TW539649B - Particulate barium titanate powder, particulate calcium-modified barium titanate powder, and production method thereof - Google Patents

Particulate barium titanate powder, particulate calcium-modified barium titanate powder, and production method thereof Download PDF

Info

Publication number
TW539649B
TW539649B TW090118794A TW90118794A TW539649B TW 539649 B TW539649 B TW 539649B TW 090118794 A TW090118794 A TW 090118794A TW 90118794 A TW90118794 A TW 90118794A TW 539649 B TW539649 B TW 539649B
Authority
TW
Taiwan
Prior art keywords
barium titanate
solution
powder
barium
particulate powder
Prior art date
Application number
TW090118794A
Other languages
Chinese (zh)
Inventor
Tomohisa Tonogaki
Atsuhiro Torii
Kenjiro Gomi
Takahiro Motokawa
Kenji Tanaka
Original Assignee
Murata Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co filed Critical Murata Manufacturing Co
Application granted granted Critical
Publication of TW539649B publication Critical patent/TW539649B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The object of the present invention is to provide particulate barium titanate powder with high-reliability, which hardly causes insulation failure when used as a dielectric element, particulate calcium-modified barium titanate powder and a method for manufacturing the particulate barium titanate powder. The method for manufacturing the particulate barium titanate powder is characterized in comprising following steps: a step to prepare a barium hydroxide aqueous solution having 0.20-1.20 mol/l barium hydroxide and a titanium alkoxide alcohol solution having 0.088-1.235 mol/l titanium alkoxide, a step to mix the prepared barium hydroxide solution with the prepared titanium alkoxide alcohol solution so that the Ba/Ti molar ratio is 1.00-1.20 to obtain a mixed solution without incorporating other alkali elements in the mixed solution, and a step to subject the obtained mixed solution to react at 60-100 DEG C.

Description

539649 A7 B7 五、發明説明(! 【技術領域】 本發明涉及作為電子元器件用介質材料的鈥酸鋇微粒狀 粉末、鈣改質的鈦酸鋇微粒狀粉末及其製造方法,尤其涉及 適用於介質元件厚度為1至數μ m的小型大容量疊層式片狀電 容器的平均粒徑為0.019〜0.300 μηι的鈦酸鋇微粒狀粉末、鈣改 質的鈦酸鋇微粒狀粉末及其製造方法。 【以往技術】 以往的鈥酸鋇微粒狀粉末的製造方法例如有固相法、水 熱合成法及水解法等,關於水解法,在曰本特許公開公報 1986年第146713號及1992年第1.2020號中有描述。根據日本特許 公開公報1986年第146713號,將含水氧化鈦、氫氧化鋇及鹼金 屬氫氧化物在相當於鈦的12〇〜10000倍摩爾的水的存在下於 60〜110°C進行反應,可獲得平均粒徑為〇〇7〜〇 5 μηι的鈦酸鋇微 粒狀粉末。另外,根據日本特許公開公報1992年第12〇2〇號, 在含有氫氧化鋇及與該氫氧化鋇的摩爾比為丨:丨〜丨:4的至少 一種鹼金屬氫氧化物或胺的水溶液中加入與氫氧化鋇等摩 爾的烷氧基鈦,在60〜90°C反應,並將生成的鈦酸鋇微粒狀粉 末在不使其微粒生長的溫度下進行焙燒,可獲得平均粒徑 為0.06〜0·1 μ m的鈦酸鋇掸粒狀粉末。 近年來’隨著電子裝置的小型化及高集成化,為了使作為 :件的叠層式片狀電容器小型化和大容量化,介質元件變 '越來越薄。但是’隨著内部電極間的介質層變得越來越薄 ’若存在結構缺陷’則内部電極就會因此而短路,不能起到 介質元件的作用。為了保持高可靠性,就必須使構成内部電 -4- 539649 五 '發明説明( 陷的均勻組織。同時,由於通 要求將陶瓷粉末微粒化至〇1〇〜539649 A7 B7 V. Description of the Invention (Technical Field) The present invention relates to “barium acid particulate powder, calcium modified barium titanate particulate powder and its manufacturing method, which are medium materials for electronic components. Small, large-capacity multilayer chip capacitors with a dielectric element thickness of 1 to several μm, and an average particle diameter of 0.019 to 0.300 μm of barium titanate particulate powder, calcium-modified barium titanate particulate powder, and method for producing the same [Prior art] Conventional methods for producing "barium acid particulate powder" include solid phase method, hydrothermal synthesis method, and hydrolysis method. The hydrolysis method is described in Japanese Patent Laid-Open Publication Nos. 146713 and 1992. It is described in No. 1.2020. According to Japanese Patent Laid-Open Publication No. 146713 of 1986, hydrous titanium oxide, barium hydroxide, and alkali metal hydroxide are present at 60 to 10,000 times the molar equivalent of titanium at 60 to The reaction was carried out at 110 ° C to obtain barium titanate particulate powder having an average particle diameter of 007 to 0.05 μm. In addition, according to Japanese Patent Laid-Open Publication No. 122020, when containing hydrogen Add at least one kind of alkali metal hydroxide or amine in an aqueous solution of barium hydroxide and the barium hydroxide with a molar ratio of 丨: 丨 to 丨: 4 to add an equimolar amount of titanium alkoxide with barium hydroxide at 60 to 90 °. C reaction, and the resulting barium titanate particulate powder is calcined at a temperature that does not allow the microparticles to grow to obtain a barium titanate rhenium granular powder having an average particle diameter of 0.06 to 0.1 μm. With the miniaturization and high integration of electronic devices, in order to miniaturize and increase the capacity of multilayer chip capacitors, the dielectric elements are becoming thinner and thinner. However, with the dielectric layer between the internal electrodes, It becomes thinner and thinner 'if there is a structural defect', the internal electrode will be short-circuited due to this and cannot function as a dielectric element. In order to maintain high reliability, it is necessary to make the internal electrical The uniform structure of the depression. At the same time, due to the requirements, the ceramic powder is micronized to 〇〇〇 ~

極間的介質層的陶瓷具有無缺 過薄層化而進行的大容量化, 0.25 μ m的程度。 【發明内容】 欽酸鋇微粒狀粉末在常 、 質陶資粉末。但-般而皿Λ 万晶系晶型,是強介 ,又而&,右陶瓷粉末的平均粒徑 的問題,即,由於微粒化而導致- ,這些問4 s t “、:接近立方晶系’同時強電導性減小 二^:於尺寸效應。另外,當陶完粉末的四方度小 在&樣的問題’即’使用該陶^末而獲得的叠層 式陶…器的靜電電容減小,靜電電容溫度特性偏離。 現在平售的微粒原料,例如水熱合成法的献酸銷,其最微 細的粉末為0·丨3〜0.2G μ m,㈣粉末的結晶性指標即四方度 (用X線衍射測得的c/a抽比)為⑽糾008。這樣,陶走粉末的 微粒化與四方度具有相關_,陶資粉末賴細,則四方度 越小’這成為陶瓷粉末微細化的一個問題。 另外’在以往的水解法巾,為了促進反應,使用強鹼性溶 劑,在反應料中添加強驗的Na(0解。但這樣就出現下述 問題:數百ppm的Na殘留在生成的陶瓷粉末中,從而在加工 成疊層式片狀電容器之後,會引起遷移,使介質元件的絕緣 性惡化。將介質層薄層化時,這個問題變得愈加顯著。 由於上逑主要原因而產生的問題是,難以獲得電子裝置 小型化及高密度所必需的用於介質元件厚度為丨pm左右至 數μηι的小型大容量疊層式片狀電容器的陶堯粉末。 -5- 本纸張尺度適用中國國家標準(CNS) Α4規格(21〇 X 297公釐) 539649The ceramic of the dielectric layer between the electrodes has a large capacity without thinning, which is about 0.25 μm. [Summary of the invention] Barium acetic acid particulate powder is a regular, high quality ceramic powder. But-the general Λ Wanjing system crystal form, is a strong medium, and &, the problem of the average particle size of the right ceramic powder, that is, due to micronization-these questions 4 st ",: close to cubic crystal It is at the same time that the strong electrical conductivity is reduced by two: the size effect. In addition, when the squareness of the finished ceramic powder is small, the problem is the same as that of the laminated ceramics obtained by using the ceramic powder. The capacitance decreases, and the temperature characteristics of the electrostatic capacitance deviate. The finest powders currently sold for particulate materials, such as the acid donation pin of the hydrothermal synthesis method, have the finest powder of 0 · 丨 3 ~ 0.2G μm, and the crystallinity index of ㈣ powder is The squareness (c / a pumping ratio measured by X-ray diffraction) is ⑽. 008. In this way, the micronization of the ceramic powder has a correlation with the squareness. If the ceramic powder is fine, the smaller the squareness is, this becomes One problem with the miniaturization of ceramic powder. In addition, in the conventional hydrolysis method, in order to promote the reaction, a strong alkaline solvent was used, and strong Na (0 solution was added to the reaction material. However, the following problems occurred: ppm of Na remained in the resulting ceramic powder and was processed into laminated tablets After the capacitor, it will cause migration and deteriorate the insulation of the dielectric element. This problem becomes more significant when the dielectric layer is thinned. The problem caused by the main reason is that it is difficult to obtain miniaturization and high density of electronic devices. Necessary Tao Yao powder for small and large-capacity multilayer chip capacitors with a dielectric element thickness of about 丨 pm to several μηι. -5- This paper size applies to China National Standard (CNS) Α4 specification (21〇X (297 mm) 539649

