JP4684657B2 - Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder - Google Patents

Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder Download PDF

Info

Publication number
JP4684657B2
JP4684657B2 JP2005002415A JP2005002415A JP4684657B2 JP 4684657 B2 JP4684657 B2 JP 4684657B2 JP 2005002415 A JP2005002415 A JP 2005002415A JP 2005002415 A JP2005002415 A JP 2005002415A JP 4684657 B2 JP4684657 B2 JP 4684657B2
Authority
JP
Japan
Prior art keywords
barium
titanyl oxalate
solution
barium titanyl
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005002415A
Other languages
Japanese (ja)
Other versions
JP2006188469A (en
Inventor
信司 田邉
肇 國田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2005002415A priority Critical patent/JP4684657B2/en
Priority to TW094140061A priority patent/TW200626501A/en
Priority to CN2006100003838A priority patent/CN1800099B/en
Priority to KR1020060001713A priority patent/KR101195629B1/en
Publication of JP2006188469A publication Critical patent/JP2006188469A/en
Application granted granted Critical
Publication of JP4684657B2 publication Critical patent/JP4684657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、特に、圧電体、オプトエレクトロニクス材料、誘電体、半導体、センサー等の機能性セラミックの原料として有用なバリウム元素の一部を他のアルカリ土類金属元素で置換した蓚酸バリウムチタニル粉末の製造方法及びこれを用いたチタン系ペロブスカイト型セラミック原料粉末の製造方法に関するものである。   The present invention particularly relates to a barium titanyl oxalate powder in which a part of barium element useful as a raw material for functional ceramics such as a piezoelectric material, an optoelectronic material, a dielectric material, a semiconductor, and a sensor is replaced with another alkaline earth metal element. The present invention relates to a production method and a production method of a titanium-based perovskite ceramic raw material powder using the production method.

積層セラミックチップコンデンサ(MLCC)の誘電体層は、主原料であるチタン酸バリウムと微量の添加剤とから構成される多成分系の形をとることが一般的である。例えば、カルシウムは添加剤としてよく使用される成分であるが、チタン酸バリウムにおけるバリウムサイトへ置換固溶することで、誘電体の比誘電率の温度特性をなめらかにするディプレッサーとしての効果、あるいは焼結助剤となるガラスの成分として使用されることなどが知られている。   The dielectric layer of a multilayer ceramic chip capacitor (MLCC) generally takes the form of a multi-component system composed of main raw material barium titanate and a small amount of additives. For example, calcium is a component that is often used as an additive, but by replacing and dissolving in barium sites in barium titanate, the effect as a depressor that smoothes the temperature characteristics of the dielectric constant of the dielectric, or It is known that it is used as a component of glass serving as a sintering aid.

最近B特性系コンデンサにおいて、これまで一般的とされたシェルコア構造に対して新たな動きがあり、誘電体材料として微粒子Ba1-xCaxTiO3系材料が報告がされ、注目の対象となっている。
しかしながら、カルシウム等のアルカリ土類金属は複合化が難しい成分であり、実績があるのは固相法と一部ゾルゲル法である。
Recently, in B-characteristic capacitors, there has been a new movement to the shell core structure that has been generally used so far, and fine particle Ba 1-x Ca x TiO 3 -based materials have been reported as dielectric materials, and have attracted attention. ing.
However, alkaline earth metals such as calcium are difficult components to be combined, and the solid-phase method and partly the sol-gel method have proven results.

蓚酸塩前駆体法(以下、「蓚酸塩法」と呼ぶ)は、チタン酸バリウムの主要な製法の一つに挙げられる。これは、湿式合成された蓚酸塩前駆体を熱処理し、脱蓚酸することでチタン酸バリウムを合成する製法である。蓚酸塩法の最大の特徴は、前駆体結晶におけるバリウムとチタンの組成比(Ba/Ti比)の安定性にある。蓚酸塩法には、さらにいくつかのプロセスが報告されているが、工業的には塩化チタンと塩化バリウムの混合液を蓚酸水溶液に添加して反応を行う方法が一般的であり、また、この蓚酸塩法を用いてバリウム元素の一部を他の金属元素で置換した蓚酸バリウムチタニルを製造する方法も提案されている。例えば、塩化チタン、塩化バリウムの混合液に、置換する他のアルカリ土類金属化合物を含有させて、これを蓚酸水溶液に添加して反応を行う方法(例えば、特許文献1及び2参照。)等があるが、定量的に反応が進みにくいため工業的に有利でないという欠点がある。   The oxalate precursor method (hereinafter referred to as “oxalate method”) is one of the main production methods of barium titanate. This is a process for synthesizing barium titanate by heat-treating and de-acidifying a wet-synthesized oxalate precursor. The greatest feature of the oxalate method is the stability of the composition ratio (Ba / Ti ratio) of barium and titanium in the precursor crystal. Several processes have been reported for the oxalate method, but industrially, a method in which a reaction is carried out by adding a mixture of titanium chloride and barium chloride to an aqueous oxalic acid solution. A method for producing barium titanyl oxalate in which a part of barium element is substituted with another metal element using the oxalate method has also been proposed. For example, a method in which a mixed liquid of titanium chloride and barium chloride is mixed with another alkaline earth metal compound to be substituted and added to an aqueous oxalic acid solution (for example, see Patent Documents 1 and 2). However, there is a drawback that it is not industrially advantageous because the reaction is difficult to proceed quantitatively.

特開昭60−185303号公報、第3頁JP-A-60-185303, page 3 特開2003−212543号公報JP 2003-212543 A

従って、本発明の目的は、BaサイトでBaと置換する他のアルカリ土類金属元素の置換率が高い蓚酸バリウムチタニル粉末を工業的に有利に製造することができる方法及び該蓚酸バリウムチタニル粉末を用いたチタン系ペロブスカイト型セラミック原料粉末の工業的に有利な製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method capable of industrially advantageously producing barium titanyl oxalate powder having a high substitution rate of other alkaline earth metal elements substituted for Ba at the Ba site, and the barium titanyl oxalate powder. An object of the present invention is to provide an industrially advantageous method for producing the titanium-based perovskite ceramic raw material powder used.

本発明者らは、かかる課題を解決すべく鋭意研究を重ねた結果、四塩化チタンと蓚酸を含有する溶液(a液)を、バリウム化合物とMeを含む化合物を含有する溶液(b液)に添加して反応を行うと反応性が向上し、BaサイトでBaと置換する他のアルカリ土類金属元素の置換率が高い蓚酸バリウムチタニル粉末を工業的に有利に製造することができることを見出し本発明を完成するに至った。   As a result of intensive studies to solve such problems, the inventors of the present invention have changed a solution (solution a) containing titanium tetrachloride and oxalic acid to a solution (solution b) containing a compound containing a barium compound and Me. It is found that the reactivity is improved when added and the reaction is improved, and barium titanyl oxalate powder having a high substitution rate of other alkaline earth metal elements substituted for Ba at the Ba site can be produced industrially advantageously. The invention has been completed.

即ち、本発明が提供しようとする第1の発明は、下記一般式(1)

Figure 0004684657
(式中、MeはCa、Sr及びMgから選ばれる少なくとも1種以上の金属元素を示す。xは0<x≦0.2の値をとる。)で表わされるバリウム元素の一部を他のアルカリ土類金属元素で置換した蓚酸バリウムチタニルの製造方法であって、四塩化チタンと蓚酸を含有する溶液(a液)を、バリウム化合物とMeを含む化合物を含有する溶液(b液)に添加し反応を行うことを特徴とする蓚酸バリウムチタニル粉末の製造方法である。 That is, the first invention to be provided by the present invention is the following general formula (1).
Figure 0004684657
(In the formula, Me represents at least one metal element selected from Ca, Sr, and Mg. X has a value of 0 <x ≦ 0.2.) A method for producing barium titanyl oxalate substituted with an alkaline earth metal element, wherein a solution (solution a) containing titanium tetrachloride and oxalic acid is added to a solution (solution b) containing a barium compound and a compound containing Me It is a manufacturing method of the barium titanyl oxalate powder characterized by performing reaction.

また、本発明が提供しようとする第2の発明は、前記第1の発明の蓚酸バリウムチタニル粉末を仮焼することを特徴とするチタン系ペロブスカイト型セラミック原料粉末の製造方法である。   A second invention to be provided by the present invention is a method for producing a titanium-based perovskite ceramic raw material powder, characterized by calcining the barium titanyl oxalate powder of the first invention.

本発明の製造方法によれば、BaサイトでBaと置換する他のアルカリ土類金属元素の置換率が高い蓚酸バリウムチタニル粉末を工業的に有利に製造することができる。また、該蓚酸バリウムチタニル粉末を原料として用いることによりBaサイトでBaと置換した他のアルカリ土類金属元素の置換率が高いチタン系ペロブスカイト型セラミック原料粉末を工業的に有利に製造することができる。   According to the production method of the present invention, barium titanyl oxalate powder having a high substitution rate of another alkaline earth metal element substituted for Ba at the Ba site can be advantageously produced industrially. Further, by using the barium titanyl oxalate powder as a raw material, a titanium-based perovskite ceramic raw material powder having a high substitution rate of other alkaline earth metal elements substituted with Ba at the Ba site can be produced industrially advantageously. .

以下、本発明をその好ましい実施形態に基づき説明する。
本発明の製法で対象とする蓚酸バリウムチタニル粉末は、下記一般式(1)

Figure 0004684657
(式中、MeはCa、Sr及びMgから選ばれる少なくとも1種以上の金属元素を示す。xは0<x≦0.2の値をとる。)で表わされるバリウム元素の一部を他のアルカリ土類金属元素で置換した蓚酸バリウムチタニルの製造方法であり、その製造方法は、四塩化チタンと蓚酸を含有する溶液(a液)を、バリウム化合物とMeを含む化合物を含有する溶液(b液)に添加し反応を行うことを特徴とし、特に本発明の製法において前記一般式(1)の式中のMeがCaであると誘電体セラミックのベース材料としての温度特性をフラットにする効果を有する点で特に好ましい。 Hereinafter, the present invention will be described based on preferred embodiments thereof.
The barium titanyl oxalate powder targeted by the production method of the present invention has the following general formula (1):
Figure 0004684657
(In the formula, Me represents at least one metal element selected from Ca, Sr, and Mg. X has a value of 0 <x ≦ 0.2.) A method for producing barium titanyl oxalate substituted with an alkaline earth metal element, which comprises a solution containing titanium tetrachloride and oxalic acid (solution a), and a solution containing a compound containing barium compound and Me (b) In the production method of the present invention, when Me in the formula of the general formula (1) is Ca, the temperature characteristic as a base material of the dielectric ceramic is flattened. It is particularly preferable in that it has

本発明で用いる前記四塩化チタンと蓚酸を含有する溶液(a液)は、四塩化チタンと蓚酸を水に溶解した水溶液である。前記a液中のTiと蓚酸のモル比(Ti/蓚酸)は0.45〜0.55、好ましくは0.49〜0.51であり、具体的なa液の組成は、塩化チタンをTiとして0.1〜1モル/L、好ましくは0.6〜0.7モル/L、蓚酸が0.2〜2モル/L、好ましくは1.2〜1.4モル/Lとすることが安定した品質のものを高収率で得ることができる点で特に好ましい。   The solution containing titanium tetrachloride and oxalic acid (liquid a) used in the present invention is an aqueous solution in which titanium tetrachloride and oxalic acid are dissolved in water. The molar ratio of Ti and oxalic acid in the liquid a (Ti / oxalic acid) is 0.45 to 0.55, preferably 0.49 to 0.51, and the specific composition of the liquid a is titanium chloride to Ti. 0.1 to 1 mol / L, preferably 0.6 to 0.7 mol / L, and oxalic acid to 0.2 to 2 mol / L, preferably 1.2 to 1.4 mol / L. This is particularly preferable in that a stable product can be obtained in a high yield.

一方、バリウム化合物とMeを含む化合物を含有する溶液(b液)はバリウム化合物と前記一般式(1)の式中のMeに相当する金属元素(Me)を含む化合物を水に溶解又は分散させた溶液である。   On the other hand, the solution (liquid b) containing a barium compound and a compound containing Me dissolves or disperses a compound containing a barium compound and a metal element (Me) corresponding to Me in the general formula (1) in water. Solution.

用いることができるバリウム化合物としては、例えば炭酸バリウム、水酸化バリウム、塩化バリウム、酢酸バリウム又は硝酸バリウム等が挙げられ、これらは1種又は2種以上で用いることができる。   Examples of barium compounds that can be used include barium carbonate, barium hydroxide, barium chloride, barium acetate, and barium nitrate. These can be used alone or in combination of two or more.

一方、用いることができるMeを含む化合物は、Ca、Sr及びMgの群から選ばれる少なくとも1種以上の金属元素を含む水酸化物、炭酸塩、酢酸塩、硝酸塩又は塩化物等が挙げられ、これらは1種又は2種以上で用いることができる。   On the other hand, examples of the compound containing Me that can be used include hydroxides, carbonates, acetates, nitrates or chlorides containing at least one metal element selected from the group of Ca, Sr, and Mg. These can be used alone or in combination of two or more.

本発明の蓚酸バリウムチタニルの製造方法において、前記バリウム化合物とMeを含む化合物は、これらの炭酸塩又は水酸化物を用いると、反応性を高め、安定した品質のものを高収率で得ることができる点で特に好ましい。   In the method for producing barium titanyl oxalate of the present invention, the compound containing barium compound and Me, when using these carbonates or hydroxides, can increase the reactivity and obtain a stable product with high yield. It is particularly preferable in that

なお、前記バリウム化合物及びMeを含む化合物の炭酸塩又は水酸化物は通常水に難溶性であることから、前記b液はこれらの化合物を含むスラリーとなり、反応自体が固液反応となることから、反応性を高めるためこれらの原料化合物はレーザー法粒度分布測定法から求められる平均粒径が5μm以下、好ましくは0.01〜0.5μmの微細なものを用いることが特に好ましい。   In addition, since the carbonate or hydroxide of the compound containing barium compound and Me is usually insoluble in water, the liquid b becomes a slurry containing these compounds, and the reaction itself becomes a solid-liquid reaction. In order to increase the reactivity, it is particularly preferable to use those raw material compounds having an average particle size of 5 μm or less, preferably 0.01 to 0.5 μm, as determined from the laser particle size distribution measurement method.

前記b液中のバリウム化合物とMeを含む化合物の配合量はバリウム化合物中のBaとMeを含む化合物中の金属元素(Me)とのモル比(Me/Ba)で0.1〜0.4、好ましくは0.2〜0.35であり、その濃度はバリウム化合物とMeを含む化合物のBaとMeの総量で0.4〜1モル/L、好ましくは0.5〜0.8モル/Lとすることが安定した品質のものを高収率で得ることができる点で特に好ましい。   The blending amount of the barium compound and Me-containing compound in the liquid b is 0.1 to 0.4 in terms of the molar ratio (Me / Ba) between Ba in the barium compound and the metal element (Me) in the compound containing Me. , Preferably 0.2 to 0.35, and the concentration is 0.4 to 1 mol / L, preferably 0.5 to 0.8 mol / L in terms of the total amount of Ba and Me of the compound containing barium compound and Me. L is particularly preferable in that a stable quality can be obtained in a high yield.

次いで、前記a液をb液に添加する。a液の添加量は蓚酸に対するバリウム化合物とMeを含む化合物のBaとMeの総量のモル比({Ba+Me}/蓚酸)が0.3〜0.8、好ましくは0.6〜0.7となるように添加することが安定した品質のものを高収率で得ることができる点で特に好ましい。   Next, the a liquid is added to the b liquid. The added amount of solution a is such that the molar ratio of the total amount of Ba and Me of the compound containing barium compound and Me to oxalic acid ({Ba + Me} / oxalic acid) is 0.3 to 0.8, preferably 0.6 to 0.7. It is particularly preferable that a stable quality can be obtained in a high yield.

また、本発明の蓚酸バリウムチタニル粉末の製造方法において、前記b液にa液を添加すると反応液のpHは酸性域に強く傾くが反応液のpHが0.1未満ではカルシウムに代表されるMe成分の溶解度が高く、収率の上で不利となり、一方、pHが4を越えると均一な単相の共沈析出が得られにくくなる傾向があるため、a液添加後の反応液のpHは0.1〜4、好ましくは1.5〜2.5となるようにa液をb液へ添加することが特に好ましい。また、上記範囲内のpHとするためアンモニア水、アンモニアガス、水酸化アルカリ等のアルカリ剤をb液に添加してpHの調整を行いながら反応を行ってもよい。   In addition, in the method for producing barium titanyl oxalate powder of the present invention, when solution a is added to solution b, the pH of the reaction solution is strongly inclined to the acidic range, but when the pH of the reaction solution is less than 0.1, Me represented by calcium. The solubility of the components is high and disadvantageous in terms of yield. On the other hand, if the pH exceeds 4, it tends to be difficult to obtain uniform single-phase coprecipitation precipitation. It is particularly preferable to add the liquid a to the liquid b so as to be 0.1 to 4, preferably 1.5 to 2.5. Further, in order to obtain a pH within the above range, an alkaline agent such as ammonia water, ammonia gas, alkali hydroxide or the like may be added to the liquid b to carry out the reaction while adjusting the pH.

前記a液のb液への添加は攪拌下に行うことが好ましく、攪拌速度は、添加開始から反応終了までの間に生成する蓚酸バリウムチタニルを含むスラリーが常に流動性を示す状態であればよく、特に限定されるものではない。   The addition of the liquid a to the liquid b is preferably performed with stirring, and the stirring speed may be any as long as the slurry containing barium titanyl oxalate produced between the start of addition and the end of the reaction always exhibits fluidity. There is no particular limitation.

前記a液のb液への添加は、添加温度が通常10℃以上、好ましくは20〜30℃で、添加時間が0.5時間以上、好ましくは1時間以上で、一定速度で行うことが安定した品質のものが得られる点で特に好ましい。なお、b液の温度は特に限定されないが、上記添加温度と同様の範囲内にあると反応操作が容易となるため好ましい。   The addition of the liquid a to the liquid b is normally performed at a constant rate at an addition temperature of usually 10 ° C. or higher, preferably 20 to 30 ° C., an addition time of 0.5 hours or longer, preferably 1 hour or longer. It is particularly preferable in that a product having a high quality can be obtained. The temperature of the liquid b is not particularly limited, but is preferably in the same range as the addition temperature because the reaction operation becomes easy.

a液の添加終了後は、引き続き反応を行う(以下、「熟成反応」と呼ぶ。)。この熟成反応を行うと、反応が完結しTi、Ba及びMeの組成のバラツキが少ない所望の蓚酸バリウムチタニル粉末を得ることができる。   After completion of the addition of solution a, the reaction is continued (hereinafter referred to as “ripening reaction”). When this ripening reaction is carried out, the desired barium titanyl oxalate powder can be obtained in which the reaction is completed and there is little variation in the composition of Ti, Ba and Me.

本発明において熟成反応時のpHは0.1〜4、好ましくは1.5〜2.5とすることが好ましい。この理由は上記したとおりpHが0.1未満ではカルシウムに代表されるMe成分の溶解度が高く、収率の上で不利となり、一方、pHが4を越えると均一な単相の共沈析出が得にくくなるからである。なお、本発明では、この熟成反応の際に当該範囲のpHとなるように常用の酸や前記で例示したアルカリで更にpH調製を行ってもよい。   In the present invention, the pH during the ripening reaction is preferably 0.1 to 4, and more preferably 1.5 to 2.5. This is because, as described above, when the pH is less than 0.1, the solubility of the Me component represented by calcium is high, which is disadvantageous in terms of yield. On the other hand, when the pH exceeds 4, uniform single-phase coprecipitation precipitation occurs. This is because it becomes difficult to obtain. In the present invention, the pH may be further adjusted with a commonly used acid or the alkali exemplified above so that the pH in this range is reached during this aging reaction.

他の熟成反応条件は、熟成温度が通常は10℃以上、好ましくは20〜30℃の温度で、0.5時間以上、好ましくは1時間以上熟成反応を行う。なお、熟成温度とは、a液添加後における反応液全体の温度をいう。熟成終了後は、常法により固液分離し、次いで、水で洗浄する。洗浄方法として特に制限されるものではないが、リパルプ等で洗浄を行うと洗浄効率が高いため好ましい。また、洗浄は、該蓚酸バリウムチタニル粉末に含有される塩素濃度が200ppm以下、好ましくは150ppm以下になるまで充分に洗浄すると高純度のチタン系ペロブスカイト型セラミック原料粉末が得られるため特に好ましい。次いで、乾燥、必要により粉砕して蓚酸バリウムチタニル粉末を得る。   As other aging reaction conditions, the aging temperature is usually 10 ° C. or higher, preferably 20 to 30 ° C., and the aging reaction is performed for 0.5 hour or longer, preferably 1 hour or longer. The aging temperature refers to the temperature of the entire reaction solution after the addition of solution a. After completion of the aging, the solid and liquid are separated by a conventional method and then washed with water. Although it does not restrict | limit especially as a washing | cleaning method, since washing | cleaning efficiency is high when washing | cleaning by repulp etc. is preferable. Further, the washing is particularly preferred since a high-purity titanium-based perovskite ceramic raw material powder can be obtained by thoroughly washing until the chlorine concentration contained in the barium titanyl oxalate powder is 200 ppm or less, preferably 150 ppm or less. It is then dried and ground if necessary to obtain barium titanyl oxalate powder.

かくして得られる蓚酸バリウムチタニル粉末の好ましい物性としては、走査型電子顕微鏡写真(SEM)から求められる平均粒径が1〜100μm、好ましくは5〜20μmである。更に、該蓚酸バリウムチタニル粉末に含有される塩素濃度が200ppm以下、好ましくは150ppm以下であることが特に好ましい。   As a preferable physical property of the barium titanyl oxalate powder thus obtained, the average particle size determined from a scanning electron micrograph (SEM) is 1 to 100 μm, preferably 5 to 20 μm. Furthermore, it is particularly preferable that the chlorine concentration contained in the barium titanyl oxalate powder is 200 ppm or less, preferably 150 ppm or less.

本発明の製法で得られる前記一般式(1)で表わされる蓚酸バリウムチタニル粉末は誘電体セラミック材料のチタン系ペロブスカイト型セラミック粉末の製造原料として好適に用いることが出来る。   The barium titanyl oxalate powder represented by the general formula (1) obtained by the production method of the present invention can be suitably used as a raw material for producing a titanium-based perovskite ceramic powder as a dielectric ceramic material.

次いで、本発明のチタン系ペロブスカイト型セラミック原料粉末の製造方法について説明する。
本発明にかかるチタン系ペロブスカイト型セラミック原料粉末の製造方法は、前記で得られた蓚酸バリウムチタニル粉末を仮焼することを特徴とするものである。
Next, a method for producing the titanium-based perovskite ceramic raw material powder of the present invention will be described.
The method for producing a titanium-based perovskite ceramic raw material powder according to the present invention is characterized by calcining the barium titanyl oxalate powder obtained above.

なお、本発明では必要により、仮焼を行う前に微細で、且つ低温域で仮焼を行っても結晶性の高いチタン系ペロブスカイト型セラミック原料粉末が得られるように前記蓚酸バリウムチタニル粉末を平均粒径が1μm以下、好ましくは0.05〜0.5μmとなるようにボールミル、ビーズミル等の湿式で粉砕処理を行ってもよい。この場合、湿式粉砕処理で用いる溶媒としては、蓚酸バリウムチタニルに対して不活性であるものが用いられ、例えば、水、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、アセトン、塩化メチレン、酢酸エチル、ジメチルホルムアミド及びジエチルエーテル等が挙げられる。この中、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、アセトン、塩化メチレン、酢酸エチル、ジメチルホルムアミド及びジエチルエーテル等の有機溶媒で且つBa、TiとMeの溶出が少ないものを用いると、結晶性の高いチタン系ペロブスカイトセラミック原料粉末を得ることができるため好ましい。   In the present invention, if necessary, the barium titanyl oxalate powder is averaged so that a fine titanium-based perovskite ceramic raw material powder can be obtained even if calcined in a low temperature range before the calcining. You may grind | pulverize by wet processes, such as a ball mill and a bead mill, so that a particle size may be set to 1 micrometer or less, Preferably it is 0.05-0.5 micrometer. In this case, as the solvent used in the wet pulverization treatment, those inert to barium titanyl oxalate are used. For example, water, methanol, ethanol, propanol, butanol, toluene, xylene, acetone, methylene chloride, ethyl acetate , Dimethylformamide, diethyl ether and the like. Among these, when an organic solvent such as methanol, ethanol, propanol, butanol, toluene, xylene, acetone, methylene chloride, ethyl acetate, dimethylformamide, and diethyl ether is used, the crystallinity is reduced. High titanium-based perovskite ceramic raw material powder can be obtained, which is preferable.

本発明において最終製品に含まれる蓚酸由来の有機物は材料の誘電体特性を損なうとともに、セラミック化のための熱工程における挙動の不安定要因となるため好ましくない。従って、本発明では仮焼により前記蓚酸バリウムチタニルを熱分解して目的とするチタン系ペロブスカイト型セラミック原料粉末を得ると共に、蓚酸由来の有機物を十分除去する必要がある。仮焼条件は、仮焼温度が700〜1200℃、好ましくは800〜1100℃である。この仮焼温度を上記範囲とする理由は、700℃未満では単一相のチタン系ペロブスカイト型セラミック原料粉末が得られにくく、一方、1200℃を越えると粒径のバラツキが大きくなるからである。仮焼時間は2〜30時間、好ましくは5〜20時間である。仮焼の雰囲気は特に制限されず大気中又は不活性ガス雰囲気中の何れであってもよい。   In the present invention, organic substances derived from oxalic acid contained in the final product are not preferable because they impair the dielectric properties of the material and cause unstable behavior in the thermal process for ceramization. Therefore, in the present invention, it is necessary to thermally decompose the barium titanyl oxalate by calcination to obtain a target titanium-based perovskite ceramic raw material powder and to sufficiently remove organic substances derived from oxalic acid. The calcination conditions are such that the calcination temperature is 700 to 1200 ° C, preferably 800 to 1100 ° C. The reason for setting the calcining temperature in the above range is that a single-phase titanium-based perovskite ceramic raw material powder is difficult to obtain when the temperature is lower than 700 ° C., whereas, when the temperature exceeds 1200 ° C., the variation in particle size increases. The calcination time is 2 to 30 hours, preferably 5 to 20 hours. The atmosphere of the calcination is not particularly limited, and may be either air or an inert gas atmosphere.

また、本発明において、この仮焼は、所望により何度行ってもよく、粉体特性を均一にするため1度仮焼したものを粉砕し、次いで再仮焼を行ってもよい。   In the present invention, this calcination may be performed as many times as desired. In order to make the powder characteristics uniform, the calcination once may be pulverized and then recalcined.

仮焼後、適宜冷却し、必要に応じ粉砕してチタン系ペロブスカイト型セラミック原料粉末を得る。   After calcination, it is appropriately cooled and pulverized as necessary to obtain a titanium-based perovskite ceramic raw material powder.

なお、必要に応じて行われる粉砕は、仮焼して得られるチタン系ペロブスカイト型セラミック原料粉末がもろく結合したブロック状のものである場合等に適宜行うが、チタン系ペロブスカイト型セラミック原料粉末の粒子自体は特定の平均粒径、BET比表面積を有するものである。即ち、得られるチタン系ペロブスカイト型セラミック原料粉末は、走査型電子顕微鏡(SEM)から求めた平均粒径が0.1〜4μm、好ましくは0.1〜0.5μm、BET比表面積が0.5〜20m2/g、好ましくは4〜10m2/gで、組成のバラツキが少ないものである。更に上記物性に加え不純物としての塩素含有量が500ppm以下、好ましくは250ppm以下で結晶性に優れたものであることがより好ましい。 The pulverization performed as necessary is appropriately performed when the titanium-based perovskite-type ceramic raw material powder obtained by calcination is in a brittlely bonded block shape, etc., but the particles of the titanium-based perovskite-type ceramic raw material powder As such, it has a specific average particle size and BET specific surface area. That is, the obtained titanium-based perovskite ceramic raw material powder has an average particle size of 0.1 to 4 μm, preferably 0.1 to 0.5 μm, and a BET specific surface area of 0.5, as determined from a scanning electron microscope (SEM). It is ˜20 m 2 / g, preferably 4 to 10 m 2 / g, and has little variation in composition. Further, in addition to the above physical properties, the chlorine content as an impurity is 500 ppm or less, preferably 250 ppm or less, and it is more preferable that the crystallinity is excellent.

本発明の製造方法で得られるチタン系ペロブスカイト型セラミック原料粉末には、必要により誘電特性や温度特性を調製する目的で副成分元素含有化合物を該チタン系ペロブスカイト型セラミック原料粉末に添加し含有させることができる。用いることができる副成分元素含有化合物としては、例えば、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの希土類元素、Ba、Li、Bi、Zn、Mn、Al、Si、Ca、Sr、Co、Ni、Cr、Fe、Mg、Ti、V、Nb、Mo、W及びSnからなる群より選ばれる少なくとも1種の元素を含む化合物が挙げられる。   The titanium-based perovskite-type ceramic raw material powder obtained by the production method of the present invention may contain an auxiliary component element-containing compound added to the titanium-based perovskite-type ceramic raw material powder for the purpose of adjusting dielectric properties and temperature characteristics as necessary. Can do. Examples of the subcomponent element-containing compound that can be used include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu rare earth elements. At least one selected from the group consisting of Ba, Li, Bi, Zn, Mn, Al, Si, Ca, Sr, Co, Ni, Cr, Fe, Mg, Ti, V, Nb, Mo, W and Sn Examples include compounds containing elements.

副成分元素含有化合物は無機物又は有機物のいずれであってもよく、例えば、上記元素を含む酸化物、水酸化物、塩化物、硝酸塩、シュウ酸塩、カルボン酸塩及びアルコキシド等が挙げられる。なお、副成分元素含有化合物がSi元素を含有する化合物である場合は、上記酸化物等に加えて、シリカゾルや珪酸ナトリウム等も用いることができる。上記副成分元素含有化合物は1種又は2種以上適宜組み合わせて用いることができ、その添加量や添加化合物の組み合わせは目的に応じて常法に従って行えばよい。   The subcomponent element-containing compound may be either an inorganic substance or an organic substance, and examples thereof include oxides, hydroxides, chlorides, nitrates, oxalates, carboxylates and alkoxides containing the above elements. In addition, when a subcomponent element containing compound is a compound containing Si element, in addition to the said oxide etc., a silica sol, sodium silicate, etc. can be used. The subcomponent element-containing compounds can be used singly or in combination of two or more, and the addition amount and the combination of the additive compounds may be performed according to conventional methods according to the purpose.

本発明のチタン系ペロブスカイト型セラミック原料粉末に前記副成分元素を含有させる方法は、例えば、仮焼後の本発明のチタン系ペロブスカイト型セラミック原料粉末と該副成分元素含有化合物を均一混合後、焼成を行うか、或いは本発明の蓚酸バリウムチタニル粉末と前記副成分元素含有化合物を均一混合後、仮焼を行えばよい。   The method for adding the subcomponent element to the titanium-based perovskite ceramic raw material powder of the present invention is, for example, uniformly mixing the titanium-based perovskite-type ceramic raw material powder of the present invention after calcining and the subcomponent element-containing compound, followed by firing. Or, after the barium titanyl oxalate powder of the present invention and the subcomponent element-containing compound are uniformly mixed, calcining may be performed.

本発明に係るチタン系ペロブスカイト型セラミック原料粉末は、例えば、積層セラミックコンデンサを製造する上で前記した副成分元素を含め従来公知の添加剤、有機系バインダ、可塑剤、分散剤等の配合剤と共に適当な溶媒中に混合分散させてスラリー化し、シート成形を行うことにより、積層セラミックコンデンサの製造に用いられるセラミックシートを得ることができる。   The titanium-based perovskite-type ceramic raw material powder according to the present invention includes, for example, conventionally known additives, organic binders, plasticizers, dispersants and the like including the above-described subcomponent elements in manufacturing a multilayer ceramic capacitor. A ceramic sheet used for the production of a multilayer ceramic capacitor can be obtained by mixing and dispersing in an appropriate solvent to form a slurry, followed by sheet forming.

該セラミックシートから積層セラミックコンデンサを作製するには、まず、該セラミックシートの一面に内部電極形成用導電ペーストを印刷し、乾燥後、複数枚の前記セラミックシートを積層し、厚み方向に圧着することにより積層体とする。次に、この積層体を加熱処理して脱バインダ処理を行い、焼成して焼成体を得る。さらに、該燒結体にNiペースト、Agペースト、ニッケル合金ペースト、銅ペースト、銅合金ペースト等を塗布して焼き付ければ積層コンデンサを得ることができる。   In order to produce a multilayer ceramic capacitor from the ceramic sheet, first, a conductive paste for forming an internal electrode is printed on one surface of the ceramic sheet, and after drying, a plurality of the ceramic sheets are laminated and pressure-bonded in the thickness direction. To obtain a laminate. Next, this laminate is heat treated to remove the binder, and fired to obtain a fired body. Furthermore, a multilayer capacitor can be obtained by applying Ni paste, Ag paste, nickel alloy paste, copper paste, copper alloy paste and the like to the sintered body and baking it.

また、例えば、本発明に係るチタン系ペロブスカイト型セラミック原料粉末を、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂等の樹脂に配合して、樹脂シート、樹脂フィルム、接着剤等とすると、プリント配線板や多層プリント配線板等の材料として好適に用いることができ、また、内部電極と誘電体層との収縮差を抑制するための共材、電極セラミック回路基板、ガラスセラミックス回路基板、回路周辺材料及び無機EL用等の誘電体材料としても用いることができる。   Further, for example, when the titanium-based perovskite ceramic raw material powder according to the present invention is blended with a resin such as an epoxy resin, a polyester resin, or a polyimide resin to form a resin sheet, a resin film, an adhesive, etc., a printed wiring board or a multilayer It can be suitably used as a material for printed wiring boards and the like, and is a co-material for suppressing the shrinkage difference between the internal electrode and the dielectric layer, electrode ceramic circuit board, glass ceramic circuit board, circuit peripheral material, and inorganic EL It can also be used as a dielectric material for use.

また、本発明で得られるチタン系ペロブスカイト型セラミック原料粉末は、排ガス除去、化学合成等の反応時に使用される触媒や、帯電防止、クリーニング効果を付与する印刷トナーの表面改質材としても好適に用いることができる。   The titanium-based perovskite ceramic raw material powder obtained in the present invention is also suitable as a catalyst for use in reactions such as exhaust gas removal and chemical synthesis, and as a surface modifier for printing toner that imparts antistatic and cleaning effects. Can be used.

以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
シュウ酸32.5g(H224として0.258モル)、15.3wt%四塩化チタン希釈液64.1g(TiCl4として0.123モル)を純水140mlに溶解し、これをa液とした。
炭酸バリウム18.2g(0.092モル;平均粒径0.24μm)及び水酸化カルシウム2.28g(0.031モル;平均粒径0.12μm)を純水150mlに分散させスラリーを調製し、これをb液とした。
前記b液にa液を25℃に保持しながら攪拌下に120分かけて添加し(pH0.2)、更に25℃で30分攪拌下に熟成した。熟成後、ろ過して蓚酸バリウムチタニルを回収し、この回収した蓚酸バリウムチタニルを蒸留水300mlで2回リパルプして入念に洗浄した。次いで、80℃で乾燥して蓚酸バリウムチタニル40.9gを得た。得られた蓚酸バリウムチタニルの物性値を表1に示す。
なお、塩素含有量はイオンクロマトグラフィー法で測定し、Ba、Ti及びCaのモル比は蛍光X線分析装置の測定値に基いて算出した。また、平均粒径は走査型電子顕微鏡(SEM)写真により求めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
Example 1
32.5 g of oxalic acid (0.258 mol as H 2 C 2 O 4 ) and 64.1 g (0.123 mol as TiCl 4 ) of 15.3 wt% titanium tetrachloride were dissolved in 140 ml of pure water. It was set as the liquid a.
A slurry was prepared by dispersing 18.2 g of barium carbonate (0.092 mol; average particle size of 0.24 μm) and 2.28 g of calcium hydroxide (0.031 mol; average particle size of 0.12 μm) in 150 ml of pure water, This was designated as solution b.
The solution a was added to the solution b over 120 minutes with stirring while maintaining the solution a at 25 ° C. (pH 0.2), and further aged with stirring at 25 ° C. for 30 minutes. After aging, filtration was performed to recover barium titanyl oxalate. The recovered barium titanyl oxalate was repulped twice with 300 ml of distilled water and carefully washed. Then, it was dried at 80 ° C. to obtain 40.9 g of barium titanyl oxalate. The physical property values of the obtained barium titanyl oxalate are shown in Table 1.
The chlorine content was measured by an ion chromatography method, and the molar ratio of Ba, Ti and Ca was calculated based on the measured value of the fluorescent X-ray analyzer. Moreover, the average particle diameter was calculated | required with the scanning electron microscope (SEM) photograph.

実施例2
b液として炭酸バリウム21.8g(0.110モル;平均粒径0.24μm)及び水酸化カルシウム2.7g(0.037モル;平均粒径0.12μm)を純水150mlに分散させスラリーを調製し、これをb液とし熟成時のpHを0.2とした以外は実施例1と同様に反応を行って蓚酸バリウムチタニル粉末48.8gを得た。得られた蓚酸バリウムチタニルを実施例1と同様に測定しその物性値を表1に示す。
Example 2
As a liquid b, 21.8 g (0.110 mol; average particle size 0.24 μm) of barium carbonate and 2.7 g (0.037 mol; average particle size 0.12 μm) of calcium hydroxide were dispersed in 150 ml of pure water to prepare a slurry. A barium titanyl oxalate powder of 48.8 g was prepared by reacting in the same manner as in Example 1 except that this was prepared as b solution and the pH during aging was changed to 0.2. The obtained barium titanyl oxalate was measured in the same manner as in Example 1, and the physical properties are shown in Table 1.

実施例3
シュウ酸2.93kg(H224として23.20モル)、15.3wt%四塩化チタン希釈液5.77kg(TiCl4として11.05モル)を純水12.6Lに溶解し、これをa液とした。
炭酸バリウム2.26kg(11.44モル;平均粒径0.24μm)及び水酸化カルシウム0.28kg(3.81モル;平均粒径0.12μm)を純水27Lに分散させスラリーを調製し、これをb液とした。
前記b液にa液を25℃に保持しながら攪拌下に60分かけて添加し(pH 0.2)、更に25℃で30分攪拌下に熟成した。熟成後、ろ過して蓚酸バリウムチタニルを回収し、この回収した蓚酸バリウムチタニルを蒸留水30Lで2回リパルプして入念に洗浄した。次いで、80℃で乾燥して蓚酸バリウムチタニル4.72kgを得た。得られた蓚酸バリウムチタニルの物性値を表1に示す。
Example 3
2.93 kg of oxalic acid (23.20 mol as H 2 C 2 O 4 ) and 5.77 kg of 15.3 wt% titanium tetrachloride diluted solution (11.05 mol as TiCl 4 ) were dissolved in 12.6 L of pure water. This was designated as solution a.
2.26 kg (11.44 mol; average particle size 0.24 μm) of barium carbonate and 0.28 kg (3.81 mol; average particle size 0.12 μm) of calcium hydroxide were dispersed in 27 L of pure water to prepare a slurry, This was designated as solution b.
The solution a was added to the solution b over 60 minutes with stirring while maintaining the solution at 25 ° C. (pH 0.2), and further aged with stirring at 25 ° C. for 30 minutes. After aging, filtration was performed to recover barium titanyl oxalate, and the recovered barium titanyl oxalate was repulped twice with 30 L of distilled water and carefully washed. Then, it was dried at 80 ° C. to obtain 4.72 kg of barium titanyl oxalate. The physical property values of the obtained barium titanyl oxalate are shown in Table 1.

実施例4
シュウ酸3.58kg(H224として28.36モル)、15.3wt%四塩化チタン希釈液7.05kg(TiCl4として13.50モル)を純水15.4Lに溶解し、これをa液とした。
炭酸バリウム2.53kg(12.83モル;平均粒径0.24μm)及び水酸化カルシウム0.20kg(2.70モル;平均粒径0.12μm)を純水15.4Lに分散させスラリーを調製し、これをb液とした。
前記b液にa液を25℃に保持しながら攪拌下に120分かけて添加し(pH 0.2)、更に25℃で30分攪拌下に熟成した。熟成後、ろ過して蓚酸バリウムチタニルを回収し、この回収した蓚酸バリウムチタニルを蒸留水30Lで2回リパルプして入念に洗浄した。次いで、80℃で乾燥して蓚酸バリウムチタニル5.64kgを得た。得られた蓚酸バリウムチタニルの物性値を表1に示す。
Example 4
3.58 kg of oxalic acid (28.36 mol as H 2 C 2 O 4 ), 7.05 kg of 15.3 wt% titanium tetrachloride diluted solution (13.50 mol as TiCl 4 ) were dissolved in 15.4 L of pure water, This was designated as solution a.
A slurry was prepared by dispersing 2.53 kg of barium carbonate (12.83 mol; average particle size 0.24 μm) and 0.20 kg of calcium hydroxide (2.70 mol; average particle size 0.12 μm) in 15.4 L of pure water. This was designated as solution b.
The solution a was added to the solution b over 120 minutes with stirring while maintaining the solution at 25 ° C. (pH 0.2), and further aged with stirring at 25 ° C. for 30 minutes. After aging, filtration was performed to recover barium titanyl oxalate, and the recovered barium titanyl oxalate was repulped twice with 30 L of distilled water and carefully washed. Subsequently, it dried at 80 degreeC and obtained 5.64 kg of barium titanyl oxalate. The physical property values of the obtained barium titanyl oxalate are shown in Table 1.

比較例1
塩化バリウム2水塩27.0g(BaCl2として0.110モル)、塩化カルシウム2水塩5.4g(0.037モル)及び四塩化チタン64.1g(TiCl4として0.123モル)を純水180mlに溶解した混合溶液を調製し、これをa液とした。
次にシュウ酸32.5g(H224として0.258モル)を55℃の温水140mlに溶解しシュウ酸水溶液を調製し、これをb液とした。
前記b液にa液を55℃に保持しながら攪拌下に120分かけて添加し(pH 0.2)、更に55℃で30分間攪拌下に熟成した。冷却後、ろ過して蓚酸バリウムチタニルを回収し、この回収した蓚酸バリウムチタニルを蒸留水300mlで2回リパルプして入念に洗浄した。次いで、80℃で乾燥して蓚酸バリウムチタニル52gを得た。この反応では、実施例2の仕込み組成と同じ設定である。得られた蓚酸バリウムチタニルの物性値を実施例1と同様に測定し、その結果を表1に示す。
Comparative Example 1
27.0 g of barium chloride dihydrate (0.110 mol as BaCl 2 ), 5.4 g (0.037 mol) of calcium chloride dihydrate and 64.1 g of titanium tetrachloride (0.123 mol as TiCl 4 ) were purified. A mixed solution dissolved in 180 ml of water was prepared, and this was designated as solution a.
Next, 32.5 g of oxalic acid (0.258 mol as H 2 C 2 O 4 ) was dissolved in 140 ml of hot water at 55 ° C. to prepare an oxalic acid aqueous solution, which was designated as solution b.
The liquid a was added to the liquid b over 120 minutes with stirring while maintaining the liquid at 55 ° C. (pH 0.2), and further aged with stirring at 55 ° C. for 30 minutes. After cooling, it was filtered to recover barium titanyl oxalate, and the recovered barium titanyl oxalate was repulped twice with 300 ml of distilled water and carefully washed. Subsequently, it dried at 80 degreeC and 52g of barium titanyl oxalates were obtained. In this reaction, the setting is the same as the preparation composition of Example 2. The physical property values of the obtained barium titanyl oxalate were measured in the same manner as in Example 1, and the results are shown in Table 1.

Figure 0004684657
Figure 0004684657

表1の結果より、仕込み組成が同じ実施例2と比較例1を比較すると実施例2の方が比較例1で得られたものに比べカルシウム置換率が高く反応性に優れていることが分かる。   From the results in Table 1, it can be seen that when Example 2 and Comparative Example 1 having the same charging composition are compared, Example 2 has a higher calcium substitution rate and better reactivity than that obtained in Comparative Example 1. .

実施例5〜6
実施例3および4で得られた蓚酸バリウムチタニル試料を850℃の大気雰囲気下で14時間仮焼し、粉砕してチタン系ペロブスカイト型セラミック原料粉末試料を調製した。得られたチタン系ペロブスカイト型セラミック原料粉末試料の諸物性を実施例1と同様に測定し、その結果を表2に示す。
Examples 5-6
The barium titanyl oxalate samples obtained in Examples 3 and 4 were calcined for 14 hours in an air atmosphere at 850 ° C. and pulverized to prepare titanium-based perovskite ceramic raw material powder samples. Various physical properties of the obtained titanium-based perovskite ceramic raw material powder sample were measured in the same manner as in Example 1, and the results are shown in Table 2.

Figure 0004684657
Figure 0004684657

Claims (6)

下記一般式(1)
Figure 0004684657
(式中、MeはCa、Sr及びMgから選ばれる少なくとも1種以上の金属元素を示す。xは0<x≦0.2の値をとる。)で表わされるバリウム元素の一部を他のアルカリ土類金属元素で置換した蓚酸バリウムチタニルの製造方法であって、四塩化チタンと蓚酸を含有する溶液(a液)を、バリウム化合物とMeを含む化合物を含有する溶液(b液)に添加し反応を行うことを特徴とする蓚酸バリウムチタニル粉末の製造方法。
The following general formula (1)
Figure 0004684657
(In the formula, Me represents at least one metal element selected from Ca, Sr, and Mg. X has a value of 0 <x ≦ 0.2.) A method for producing barium titanyl oxalate substituted with an alkaline earth metal element, wherein a solution (solution a) containing titanium tetrachloride and oxalic acid is added to a solution (solution b) containing a barium compound and a compound containing Me And producing a barium titanyl oxalate powder, characterized in that the reaction is carried out.
前記MeがCaである請求項1記載の蓚酸バリウムチタニル粉末の製造方法。   The method for producing barium titanyl oxalate powder according to claim 1, wherein the Me is Ca. 前記バリウム化合物が炭酸バリウム又は水酸化バリウムである請求項1記載の蓚酸バリウムチタニル粉末の製造方法。   The method for producing barium titanyl oxalate powder according to claim 1, wherein the barium compound is barium carbonate or barium hydroxide. 前記Meを含む化合物がMeを含む炭酸塩又は水酸化物である請求項1記載の蓚酸バリウムチタニル粉末の製造方法。   The method for producing barium titanyl oxalate powder according to claim 1, wherein the compound containing Me is a carbonate or hydroxide containing Me. 請求項1の方法によって製造された蓚酸バリウムチタニル粉末。   Barium titanyl oxalate powder produced by the method of claim 1. 請求項5記載の蓚酸バリウムチタニル粉末を仮焼することを特徴とするチタン系ペロブスカイト型セラミック原料粉末の製造方法。   A method for producing a titanium-based perovskite ceramic raw material powder, wherein the barium titanyl oxalate powder according to claim 5 is calcined.
JP2005002415A 2005-01-07 2005-01-07 Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder Expired - Fee Related JP4684657B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005002415A JP4684657B2 (en) 2005-01-07 2005-01-07 Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder
TW094140061A TW200626501A (en) 2005-01-07 2005-11-15 Method for producing barium titanyl oxalate powder and method for producing titanium based perovskite type ceramic raw powder
CN2006100003838A CN1800099B (en) 2005-01-07 2006-01-06 Barium titanium oxalate power and method for manufacturing titanium type perovskite ceramic raw material powder
KR1020060001713A KR101195629B1 (en) 2005-01-07 2006-01-06 Method for preparing barium titanyl oxalate powder and method for preparing titanium based perovskite-type ceramic raw powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005002415A JP4684657B2 (en) 2005-01-07 2005-01-07 Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder

Publications (2)

Publication Number Publication Date
JP2006188469A JP2006188469A (en) 2006-07-20
JP4684657B2 true JP4684657B2 (en) 2011-05-18

Family

ID=36796008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002415A Expired - Fee Related JP4684657B2 (en) 2005-01-07 2005-01-07 Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder

Country Status (4)

Country Link
JP (1) JP4684657B2 (en)
KR (1) KR101195629B1 (en)
CN (1) CN1800099B (en)
TW (1) TW200626501A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101575544B (en) * 2009-06-03 2012-04-25 中国科学院宁波材料技术与工程研究所 Surface modified titanium-calcium oxyoxalate electrorheological fluid and preparation method thereof
KR101892946B1 (en) * 2011-04-01 2018-08-29 엠. 테크닉 가부시키가이샤 Processes for producing barium titanyl salt and barium titanate
CN108383523B (en) * 2018-03-26 2020-05-05 东莞信柏结构陶瓷股份有限公司 Dielectric ceramic material
CN114127013B (en) * 2019-07-16 2023-08-29 日本化学工业株式会社 Me element-substituted organic acid barium titanyl oxide, process for producing the same, and process for producing titanium perovskite ceramic raw material powder
JP7438867B2 (en) 2019-07-16 2024-02-27 日本化学工業株式会社 Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388720A (en) * 1989-08-30 1991-04-15 Tdk Corp Production of titanyl barium oxalate particles
JP2002060219A (en) * 2000-08-11 2002-02-26 Murata Mfg Co Ltd Barium titanate fine powder, calcium-modified barium titanate fine powder and its manufacturing method
JP2004137115A (en) * 2002-10-18 2004-05-13 Murata Mfg Co Ltd Production method for calcium-modified barium titanate powder, and calcium-modified barium titanate powder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360118B1 (en) * 1999-07-05 2002-11-04 삼성전기주식회사 A Method for Preparing Barium Titanate Powder by Oxalate Synthesis
KR100434883B1 (en) 2001-08-14 2004-06-07 삼성전기주식회사 A method for the manufacturing of Barium-Titanate based Powder
JP2003212543A (en) * 2002-01-17 2003-07-30 Samsung Electro Mech Co Ltd Method for manufacturing barium titanate powder through oxalate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388720A (en) * 1989-08-30 1991-04-15 Tdk Corp Production of titanyl barium oxalate particles
JP2002060219A (en) * 2000-08-11 2002-02-26 Murata Mfg Co Ltd Barium titanate fine powder, calcium-modified barium titanate fine powder and its manufacturing method
JP2004137115A (en) * 2002-10-18 2004-05-13 Murata Mfg Co Ltd Production method for calcium-modified barium titanate powder, and calcium-modified barium titanate powder

Also Published As

Publication number Publication date
JP2006188469A (en) 2006-07-20
KR101195629B1 (en) 2012-10-30
KR20060081366A (en) 2006-07-12
CN1800099A (en) 2006-07-12
CN1800099B (en) 2010-05-12
TW200626501A (en) 2006-08-01

Similar Documents

Publication Publication Date Title
JP4759211B2 (en) Method for producing perovskite-type barium titanate powder
EP2055676B1 (en) Barium carbonate particle powder, production method thereof, and production method of perovskite barium titanate
JP5270528B2 (en) Amorphous fine particle powder, method for producing the same, and perovskite-type barium titanate powder using the same
JP4684657B2 (en) Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP4638767B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP5119008B2 (en) Method for producing perovskite-type barium titanate powder
JP6005528B2 (en) Method for producing titanium dioxide solution and method for producing perovskite titanium composite oxide
JP6573653B2 (en) Method for producing perovskite-type barium titanate powder
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER
JP2010047428A (en) Titanium composite salt powder, method for producing the same, and method for producing perovskite type titanium composite oxide powder using the same
JP7438867B2 (en) Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder
JP2004010448A (en) Method of producing titanium-based perovskite type ceramic raw material powder
JP4937637B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP7102462B2 (en) Barium titanyl oxalate, its production method and barium titanate production method
CN117645538A (en) Method for preparing alkali-catalyzed superfine barium titanyl oxalate and method for preparing barium titanate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees