500 ° C. or more and 980 ° C. or less. This includes those that have been subjected to crushing or crushing and washing. The fired barium titanate powder of the present invention is appropriately mixed with other components, sintered at a usual firing temperature (about 1100 to 1300 ° C.), and used for forming a target dielectric material.
The present inventors have conducted intensive research to achieve the above object,
(I) The Ba / Ti atomic ratio (hereinafter, represented by the Ba / Ti ratio unless otherwise specified) is in a very narrow range, specifically from 1.003 to 1.009, especially from 1.003 to Obtaining a barium titanate powder controlled to 1.005 and firing it to obtain a fired barium titanate with high crystallinity,
(Ii) baking can be performed at a temperature considerably lower than conventionally known, whereby the growth of particles can be suppressed, and the average particle diameter is not more than 0.5 μm, To obtain a tetragonal calcined barium titanate powder having an extremely fine specific Ba / Ti ratio of about 0.1 μm,
(Iii) And it is found that the Na content can be reduced very effectively in the process of firing, and (iv) the obtained fired powder has extremely high crystallinity and therefore exhibits extremely excellent dielectric properties. Thus, the present invention has been completed.
Hereinafter, the contents of the present invention will be described.
A first invention in the present invention is a barium titanate powder in an unfired state obtained by subjecting a titanium compound and a barium compound to liquid phase reaction, and has an average particle size (here, 350 ° C. for 30 minutes). A particle size measured by degassing and measured by the BET method) of 0.05 to 0.5 μm and a Ba / Ti ratio of 1.003 to 1.009. It is a calcined barium titanate powder. The unfired barium titanate powder is suitable as a raw material powder for producing the barium titanate powder of the second invention described below.
The second invention has a tetragonal crystal structure having an average particle size of 0.05 to 0.5 μm, a Ba / Ti ratio of 1.003 to 1.006, a loss on ignition of 0.5% by weight or less. It is a baked barium titanate powder.
Further, the third invention of the present invention relates to a method for producing a barium titanate powder having high crystallinity and fineness, wherein (i) a titanium compound and a barium compound are subjected to a liquid phase reaction in an alkaline aqueous solution to obtain an average particle size. A first step of producing a green cubic barium titanate powder having a crystal structure of 0.05 to 0.5 μm and a Ba / Ti ratio of 1.003 to 1.009, and (ii) the green titanium The method comprises a second step of firing barium acid powder at 930 to 980 ° C. (Iii) The average particle diameter is 0.05 to 0.5 µm, and the Ba / Ti ratio is 1.003 to 1.0. 006, a method for producing a fired barium titanate powder having a tetragonal crystal structure with a loss on ignition of 0.5% by weight or less.
In addition, the ignition loss (also referred to as ignition loss and represented by L) in the present invention refers to the weight (W1) after the barium titanate powder is kept at 110 ± 5 ° C. for 60 minutes in the atmosphere, and thereafter The temperature is raised to 1100 ° C. in the atmosphere at 10 ° C./min, and the weight (W2) after holding at 1100 ± 30 ° C. for 60 minutes is a value obtained by the following equation.
L (% by weight) = [(W1−W2) / W1] × 100
Further, the cube as a shape display of the barium titanate powder of the present invention is observed by an electron microscope, and the appearance of the particles is a cube, a rectangular parallelepiped, or a pseudo-cube in which the corners of individual particles are slightly missing, or a pseudo-cube. Means rectangular parallelepiped.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
First, the “green calcined barium titanate powder” of the first invention is a barium titanate powder obtained by subjecting a titanium compound and a barium compound to a liquid phase reaction. Considering the ease of handling, it is preferably a fine powder of 0.07 to 0.4 μm, and (b) the Ba / Ti ratio is 1.003 to 1.009, From the viewpoint of the property, that is, the dielectric property, it is preferably very close to 1.000, preferably from 1.003 to 1.007, particularly preferably from 1.004 to 1.006, but the number of barium atoms is extremely smaller than the number of titanium atoms. It has a slightly higher composition. If the Ba / Ti ratio is less than 1.003 or exceeds 1.009, the fired barium titanate powder produced therefrom has poor crystallinity. In order to further improve the crystallinity of the fired powder, the Ba / Ti ratio is 1.003 to 1.007, more preferably 1.003 to 1.006, as described above. The unfired barium titanate powder includes a powder that has been subjected to a heat treatment at 250 ° C. or lower for the main purpose of drying.
From the unfired barium titanate powder having such a Ba / Ti ratio (that is, the raw material powder to be fired), a “fired barium titanate powder” of the second invention described below is obtained. That is, the specific unfired barium titanate powder is subjected to a heat treatment at 930 to 980 ° C., particularly 930 to 970 ° C., thereby obtaining a fired barium titanate powder having extremely high crystallinity as described later. If the temperature is lower than 930 ° C., cubic crystals cannot be obtained, and if the temperature exceeds 980 ° C., grain growth occurs. Further, as a characteristic feature of the unfired barium titanate powder of the present invention, by firing in this temperature range, contained alkali metal components such as Na can be removed very effectively.
Next, the calcined barium titanate powder of the second invention has extremely high crystallinity while being extremely fine particles having an average particle diameter of 0.05 to 0.5 μm. / Ti ratio is 1.003 to 1.006, preferably 1.003 to 1.005, the ratio of barium atoms is extremely slightly higher than titanium atoms, and is in a limited range, and the crystal structure is square. It is a sintered powder of high crystallinity having a crystalline shape and a rectangular shape, that is, a rectangular parallelepiped or a cubic shape, observed by an electron microscope.
In a further preferred embodiment of the present invention, in addition to the above, the calcined barium titanate powder has a loss on ignition (L) of 0.5% by weight or less, preferably 0.4% by weight or less, particularly preferably 0.3% by weight or less. %. The calcined barium titanate powder of the present invention is a fine particle having a particle size of 0.5 μm or less, but has a C / a ratio (C-axis length of tetragonal crystal / a-axis length) as a scale representing crystallinity (referred to as tetragonality). Is a very high crystallinity of 1.009 or more. Moreover, its BET specific surface area is about 1.5 to 2.5 m with a particle size of 0.4 μm. 2 / G, 3.5-5.0 m for 0.2 μm 2 / G, 8 μm to 0.1 μm 2 / G, which is relatively small. Furthermore, despite heating to 1100 ° C., the ignition loss value (L) is 0.5% by weight despite having small particles, and has an extremely thermally stable crystal structure. The particle shape is a cube or a rectangular parallelepiped, and has a shape different from a generally known spherical or potato-like shape. These clearly show excellent crystallinity. An even more excellent point is that, while being obtained by the liquid phase method, the alkali metal component content is high, not more than 50 ppm, but not more than 40 ppm. A cubic or rectangular parallelepiped baked barium titanate powder having a high crystallinity despite such a fine baked powder has not been known.
Next, as already described, the third invention of the present invention produces the unfired barium titanate powder of the first invention by a liquid phase method, and calcinates the obtained green material at 930 to 980 ° C. Thus, the fired barium titanate powder of the second invention is manufactured. The dielectric produced using the calcined barium titanate powder of the present invention has extremely excellent dielectric properties and is effective in reducing the size of parts.
(Production of unfired barium titanate)
Hereinafter, a production example of the unfired barium titanate of the present invention will be described more specifically.
Titanium compounds as liquid phase reaction raw materials include titanium tetrachloride, oxytitanium chloride, titanium tetrachloride hydrolyzate (titanium hydroxide hydrate, orthotitanic acid, metatitanic acid), peroxotitanic acid, And titanyl sulfate. The titanium tetrachloride hydrolyzate is obtained as a solid or a gel by hydrolyzing with alkaline water such as ammonia or by evaporating and separating hydrochloric acid generated by adding water. During the reaction, the solid is used as a slurry or as a very dilute aqueous solution. Examples of the barium compound include barium chloride, barium hydroxide, barium nitrate, barium sulfate, and barium acetate. Of these, barium chloride or barium hydroxide is preferably used.
One reaction example will be described below.
Basically, an aqueous solution of titanium tetrachloride (concentration is about 0.2 to 2.0 mol / l, this is referred to as liquid I) and an aqueous solution of barium chloride or barium hydroxide (concentration is 0.1 to 1. 0 mol / l, hereinafter referred to as liquid II), and bringing them into contact in a reaction vessel at a temperature of 90 to 100 ° C. under strong alkalinity.
In order to promote the reaction and ensure the performance of the product, it is important to always keep the reaction system strongly alkaline. Specifically, the pH is maintained at 13 or more, preferably 13.5 or more, more preferably 13.8 or more. More preferably, the liquid II is preliminarily converted into an aqueous alkaline solution. During the reaction, in order to maintain the predetermined pH in this manner, a necessary amount of an alkaline aqueous solution is appropriately supplied from another system as needed. More preferably, before starting the supply of both solutions, it is effective to add an alkaline aqueous solution adjusted to a predetermined concentration in a reaction vessel in advance, and then supply both solutions, which is effective in preventing local pH decrease. With respect to the supply amounts of both liquids, in order to produce barium titanate having a Ba / Ti ratio of 1.003 to 1.009 of the target product, the supply amounts of the titanium compound and the barium compound to the reaction system are required. Strict control is important.
Specifically, the molar ratio of both compounds supplied to the reaction vessel is set in the range of 1.05 to 1.10, and both liquids are quantitatively supplied to the reaction vessel at the set values. For example, in order to produce an unfired barium titanate powder having a Ba / Ti ratio of 1.003 to 1.005, the total supply ratio of the two liquids according to this, that is, (barium concentration of liquid II × supply rate) / ( The titanium concentration of the liquid I × the supply rate) and the instantaneous supply amount ratio are strictly controlled.
When the two solutions are continuously supplied to the reaction vessel at the above ratio, a premixing region having a function such as high-speed stirring or high-pressure spray contact may be provided in order to promote uniform contact. The contacting and the reaction are preferably carried out at a temperature as close as possible to 100 ° C. under normal pressure, ie, 80 to 98 ° C., and at 110 to 150 ° C. under pressure.
As described above, the liquid I and the liquid II are brought into contact in the reaction vessel with stirring. The resulting slurry liquid containing solid barium titanate may be continuously withdrawn from the reaction system and moved to another aging vessel (continuous reaction), or may be withdrawn after the reaction is completed in the reaction vessel. Good (batch reaction). The barium titanate thus generated is desirably aged by heating it in a slurry state for a certain period of time while stirring. The aging treatment is performed at a temperature of 85 to 150 ° C. After aging, the produced barium titanate particles and water as a solvent are separated by decantation, centrifugation, filtration, or the like. The barium titanate powder separated from the reaction system is washed with water to remove unreacted raw material compounds, alkali components, and the like attached thereto. The production of the unfired barium titanate powder in the present invention is not limited to the above production method.
The reaction product obtained above is dried at 80 to 250 ° C, preferably 100 to 200 ° C, to obtain the unfired barium titanate powder of the present invention. The reaction product is a spherical cubic particle having an average particle size of 0.05 to 0.5 μm. By the above operation, the unfired barium titanate powder of the present invention is obtained.
(Production of calcined barium titanate powder)
Hereinafter, a production example of the calcined barium titanate powder according to the second invention of the present invention will be described. In the fired barium titanate powder of the present invention, the unfired barium titanate powder is subjected to a heat treatment at 930 to 980 ° C, more preferably 940 to 975 ° C (in the present invention, this heat treatment is referred to as firing). It can be obtained by: The firing atmosphere may be any of air, vacuum, and inert gas. However, it is more suitable to remove chlorine as an impurity under vacuum or at a partial pressure of water vapor of 0.1 to 0.4. The unfired barium titanate powder has a property that it can be fired at 930 to 980 ° C. Since sintering can be performed at such a low temperature, particle growth that tends to occur during heating can be prevented, and this is an extremely preferable raw material for producing small-sized sintered powder. If the temperature exceeds 980 ° C., the growth of particles occurs and the crystallinity decreases. If the temperature is lower than 930 ° C., the crystallinity is not improved.
When the raw material powder is heat-treated at 930 to 980 ° C., a tetragonal rectangular parallelepiped fired barium titanate powder having a loss on ignition of 0.5% by weight or less is obtained. Another feature of the present invention is that at the firing temperature, alkali metal components such as sodium ions contained in the crystal are very effectively removed. As a result, a fine fired barium titanate powder having a low alkali metal content such as Na and a high purity can be obtained. The fired barium titanate is pulverized by various means as necessary. Preferable crushing means, rather than crushing using a medium such as balls or beads, crushing means by contact between powders, especially wet crushing means, specifically a wet jet mill in the presence of a medium such as water. , For maintaining crystallinity.
Next, examples of the present invention will be described to clarify the effects of the present invention. In addition, the measurement of each physical property and performance in the following Examples and Comparative Examples was measured by the following methods.
Sintering density: Sintering density was determined based on Archimedes' principle.
Shape: The form of the powder was analyzed by a transmission electron microscope (TEM) and a scanning electron microscope (SEM).
-Average particle size: It was determined from the BET specific surface area.
Ba / Ti ratio: The atomic ratio of Ba / Ti (Ba / Ti ratio) was determined by X-ray fluorescence analysis.
-Loss on ignition: Determined by weight loss after heating at 1100 ° C for 30 minutes.
[Example 1]
(Production of unfired Ba / Ti powder)
An aqueous 0.92N NaOH solution was charged into a 2 liter SUS reaction vessel equipped with a stirrer, and the temperature was maintained at 90 ° C. Next, the TiCl heated and maintained at 40 ° C. 4 Aqueous solution (TiCl 4 Concentration: 0.472 mol / l) and BaCl held at 95 ° C. 2 / NaOH aqueous solution (BaCl 2 Concentration: 0.278 mol / l, NaOH concentration: 2.73 mol / l) 4 Aqueous solution: 77 cc / min, BaCl 2 / NaOH aqueous solution: continuously supplied into the reaction vessel at a flow rate of 154 cc / min, and kept at 90 ° C. while stirring. BaCl supplied 2 / TiCl 4 Was 1.180.
Next, the resulting slurry containing barium titanate was transferred to a ripening tank, and kept at 90 ° C. for 60 minutes with stirring. Thereafter, ammonia water was added, the supernatant and the precipitate were separated by decantation, and further centrifuged to collect barium titanate powder. Next, the collected barium titanate powder is washed with ammonia water (pH 9) at room temperature, washed with water, and then dried by heating at 200 ° C. in a vacuum atmosphere, so that the Ba / Ti ratio is 1%. 0.003 of unfired barium titanate powder (Sample No. BT-1) was obtained.
[Example 2]
BaCl of Example 1 2 The reaction was carried out under the same conditions as in Example 1 except that the liquid was supplied at a supply rate of 156.0 cc / min. Then, washing and drying were performed under the same conditions as in Example 1. BaCl supplied 2 / TiCl 4 Was 1.193. As a result, an unfired barium titanate powder having a Ba / Ti ratio of 1.004 (sample No. BT-2) was obtained. The Na metal content in the powder was 190 ppm. An electron micrograph of the powder BT-2 is shown in FIG.
[Example 3]
TiCl 4 Aqueous solution (TiCl 4 Concentration: 0.600 mol / l) and BaCl 2 / NaOH aqueous solution (BaCl 2 Concentration: 0.335 mol / l, NaOH concentration: 3.0 mol / l) 4 Aqueous solution 100cc / min, BaCl 2 A / NaOH aqueous solution was continuously supplied into the reaction vessel at a flow rate of 217 cc / min in the same manner as in Example 1, and maintained at 90 ° C. while stirring. BaCl of the supplied raw material compound 2 / TiCl 4 Was 1.212. Subsequent washing and drying were performed under the same conditions as in Example 1. As a result, an unfired barium titanate powder having Ba / Ti of 1.006 (sample No. BT-3) was obtained.
[Example 4]
TiCl 4 Aqueous solution and BaCl 2 / NaOH aqueous solution and TiCl when continuously supplied into the reaction vessel 4 / BaCl 2 Was obtained in the same manner as in Example 3 except that the molar ratio was 1.230, to obtain an unfired barium titanate powder (Sample No. BT-4).
[Comparative Example 1]
TiCl 4 Aqueous solution and BaCl 2 / NaOH aqueous solution and TiCl when continuously supplied into the reaction vessel 4 / BaCl 2 The barium titanate powder (sample No. BT-5) was obtained in the same manner as in Example 1 except that the molar ratio of was 1.160. This powder: No. The Na content of BT-5 was 220 ppm.
[Comparative Example 2]
TiCl 4 Aqueous solution and BaCl 2 / NaOH aqueous solution and TiCl when continuously supplied into the reaction vessel 4 / BaCl 2 The barium titanate powder of Comparative Example 2 (Sample No. BT-6) was obtained in the same manner as in Example 1 except that the molar ratio was 1.250.
[Comparative Example 3]
TiCl 4 Aqueous solution and BaCl 2 / NaOH aqueous solution and TiCl when continuously supplied into the reaction vessel 4 / BaCl 2 Was obtained in the same manner as in Example 1 except that the molar ratio was 1.320, to obtain an unfired barium titanate powder (Sample No. BT-7). This powder: No. The Na content of BT-7 was 190 ppm.
Table 1 shows properties of the unfired barium titanate powders obtained in Examples 1 to 4 and Comparative Examples 5 to 7.
(Production of calcined barium titanate powder)
[Examples 5 to 8], [Comparative Examples 4 to 7]
Unfired barium titanate powder in Table 1: No. BT-1, BT-2, BT-5 and BT-7 were calcined at 930 to 1100 ° C in an air atmosphere for 1.5 hours. Then, 1.5 cc of aqueous ammonia was added per 100 g of the obtained calcined powder, and the mixture was wet-pulverized. Thereafter, water was separated by filtration, and further dried by heating to 120 ° C. to obtain Example 5 shown in Table 2. To 8, and the fired barium titanate powders of Comparative Examples 4 to 7 were obtained. Tables 2 and 3 show the sample numbers and properties of these calcined barium titanate powders. FIG. 2 shows an electron micrograph of the calcined powder: CBT-2B obtained in Example 7. According to FIG. 2, it is clear that the particle shape is a cube or a rectangular parallelepiped.
Table 3 shows the crystallinity and dielectric properties of each calcined powder in Table 2.
X (tet) as a crystallinity (tetragonality) scale shown in Table 3 is a value obtained by the following method, and the closer this value is to 1.0, the higher the crystallinity.
[Crystalline X (tet)]
The X-ray diffraction peak intensities of the (200) and (002) planes of the crystal are I (200) and I (002), respectively, the Rabin intensity between the valleys of both peaks is I (rabine), and X (tet) is It is calculated by the following equation.
X (tet) = 1−I (rabine) / {(I (200) + I (002)}} [crystalline c / a ratio]
The lengths of the C-axis and a-axis of the tetragonal crystal are calculated from the (002) and (200) diffraction peak positions of the X-ray diffraction pattern, and the ratio c / a ratio is determined by the following equation.
c / a = c-axis length / a-axis length
As is clear from Table 2 and Table 3, when the unfired powders BT-1 and BT-2 of the present invention are fired at 930 to 980 ° C, a fired powder having high crystallinity and a large relative dielectric constant is obtained. Can be Furthermore, it is clear that the Na content in the obtained fired powder is significantly reduced. On the other hand, as in Comparative Examples 6 and 7, the fired powder obtained by firing unfired barium titanate powder having Ba / Ti of 1.001 or 1.017 at 950 ° C. Sex was not enough.
(Manufacture of sintered body)
[Example 9]
MnCo3, MgO, MgCo3, CaCo3, SiO2 and a rare earth oxide were added to the calcined powder (No. CBT-2B) having a Ba / Ti ratio of 1.004 in Example 7, and this was reduced at 1300 ° C. for 2 hours. After heat treatment in an atmosphere, sintering was performed at 1000 ° C. for 10 hours under a nitrogen gas flow to obtain a sintered body of Example 9.
[Comparative Example 8]
Sample of Example 9: No. A sintered body of Comparative Example 8 was obtained in the same manner as in Comparative Example 6, except that the fired barium titanate powder having a Ba / Ti ratio of 1.001 (No. CBT-5) was used instead of CBT-2B.
The dielectric properties (relative permittivity) of the sintered bodies of Example 9 and Comparative Example 8 were measured using an LCR meter (model: 4284A type) manufactured by Hewlett-Packard Company under the conditions of a frequency of 1 KHz and an applied voltage of 1 V. did. Table 4 shows the measurement results.
As is apparent from Table 4, the sintered body (Example 9) manufactured using the calcined barium titanate powder of the present invention has a high relative dielectric constant over a wide temperature range, and forms a dielectric layer of a multilayer ceramic capacitor. It was confirmed that the material was very suitable.
[Brief description of the drawings]
FIG. 1 is an electron micrograph showing an unfired barium titanate powder according to the present invention.
FIG. 2 is an electron micrograph showing the calcined barium titanate powder according to the present invention.