本發明的目的在於解決上述的問題,通過水解法而獲得 不易引起介質元件絕緣不良,可靠性高的鈦酸鋇系陶瓷粉 末。 【課題之解決手段】 為了達到上述目的,本發明的鈦酸鋇微粒狀粉末的一種 製造方法的特徵在於,具有以下步驟·· 製備0.20〜1.2〇摩爾/升的氫氧化鋇水溶液和〇 〇88〜1 235摩爾/ 升的燒氧基鈇的醇溶液; 將氫氧化鋇溶液與烷氧基鈦的醇溶液以Ba/Ti摩爾比為1〇〇〜 1.20的比例進行調合,在沒有其它驗性元素混入下獲得混合 溶液; 讓混合溶液在6〇〜1〇〇。〇反應。 本發明的鈥酸鋇微粒狀粉末的另一種製造方法的特徵在 於’在上述欽酸鋇微粒狀粉末的製造方法中,在讓混合溶液 的步驟之後,還具有在850〜1000°C進行熱處理的步驟。 本發明的鈣改質的鈦酸鋇微粒狀粉末的一種製造方法的 特徵在於,具有以下步驟: 製備0.20〜1.20摩爾/升的氫氧化鋇水溶液、0.088〜1.235摩爾/升 的烷氧基鈦的醇溶液及鈣鹽的醇溶液; 以Ba/Ti摩爾比為0.980〜1.020及Ca/Ti摩爾比在0.160以下的比例 進行調合’在沒有其它鹼性元素混入下獲得混合溶液; 讓上述混合溶液在60〜10CTC反應。 本發明的鈣改質的鈦酸鋇微粒狀粉末的另一種製造方法 的特徵在於,在上述鈣改質的鈦酸鋇微粒狀粉末的製造方 -6- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 裝 訂 539649 A7 B7 五 、發明説明(4 ) 法中,在讓混合溶液的步騾之後’還具有在950〜1 loot:進行 熱處理的步驟。 本發明的鈦酸鋇微粒狀粉末的一種形態是用本發明的鈇 酸鋇微粒狀粉末的一種製造方法獲得的,其特徵在於,其平 均粒徑為0.019〜0.056 4111,比表面積為17.99〜52.64 1112/§,合成後 的Ba/Ti摩爾比為0.9979〜1.0060。 本發明的鈦酸鋇微粒狀粉末的另一種形態是用本發明的 鈦酸鋇微粒狀粉末的另一種製造方法獲得的,其特徵在於, 其平均粒徑為0.105〜0.300 μπι,用X線衍射測得的c/a軸比為 1.008〜1.01 〇 〇 本發明的鈣改質的鈦酸鋇微粒狀粉末的一種形態是用本 發明的#5改質的鈥酸鋇微粒狀粉末的一種製造方法獲得的 ’其特徵在於,其平均粒徑為0.019〜0.025 μπι,比表面積為 4〇·36〜54·〇5 m2/g,合成後的(Ba+Ca)/Ti摩爾比為 0.994〜1.004。 本發明的ί弓改質的鈥酸鋇微粒狀粉末的另一種形態是用 本發明的鈣改質的鈦酸鋇微粒狀粉末的另一種製造方法獲 得的’其特徵在於,其平均粒徑為0.145〜0.250 μπι,用X線衍 射測得的c/a軸比為1.008〜1.〇 1〇。 【附圖說明】 圖1為本發明的一種實施方式的鈦酸鋇微粒狀粉末的製造 方法中的合成裝置的說明圖。 圖2為本發明實施例丨中的試樣c的鈦酸鋇微粒狀粉末的顯 微照片。 圖3為本發明實施例1中的試樣3的鈦酸鋇微粒狀粉末的顯 巧張尺度適財關家標準(CNS)織格(&χ挪公董)--- 539649 A7An object of the present invention is to solve the above-mentioned problems and obtain a barium titanate-based ceramic powder with high reliability, which is less likely to cause poor insulation of dielectric elements by a hydrolysis method. [Solutions to solve the problem] In order to achieve the above-mentioned object, a method for producing barium titanate particulate powder of the present invention is characterized by having the following steps: · preparing an aqueous solution of 0.20 to 1.20 mol / l barium hydroxide and 〇88 ~ 1 235 moles / liter of alcohol solution of stilbene oxyfluorene; The barium hydroxide solution and the alcohol solution of titanium alkoxide are blended at a Ba / Ti molar ratio of 100 to 1.20. The elements are mixed to obtain a mixed solution; the mixed solution is allowed to be between 60 and 100. 〇 Reaction. Another method for producing the barium acid particulate powder according to the present invention is characterized in that, in the above method for producing a barium acetate microparticle powder, after the step of allowing the solution to be mixed, the method further includes heat treatment at 850 to 1000 ° C. step. A method for producing the calcium-modified barium titanate particulate powder of the present invention is characterized by having the following steps: preparing an aqueous solution of 0.20 to 1.20 mol / l barium hydroxide, 0.088 to 1.235 mol / l of titanium alkoxide Alcohol solution and alcohol solution of calcium salt; Blend with a Ba / Ti molar ratio of 0.980 ~ 1.020 and a Ca / Ti molar ratio of less than 0.160 'to obtain a mixed solution without the mixing of other basic elements; let the mixed solution above 60 ~ 10CTC reaction. Another manufacturing method of the calcium-modified barium titanate particulate powder of the present invention is characterized in that the method for manufacturing the calcium-modified barium titanate particulate powder described above is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) Binding 539649 A7 B7 5. In the description of the invention (4), after the step of mixing the solution, 'there is also a step of performing heat treatment at 950 ~ 1 loot. One form of the barium titanate particulate powder of the present invention is obtained by a method for manufacturing the barium titanate particulate powder of the present invention, which is characterized in that the average particle diameter is 0.019 to 0.056 4111 and the specific surface area is 17.99 to 52.64. 1112 / §, the Ba / Ti molar ratio after synthesis is 0.9979 to 1.060. Another form of the barium titanate particulate powder of the present invention is obtained by another method for manufacturing the barium titanate particulate powder of the present invention, which is characterized in that the average particle diameter is 0.105 to 0.300 μm, and X-ray diffraction is used. The measured c / a axis ratio is 1.008 to 1.01. One form of the calcium-modified barium titanate particulate powder of the present invention is a method for manufacturing the # 5 modified barium acidate particulate powder of the present invention. The obtained 'is characterized in that its average particle diameter is 0.019 to 0.025 μm, the specific surface area is 40.36 to 54.05 m 2 / g, and the (Ba + Ca) / Ti molar ratio after synthesis is 0.994 to 1.004. Another aspect of the modified bowel barium acid particulate powder of the present invention is obtained by another manufacturing method of the calcium modified barium titanate particulate powder of the present invention, which is characterized in that its average particle diameter is 0.145 ~ 0.250 μm, and the c / a axis ratio measured by X-ray diffraction is 1.008 ~ 1.01. [Brief Description of the Drawings] Fig. 1 is an explanatory diagram of a synthesis device in a method for producing barium titanate particulate powder according to an embodiment of the present invention. Fig. 2 is a micrograph of a barium titanate particulate powder of sample c in Example 丨 of the present invention. Fig. 3 is a graph showing the barium titanate particulate powder of sample 3 in Example 1 of the present invention, and the scale of the CNS standard grid is 539649 A7.

微照片。 圖4為本發明貫施例1中的試樣25的鈦酸鋇微粒狀粉末的顯 微照片。 圖5為本發明實施例2中的試樣52的辦改質的鈦酸鋇微粒狀 粉末的顯微照片。 圖6為本發明實施例2中的試樣58的鈣改質的鈦酸鋇微粒狀 粉末的顯微照片。 圖7為顯示本發明實施例的試樣1〜58及使用水熱合成法的 比k例的試樣63〜66的鈦酸鋇微粒狀粉末的平均粒徑與—軸 比的關係的曲線圖。 裝 【具體實施方式】 以下對本發明的鈦酸鋇微粒狀粉末的製造方法的一種實 施方式進行說明。 訂 人首先,率備0.20〜1.20摩爾/升的氫氧化鋇水溶液和〇 〇88〜12 摩爾/升的烷氧基鈦的醇溶液。若氫氧化鋇水溶液低於〇2〇 爾/升則合成反應難以進行,合成後的平均粒徑變大。而 線Micro photo. Fig. 4 is a microphotograph of barium titanate particulate powder of sample 25 in Example 1 of the present invention. Fig. 5 is a photomicrograph of modified barium titanate particulate powder of sample 52 in Example 2 of the present invention. Fig. 6 is a photomicrograph of calcium modified barium titanate particulate powder of sample 58 in Example 2 of the present invention. FIG. 7 is a graph showing the relationship between the average particle size and the axial ratio of barium titanate particulate powders of samples 1 to 58 and samples 63 to 66 using the hydrothermal synthesis method in the ratio k example of the examples of the present invention. . DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for producing a barium titanate particulate powder according to the present invention will be described below. First of all, prepare an aqueous solution of 0.20 to 1.20 moles / liter of barium hydroxide and an alcohol solution of 88 to 12 moles / liter of titanium alkoxide. If the aqueous solution of barium hydroxide is less than 200 mol / L, the synthesis reaction is difficult to proceed, and the average particle size after synthesis becomes large. While line

氫氧化鋇水溶液高於12〇摩爾/升,則在合成過程中會有碳I 鋇生成,所得鈦酸鋇的摩爾比不穩定。此外,若烷氧基鈦 醇溶液低於0.088摩爾/升,則需要大量醇,從而會使生產率 降。而若烷氧基鈦的醇溶液高於丨.235摩爾/升,則容易與空 中的水77务生水解反應,生成氧化鈦,而且,由於合成後1 鈦酸鋇微粒狀粉末的平均粒徑變大,導致無法使合成後1 摩爾比達到1.00左右。 1 然後,將氫氧化鋇溶液與烷氧基鈦的醇溶液進行調合,稃When the aqueous solution of barium hydroxide is higher than 120 mol / l, carbon I barium is formed during the synthesis, and the molar ratio of the obtained barium titanate is unstable. In addition, if the alkoxytitanium alcohol solution is less than 0.088 mol / l, a large amount of alcohol is required, which may reduce productivity. If the alcohol solution of titanium alkoxide is higher than .235 mol / l, it will easily react with water 77 in the air to produce titanium oxide. Moreover, the average particle size of 1 barium titanate particulate powder after synthesis It becomes too large, so that the molar ratio after synthesis cannot reach about 1.00. 1 Then, the barium hydroxide solution and the alcohol solution of titanium alkoxide are blended.

539649 A7 _______B7 五、發明説明(6~~) " 一 得Ba/Ti摩爾比為:^〜^的混合溶液。若Ba/Ti摩爾比低於ι.〇, 則Ti過剩,不適合作為疊層式片狀電容器中使用的介質陶瓷 粉末。而若Ba/Ti摩爾比高於U,則由於Ba過剩和c/a軸比下降 ,因此也不適合作為疊層式電容器中使用的介質陶瓷粉末。 在上述混合溶液中,必須防止其它鹼性元素(如犯等)混入 這疋因為兔·混入其它驗性元素,則驗性元素會殘留在生成 的鈦酸鋇微粒狀粉末中,即使殘留量僅數百ppm,加工成疊 層式片狀電容器後也將引起遷移,使介質元件的絕緣性惡 化。但其它鹼性元素作為不可避免的雜質存在則無礙。 接著’讓上述混合落液在60〜100°C反應,生成熱處理前的 鈥酸鋇微粒狀粉末。若反應溫度低於60°C,則合成反應難以 進行。另一方面,水與異丙醇的混合溶液的反應溫度不會超 過100°c。這樣獲得的熱處理前的鈦酸鋇微粒狀粉末,其平均 粒徑為0.019〜0.056 μηι,比表面積為17.99〜52.64 m2/g,合成後的 Ba/Ti摩爾比為 0.9979〜1.0060。 然後,將上述熱處理前的鈦酸鋇微粒狀粉末在850〜1〇〇〇。(3 進行熱處理,獲得熱處理後的鈦酸鋇微粒狀粉末。本發明的 熱處理前的鈦酸鋇微粒狀粉末具有即使在上述溫度區域進 行熱處理也不易出現異常粒生長的特徵。這樣獲得的熱處 理後的鈦酸鋇微粒狀粉末,其平均粒徑為0.105〜0.300 μηι,用 X線衍射測得的c/a軸比為1.008〜1.010。 下面對本發明的鈣改質的鈦酸鋇微粒狀粉末的製造方法 的另一種實施方式進行說明。 首先,準備0·20〜1.20摩爾/升的氫氧化鋇水溶液、作為烷氧 -9- 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 裝 訂 線 五、發明説明( 基鈦的醇溶液的0.088〜1 235座爾/4认田 液和與舞改質量對應 _并丙氧基数的異丙醇溶 述異丙醇溶液中。若^仆/㈣’先將硝㈣溶解於上 ,· 風虱化鋇水溶液低於0.20摩爾/升,則合 一:、:人以進行’合成後的平均粒徑變大。而若氫氧化鋇: /谷/從咼於1.2〇摩爾/升,目丨丨产 /、在a成過程中會有碳酸鋇生成,所 摩爾/升,則需要大量的醇,從而會使生產率下降。而若 =氧基鈇㈣料高和35料/升,則容易與空氣中的水 为發生水解反應,生成氧化鈇,而且,由於合成後的鈥酸銷 Μ粒狀粉末的平均粒徑變大.,因此,無法使合成後的摩爾比 達到1.00左右。 、接著,將i氧化鋇水溶;夜、異丙氧基欽與硝酸辦的異丙醇 洛液進行調合,獲得Ba/丁丨摩爾比為〇 _〜1〇2〇及⑶丁丨摩爾比在 0.160以不的混合溶液。若Ba/Ti摩爾比低於〇 98〇,則^過剩, 不週合作為疊層式片狀電容器中使用的介質陶瓷粉末。而 若Ba/Ti摩爾比高於丨·020,則由於a側(如+以)過剩和山軸比下 降,因此也不適合作為疊層式電容器中使用的介質陶瓷粉 末。 在上述混合溶液中,必須防止其它鹼性元素(如恤等)混入 ’這是因為若混入其它鹼性元素,則鹼性元素會殘留在生成 的鈥酸鋇微粒狀粉末中,即使殘留量僅數百ppm,加工成疊 層式片狀電谷备後也將引起遷移,使介質元件的絕緣性惡 化。但其它鹼性元素作為不可避免的雜質存在則無礙。 接著,讓上述混合溶液在60〜100°C反應,生成熱處理前的 -10- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇 X 297公釐) 539649 A7 ----——-— Β7__ 五、發明説明(8 ) 欽酸鋇微粒狀粉末。若反應溫度低於6(rc,則合成反應難以 進行。此外’水與異丙醇的混合溶液的反應溫度不會超過 100 C。這樣獲得的熱處理前的鈣改質的鈦酸鋇微粒狀粉末, 其平均粒徑為0.019〜0.025 μηι,比表面積為40.36〜54.05 m2/g,合 成後的Ba/Ti摩爾比為0.994〜1.004。 然後’將上述熱處理前的鈦酸鋇微粒狀粉末在95〇〜丨1〇〇。〇 進行熱處理,獲得熱處理後的鈦酸鋇微粒狀粉末。本發明的 熱處理前的#5改質的鈦酸鋇微粒狀粉末具有即使在上述溫 度區域進行熱處理也不易出現異常粒生長的特徵。這樣獲 每的熱處理後的鈣改質的鈦酸鋇微粒狀粉末,其平均粒徑 為0.145〜0.250 μηι,用X線衍射測得的c/a軸比為丨on 〇1〇。 境氧基鈥及醇溶液不限於上述實施方式,可適宜地選擇 例如乙氧化物、丁氧化物和乙醇、丁醇等。 另外’上述辦鹽不限於上述實施方式,也可適宜地選擇例 如溴化#5、氯化轉及硝酸辦等。 在上述本發明的鈦酸鋇微粒狀粉末的另一種製造方法中 ,作為混合溶液,可以將氫氧化鋇水溶液、烷氧基鈦的醇溶 液及鈣鹽的醇溶液同時混合,也可以邊攪拌邊將各溶液依 次注入後混合。 下面根據圖1詳細說明本發明的鈦酸鋇微粒狀粉末的一種 製造方法中的合成裝置。 合成裝置1由N2罐2、起泡器孔及2d、Ba溶液槽3、Ti溶液槽4 、泵5a、5b ' 5c、靜力混合器如及价、老化槽8、管道2a、及、允 、4a、7構成。 -11 - 本紙張尺度適Λ中國國準^---- 裝 訂 線 539649 A7 B7 五、發明説明(9 ) 叫罐2是向Ba溶液槽3及老化槽8供給N2氣用的貯氣罐。起泡 器%及2d是用於將由N2罐2供給的N2氣在Ba溶液槽3中及Ti溶 液槽4中以氣泡狀放出的裝置。Ba溶液槽3是注入氫氧化鋇水 溶液的容器。Ti溶液槽4是注入烷氧基鈦的醇溶液的容器。 泵5a、5b及5c分別是將氫氧化鋇水溶液、烷氧基鈦的醇溶液 及鈥酸鋇溶液送入靜力混合器的裝置。靜力混合器6a及61)是 將溶液混合的混合機。老化槽8是使合成的鈦酸鋇微粒狀粉 末老化的容器。管道2a、2c、3a、4a及7是輸送N2氣及溶液的管 道。 首先,將1^2氣通過與%罐2連接的管道2a輸送至設置在Ba溶 液槽3内的起泡器2b。同樣地,將N2氣通過管道2c輸送至設置 在老化槽8内的起泡器2d。 然後,將氫氧化鋇水溶液注入Ba溶液槽3,將烷氧基鈦的 醇溶液注入Ti溶液槽4,通過管道3a及4a,分別將溶液送入果 5a及 5b 〇 接著,將由栗5a及5b送出的兩種溶液在靜力混合器6a内混 合,將混合液通常管道7送到老化槽8。為了使晶格穩定,在 將老化槽8保持在60〜90°C的同時,進行1至數小時的老化。在 老化槽8中進行老化期間,將老化槽8内的鈦酸鋇溶液通過管 道8a送至泵5c,通過靜力混合器6b使其混合老化之後,再通 過管道8b送返老化槽8,再進行老化。 接著,在老化結束後,用離心分離機等進行固液分離,獲 得鈦酸鋇微粒狀粉末。將其用沸騰純水洗淨後,進行固液分 離。 -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 539649 五、發明説明( 欽酸I料14 6醇等的水分進行置換的溶#] f換將所得 再使3粒狀粉末中的水分置換、除去之後進行固液分離, =粉二燥,最後獲得規定摩爾比的熱處理前的鈥酸鎖微 【實施例】 (貫施例1) "^先#氯氧化鋇8水合物添加在加溫至90。(:的純水中進 行攪拌’使其完全溶解,獲得氫氧化鋇水溶液,並將異丙氧 基鈦溶料異丙醇中’獲得燒氧基鈇的醇水溶液。 將氫氧化鎖水溶液注入溶液槽3中,將垸氧基鈦的 醇水洛m Ti溶液槽4中’將它們按表丨所示Ba摩爾量,Ti 摩爾量及Ba/Ti摩爾比進行調合,用在上述實施方式中說明的 方法,後彳于熱處理前的試樣Α〜κ的鈦酸鋇微粒狀粉末。另外 ,反應條件為老化槽8保持在80t ,老化時間為丨小時。 接耆,用X線衍射對所得熱處理前的試樣Α〜κ的鈦酸鋇微粒 狀粉末進行分析,確定其為立方晶系鈦酸鋇單相。另外,合 成㈣Ba/Ti摩爾、比為〇·9979〜L〇〇6〇,平均粒徑(根據比表面^ 計算的相應直徑)為0.019〜0.056 μιΏ,粒度分布窄且均勻。熱處 理岫的試樣c的鈦酸鋇微粒狀粉末的顯微照片見圖2。 【表1】 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) -13- 539649539649 A7 _______B7 V. Description of the invention (6 ~~) " A mixed solution with Ba / Ti molar ratio of ^ ~ ^ is obtained. If the Ba / Ti molar ratio is less than 1.00, Ti becomes excessive, and it is not suitable as a dielectric ceramic powder for a multilayer chip capacitor. On the other hand, if the Ba / Ti molar ratio is higher than U, the excess Ba and the c / a axis ratio will decrease, which makes it unsuitable as a dielectric ceramic powder for use in multilayer capacitors. In the above mixed solution, it is necessary to prevent other basic elements (such as criminals) from being mixed in. Because rabbits are mixed with other test elements, the test elements will remain in the resulting barium titanate particulate powder, even if the remaining amount is only Hundreds of ppm, after processing into a multilayer chip capacitor, migration will occur and the insulation of the dielectric element will deteriorate. However, the presence of other basic elements as unavoidable impurities is not a problem. Next, the above mixed liquid is allowed to react at 60 to 100 ° C to generate barium acid particulate powder before heat treatment. If the reaction temperature is lower than 60 ° C, the synthesis reaction is difficult to proceed. On the other hand, the reaction temperature of a mixed solution of water and isopropanol does not exceed 100 ° C. The thus obtained barium titanate particulate powder before heat treatment has an average particle diameter of 0.019 to 0.056 μm, a specific surface area of 17.99 to 52.64 m2 / g, and a Ba / Ti molar ratio after synthesis of 0.9979 to 1.060. Then, the barium titanate particulate powder before the heat treatment is 850 to 10,000. (3) A heat treatment is performed to obtain a barium titanate particulate powder after the heat treatment. The barium titanate particulate powder before the heat treatment of the present invention has a feature that abnormal grain growth is unlikely to occur even if the heat treatment is performed in the above temperature range. After the heat treatment thus obtained, The barium titanate particulate powder has an average particle diameter of 0.105 to 0.300 μηι, and the c / a axis ratio measured by X-ray diffraction is 1.008 to 1.010. The calcium modified barium titanate particulate powder of the present invention is described below. Another embodiment of the manufacturing method will be described. First, prepare an aqueous solution of barium hydroxide of 0. 20 to 1.20 mol / l as the alkoxy-9. This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Centimeter) gutter 5. Description of the invention (0.088 ~ 1 235 seater / 4 zenfield solution of titanium-based alcohol solution and isopropanol corresponding to the number of propoxy groups dissolved in the isopropanol solution. If ^ Servants / ㈣ 'first dissolve nitrate on it. · The barium hydroxide aqueous solution is less than 0.20 mol / l, then the average particle size of the unity:,: is larger after synthesis. And if barium hydroxide : / Valley / from 咼 1.2 mol / In the production process, there will be barium carbonate formation in the a-forming process, so that a large amount of alcohol is required per mole / liter, which will reduce the productivity. And if = oxygenated material is high and 35 materials / liter, It is easy to undergo hydrolysis reaction with water in the air to generate ytterbium oxide, and since the average particle size of the granulated powder of the acidic pin M after synthesis becomes larger, the molar ratio after synthesis cannot be made to about 1.00. Then, the barium oxide was dissolved in water; the isopropoxyl and the isopropanolol solution of nitric acid were blended to obtain a Ba / butyl molar ratio of 0 to 1020 and a molar ratio of 0.160 is not a mixed solution. If the Ba / Ti molar ratio is lower than 0098, it will be excessive, and the dielectric ceramic powder used in the multilayer chip capacitor will be unsuitable. If the Ba / Ti molar ratio is higher than 丨· 020, due to the excess on the a side (such as +) and the reduction of the mountain axis ratio, it is not suitable as a dielectric ceramic powder for multilayer capacitors. In the above mixed solution, other alkaline elements (such as shirts, etc.) must be prevented ) Mix in 'This is because if you mix in other basic elements, the basic element It will remain in the produced barium acid particulate powder, even if the residual amount is only a few hundred ppm, it will cause migration after processing into a laminated sheet electric valley, and deteriorate the insulation of the dielectric element. But other alkaline The presence of the element as an unavoidable impurity is not a problem. Next, the above mixed solution is allowed to react at 60 to 100 ° C to generate -10- before heat treatment. This paper size applies Chinese National Standard (CNS) A4 specification (21〇X 297). (Centi) 539649 A7 ------------ B7__ 5. Description of the invention (8) Barium octylate particulate powder. If the reaction temperature is lower than 6 (rc), the synthesis reaction is difficult to proceed. In addition, the reaction temperature of the mixed solution of 'water and isopropanol does not exceed 100 ° C. The thus obtained calcium-modified barium titanate particulate powder before heat treatment has an average particle diameter of 0.019 to 0.025 μm, a specific surface area of 40.36 to 54.05 m2 / g, and a Ba / Ti molar ratio after synthesis of 0.994 to 1.004. Then, 'the barium titanate particulate powder before the heat treatment is 95 to 100. 〇 Heat treatment was performed to obtain barium titanate particulate powder after heat treatment. The # 5 modified barium titanate particulate powder before the heat treatment of the present invention has a characteristic that abnormal grain growth is unlikely to occur even if the heat treatment is performed in the above temperature range. In this way, each heat-treated calcium-modified barium titanate particulate powder was obtained, the average particle diameter of which was 0.145 to 0.250 μm, and the c / a axis ratio measured by X-ray diffraction was ≦ on 〇10. The ethoxy group and the alcohol solution are not limited to the above embodiment, and may be appropriately selected, for example, ethoxylate, butoxide, ethanol, butanol, and the like. In addition, the above-mentioned salt is not limited to the above-mentioned embodiment, and for example, bromine # 5, chlorination and nitric acid can be appropriately selected. In another method for producing the barium titanate particulate powder of the present invention, as the mixed solution, an aqueous solution of barium hydroxide, an alcohol solution of a titanium alkoxide, and an alcohol solution of a calcium salt may be mixed at the same time, or while stirring Each solution was sequentially injected and mixed. Next, a synthesis device in a method for producing barium titanate particulate powder according to the present invention will be described in detail with reference to FIG. The synthesis device 1 consists of N2 tank 2, bubbler holes and 2d, Ba solution tank 3, Ti solution tank 4, pumps 5a, 5b'5c, static mixer such as equivalent, aging tank 8, pipeline 2a, and , 4a, 7 constitute. -11-The size of this paper is compliant with China's standard ^ ---- binding line 539649 A7 B7 V. Description of the invention (9) The tank 2 is a gas storage tank for supplying N2 gas to the Ba solution tank 3 and the aging tank 8. The bubblers% and 2d are devices for releasing N2 gas supplied from the N2 tank 2 into the Ba solution tank 3 and the Ti solution tank 4 in a bubble form. The Ba solution tank 3 is a container filled with a barium hydroxide aqueous solution. The Ti solution tank 4 is a container into which an alcohol solution of titanium alkoxide is injected. The pumps 5a, 5b, and 5c are devices for feeding an aqueous solution of barium hydroxide, an alcohol solution of titanium alkoxide, and a solution of barium acid, respectively, into a static mixer. The static mixers 6a and 61) are mixers for mixing solutions. The aging tank 8 is a container for aging the synthesized barium titanate particulate powder. The pipes 2a, 2c, 3a, 4a, and 7 are pipes for conveying N2 gas and solution. First, 1 ^ 2 gas is sent to the bubbler 2b provided in the Ba solution tank 3 through a pipe 2a connected to the% tank 2. Similarly, N2 gas is sent to the bubbler 2d provided in the aging tank 8 through the pipe 2c. Then, the aqueous solution of barium hydroxide is poured into the Ba solution tank 3, and the alcohol solution of the titanium alkoxide is injected into the Ti solution tank 4, and the solution is sent to the fruits 5a and 5b through the pipes 3a and 4a. Then, the chestnuts 5a and 5b are pumped. The two solutions sent out are mixed in the static mixer 6a, and the mixed solution is usually pipe 7 sent to the aging tank 8. In order to stabilize the crystal lattice, the aging tank 8 is maintained at 60 to 90 ° C, and aging is performed for 1 to several hours. During the aging in the aging tank 8, the barium titanate solution in the aging tank 8 is sent to the pump 5c through the pipeline 8a, mixed and aged by the static mixer 6b, and then returned to the aging tank 8 through the pipeline 8b. Aging. Next, after the aging is completed, solid-liquid separation is performed using a centrifugal separator or the like to obtain barium titanate particulate powder. This was washed with boiling pure water, and then solid-liquid separation was performed. -12- This paper size applies Chinese National Standard (CNS) A4 specification (210X 297 mm) 539649 V. Description of the invention (Soluble to displace water such as acetic acid I, material 14 6 alcohol, etc.) After the water in the granular powder is replaced and removed, solid-liquid separation is performed, = powder is dried, and finally the "acid-locked micro" before heat treatment with a specified molar ratio is obtained. [Example] (Constant Example 1) " ^ 先 #chloride oxidation Barium 8 hydrate was added to pure water heated to 90 ° C. and stirred to make it completely dissolve to obtain a barium hydroxide aqueous solution, and titanium isopropoxide solution in isopropanol was used to obtain a calcined oxyfluorene. The aqueous solution of alcohol is injected into the solution tank 3, and the alkoxide titanium solution of titanium alkoxide is poured into the Ti solution tank 4 'as shown in Table 丨 the molar amount of Ba, the molar amount of Ti and the molar ratio of Ba / Ti The ratio was adjusted by using the method described in the above embodiment, and the barium titanate particulate powders of the samples A to κ before the heat treatment were used. In addition, the reaction conditions were that the aging tank 8 was maintained at 80t and the aging time was 丨 hours. Then, X-ray diffraction was applied to the barium titanate of the obtained samples A to κ before the heat treatment. The granular powder was analyzed to determine that it was a cubic phase barium titanate single phase. In addition, the synthetic rhenium Ba / Ti molar ratio was 0.99979 to L 0.60, the average particle diameter (the corresponding diameter calculated based on the specific surface ^ ) Is 0.019 ~ 0.056 μm, with a narrow and uniform particle size distribution. The micrograph of the barium titanate particulate powder of the heat-treated sample c is shown in Figure 2. [Table 1] This paper size applies to China National Standard (CNS) A4 specifications (210X297 mm) -13- 539649

實施例 C 0.40 0.34ΓΊ 1.100 1.0060 0.027 36.76 D 0.40 _〇651 1.100 1.0005 0.039 25.34 E 0.40 _U35 1.110 0.9989 0.056 17.99 F 0.60 _〇509 1.030 1.0015 0.024 41.24 G 0.60 _〇Ό88 1.100 0.9979 0.033 30.10 Η 0.80 0.647 1.054 0.9990 0.030 33.56 I 1.20 1.100 0.9998 0.023 43.64 J 0.20 _0〇40 1.200 1.0016 0.051 19.64 Κ 0.50 0.647 1.000 0.9980 0.033 30.63 之、後’用加熱爐分別在850、900、950及lOOOt:對熱處理前的 4樣A〜K&欽酸鋇微粒狀粉末熱處理2小時,獲得為強電介 貝的四方度大的試樣1〜44的鈦酸鋇微粒狀粉末。 接著’求出試樣1〜44的鈦酸鋇微粒狀粉末的比表面積、平 均粒徑及c/a軸比,將其歸納於表2。並將試樣3及25的鈦酸鋇 M fe狀粉末的顯微照片分別示於圖3及圖4。 【表2】 標 試 熱處理溫度 ___0C)Example C 0.40 0.34ΓΊ 1.100 1.0060 0.027 36.76 D 0.40 _〇651 1.100 1.0005 0.039 25.34 E 0.40 _U35 1.110 0.9989 0.056 17.99 F 0.60 _〇509 1.030 1.0015 0.024 41.24 G 0.60 _〇Ό88 1.100 0.9979 0.033 30.10 Η 0.80 0.647 1.054 0.9990 0.030 33.56 I 1.20 1.100 0.9998 0.023 43.64 J 0.20 _0〇40 1.200 1.0016 0.051 19.64 K 0.50 0.647 1.000 0.9980 0.033 30.63, and the heating furnace is used at 850, 900, 950, and 1000t respectively: For the four samples before heat treatment, A ~ K & The barium titanate particulate powder was heat-treated for 2 hours to obtain barium titanate particulate powders of samples 1 to 44 having a large tetragonality of ferroelectric shells. Next, the specific surface area, average particle diameter, and c / a axis ratio of the barium titanate particulate powders of Samples 1 to 44 were determined and summarized in Table 2. Micrographs of barium titanate M fe powders of samples 3 and 25 are shown in Figs. 3 and 4, respectively. [Table 2] Standard test heat treatment temperature ___0C)

A 比表面積(m2/g) 平均粒徑(μ m) cA Specific surface area (m2 / g) Average particle size (μm) c

D 850 實施例D 850 Examples

GG

HH

KK

A 900 cA 900 c

D 8.69 9.29 9.57 7.52 6.53 8 98 6.95 9.24 6.95 8.74 —9:06 8.07Ύπ6Ύΐ\ 6.18 0.115 0.108 0.105 0.133 0.138 0.111 0.144 0.108 0.144 0.114 0.110 0.124 0.129 0.122 0.162 c/a 軸比 1.008 1.009 1.009 1.008 1.008 1.008 1.008 1.008 1.008 1.008 1.008 1.008 T〇Q9 1.009 1.009 訂 -14 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 539649 A7 B7 16 Ε --------- 0.186 1.009 17 F — 7.86 0.127 1.008 實 18 G — 0.208 1.009 施 19 Η — 0.121 1.008 例 20 I — 5.27 0.190 1.009 21 J — 7J9__ 0.132 1.008 22 Κ : __—— 0.130 1.008 23 A 丨 0.136 1.009 24 B ^83__ 0.146 1.010 25 C 0.136 1.010 26 D 5.28 0.189 1.009 27 E — 4.66 0.240 1.009 28 F 950 6.28__ 0.159 1.008 29 G — 0.252 1.009 30 Η — TrT 0.148 1.008 31 I 4.16 0.240 1.009 32 J 6.31 0.158 ' 1.009 33 Κ — ^〇9__ 0.164 1.008 34 A 5.66 0.177 1.009 35 B 5^2__ 0.178 1.010 36 C __—--· 0.194 1.009 37 D 0.235 1.009 38 E _ 0.300 1.009 39 F 1000 0.209 1.008 40 G 334__ 0.300 1.009 41 H __—— 4.39_ 0.228 1.009 42 I ____一— 3.36 0.297 1.009 43 J 5.23 — 0.191 1.009 44 K 0.242 1.009 由表2可知,試樣丨〜44的鈦酸鋇微粒狀粉末的平均粒徑為 五、發明説明(12 0.105〜0.300 μιη,c/a軸比為1.008〜1.010,儘管是微粒,但四方度 大0 (實施例2) 首先,將氫氧化鋇8水合物添加在加溫至9〇°C的純水中進 -15- 本纸張尺度適用中國國家標準(CNS) A4規格(21〇><297公釐) 539649 A7 B7 五、發明説明(13 ) 行攪拌,使其完全溶解,獲得氫氧化鋇水溶液,並將異丙氧 基鈦溶解於異丙醇中,獲得烷氧基鈦的醇水溶液,將氯化鈣 溶解於異丙醇中,獲得鈣鹽的醇溶液。 接著,將氫氧化鋇水溶液注入溶液槽3中,將烷氧基鈦的 醇水溶液與鈣鹽的醇溶液預先混合,將混合液注入Ti溶液槽 4中,將它們按表3所示Ba摩爾量、Ti摩爾量、Ca摩爾量、Ba/Ti 摩爾比及Ca/Ti摩爾比調合,用上述實施方式中說明的方法, 獲得熱處理前的試樣L〜Q的鈣改質的鈦酸鋇微粒狀粉末。另 外,反應條件為老化槽8保持在80°C,老化時間為1小時。 然後,用X線衍射對所得熱處理前的試樣L〜Q的鈣改質的 鈦酸鋇微粒狀粉末進行分析,確定其為立方晶系鈦酸鋇單 相。另外,合成後的(Ba+Ca)/Ti摩爾為0.994〜1.004,平均粒徑 (根據比表面積計算的相應直徑)為0.019〜0.025 μπι,粒度分布 窄且均勻。 【表3】 試 樣 調合時 合成後(熱處理前) 換算d t(摩痺 摩爾 、比 摩爾比 平均 粒徑 (μιη) 比表 面積 (m2/g) Ba Ti Ca Ba/Ti Ca/Ti (Ba+Ca)/Ti Ba/Ti Ca/Ti 實 施 例 L 0.50 0.650 0.029 1.020 0.045 1.002 0.961 0.041 0.025 40.36 Μ 0.50 0.650 0.036 1.010 0.055 0.996 0.945 0.051 0.023 43,54 Ν 0.50 0.650 0.042 1.010 0.065 1.004 0.946 0.058 0.024 42.07 〇 0.50 0.650 0.049 1.000 0.075 0.994 0.927 0.067 0.023 43.42 Ρ 0.50 0.650 0.065 0.980 0.100 1.004 0.906 0.098 0.019 52.65 Q 0.50 0.650 0.128 0.986 0.160 0.998 0.846 0.152 0.019 54.05 然後,用加熱爐分別在950、1000、1050及1100°C將熱處理前 -16- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 539649 A7 發明説明 的4樣L〜Q的鈣改質的鈦酸鋇微粒狀粉末熱處理2小時,獲得 為&篆’丨貝的四方度大的試樣45〜%的妈改質的鈥酸鎖微粒 狀粉末。 ' 求出試樣45〜58的鈣改質的鈦酸鋇微粒狀粉末的比表面積 、平均粒徑及c/a軸比,將其歸納於表4。並將試樣5 2及5 8的鈇 酉父鎖微粒狀粉末的顯微照片分別示於圖5及圖6。 【表4】 熱處理溫度 比表面積 (m2/g) 平均粒徑 c/a 軸比 —- . (表3) (°C) (μ m) 45 Μ 950 5.18 0.179 1.010 46 Q 7.40 0.145 1.008 47 Μ 4.43 0.209 1.009 48 Ν 1000 5.23 0.167 1.010 49 Q 4.85 0.221 1.009 實 50 L 4.88 0.166 1.008 施 51 M 3.11 0.250 1.010 例 52 N 1050 5.14 0.174 1.009 53 0 4.65 0.174 1.009 」4 P 5.59 0.157 1.009 55 L 3.71 0.194 1.008 56 N 1 1 AA 4.15 0.193 1.010 57 〇 1100 3.89 0.219 1.009 58 P 4.63 0.250 1.010 由表4可知,試樣45〜58的鈣改質的鈦酸鋇微粒狀粉末的平 均粒徑為0.145〜0.250 μηι,c/a軸比為1.008〜1.010,儘管是微粒, 但四方度大。 (實施例3) 首先,製備0.20〜1_20摩爾/升的氫氧化鋇水溶液和0.088〜1.235 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 539649 A7 B7 五、發明説明(15 ) 摩爾/升的烷氧基鈦的醇溶液,將氫氧化鋇溶液與烷氧基鈦 的醇溶液按Ba/Ti摩爾比為丨別〜丨划的比例調合,不使其它驗 性元素混入。讓混合溶液在60〜10(rc反應,製成熱處理前的 鈦酸鋇微粒狀粉末’用加熱爐在85〇艺對其進行熱處理,製得 具有表5所示比表面積、平均粒徑及c/a軸比的試樣59及⑼的 鈦酸鋇微粒狀粉末。 接著,製備上述摩爾濃度範圍以外的氫氧化鋇水溶液和 上述摩爾濃度範圍以外的烷氧基鈦溶液,讓調合而成的混 合溶液在60〜100t反應,製成熱處理前的鈦酸鋇微粒狀粉末 ,用加熱爐在85(TC熱處理,獲得具有表5所示比表面積、平 均粒徑及c/a軸比的作為比較例的試樣6丨及62的鈦酸鋇微粒狀 粉末。試樣61的鈦酸鋇微粒狀粉末的c/a軸比小於⑶㈨,在本 發明的範圍之外,而試樣62的鈦酸鋇微粒狀粉末的平均粒徑 大於0.300 μηι ,也在本發明的範圍之外。 J Μ :樣 熱處理 溫度 _rci_ 比表面積 (m2/g) 平均粒徑 (μ m) c/a 軸比 59 5.29 0.189 1.010 例 60 850 4.43 0.226 1.009 t匕 較 61 7.68 0.130 1.007 例 62 -----L — 3.11 _ 1 1 0.322 ^ 1 1.010 然後’製備以試樣59〜62的鈇酸鋇微粒狀粉末為主要成分 的厚度為一的陶完生料層,在規定片數的陶是生料層的 表面上印刷成為内部電極的電極膜’使其一端邊緣露出於 -18- 539649 A7 B7 五、發明説明(16 ) 陶瓷生料層的任一端面側,將規定片數的這些陶瓷生料層 層疊、壓緊並培燒,獲得試樣59〜62的陶瓷層疊體,電極膜面 積為 1.23 mm2。 接著,在試樣59〜62的陶瓷層疊體的兩端面,浸潰塗布用於 形成端子電極的導電糊,將其乾燥、焙燒,形成與内部電極 電連接並機械接合的一對端子電極。然後,在該對端子電極 上通過電鍍處理形成Ni鍍膜,再在Ni鍍膜上通過電鍍處理形 成Sn鍍膜,獲得試樣59〜62的疊層式陶瓷電容器。 測定試樣59〜62的疊層式陶瓷電容器的介電常數、介電損 耗、靜電容量、靜電容量變化率及平均故障發生時間,求出 n= 75個的平均值,將其歸納於表6。另外,介電常數、介電損 耗、靜電容量變化率及靜電容量都是在1 kHz、0.5 Vmis/Vm的 條件下測定的。靜電容量變化率是以20°C時的靜電容量為基 準,算出在-55°C、-25°C、85°C及125°C的靜電容量變化率。另 外,平均故障發生時間(MTTF)是在150°C、10 V/μηι的條件下通 過加速壽命試驗(HALT)測定的。 試樣 介電 常數 介電 損耗 (%) 靜電 容量 (nF). 靜電容量變化率 (△c/c20/%) 平均故障 發生時間 (小時) -55〇C -25〇C 85〇C 125〇C 實 施 例 59 2617 9.90 1906 -7.0 -3.0 -2.1 •21.6 56 60 3224 10.70 2349 -4.0 0.0 -4.7 -20.5 59 比 幸父 例 61 4325 11.20 3150 12.1 22.1 19.9 -52.3 未測 62 4310 10.40 3140 -3.0 1.0 -7.6 -20.4 19 -19- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 539649 A7D 8.69 9.29 9.57 7.52 6.53 8 98 6.95 9.24 6.95 8.74 —9: 06 8.07Ύπ6Ύΐ \ 6.18 0.115 0.108 0.105 0.133 0.138 0.111 0.144 0.108 0.144 0.114 0.110 0.124 0.129 0.122 0.162 c / a Shaft ratio 1.008 1.009 1.009 1.008 1.008 1.008 1.008 1.008 1.008 1.008 1.008 1.008 1.008 1.008 T〇Q9 1.009 1.009 Order-14 This paper size applies to China National Standard (CNS) A4 (210 x 297 mm) 539649 A7 B7 16 Ε --------- 0.186 1.009 17 F — 7.86 0.127 1.008 Real 18 G — 0.208 1.009 Application 19 Η — 0.121 1.008 Example 20 I — 5.27 0.190 1.009 21 J — 7J9__ 0.132 1.008 22 Κ: __—— 0.130 1.008 23 A 丨 0.136 1.009 24 B ^ 83__ 0.146 1.010 25 C 0.136 1.010 26 D 5.28 0.189 1.009 27 E — 4.66 0.240 1.009 28 F 950 6.28__ 0.159 1.008 29 G — 0.252 1.009 30 Η — TrT 0.148 1.008 31 I 4.16 0.240 1.009 32 J 6.31 0.158 '1.009 33 Κ — ^ 〇9__ 0.164 1.008 34 A 5.66 0.177 1.009 35 B 5 ^ 2__ 0.178 1.010 36 C __---- · 0.194 1.009 37 D 0.235 1.009 38 E _ 0.300 1.009 39 F 1000 0.209 1.008 40 G 334__ 0.300 1.009 41 H __—— 4.39_ 0.228 1.009 42 I ____ 一 — 3.36 0.297 1.009 43 J 5.23 — 0.191 1.009 44 K 0.242 1.009 As can be seen from Table 2, barium titanate of sample 丨 ~ 44 The average particle size of the particulate powder is five. Explanation of the invention (12 0.105 ~ 0.300 μιη, c / a axis ratio is 1.008 ~ 1.010, despite being fine particles, the squareness is greater than 0 (Example 2) First, barium hydroxide 8 Hydrate is added into pure water heated to 90 ° C. -15- This paper size applies Chinese National Standard (CNS) A4 specification (21〇 > < 297 mm) 539649 A7 B7 V. Description of the invention (13) Stir to completely dissolve, obtain a barium hydroxide aqueous solution, and dissolve titanium isopropoxide in isopropanol, obtain an alcohol aqueous solution of titanium alkoxy, and dissolve calcium chloride in isopropanol To obtain an alcohol solution of calcium salt. Next, an aqueous solution of barium hydroxide was poured into the solution tank 3, and an alcohol aqueous solution of titanium alkoxide and an alcohol solution of calcium salt were mixed in advance, and the mixed solution was poured into the Ti solution tank 4, and these were added in the molar amounts of Ba shown in Table 3. , Ti molar amount, Ca molar amount, Ba / Ti molar ratio, and Ca / Ti molar ratio were blended, and the calcium-modified barium titanate particulates of samples L to Q before the heat treatment were obtained by the method described in the above embodiment. powder. The reaction conditions were that the aging tank 8 was maintained at 80 ° C and the aging time was 1 hour. Then, the obtained calcium-modified barium titanate particulate powders of the samples L to Q before the heat treatment were analyzed by X-ray diffraction to determine that it was a cubic barium titanate single phase. In addition, the (Ba + Ca) / Ti mole after synthesis is 0.994 to 1.004, the average particle size (corresponding diameter calculated from the specific surface area) is 0.019 to 0.025 μm, and the particle size distribution is narrow and uniform. [Table 3] Conversion after sample preparation (before heat treatment) Conversion dt (molar mole, specific molar ratio average particle size (μιη) Specific surface area (m2 / g) Ba Ti Ca Ba / Ti Ca / Ti (Ba + Ca ) / Ti Ba / Ti Ca / Ti Example L 0.50 0.650 0.029 1.020 0.045 1.002 0.961 0.041 0.025 40.36 M 0.50 0.650 0.036 1.010 0.055 0.996 0.945 0.051 0.023 43,54 N 0.50 0.650 0.042 1.010 0.065 1.004 0.946 0.058 0.024 42.07 〇0.50 0.650 0.049 1.000 0.075 0.994 0.927 0.067 0.023 43.42 P 0.50 0.650 0.065 0.980 0.100 1.004 0.906 0.098 0.019 52.65 Q 0.50 0.650 0.128 0.986 0.160 0.998 0.846 0.152 0.019 54.05 Then, use a heating furnace at 950, 1000, 1050 and 1100 ° C before heat treatment-16 -This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210 X 297 mm) 539649 A7 4 kinds of L ~ Q calcium modified barium titanate particulate powder described in the invention heat treatment for 2 hours, obtained as & 篆'丨 The sample with a large tetragonality of 45 ~% of the modified sample of acid-locked particulate powder.' The specific surface area of the calcium-modified barium titanate particulate powder of samples 45 ~ 58, The average particle diameter and c / a axis ratio are summarized in Table 4. The photomicrographs of the paternal lock micronized powders of samples 5 2 and 5 8 are shown in FIG. 5 and FIG. 6, respectively. [Table 4 ] Heat treatment temperature Specific surface area (m2 / g) Average particle size c / a Axial ratio--. (Table 3) (° C) (μ m) 45 Μ 950 5.18 0.179 1.010 46 Q 7.40 0.145 1.008 47 Μ 4.43 0.209 1.009 48 Ν 1000 5.23 0.167 1.010 49 Q 4.85 0.221 1.009 Actual 50 L 4.88 0.166 1.008 Application 51 M 3.11 0.250 1.010 Example 52 N 1050 5.14 0.174 1.009 53 0 4.65 0.174 1.009 `` 4 P 5.59 0.157 1.009 55 L 3.71 0.194 1.008 56 N 1 1 AA 4.15 0.193 1.010 57 〇1100 3.89 0.219 1.009 58 P 4.63 0.250 1.010 As can be seen from Table 4, the average particle size of the calcium-modified barium titanate particulate powder of samples 45 to 58 is 0.145 to 0.250 μηι, and the c / a axis ratio It is 1.008 to 1.010, and although it is a fine particle, its squareness is large. (Example 3) First, prepare an aqueous solution of 0.20 ~ 1-20 mol / l barium hydroxide and 0.088 ~ 1.235 -17- This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) 539649 A7 B7 V. Invention Note (15) mol / l of an alcohol solution of titanium alkoxide, the barium hydroxide solution and the alcohol solution of titanium alkoxide are blended according to a molar ratio of Ba / Ti to the ratio of 划 to 划, without making other tests Elements are mixed in. The mixed solution was reacted at 60 ~ 10 ° C to prepare barium titanate particulate powder before heat treatment. The heat treatment was performed in a heating furnace at 85 ° C to obtain a specific surface area, average particle size, and c shown in Table 5. / a axis ratio of sample 59 and rhenium barium titanate particulate powder. Next, a barium hydroxide aqueous solution outside the above molar concentration range and a titanium alkoxide solution outside the above molar concentration range were prepared and mixed. The solution was reacted at 60 to 100 t to prepare barium titanate particulate powder before heat treatment, and heat treated at 85 ° C. in a heating furnace to obtain a specific surface area, average particle diameter, and c / a axis ratio shown in Table 5 as a comparative example. The barium titanate particulate powder of samples 6 and 62. The c / a axis ratio of the barium titanate particulate powder of sample 61 is smaller than ⑶, which is outside the scope of the present invention, and the barium titanate of sample 62 is The average particle size of the particulate powder is greater than 0.300 μηι, which is also out of the scope of the present invention. J Μ: Sample heat treatment temperature_rci_ Specific surface area (m2 / g) Average particle size (μm) c / a Axial ratio 59 5.29 0.189 1.010 cases 60 850 4.43 0.226 1.009 t dagger 61 7.68 0.130 1. 007 Example 62 ----- L — 3.11 _ 1 1 0.322 ^ 1 1.010 Then 'prepared a ceramic raw material layer with a thickness of one consisting of barium osmate fine powder of samples 59 to 62 as the main component. The number of pieces of pottery is an electrode film printed as an internal electrode on the surface of the raw material layer so that one end edge is exposed at -18-539649 A7 B7 V. Description of the invention (16) Any end face side of the ceramic raw material layer will be specified The number of pieces of these ceramic raw material layers were laminated, pressed, and fired to obtain a ceramic laminate of samples 59 to 62 with an electrode film area of 1.23 mm2. Next, on both end faces of the ceramic laminate of samples 59 to 62, The conductive paste for forming a terminal electrode is dip-coated, and dried and fired to form a pair of terminal electrodes that are electrically connected and mechanically bonded to the internal electrodes. Then, a Ni plating film is formed on the pair of terminal electrodes by electroplating, and then The Sn plating film was formed on the Ni plating film by electroplating to obtain multilayer ceramic capacitors of samples 59 to 62. The dielectric constant, dielectric loss, electrostatic capacity, and capacitance change of the multilayer ceramic capacitors of samples 59 to 62 were measured. Rate and average failure Occurrence time, find the average of n = 75, and summarize them in Table 6. In addition, the dielectric constant, dielectric loss, capacitance change rate and capacitance are all under the conditions of 1 kHz and 0.5 Vmis / Vm Measured. The capacitance change rate is based on the capacitance at 20 ° C, and the capacitance change rates at -55 ° C, -25 ° C, 85 ° C, and 125 ° C are calculated. In addition, the average failure time (MTTF) was measured by an accelerated life test (HALT) at 150 ° C, 10 V / μηι. Sample permittivity and dielectric loss (%) Capacitance (nF). Capacitance change rate (△ c / c20 /%) Mean time to failure (hours) -55 ° C -25 ° C 85 ° C 125 ° C Example 59 2617 9.90 1906 -7.0 -3.0 -2.1 • 21.6 56 60 3224 10.70 2349 -4.0 0.0 -4.7 -20.5 59 Better than the father's example 61 4325 11.20 3150 12.1 22.1 19.9 -52.3 Untested 62 4310 10.40 3140 -3.0 1.0- 7.6 -20.4 19 -19- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 539649 A7

電容器的介電常數、 σ知,试樣59〜62的疊層式陶資; 介電損耗及靜電容量都很優良。 —另:卜广用本發明範圍内的鈦酸鋇微粒狀粉末的試樣59及 /⑼曰式陶資電容器,在说、·说及阶的靜電容量變 ^ ^ 〇 2’1%,絕對值小,很優異。另外,即使在125°C, ”猙:H變化率也僅為-21·6〜_20·5%。而作為比較例的試樣 61的受層式陶瓷電容器為121〜221%,絕對值大,較差。另外 ,在125°C的靜電容量變化率為-52.3%,極差。 此^,採用本發明範圍内的鈦酸鋇微粒狀粉末的試樣卯及 6〇的疊層式陶瓷電容器,其平均故障發生時間為π,小時, 較長,很優異。而作為比較例的試樣62的疊層式陶瓷電容器 ,其平均故障發生時間為19小時,很短,很差。另外,作為 本發明實施例的試樣59及60的疊層式陶瓷電容器,其介電常 發笔谷I比作為比較例的試樣61及62的小,這主要緣於 鈥鋇U 狀粉末的平均粒徑及c/a軸比,此外,試樣分及 的介電常數及靜電容量在實用上沒有問題。 (實施例4) 下面’作為比較例,用水熱合成法製備鈦酸鋇微粒狀粉末 。即’在攪拌15°C的的硫酸鈦(Ti (S04)2)水溶液(120 g/L,1L)6勺 同時’將液溫保持在15它,並徐徐加入過氧化鈉(Na2〇2)丨17 g 。添加結束後,加入1〇N氫氧化鈉水溶液,產生沈澱,添加後 繼績攪拌30分鐘。然後,在攪拌所得水溶液的同時,升溫至 5〇 C ’並保持5小時,獲得沈澱物。將其過濾、水洗,將所得 濾、餅與氯化鋇2水合物(BaCl2· 2H20) 244 g分散於水中,調製成 -20- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 裝 訂 線 539649 A7 _________Β7____ 五、發明説明(18 ) 2L的漿料,然後密閉進行氮氣置換,在15〇它反應1〇小時。反 應結束後進行冷卻’將所得漿料過濾、水洗及乾燥,獲得 Ba/Ti摩爾比為0.996、粒徑為〇 〇65 μπ1、比表面積為15 3 ^仏的 熱處理前的欽酸鎖微粒狀粉末。接著,將熱處理前的鈦酸鋇 微粒狀粉末分別在_°C、850°C、900°C及l〇〇〇°C進行熱處理, 獲得作為比較例的試樣63〜66的鈦酸鋇微粒狀粉末。 測足試樣63〜66的鈦酸鋇微粒狀粉末的比表面積、平均粒 徑及c/a軸比,將結果歸納於表7。 【表7】 試 樣 熱處理溫度 CC) 比表面積 (m2/g) 平均粒徑 (μ m) c/a軸比 比 63 800 7.69 0.130 1.0055 較 64 850 5.62 0.178 1.0075 例 65 900 4.48 0.223 1.0086 66 1000 2.57 0.389 1.0102 由表7可知’試樣63、64及66的鈦酸鋇微粒狀粉末,其c/a軸 比在1.008〜1.010的範圍之外,試樣66的鈦酸鋇微粒狀粉末,其 平均粒從大於0.300 μ m。 這裏’將在本發明範圍内的用水解法製得的試樣丨〜58的鈦 S文銷微粒狀粉末與作為比較例的用水熱合成法製得的試樣 63〜66的欽酸銷微粒狀粉末的平均粒徑與c/a軸比的關係示於 圖7。 由圖7可知,雖然用▲表示的試樣65的鈦酸鋇微粒狀粉末 ,其比表面積、平均粒徑及c/a軸比都在成為本發明的鈦酸鋇 微粒狀粉末的範圍内(圖7中所示的矩形範圍内),但與同樣在 ’ -21 - 本紙張尺度適用中國國家標準(CMS) A4規格(210 X 297公釐) 539649 A7The dielectric constant and σ of the capacitor are known, and the laminated ceramic materials of samples 59 to 62 have excellent dielectric loss and electrostatic capacity. — Another: Bu Guang used the sample 59 of the barium titanate particulate powder within the scope of the present invention and / or the Japanese-style ceramic capacitors, and the capacitance of the said stage changed, ^ ^ 〇 2'1%, absolute The value is small and excellent. In addition, even at 125 ° C, the "狰: H change rate is only -21 · 6 to _20 · 5%. In contrast, the sample type ceramic capacitor of sample 61 is 121 to 221%, which has a large absolute value. In addition, the capacitance change rate at 125 ° C is -52.3%, which is extremely poor. Therefore, the sample 卯 using barium titanate particulate powder within the scope of the present invention and a 60 ° multilayer ceramic capacitor The average failure occurrence time is π, hours, long, and excellent. The multilayer ceramic capacitor of sample 62 as a comparative example has an average failure occurrence time of 19 hours, which is short and poor. In addition, as The multilayer ceramic capacitors of the samples 59 and 60 of the embodiment of the present invention have a dielectric constant pen valley I smaller than that of the samples 61 and 62 as comparative examples, which is mainly due to the average particle size of the barium U-shaped powder. Diameter, c / a axis ratio, and the dielectric constant and capacitance of the sample are not practically problematic. (Example 4) Below, as a comparative example, a barium titanate particulate powder was prepared by a hydrothermal synthesis method. That is, 6 spoons of an aqueous solution of titanium sulfate (Ti (S04) 2) (120 g / L, 1L) stirred at 15 ° C at the same time will be The temperature was maintained at 15 and 17 g of sodium peroxide (Na2O2) was gradually added. After the addition was completed, a 10N sodium hydroxide aqueous solution was added to cause precipitation. After the addition, stirring was continued for 30 minutes. Then, the obtained aqueous solution was stirred. At the same time, the temperature was raised to 50 ° C. and kept for 5 hours to obtain a precipitate. This was filtered and washed with water. The obtained filter, cake and 244 g of barium chloride dihydrate (BaCl2 · 2H20) were dispersed in water to prepare- 20- This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) binding line 539649 A7 _________ Β7 ____ V. Description of the invention (18) 2L slurry, then sealed with nitrogen replacement, it reacts for 10 hours at 150 After the reaction is completed, the resulting slurry is filtered, washed with water, and dried to obtain a microcapsule-shaped acetic acid lock before heat treatment with a Ba / Ti molar ratio of 0.996, a particle size of 0.055 μπι, and a specific surface area of 15 3 ^ 仏. Next, the barium titanate particulate powder before the heat treatment was heat-treated at _ ° C, 850 ° C, 900 ° C, and 1000 ° C, respectively, to obtain samples 63 to 66 as comparative examples. Barium particulate powder. The specific surface area, average particle size, and c / a axis ratio of the barium titanate particulate powders of samples 63 to 66 are summarized in Table 7. [Table 7] Sample heat treatment temperature CC) Specific surface area (m2 / g) Average particle size (μm) c / a ratio of axial ratio 63 800 7.69 0.130 1.0055 than 64 850 5.62 0.178 1.0075 Example 65 900 4.48 0.223 1.0086 66 1000 2.57 0.389 1.0102 Table 7 shows that 'Sample 63, 64, and 66 barium titanate The particulate powder has a c / a axis ratio outside the range of 1.008 to 1.010. The average particle size of the barium titanate particulate powder of sample 66 is greater than 0.300 μm. Here, 'the sample S prepared by the hydrolysis method within the scope of the present invention, the titanium S pin pin powder of 58 and the sample pin 63-66 powder obtained by the hydrothermal synthesis method as a comparative example were used. The relationship between the average particle diameter and the c / a axis ratio is shown in FIG. 7. As can be seen from FIG. 7, although the barium titanate particulate powder of Sample 65 indicated by ▲, its specific surface area, average particle diameter, and c / a axis ratio are all within the range of the barium titanate particulate powder of the present invention ( Within the rectangular range shown in Figure 7), but the same as' -21-This paper size applies the Chinese National Standard (CMS) A4 specification (210 X 297 mm) 539649 A7

539649 A7539649 A7

電容量變化率、靜電容量和平均故障發生時間的測定條件 與上述實施例3中的相同。 【表8】 試樣 介電 常數 介電 損耗 (%) 靜電 容量 (nF) 靜電容量變化率 __(AC/C2〇/%) 平均故障 發生時間 (小日每、 -55〇C -25 °C 85〇C 125〇C 實施例 25 1510 1.15 1100 1.3 2.6 -7.2 -14.5 /lOo |比較例 64 ^2320 4.41 1720— -12.8 -7.2 17.9 -37.9 ------ 一^_ 81 由表8可知,採用本發明範圍内的鈦酸鋇微粒狀粉末的試 樣25的疊層式陶瓷電容器,其介電損耗為115%,很小,很優 兴,在-55 C、-25°C及85t的靜電容量變化率為-7·2〜丨.3%,絕對 值小,很優異。另外,平均故障發生時間為428小時,較長, 很優異。在125°C的靜電容量變化率也僅為-14·5%,較小,很 優異。而作為比較例的試樣64的疊層式陶瓷電容器的介電損 耗為4.41%,較大,在-55^、-25t&85t的靜電容量變化率為、 17·9〜-7.2% ’絕對值大,平均故障發生時間為81小時,很短, 這些結果都很差。另外,在l25t:的靜電容量變化率為_379% ,極差。雖然作為本發明實施例的試樣25的介電常數及靜電 客量比作為比較例的試樣64的小,但這主要緣於鈦酸鋇微粒 狀粉末的平均粒徑及c/a軸比,此外,試樣25的介電常數及靜 電容量在實用上沒有問題。 如上所述,本發明的鈦酸鋇微粒狀粉末的製造方法以具 有製備0.20〜1.20摩爾/升的氫氧化鋇水溶液和〇 〇88〜1 235摩爾/ 升的’丨元氧基鈥的醇溶液的步驟、將氫氧化鋇溶液與燒氧基 鈥的醇溶液以Ba/Ti摩爾比為ι·〇〇〜ι·2〇的比例進行調合,在沒 -23-The measurement conditions of the capacitance change rate, the electrostatic capacity, and the average failure occurrence time are the same as those in Example 3 described above. [Table 8] Sample permittivity, dielectric loss (%), capacitance (nF), capacitance change rate __ (AC / C2〇 /%), average failure occurrence time (small day, -55 ° C -25 ° C 85 ° C 125 ° C Example 25 1510 1.15 1100 1.3 2.6 -7.2 -14.5 / lOo | Comparative Example 64 ^ 2320 4.41 1720— -12.8 -7.2 17.9 -37.9 ------ ^ _ 81 From Table 8 It can be seen that the multilayer ceramic capacitor using the sample 25 of the barium titanate particulate powder within the scope of the present invention has a dielectric loss of 115%, which is very small and very favorable. The temperature is -55 C, -25 ° C and The capacitance change rate at 85t is -7 · 2 ~ 丨 .3%. The absolute value is small and excellent. In addition, the average failure time is 428 hours, which is long and excellent. The capacitance change rate at 125 ° C is also excellent. It is only -14 · 5%, which is small and excellent. The dielectric loss of the multilayer ceramic capacitor of Sample 64 as a comparative example is 4.41%, which is large, and has a static electricity of -55 ^, -25t & 85t. The rate of change in capacity is 17.9 ~ -7.2% 'The absolute value is large, the average failure time is 81 hours, which is very short, and these results are very poor. In addition, the rate of change in electrostatic capacity at l25t: _37 9%, extremely poor. Although the dielectric constant and electrostatic capacity of sample 25 as an example of the present invention are smaller than those of sample 64 as a comparative example, this is mainly due to the average particle size of barium titanate particulate powder And c / a axis ratio, and there is no practical problem in the dielectric constant and capacitance of the sample 25. As described above, the method for producing the barium titanate particulate powder of the present invention has a production ratio of 0.20 to 1.20 mol / liter. A step of the aqueous solution of barium hydroxide and an alcohol solution of 〇88 ~ 1 235 mol / l of the alcohol solution, the barium hydroxide solution and the alcohol solution of the oxyhydrogen group at a Ba / Ti molar ratio of ι ·· 〇〇 ~ ι · 2〇 ratio of blending, not at -23-

539649 A7 -—----- 五、發明説明(21 ) 有其它驗性元素混入下獲得混合溶液的步驟和讓混合溶液 在60〜10Gt反應的步驟為特徵。其效果是,可獲得不 起介層元件絕緣不良的可靠性高的鈦酸鋇微粒狀粉末,並 可獲得旎貫現小型咼集成化和大容量化的疊層式陶瓷電子 元器件。 % 上述方法的特徵還在於,在讓上述混合溶液反應的步驟 之後,在850〜l〇〇〇°C進行熱處理,回收陶瓷粉末。其效果是, 可獲得晶粒適度生長而無異常晶粒生長的鈦酸鋇微粒狀粉 末,這樣的鈦酸鋇微粒狀粉末非常適合製造能實現小型高 集成化和大容量化的層疊陶瓷電子元器件。 本發明的鈣改質的鈦酸鋇微粒狀粉末的製造方法以具有 製備0.20〜1.20摩爾/升的氫氧化鋇水溶液、〇 〇88〜1 235摩爾/升的 烷氧基鈦的醇溶液及鈣鹽的醇溶液的步驟、以Ba/Ti摩爾比為 0.980〜1.020及Ca/Ti摩爾比在0.160以下的比例進行調合,在沒有 其它驗性元素混入下獲得混合溶液的步驟和讓上述混合溶 液在60〜100°C反應的步驟為特徵。其效果是,可獲得不容易 引起介層元件絕緣不良的可靠性高的鈣改質的鈦酸鋇微粒 狀粉末,並可獲得能實現小型高集成化和大容量化的疊層 式陶瓷電子元器件。 上述方法的特徵還在於,在讓上述混合溶液反應的步驟 之後’在950〜1 l〇〇°C進行熱處理,回收陶瓷粉末。其效果是, 可獲得晶粒適度生長而無異常晶粒生長的鈣改質的鈦酸鋇 微粒狀粉末,這樣的鈣改質的鈦酸鋇微粒狀粉末非常適合 製造能實現小型高集成化和大容量化的層疊陶瓷電子元器 -24- 本紙張尺度適财關家_CNS) Μ驗(21G x 297公爱)— 539649 A7 B7 五 發明説明(22 件。 另外,根據本發明的製造方法獲得的鈦酸鋇微粒狀粉末 及鈣改質的鈦酸鋇微粒狀粉末,由於可以在反應系内對液 體中濕式合成而無需在反應液中添加Na、K等鹼性元素,因 此具有無雜質、純度高、四方度大的效果。 裝 訂 -25-本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)539649 A7 ----------- 5. Description of the invention (21) The steps of obtaining a mixed solution with the addition of other experimental elements and the step of allowing the mixed solution to react at 60 to 10 Gt are characterized. As a result, it is possible to obtain a highly reliable barium titanate particulate powder that does not cause poor insulation of the interposer, and it is possible to obtain a multilayer ceramic electronic component that is now compact, integrated, and large-capacity. % The method described above is further characterized in that after the step of reacting the mixed solution, heat treatment is performed at 850 to 1000 ° C to recover the ceramic powder. The effect is that barium titanate particulate powder with moderate grain growth without abnormal grain growth can be obtained. Such barium titanate particulate powder is very suitable for the manufacture of laminated ceramic electronic cells that can achieve small, high integration and large capacity. Device. The method for producing the calcium-modified barium titanate particulate powder of the present invention includes the preparation of an aqueous solution of 0.20 to 1.20 mol / L of barium hydroxide, an alcohol solution of 0.0088 to 1 235 mol / L of titanium alkoxide, and calcium. The step of the alcohol solution of the salt is performed by mixing a Ba / Ti molar ratio of 0.980 to 1.020 and a Ca / Ti molar ratio of 0.160 or less, obtaining a mixed solution without mixing other experimental elements, and allowing the above mixed solution to It is characterized by a reaction step at 60 to 100 ° C. As a result, it is possible to obtain a highly reliable calcium-modified barium titanate particulate powder that does not easily cause poor insulation of an interposer, and obtain a multilayer ceramic electronic element that can achieve small size, high integration, and large capacity. Device. The above method is further characterized in that after the step of reacting the mixed solution ', a heat treatment is performed at 950 to 100 ° C to recover the ceramic powder. The effect is that calcium-modified barium titanate particulate powder with moderate grain growth and no abnormal grain growth can be obtained. Such calcium-modified barium titanate particulate powder is very suitable for producing small and highly integrated Large-capacity multilayer ceramic electronic device-24- This paper size is suitable for financial affairs_CNS) M test (21G x 297 public love) — 539649 A7 B7 Five invention descriptions (22 pieces. In addition, the manufacturing method according to the present invention The obtained barium titanate particulate powder and calcium-modified barium titanate particulate powder can be wet synthesized in a liquid in the reaction system without the need to add basic elements such as Na and K to the reaction liquid, so they have no The effect of impurities, high purity, and large squareness. Binding-25- This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱i 8 8 8 8 A B c D 539649 六、申請專利範圍 .表面積為17.99〜52.64 m2/g,合成後的Ba/Ti摩爾比為〇 9979〜 1.0060。 6· 一種粒狀鈦酸鋇粉末,其係以申請專利範圍第2項之製造 方法獲得,其特徵在於,其平均粒徑為〇 1〇5〜〇 3〇〇 μ m,用 X線衍射測得的c/a軸比為1.008〜1.010。 7· 種粒狀約改質的鈥酸鋇粉末,其係以申請專利範圍第3 項之製造方法獲得,其特徵在於,其平均粒徑為〇〇19〜 0.025 μηι ’ 比表面積為 4〇.36〜54.05 m2/g,合成後的(Ba+Ca)/Ti 摩爾比為0.994〜1.004。 8· 一種粒狀鈣改質的鈦酸鋇粉末,其係以申請專利範圍第 4項之製造方法獲得,其特徵在於,其平均粒徑為〇145〜 〇·250 μ m,用X線衍射測得的*軸比為丨.0084 〇1〇。 -27- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)This paper size applies to Chinese National Standard (CNS) A4 specifications (210X297 public love i 8 8 8 8 AB c D 539649) 6. Scope of patent application. Surface area is 17.99 ~ 52.64 m2 / g, and the Ba / Ti molar ratio after synthesis is 0. 9979 ~ 1.0060. 6. A granular barium titanate powder, which is obtained by the manufacturing method of the second patent application scope, characterized in that its average particle diameter is 〇105 ~ 〇300μm, and The c / a axis ratio measured by X-ray diffraction is 1.008 to 1.010. 7. A kind of granular barium acid powder which is about modified, which is obtained by the manufacturing method of the third item of the patent application, which is characterized by its average The particle size is 〇19 ~ 0.025 μηι ', the specific surface area is 40.36 ~ 54.05 m2 / g, and the (Ba + Ca) / Ti molar ratio after synthesis is 0.994 ~ 1.004. 8 · A granular calcium modified titanium Barium acid powder, which is obtained by the manufacturing method of item 4 of the scope of patent application, is characterized in that its average particle diameter is 0145 ~ 0.25 μm, and the * -axis ratio measured by X-ray diffraction is 0.0008 〇1〇 -27- This paper size applies to China National Standard (CNS) A4 specification (210X297 mm)
TW090118794A 2000-08-11 2001-08-01 Particulate barium titanate powder, particulate calcium-modified barium titanate powder, and production method thereof TW539649B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000244885A JP3780405B2 (en) 2000-08-11 2000-08-11 Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same

Publications (1)

Publication Number Publication Date
TW539649B true TW539649B (en) 2003-07-01

Family

ID=18735509

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090118794A TW539649B (en) 2000-08-11 2001-08-01 Particulate barium titanate powder, particulate calcium-modified barium titanate powder, and production method thereof

Country Status (4)

Country Link
JP (1) JP3780405B2 (en)
KR (1) KR100435073B1 (en)
CN (1) CN1202014C (en)
TW (1) TW539649B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660935B2 (en) * 2001-02-05 2011-03-30 株式会社村田製作所 Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure
JPWO2003004415A1 (en) * 2001-07-04 2004-10-28 東邦チタニウム株式会社 Barium titanate powder and method for producing the same
WO2004096712A1 (en) * 2003-04-25 2004-11-11 Sumitomo Chemical Company, Limited Barium titanate powder and method for producing same
DE10323816A1 (en) * 2003-05-23 2004-12-09 Basf Ag Process for the production of mixed oxides with average diameters less than 10 nanometers
KR20070001918A (en) * 2003-12-05 2007-01-04 제이에스알 가부시끼가이샤 Method for producing composition for forming dielectric film, composition for forming dielectric film, dielectric film and method for producing same
KR100616542B1 (en) 2004-03-31 2006-08-29 삼성전기주식회사 Oxide Powder Using A Material To Make A Dielectrics and Method for Producing A Perovskite Structure Oxide Powder Using A Material To Make A Dielectrics and Multilayer Ceramic Condenser
KR100837025B1 (en) 2004-08-27 2008-06-10 쇼와 덴코 가부시키가이샤 Barium calcium titanate, production process thereof and capacitor
JP5089870B2 (en) * 2004-08-27 2012-12-05 昭和電工株式会社 Barium calcium titanate, method for producing the same, and capacitor
JP4789449B2 (en) * 2004-10-27 2011-10-12 京セラ株式会社 Dielectric porcelain and multilayer ceramic capacitor using the same
JP4684657B2 (en) * 2005-01-07 2011-05-18 日本化学工業株式会社 Method for producing barium titanyl oxalate powder and method for producing titanium-based perovskite ceramic raw material powder
JP2006298680A (en) * 2005-04-18 2006-11-02 Taiyo Yuden Co Ltd Dielectric ceramic and laminated ceramic capacitor
KR100633723B1 (en) * 2005-08-04 2006-10-13 한화석유화학 주식회사 Process for preparing barium titanate
JP4827011B2 (en) * 2006-03-10 2011-11-30 Tdk株式会社 Ceramic powder, dielectric paste using the same, multilayer ceramic electronic component, and manufacturing method thereof
JP4578428B2 (en) * 2006-03-28 2010-11-10 京セラ株式会社 Barium titanate powder and production method thereof
CN100345765C (en) * 2006-03-29 2007-10-31 山西大学 Preparation method of cubic phase barium titanate
TW200838805A (en) * 2007-02-20 2008-10-01 Nippon Chemical Ind Amorphous fine-particle powder, process for production thereof and perovskite-type barium titanate powder made by using the same
KR101725467B1 (en) * 2009-04-10 2017-04-11 에스톨, 인코포레이티드 Hydrothermal processing in the wet-chemical preparation of mixed metal oxide ceramic powders
CN102781874A (en) * 2010-03-31 2012-11-14 Tdk株式会社 Dielectric Ceramic Composition, Production Method Thereof And Electronic Element
JP5299400B2 (en) * 2010-10-26 2013-09-25 株式会社村田製作所 Method for producing composite oxide powder
WO2015190556A1 (en) * 2014-06-13 2015-12-17 戸田工業株式会社 Barium titanate fine particle powder, dispersion, and coating film
CN106430295B (en) * 2016-09-12 2017-12-26 天津城建大学 A kind of micro-nano hierarchy BaTiO3Crystal and preparation method thereof
JP7438867B2 (en) 2019-07-16 2024-02-27 日本化学工業株式会社 Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder
CN114127013B (en) * 2019-07-16 2023-08-29 日本化学工业株式会社 Me element-substituted organic acid barium titanyl oxide, process for producing the same, and process for producing titanium perovskite ceramic raw material powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087437A (en) * 1988-01-15 1992-02-11 E. I. Du Pont De Nemours And Company Process for preparing crystalline mixed metal oxides
US5445806A (en) * 1989-08-21 1995-08-29 Tayca Corporation Process for preparing fine powder of perovskite-type compound

Also Published As

Publication number Publication date
JP2002060219A (en) 2002-02-26
JP3780405B2 (en) 2006-05-31
KR20020013740A (en) 2002-02-21
KR100435073B1 (en) 2004-06-09
CN1202014C (en) 2005-05-18
CN1338430A (en) 2002-03-06

Similar Documents

Publication Publication Date Title
TW539649B (en) Particulate barium titanate powder, particulate calcium-modified barium titanate powder, and production method thereof
TWI278443B (en) Method of producing powder, powder, and laminated ceramic condenser using the same
CN1097833C (en) Dielectric ceramic and monolithic ceramic electronic part using the same
CN103708821B (en) Dielectric combination and the laminated ceramic electronic component manufactured using the dielectric combination
JP6236706B2 (en) Manufacturing method of ceramic capacitor containing fine metal particles
TW200418056A (en) Dielectric ceramics, its manufacturing method and laminated ceramic capacitor
JP2013107812A (en) Perovskite powder, method for producing the same and laminated ceramic electronic component using the powder
US20140218840A1 (en) Dielectric composition and multilayer ceramic electronic component using the same
CN103708822A (en) Dielectric composition and multilayer ceramic electronic component manufactured using the same
JP4552419B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP3804474B2 (en) Method for producing ceramic raw material powder
JP5932397B2 (en) Method for producing ceramic powder having perovskite structure and ceramic powder having perovskite structure produced thereby
US10943733B2 (en) Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device
JP5573729B2 (en) Method for producing perovskite complex oxide
JP2014076938A (en) Dielectric composition and laminated ceramic electronic component using the same
US9842696B2 (en) Composite perovskite powder, preparation method thereof, and paste composition for internal electrode having the same
WO2002066377A1 (en) Method for preparing high quality barium-titanate based powder
JP5423303B2 (en) Method for producing dielectric ceramic composition
TW200424129A (en) Production method for barium titanate powder
JPS5939725A (en) Manufacture of dielectric powder for thick film
JP5348918B2 (en) Nickel powder, base metal powder manufacturing method, conductor paste, and electronic components
TW200839813A (en) Electronic device and manufacturing method thereof
CN115159993B (en) Preparation method of titanium dioxide for MLCC
KR20130073670A (en) Perovskite powder, fabricating method thereof and multi-layer ceramic electronic parts fabricated by using the same
JP2004277262A (en) Method for producing dielectric porcelain composition, and ceramic capacitor using the dielectric porcelain composition produced thereby

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent