WO2015190556A1 - Barium titanate fine particle powder, dispersion, and coating film - Google Patents

Barium titanate fine particle powder, dispersion, and coating film Download PDF

Info

Publication number
WO2015190556A1
WO2015190556A1 PCT/JP2015/066867 JP2015066867W WO2015190556A1 WO 2015190556 A1 WO2015190556 A1 WO 2015190556A1 JP 2015066867 W JP2015066867 W JP 2015066867W WO 2015190556 A1 WO2015190556 A1 WO 2015190556A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium titanate
particle powder
fine particle
titanate fine
dielectric constant
Prior art date
Application number
PCT/JP2015/066867
Other languages
French (fr)
Japanese (ja)
Inventor
敬介 國森
山本 一美
晴己 黒川
誉元 河口
Original Assignee
戸田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54833643&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015190556(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 戸田工業株式会社 filed Critical 戸田工業株式会社
Priority to JP2016527858A priority Critical patent/JP6635031B2/en
Priority to CN201580030091.6A priority patent/CN106458630A/en
Priority to KR1020167034040A priority patent/KR102539617B1/en
Publication of WO2015190556A1 publication Critical patent/WO2015190556A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • An object of the present invention is to provide a barium titanate fine particle powder which is fine but has a high dielectric constant (relative dielectric constant).
  • Barium titanate having a high dielectric constant is widely used as a dielectric material for multilayer ceramic capacitors.
  • an inorganic film filler such as zirconia is added to a transparent resin to control dielectric constant and refractive index for optical films used for various displays.
  • Liquid crystal display control TFTs are also required to have fine particles and a high dielectric constant as a material for an insulating film or the like in order to reduce power consumption.
  • Patent Documents 1 and 2 barium titanate particle powder whose dielectric constant is increased by performing a heat treatment at 500 ° C. or higher, fine barium titanate particle powder (Patent Document 3) obtained by hydrothermal reaction, etc. are known.
  • the barium titanate fine particle powder satisfying the above properties is currently most demanded, but has not yet been obtained.
  • Patent Documents 1 and 2 described above it is described that the barium titanate particle powder is heat-treated in a temperature range of 500 ° C. or higher. However, since the heat treatment temperature is high, the particle size may be coarsened. .
  • the present invention is a barium titanate fine particle powder having an average primary particle size of 20 to 60 nm and a relative dielectric constant of 300 to 800 (Invention 1).
  • the present invention is the barium titanate fine particle powder according to the present invention 1, wherein the value obtained by dividing the particle size distribution of the primary particles by the average particle size of the primary particles is 0.20 to 0.25 (Invention 2).
  • the present invention is the barium titanate fine particle powder according to claim 1 or 2, wherein the lattice constant ratio c / a is less than 1.003 (Invention 3).
  • the present invention is a dispersion containing the barium titanate fine particle powder according to any one of the present inventions 1 to 3 (Invention 4).
  • the present invention is a coating film containing the barium titanate fine particle powder according to any one of the present inventions 1 to 3 (Invention 5).
  • the barium titanate fine particle powder according to the present invention is suitable for an optical material because it has a high dielectric constant while being very fine particles.
  • Example 1 It is the barium titanate fine particle powder (before heat treatment) used in Example 1. It is a barium titanate fine particle powder (after heat treatment) obtained in Example 1.
  • the average particle diameter (x) of the primary particles of the barium titanate fine particle powder according to the present invention is 20 to 60 nm.
  • the average particle size is preferably 22 to 58 nm, more preferably 25 to 55 nm.
  • the barium titanate fine particle powder according to the present invention has a relative dielectric constant of 300 to 800 measured by an evaluation method described later. By controlling the relative dielectric constant of the barium titanate fine particle powder within the above range, fine particles with suppressed particle growth can be obtained. A more preferable relative dielectric constant is 410 to 750.
  • the value obtained by dividing the particle size distribution ( ⁇ ) of the primary particles of the barium titanate fine particles according to the present invention by the average particle size (x) of the primary particles is preferably 0.20 to 0.25. By controlling the numerical value within the above range, it becomes a barium titanate fine particle powder having an excellent particle size distribution. A more preferred range is 0.205 to 0.248.
  • the crystallinity of the barium titanate fine particle powder according to the present invention is less than 1.003 when expressed by the lattice constant ratio c / a using the a-axis length (a) and the c-axis length (c) of the lattice constant. preferable. Barium titanate fine particle powder having a lattice constant ratio c / a of 1.003 or more is difficult to produce industrially with the particle size of the present invention.
  • the specific surface area of the barium titanate fine particle powder according to the present invention is preferably 10 to 80 m 2 / g. In the case of less than 10 m 2 / g, the particle powder becomes coarse and particles are sintered between the particles, and the dispersibility is easily impaired when the binder is mixed. It is difficult to industrially produce fine barium titanate powder having a specific surface area value exceeding 80 m 2 / g.
  • the half width (FWHM) of the (111) plane calculated from the X-ray diffraction peak of the barium titanate fine particle powder according to the present invention is preferably 0.2 to 0.4.
  • the particle shape of the barium titanate fine particle powder according to the present invention is preferably spherical or granular.
  • the barium titanate fine particle powder according to the present invention can be obtained by heat-treating a barium titanate fine particle powder having an average particle diameter of 10 to 50 nm prepared in advance by a hydrothermal reaction in a temperature range of 100 to 400 ° C.
  • the hydrothermal reaction is not particularly limited.
  • a barium hydroxide aqueous solution is dropped and neutralized in a titanium chloride aqueous solution to obtain a titanium hydroxide colloid, and then the titanium hydroxide colloid is converted into water. It put into the barium oxide aqueous solution, and the obtained mixed solution was heated, and barium titanate was produced
  • hydrothermal treatment is performed in a temperature range of 100 to 250 ° C., washing with water, drying and pulverization.
  • barium titanate having different sizes can be produced by changing the reaction temperature, concentration, pH, and the like.
  • the average particle size of barium titanate obtained by hydrothermal reaction is preferably 10 to 50 nm.
  • the barium titanate fine particle powder intended for the present invention can be obtained.
  • the heat treatment temperature within the above range, growth of the particle diameter of the barium titanate fine particles can be suppressed and the dielectric constant can be increased. If the heat treatment temperature is too high, the particles may be fused together.
  • the heat treatment time is preferably 1 to 3 hours.
  • the dispersion medium in the present invention either an aqueous system or a solvent system can be used.
  • a dispersion medium of the aqueous dispersion water or alcohol solvents such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, and butyl alcohol; glycol ether solvents such as methyl cellosolve, ethyl cellosolve, propyl cellosolve, and butyl cellosolve; Oxyethylene or oxypropylene addition polymers such as diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol, and polypropylene glycol; alkylene glycols such as ethylene glycol, propylene glycol, and 1,2,6-hexanetriol; glycerin Water-soluble organic solvents such as 2-pyrrolidone can be used.
  • alcohol solvents such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, and butyl alcohol
  • glycol ether solvents such as methyl cellosolve, ethyl
  • Dispersion media for solvent-based dispersions include aromatic hydrocarbons such as toluene and xylene; ketones such as methyl ethyl ketone and cyclohexanone; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone
  • Ether glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl Ether acetates such as ether acetate and propylene glycol monoethyl ether acetate; Acetates such as butyl acetate and isobutyl acetate; lactate esters such as lactate methyl ester, lactate ethyl este
  • the disperser used for producing the dispersion according to the present invention is not particularly limited, and an apparatus that can apply shearing force, impact force, compressive force, and / or frictional force to the powder layer is preferable.
  • a roller mill, a high-speed rotary mill, a high-speed rotary mill with a built-in classifier, a ball mill, a medium agitation mill, an airflow-type pulverizer, a compaction shear mill, a colloid mill, a roll mill and the like can be used.
  • the dispersion according to the present invention contains barium titanate particle powder in an amount of 0.1 to 60 parts by weight, preferably 0.5 to 50 parts by weight, more preferably 1 to Contains 40 parts by weight.
  • the base material of the dispersion of the barium titanate particle powder includes a dispersion medium in addition to the barium titanate particle powder, and if necessary, a dispersant, an additive (resin, antifoaming agent, auxiliary agent, etc.) Etc. can also be added.
  • the dispersant in the present invention can be appropriately selected and used according to the type of barium titanate particle powder and dispersion medium used, and organosilicon compounds such as alkoxysilane, silane coupling agent and organopolysiloxane , Surfactants or polymer dispersants can be used, and these can be used alone or in combination of two or more.
  • organosilicon compound examples include methyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, butyltriethoxysilane, hexyltriethoxysilane, and octyltriethoxy.
  • Silanes alkoxysilanes such as tetraethoxysilane and tetramethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -Methacryloyloxypropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxy Orchids, .gamma.-chloropropyl trimethoxy silane silane coupling agent such as a polysiloxane, methyl hydrogen polysiloxane, organopolysiloxane and the like of the modified polysiloxane.
  • alkoxysilanes such as
  • surfactant examples include anionic surfactants such as fatty acid salts, sulfate ester salts, sulfonate salts and phosphate ester salts; polyethylene glycol type nonionic surfactants such as polyoxyethylene alkyl ethers and polyoxyethylene aryl ethers Agents, nonionic surfactants such as polyhydric alcohol type nonionic surfactants such as sorbitan fatty acid esters; chaotic surfactants such as amine salt type cationic surfactants and quaternary ammonium salt type cationic surfactants Agents: amphoteric surfactants such as alkylbetaines such as alkyldimethylaminoacetic acid betaine and alkylimidazolines.
  • anionic surfactants such as fatty acid salts, sulfate ester salts, sulfonate salts and phosphate ester salts
  • polyethylene glycol type nonionic surfactants such as polyoxyethylene alkyl ethers and polyoxy
  • styrene-acrylic acid copolymer a styrene-maleic acid copolymer, a polycarboxylic acid, a salt thereof, and the like can be used.
  • the amount of the dispersant added depends on the total surface area of the barium titanate particle powder in the dispersion and may be appropriately adjusted according to the use of the barium titanate particle powder dispersion and the type of the dispersant. Specifically, by adding 0.01 to 100% by weight of a dispersant with respect to the barium titanate particle powder in the dispersion medium, the barium titanate particle powder can be uniformly and finely dispersed in the dispersion medium. At the same time, the dispersion stability can be improved. In addition to adding the dispersing agent directly to the dispersion medium, the dispersing agent may be pretreated in the barium titanate particle powder.
  • the coating film according to the present invention is prepared by adding a resin to the above-mentioned dispersion, mixing, and then forming on a film such as a PET film using a coater such as a bar coater or a spin coater.
  • a resin to be used acrylic resin, silicone resin, epoxy resin, polyester resin, polyimide resin, polymethyl methacrylate (PMMA), polystyrene (PS), polycarbonate (PC) and the like are generally used.
  • the total light transmittance is 85% or more, the haze is 0.65 or more, and the transparency is excellent. Is.
  • the present invention fine particles of barium titanate having a high dielectric constant while being fine are obtained.
  • the fine barium titanate particle powder after the hydrothermal reaction is subjected to heat treatment in a temperature range in which sintering between particles is less likely to occur, so that the particles of the barium titanate particle powder before the heat treatment are granulated.
  • the diameter, the lattice constant ratio c / a, and the half width of the (111) reflection were hardly changed, and only the dielectric constant could be improved.
  • the particle size effect is considered.
  • the relative dielectric constant of the barium titanate particle powder having a particle size of 175 nm obtained by the hydrothermal reaction was about 130. Since the particle growth by the heat treatment in the present invention is sufficiently small, it is considered that the result of the present invention cannot be explained only by the influence of the increase in the particle size on the dielectric constant. Another possible cause of the increase in the dielectric constant due to heat treatment is the modification of the particle surface layer by removing hydroxyl groups. In general, the heat treatment at low temperature cannot be expected to change the characteristics. However, in the present invention, since the barium titanate particles to be heat-treated are nano-sized, it is considered that the surface area is large and the dielectric constant is greatly increased.
  • the heat treatment can be performed at a higher temperature to improve the inside of the particle, further improvement in the dielectric constant can be expected.
  • the heat treatment at a high temperature causes the particle diameter to grow rapidly due to fusion between particles. This is not suitable for the production of barium titanate particle powder for optical film use.
  • a typical embodiment of the present invention is as follows.
  • the average particle diameter (x) of the primary particles of the barium titanate fine particle powder is about 500 particles in a photograph (magnification 50,000 times) observed with a scanning electron microscope (Hitachi, Ltd. S-4300). The diameter was measured and the particle size distribution ( ⁇ ) was determined.
  • the average particle size of primary particles is a particle size obtained by setting the diameter of a circle having an area equivalent to the area obtained from a photograph for each particle as the particle size and averaging it for all measured particles. In order to make it difficult for the difference in the measured values depending on the field of view, each field of view was observed widely at a low magnification, and the field of view was considered average.
  • the fine barium titanate powder was evaluated by powder X-ray diffraction, and the c / a ratio of the lattice constant and the full width at half maximum (FWHM) of the (111) plane were measured.
  • the specific surface area value is a value measured by the BET method.
  • the relative dielectric constant of the barium titanate fine particle powder was measured by the following evaluation method. That is, a mixture of 2.5 g of barium titanate fine particle powder and 0.5 g of a polyvinyl alcohol aqueous solution having a concentration of 3 wt% is compacted at a pressure of 100 kg / cm 2 , and has a disk shape with a diameter of 25 mm and a thickness of 1 to 2 mm. A green compact was produced. Since the green compact contains water, it was left in a dry air at 50 ° C. for 12 hours or more. From the weight and volume of the green compact after drying, the volume ratio of barium titanate particle powder, PVA and voids was determined.
  • the green compact was adjusted so that the barium titanate fine particle powder was 41 to 55 vol%, the PVA was 0.1 to 3 vol%, and the balance was a void.
  • the relative dielectric constant at 10 MHz was measured in an environment of room temperature of about 25 ° C. and humidity of about 40% RH using an impedance analyzer E4991A manufactured by Agilent and a dielectric constant measurement fixture 16453A. Since the measurement result of the obtained relative dielectric constant includes contributions from the respective components of barium titanate particle powder, PVA and voids, the present invention uses only the logarithmic mixing rule to determine only the barium titanate from the measured values. The contribution was estimated.
  • Example 1 Barium hydroxide octahydrate (manufactured by Kanto Chemical Co., Ltd., 97% Ba (OH) 2 / 8H 2 O reagent special grade) 1.12 kg dissolved in water and purified, dropped into 688 g of titanium chloride aqueous solution and neutralized Thus, a titanium hydroxide colloid was obtained. Next, 1.28 kg of barium hydroxide octahydrate dissolved and purified in water was kept in a reaction vessel in a nitrogen atmosphere at a temperature of 70 ° C. and a pH of 12.5. Next, the titanium hydroxide colloid was charged into the barium hydroxide aqueous solution over 2 minutes. The mixed solution produced barium titanate at 100 ° C. for 0.5 hour.
  • barium titanate fine particle powder After cooling to room temperature, it was washed with Nutsche until no Ba ions were observed in the filtrate, filtered and dried to obtain barium titanate fine particle powder.
  • the average particle diameter of the obtained barium titanate fine particle powder was 32 nm.
  • An electron micrograph of the obtained barium titanate fine particle powder is shown in FIG.
  • the obtained barium titanate particle powder having an average particle diameter of 32 nm was heated in the air at 400 ° C. for 2 hours using an electric furnace.
  • the obtained heat-treated powder was observed by SEM, some particles fused to a size of about several tens of nanometers were seen in firing at 400 ° C., but the particle size was 60 nm or less, and the overall particle growth was It was slight.
  • An electron micrograph of the obtained barium titanate fine particle powder is shown in FIG.
  • Example 2 The barium titanate particle powder having an average particle size of 46 nm was obtained by changing the conditions of the hydrothermal reaction, and then heat-treated at a temperature of 400 ° C. by the same method as described in Example 1 to obtain the barium titanate fine particle powder. Obtained. Various characteristics of the obtained barium titanate fine particle powder are shown in 1.
  • Example 3 The barium titanate particle powder having an average particle diameter of 51 nm was obtained by changing the conditions of the hydrothermal reaction, and then heat-treated at a temperature of 400 ° C. by the same method as described in Example 1 to obtain the barium titanate fine particle powder. Obtained. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
  • Example 4 Barium titanate fine particle powder was obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 300 ° C. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
  • Example 5 Barium titanate fine particle powder was obtained in the same manner as in Example 2 except that the heat treatment temperature was changed to 300 ° C. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
  • Example 6 The barium titanate particle powder having an average particle diameter of 20 nm was obtained by changing the hydrothermal reaction conditions, and then heat-treated at a temperature of 300 ° C. in the same manner as described in Example 1 to obtain the barium titanate fine particle powder. Obtained. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
  • Example 7 Barium titanate particles having an average particle diameter of 32 nm were heat-treated at a temperature of 100 ° C. in the same manner as described in Example 1, and the relative permittivity, c / a ratio, half width and specific surface area were determined as in Example 1. Evaluation was performed in the same manner as described in 1. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
  • Comparative Example 1 The relative dielectric constant, c / a ratio, half width and specific surface area of the barium titanate particles having an average particle diameter of 32 nm before heat treatment obtained in Example 1 were evaluated in the same manner as described in Example 1. went. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
  • Comparative Example 2 The relative dielectric constant, c / a ratio, half width and specific surface area of the barium titanate particles having an average particle diameter of 46 nm before heat treatment obtained in Example 2 were evaluated in the same manner as described in Example 1. went. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
  • Comparative Example 3 The relative dielectric constant, c / a ratio, half width and specific surface area of the barium titanate particles having an average particle diameter of 51 nm before heat treatment obtained in Example 3 were evaluated in the same manner as described in Example 1. went. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
  • Comparative Example 4 Barium titanate particles having an average particle diameter of 32 nm were heat-treated at a temperature of 700 ° C. in the same manner as described in Example 1, and the relative permittivity, c / a ratio, half width and specific surface area were determined as in Example 1. Evaluation was performed in the same manner as described in 1. Although the relative dielectric constant is greatly increased by the heat treatment at high temperature, the average particle size is also greatly increased. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
  • Comparative Example 5 The relative dielectric constant, c / a ratio, half width and specific surface area of unheat-treated barium titanate particles having an average particle diameter of 62 nm were evaluated in the same manner as described in Example 1. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
  • Comparative Example 6 The relative dielectric constant, c / a ratio, half width and specific surface area of unheat-treated barium titanate particles having an average particle size of 64 nm were evaluated in the same manner as described in Example 1. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
  • Comparative Example 7 The relative dielectric constant of the barium titanate particle powder prepared by the solid phase method was measured by the same method as described in Example 1. As a result, the relative dielectric constant at 10 MHz was about 170.
  • Example 8 The barium titanate particles obtained in Example 1 were placed in a zirconia 0.5-liter stirring vessel of a vertical bead mill (“Ultra Apex Mill UAM-05” manufactured by Kotobuki Giken Kogyo Co., Ltd.) with zirconia beads (particle size 50 ⁇ m). Add a solution in which ED153 (manufactured by Enomoto Kasei) and PGMEA as a solvent are mixed as a dispersant, and disperse for 1 hour while circulating to disperse the barium titanate particle powder dispersion. Obtained.
  • ED153 manufactured by Enomoto Kasei
  • PGMEA PGMEA
  • Examples 10 and 11 The barium titanate particle powders of Examples 3 and 6 were formed into sheets according to the methods of Examples 8 and 9. Various properties of the obtained sheet are shown in Table 2.
  • Comparative Examples 8 and 9 The barium titanate particle powders of Comparative Examples 1 and 2 were formed into sheets according to the methods of Examples 8 and 9. Various properties of the obtained sheet are shown in Table 2.
  • the coating films (Examples 9 to 11) using the barium titanate particles (Examples) according to the present invention had a total light transmittance of 85% or more and a haze of 0.1. It was found to be 65 or more and excellent in transparency.
  • the barium titanate particles according to the present invention can be suitably used for various dielectric materials because aggregation is suppressed and the dispersibility is excellent. Since the barium titanate particle powder according to the present invention has a high dielectric constant, it is considered that when the barium titanate particle powder and the transparent resin are mixed, the amount of the barium titanate particle powder used can be suppressed than before, Moreover, since barium titanate is a fine particle, it becomes easy to ensure the transparency required for optical film applications.

Abstract

The present invention provides: a barium titanate particle powder having a high dielectric constant while maintaining small particle size and being suitable for use in optical films and the like; and a method for producing barium titanate with which it is possible to efficiently produce this barium titanate particle powder. This barium titanate fine particle powder has a primary particle average grain diameter of 20-60 nm, and a relative permittivity of 300-800, the value obtained by dividing the primary particle grain size distribution by the primary particle average grain size being 0.20-0.25.

Description

チタン酸バリウム微粒子粉末、分散体及び塗膜Barium titanate fine particle powder, dispersion and coating
 本発明は、微細でありながら高い誘電率(比誘電率)を有するチタン酸バリウム微粒子粉末を提供することを目的とするものである。 An object of the present invention is to provide a barium titanate fine particle powder which is fine but has a high dielectric constant (relative dielectric constant).
 高い誘電率を有するチタン酸バリウムは、積層セラミックコンデンサなどの誘電材料として広く用いられている。 Barium titanate having a high dielectric constant is widely used as a dielectric material for multilayer ceramic capacitors.
 一方、各種ディスプレーなどに用いられる光学フィルムに対して、透明樹脂にジルコニアなどの無機粒子フィラーを添加し誘電率や屈折率を制御することが行われている。 On the other hand, an inorganic film filler such as zirconia is added to a transparent resin to control dielectric constant and refractive index for optical films used for various displays.
 液晶ディスプレー制御用TFTにおいても、低電力化のため、絶縁膜などの材料として微粒子かつ高誘電率なものが求められている。 Liquid crystal display control TFTs are also required to have fine particles and a high dielectric constant as a material for an insulating film or the like in order to reduce power consumption.
 そこで、チタン酸バリウムを前記光学用途に用いるため、粒径を微細化してチタン酸バリウムを含有する樹脂フィルムとした際にフィルムの透明性を確保するとともに、誘電率の大きなチタン酸バリウム粒子粉末を得ることが求められている。 Therefore, in order to use barium titanate for the optical application, when the particle size is reduced to obtain a resin film containing barium titanate, the transparency of the film is ensured, and a barium titanate particle powder having a large dielectric constant is used. There is a need to get.
 従来、500℃以上の熱処理を行うことによって誘電率を高くしたチタン酸バリウム粒子粉末(特許文献1、2)、水熱反応によって得られた微細なチタン酸バリウム粒子粉末(特許文献3)等が知られている。 Conventionally, barium titanate particle powder (Patent Documents 1 and 2) whose dielectric constant is increased by performing a heat treatment at 500 ° C. or higher, fine barium titanate particle powder (Patent Document 3) obtained by hydrothermal reaction, etc. Are known.
特開2002-211926号公報JP 2002-221926 A 特開2005-289668号公報JP 2005-289668 A 特開2007-137759号公報JP 2007-137759 A
 前記諸特性を満たすチタン酸バリウム微粒子粉末は現在最も要求されているところであるが、未だ得られていない。 The barium titanate fine particle powder satisfying the above properties is currently most demanded, but has not yet been obtained.
 即ち、前出特許文献1及び2には、500℃以上の温度範囲でチタン酸バリウム粒子粉末を熱処理することが記載されているが、熱処理温度が高いので、粒子サイズが粗大化する場合がある。 That is, in Patent Documents 1 and 2 described above, it is described that the barium titanate particle powder is heat-treated in a temperature range of 500 ° C. or higher. However, since the heat treatment temperature is high, the particle size may be coarsened. .
 また、特許文献3記載の水熱反応により製造されたチタン酸バリウム粒子粉末では、高い誘電率を有するとは言い難いものであった。 In addition, the barium titanate particle powder produced by the hydrothermal reaction described in Patent Document 3 cannot be said to have a high dielectric constant.
 そこで、本発明では、粒径を小さく保ったまま、誘電率の大きなチタン酸バリウム粒子粉末を得ることを技術的課題とする。 Therefore, in the present invention, it is a technical problem to obtain a barium titanate particle powder having a large dielectric constant while keeping the particle size small.
 前記技術的課題は、次のとおりの本発明によって達成できる。 The technical problem can be achieved by the present invention as follows.
 即ち、本発明は、一次粒子の平均粒径が20~60nmであり、比誘電率が300~800であることを特徴とするチタン酸バリウム微粒子粉末である(本発明1)。 That is, the present invention is a barium titanate fine particle powder having an average primary particle size of 20 to 60 nm and a relative dielectric constant of 300 to 800 (Invention 1).
 また、本発明は、一次粒子の粒度分布を一次粒子の平均粒径で除した値が0.20~0.25である本発明1記載のチタン酸バリウム微粒子粉末である(本発明2)。 Further, the present invention is the barium titanate fine particle powder according to the present invention 1, wherein the value obtained by dividing the particle size distribution of the primary particles by the average particle size of the primary particles is 0.20 to 0.25 (Invention 2).
 また、本発明は、格子定数比c/aが1.003未満である請求項1又は2記載のチタン酸バリウム微粒子粉末である(本発明3)。 Further, the present invention is the barium titanate fine particle powder according to claim 1 or 2, wherein the lattice constant ratio c / a is less than 1.003 (Invention 3).
 また、本発明は、本発明1~3のいずれかに記載のチタン酸バリウム微粒子粉末を含有する分散体である(本発明4)。 Further, the present invention is a dispersion containing the barium titanate fine particle powder according to any one of the present inventions 1 to 3 (Invention 4).
 また、本発明は、本発明1~3のいずれかに記載のチタン酸バリウム微粒子粉末を含有する塗膜である(本発明5)。 Further, the present invention is a coating film containing the barium titanate fine particle powder according to any one of the present inventions 1 to 3 (Invention 5).
 本発明に係るチタン酸バリウム微粒子粉末は、非常に微細な粒子でありながら、高い誘電率を有するので、光学材料用として好適である。 The barium titanate fine particle powder according to the present invention is suitable for an optical material because it has a high dielectric constant while being very fine particles.
 また、本発明に係るチタン酸バリウム微粒子粉末を用いて樹脂フィルムを形成した場合、透明性に優れたシートが得られるので光学材料用として好適である。 Further, when a resin film is formed using the barium titanate fine particle powder according to the present invention, a sheet having excellent transparency can be obtained, which is suitable for an optical material.
実施例1で用いたチタン酸バリウム微粒子粉末(熱処理前)である。It is the barium titanate fine particle powder (before heat treatment) used in Example 1. 実施例1で得られたチタン酸バリウム微粒子粉末(熱処理後)である。It is a barium titanate fine particle powder (after heat treatment) obtained in Example 1.
 本発明の構成を詳述すれば、次の通りである。 The configuration of the present invention will be described in detail as follows.
 本発明に係るチタン酸バリウム微粒子粉末の一次粒子の平均粒径(x)は20~60nmである。チタン酸バリウム微粒子粉末の平均粒径を前記範囲に制御することによって、チタン酸バリウム微粒子粉末を含有する樹脂フィルムを製造した際に透明性に優れた樹脂フィルムを得ることができる。好ましい平均粒径は22~58nmであり、より好ましくは25~55nmである。 The average particle diameter (x) of the primary particles of the barium titanate fine particle powder according to the present invention is 20 to 60 nm. By controlling the average particle diameter of the barium titanate fine particle powder within the above range, a resin film excellent in transparency can be obtained when a resin film containing the barium titanate fine particle powder is produced. The average particle size is preferably 22 to 58 nm, more preferably 25 to 55 nm.
 本発明に係るチタン酸バリウム微粒子粉末は、後述する評価方法で測定した比誘電率が300~800である。チタン酸バリウム微粒子粉末の比誘電率が前記範囲に制御されることによって、粒子成長が抑えられた微粒子を得ることができる。より好ましい比誘電率は410~750である。 The barium titanate fine particle powder according to the present invention has a relative dielectric constant of 300 to 800 measured by an evaluation method described later. By controlling the relative dielectric constant of the barium titanate fine particle powder within the above range, fine particles with suppressed particle growth can be obtained. A more preferable relative dielectric constant is 410 to 750.
 本発明に係るチタン酸バリウム微粒子粉末の一次粒子の粒度分布(σ)を一次粒子の平均粒径(x)で除した値は0.20~0.25が好ましい。前記数値が前記範囲内に制御されることによって、粒度分布に優れたチタン酸バリウム微粒子粉末となる。より好ましい範囲は0.205~0.248である。 The value obtained by dividing the particle size distribution (σ) of the primary particles of the barium titanate fine particles according to the present invention by the average particle size (x) of the primary particles is preferably 0.20 to 0.25. By controlling the numerical value within the above range, it becomes a barium titanate fine particle powder having an excellent particle size distribution. A more preferred range is 0.205 to 0.248.
 本発明に係るチタン酸バリウム微粒子粉末の結晶性は、格子定数のa軸長(a)及びc軸長(c)を用いて格子定数比c/aで示した場合に、1.003未満が好ましい。格子定数比c/aが1.003以上のチタン酸バリウム微粒子粉末は本発明の粒径では工業的に製造することが困難である。 The crystallinity of the barium titanate fine particle powder according to the present invention is less than 1.003 when expressed by the lattice constant ratio c / a using the a-axis length (a) and the c-axis length (c) of the lattice constant. preferable. Barium titanate fine particle powder having a lattice constant ratio c / a of 1.003 or more is difficult to produce industrially with the particle size of the present invention.
 本発明に係るチタン酸バリウム微粒子粉末の比表面積は10~80m/gが好ましい。10m/g未満の場合には、粒子粉末が粗大となり、粒子相互間で焼結が生じた粒子となっており、バインダを混合する場合に、分散性が損なわれやすい。比表面積値が80m/gを超えるチタン酸バリウム微粒子粉末を工業的に生産することは困難である。 The specific surface area of the barium titanate fine particle powder according to the present invention is preferably 10 to 80 m 2 / g. In the case of less than 10 m 2 / g, the particle powder becomes coarse and particles are sintered between the particles, and the dispersibility is easily impaired when the binder is mixed. It is difficult to industrially produce fine barium titanate powder having a specific surface area value exceeding 80 m 2 / g.
 本発明に係るチタン酸バリウム微粒子粉末のX線回折ピークから算出した(111)面の半価幅(FWHM)は0.2~0.4が好ましい。 The half width (FWHM) of the (111) plane calculated from the X-ray diffraction peak of the barium titanate fine particle powder according to the present invention is preferably 0.2 to 0.4.
 本発明に係るチタン酸バリウム微粒子粉末の粒子形状は球形又は粒状が好ましい。 The particle shape of the barium titanate fine particle powder according to the present invention is preferably spherical or granular.
 次に、本発明に係るチタン酸バリウム微粒子粉末の製造方法について述べる。 Next, a method for producing barium titanate fine particles according to the present invention will be described.
 本発明に係るチタン酸バリウム微粒子粉末は、あらかじめ水熱反応によって作製した平均粒径が10~50nmのチタン酸バリウム微粒子粉末を100~400℃の温度範囲で熱処理して得ることができる。 The barium titanate fine particle powder according to the present invention can be obtained by heat-treating a barium titanate fine particle powder having an average particle diameter of 10 to 50 nm prepared in advance by a hydrothermal reaction in a temperature range of 100 to 400 ° C.
 本発明において、水熱反応は特に限定されるものではないが、例えば、水酸化バリウム水溶液を塩化チタン水溶液に滴下・中和して水酸化チタンコロイドを得、次いで、前記水酸化チタンコロイドを水酸化バリウム水溶液に投入し、得られた混合溶液を加熱してチタン酸バリウムを生成した。冷却、水洗した後、100~250℃の温度範囲で水熱処理を行い、水洗、乾燥、粉砕して得ることができる。 In the present invention, the hydrothermal reaction is not particularly limited. For example, a barium hydroxide aqueous solution is dropped and neutralized in a titanium chloride aqueous solution to obtain a titanium hydroxide colloid, and then the titanium hydroxide colloid is converted into water. It put into the barium oxide aqueous solution, and the obtained mixed solution was heated, and barium titanate was produced | generated. After cooling and washing with water, hydrothermal treatment is performed in a temperature range of 100 to 250 ° C., washing with water, drying and pulverization.
 水熱反応では、反応温度、濃度、pHなどを変化させることによって大きさの異なるチタン酸バリウムを製造することができる。 In the hydrothermal reaction, barium titanate having different sizes can be produced by changing the reaction temperature, concentration, pH, and the like.
 水熱反応によって得られたチタン酸バリウムの平均粒径は10~50nmが好ましい。 The average particle size of barium titanate obtained by hydrothermal reaction is preferably 10 to 50 nm.
 水熱反応により作製したチタン酸バリウム粒子(粒径:10~50nm)を100~400℃までの温度範囲で熱処理を行うことにより、本発明の目的とするチタン酸バリウム微粒子粉末を得ることができる。熱処理温度を前記範囲に制御することによって、チタン酸バリウム微粒子の粒径の成長を抑制するとともに、誘電率を増大させることができる。熱処理温度は、高すぎると粒子同士が融着する場合がある。 By subjecting barium titanate particles (particle size: 10 to 50 nm) prepared by hydrothermal reaction to a heat treatment in a temperature range of 100 to 400 ° C., the barium titanate fine particle powder intended for the present invention can be obtained. . By controlling the heat treatment temperature within the above range, growth of the particle diameter of the barium titanate fine particles can be suppressed and the dielectric constant can be increased. If the heat treatment temperature is too high, the particles may be fused together.
 熱処理時間は、1~3時間が好ましい。 The heat treatment time is preferably 1 to 3 hours.
 次に、本発明に係る分散体について述べる。 Next, the dispersion according to the present invention will be described.
 本発明における分散媒体としては、水系及び溶剤系のいずれをも用いることができる。 As the dispersion medium in the present invention, either an aqueous system or a solvent system can be used.
 水系分散体の分散媒体としては、水、もしくは、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等のアルコール系溶剤;メチルセロソルブ、エチルセロソルブ、プロピルセロソルブ、ブチルセロソルブ等のグリコールエーテル系溶剤;ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール等のオキシエチレン又はオキシプロピレン付加重合体;エチレングリコール、プロピレングリコール、1,2,6-ヘキサントリオール等のアルキレングリコール;グリセリン、2-ピロリドン等の水溶性有機溶剤を用いることができる。これらの水系分散体用の分散媒体は、目的とする用途に応じて1種又は2種以上を混合して用いることができる。 As a dispersion medium of the aqueous dispersion, water or alcohol solvents such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, and butyl alcohol; glycol ether solvents such as methyl cellosolve, ethyl cellosolve, propyl cellosolve, and butyl cellosolve; Oxyethylene or oxypropylene addition polymers such as diethylene glycol, triethylene glycol, polyethylene glycol, dipropylene glycol, tripropylene glycol, and polypropylene glycol; alkylene glycols such as ethylene glycol, propylene glycol, and 1,2,6-hexanetriol; glycerin Water-soluble organic solvents such as 2-pyrrolidone can be used. These dispersion media for aqueous dispersions can be used alone or in combination of two or more depending on the intended application.
 溶剤系分散体用の分散媒体としては、トルエン、キシレン等の芳香族炭化水素;メチルエチルケトン、シクロヘキサノン等のケトン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;エチレングリコールモノメチルエーテル、エチレングルコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のエーテルアルコール類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエーテルアセテート類;酢酸エチル、酢酸ブチル、酢酸イソブチル等の酢酸エステル類;乳酸メチルエステル、乳酸エチルエステル、乳酸プロピルエステル等の乳酸エステル類;エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン等の環状エステル類及び各種モノマー等を用いることができる。これらの溶剤系分散体用の分散媒体は、目的とする用途に応じて1種又は2種以上を混合して用いることができる。 Dispersion media for solvent-based dispersions include aromatic hydrocarbons such as toluene and xylene; ketones such as methyl ethyl ketone and cyclohexanone; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone Ether glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl Ether acetates such as ether acetate and propylene glycol monoethyl ether acetate; Acetates such as butyl acetate and isobutyl acetate; lactate esters such as lactate methyl ester, lactate ethyl ester and lactate propyl ester; cyclic esters such as ethylene carbonate, propylene carbonate and γ-butyrolactone, and various monomers Can do. These dispersion media for solvent-based dispersions can be used alone or in combination of two or more depending on the intended application.
 本発明に係る分散体を製造するために用いる分散機としては特に限定されるものではなく、粉体層にせん断力、衝撃力、圧縮力、及び/または摩擦力を加えることのできる装置が好ましく、例えば、ローラーミル、高速回転ミル、分級機内蔵型高速回転ミル、ボールミル、媒体攪拌式ミル、気流式粉砕機、圧密せん断ミル、コロイドミル、ロールミル等を用いることができる。 The disperser used for producing the dispersion according to the present invention is not particularly limited, and an apparatus that can apply shearing force, impact force, compressive force, and / or frictional force to the powder layer is preferable. For example, a roller mill, a high-speed rotary mill, a high-speed rotary mill with a built-in classifier, a ball mill, a medium agitation mill, an airflow-type pulverizer, a compaction shear mill, a colloid mill, a roll mill and the like can be used.
 本発明に係る分散体は、チタン酸バリウム粒子粉末を分散体構成基材100重量部に対して0.1~60重量部含有し、好ましくは0.5~50重量部、より好ましくは1~40重量部含有している。チタン酸バリウム粒子粉末の分散体の構成基材としては、上記チタン酸バリウム粒子粉末の他に、分散媒体からなり、必要に応じて分散剤、添加剤(樹脂、消泡剤、助剤等)等を添加することもできる。 The dispersion according to the present invention contains barium titanate particle powder in an amount of 0.1 to 60 parts by weight, preferably 0.5 to 50 parts by weight, more preferably 1 to Contains 40 parts by weight. The base material of the dispersion of the barium titanate particle powder includes a dispersion medium in addition to the barium titanate particle powder, and if necessary, a dispersant, an additive (resin, antifoaming agent, auxiliary agent, etc.) Etc. can also be added.
 本発明における分散剤としては、使用するチタン酸バリウム粒子粉末や分散媒体の種類に応じて適宜選択して使用することができ、アルコキシシラン、シラン系カップリング剤及びオルガノポリシロキサン等の有機ケイ素化合物、界面活性剤あるいは高分子分散剤等を用いることができ、これらは1種または2種以上を混合して用いることができる。 As the dispersant in the present invention, it can be appropriately selected and used according to the type of barium titanate particle powder and dispersion medium used, and organosilicon compounds such as alkoxysilane, silane coupling agent and organopolysiloxane , Surfactants or polymer dispersants can be used, and these can be used alone or in combination of two or more.
 上記有機ケイ素化合物としては、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、テトラエトキシシラン及びテトラメトキシシラン等のアルコキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ―アミノプロピルトリエトキシシラン、γ―グリシドキシプロピルトリメトキシシラン、γ―メルカプトプロピルトリメトキシシラン、γ―メタクロイルオキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン等のシラン系カップリング剤、ポリシロキサン、メチルハイドロジェンポリシロキサン、変性ポリシロキサン等のオルガノポリシロキサン等が挙げられる。 Examples of the organosilicon compound include methyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, butyltriethoxysilane, hexyltriethoxysilane, and octyltriethoxy. Silanes, alkoxysilanes such as tetraethoxysilane and tetramethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-Methacryloyloxypropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxy Orchids, .gamma.-chloropropyl trimethoxy silane silane coupling agent such as a polysiloxane, methyl hydrogen polysiloxane, organopolysiloxane and the like of the modified polysiloxane.
 上記界面活性剤としては、脂肪酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩等のアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアリールエーテル等のポリエチレングリコール型非イオン界面活性剤、ソルビタン脂肪酸エステル等の多価アルコール型非イオン界面活性剤等のノニオン性界面活性剤;アミン塩型カチオン系界面活性剤、第4級アンモニウム塩型カチオン系界面活性剤等のカオチン性界面活性剤;アルキルジメチルアミノ酢酸ベタインなどのアルキルベタイン、アルキルイミダゾリンなどの両性界面活性剤が挙げられる。 Examples of the surfactant include anionic surfactants such as fatty acid salts, sulfate ester salts, sulfonate salts and phosphate ester salts; polyethylene glycol type nonionic surfactants such as polyoxyethylene alkyl ethers and polyoxyethylene aryl ethers Agents, nonionic surfactants such as polyhydric alcohol type nonionic surfactants such as sorbitan fatty acid esters; chaotic surfactants such as amine salt type cationic surfactants and quaternary ammonium salt type cationic surfactants Agents: amphoteric surfactants such as alkylbetaines such as alkyldimethylaminoacetic acid betaine and alkylimidazolines.
 高分子分散剤としては、スチレン-アクリル酸共重合体、スチレン-マレイン酸共重合体、ポリカルボン酸及びその塩等を用いることができる。 As the polymer dispersant, a styrene-acrylic acid copolymer, a styrene-maleic acid copolymer, a polycarboxylic acid, a salt thereof, and the like can be used.
 分散剤の添加量は、分散体中のチタン酸バリウム粒子粉末の総表面積に依存すると共に、チタン酸バリウム粒子粉末の分散体の用途及び分散剤の種類に応じて適宜調製すればよいが、一般的には、分散媒中のチタン酸バリウム粒子粉末に対して分散剤を0.01~100重量%添加することによって、チタン酸バリウム粒子粉末を分散媒体中に均一且つ微細に分散させることができると共に、分散安定性も改善することができる。また、上記分散剤は、分散媒体に直接添加する他に、チタン酸バリウム粒子粉末に予め処理しておいてもよい。 The amount of the dispersant added depends on the total surface area of the barium titanate particle powder in the dispersion and may be appropriately adjusted according to the use of the barium titanate particle powder dispersion and the type of the dispersant. Specifically, by adding 0.01 to 100% by weight of a dispersant with respect to the barium titanate particle powder in the dispersion medium, the barium titanate particle powder can be uniformly and finely dispersed in the dispersion medium. At the same time, the dispersion stability can be improved. In addition to adding the dispersing agent directly to the dispersion medium, the dispersing agent may be pretreated in the barium titanate particle powder.
 次に、本発明に係る塗膜について述べる。 Next, the coating film according to the present invention will be described.
 本発明に係る塗膜の作成は前述の分散体に樹脂を添加し、混合した後、バーコーターやスピンコーターなどのコーターを使用してPETフィルムなどのフィルム上に形成する。
 使用する樹脂はアクリル樹脂、シリコーン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリカーボネート(PC)等が一般的に用いられる。
The coating film according to the present invention is prepared by adding a resin to the above-mentioned dispersion, mixing, and then forming on a film such as a PET film using a coater such as a bar coater or a spin coater.
As the resin to be used, acrylic resin, silicone resin, epoxy resin, polyester resin, polyimide resin, polymethyl methacrylate (PMMA), polystyrene (PS), polycarbonate (PC) and the like are generally used.
 本発明に係るチタン酸バリウム微粒子粉末を用いた塗膜は、後述する方法によって評価した場合に、全光透過率が85%以上であって、ヘイズが0.65以上であり、透明性に優れるものである。 When the coating film using the barium titanate fine particle powder according to the present invention is evaluated by the method described later, the total light transmittance is 85% or more, the haze is 0.65 or more, and the transparency is excellent. Is.
<作用>
 本発明では、微細でありながら高い誘電率を有するチタン酸バリウム微粒子粉末が得られている。
 本発明においては、水熱反応後の微細なチタン酸バリウム粒子粉末を、粒子間の焼結が生じにくい温度範囲で加熱処理を行ったことにより、熱処理前のチタン酸バリウム粒子粉末に対して粒径、格子定数比c/aおよび(111)反射の半値幅はほとんど変化することなく、誘電率だけ向上させることができたものである。
 チタン酸バリウム粒子の誘電率に影響を及ぼす因子として、粒子のサイズ効果が考えられる。発明者らの測定によると、水熱反応により得られた粒径175nmのチタン酸バリウム粒子粉末の比誘電率は130程度であった。
 本発明における熱処理による粒子成長は十分に小さいため、粒径の増大が誘電率に及ぼす影響だけで本発明の結果を説明することはできないと考えられる。
 熱処理による誘電率が増大する他の原因として、水酸基除去による粒子表層の改質が考えられる。低温での熱処理では、通常、特性の変化は期待できないが、本発明では熱処理を行うチタン酸バリウム粒子がナノサイズであるため、表面積が大きく、誘電率に大きな増大が発現したものと考えられる。
 なお、より高温で熱処理を行い粒子内部まで改質を行うことができれば、誘電率のさらなる向上が期待できるが、高温での熱処理は、粒子同士の融着などにより粒径が急速に成長してしまう可能性があり、光学フィルム用途チタン酸バリウム粒子粉末の製造には適さない。
<Action>
In the present invention, fine particles of barium titanate having a high dielectric constant while being fine are obtained.
In the present invention, the fine barium titanate particle powder after the hydrothermal reaction is subjected to heat treatment in a temperature range in which sintering between particles is less likely to occur, so that the particles of the barium titanate particle powder before the heat treatment are granulated. The diameter, the lattice constant ratio c / a, and the half width of the (111) reflection were hardly changed, and only the dielectric constant could be improved.
As a factor affecting the dielectric constant of the barium titanate particles, the particle size effect is considered. According to the measurement by the inventors, the relative dielectric constant of the barium titanate particle powder having a particle size of 175 nm obtained by the hydrothermal reaction was about 130.
Since the particle growth by the heat treatment in the present invention is sufficiently small, it is considered that the result of the present invention cannot be explained only by the influence of the increase in the particle size on the dielectric constant.
Another possible cause of the increase in the dielectric constant due to heat treatment is the modification of the particle surface layer by removing hydroxyl groups. In general, the heat treatment at low temperature cannot be expected to change the characteristics. However, in the present invention, since the barium titanate particles to be heat-treated are nano-sized, it is considered that the surface area is large and the dielectric constant is greatly increased.
In addition, if the heat treatment can be performed at a higher temperature to improve the inside of the particle, further improvement in the dielectric constant can be expected. However, the heat treatment at a high temperature causes the particle diameter to grow rapidly due to fusion between particles. This is not suitable for the production of barium titanate particle powder for optical film use.
 本発明の代表的な実施の形態は、次の通りである。 A typical embodiment of the present invention is as follows.
 チタン酸バリウム微粒子粉末の一次粒子の平均粒径(x)は、走査型電子顕微鏡((株)日立製作所S-4300)によって観察した写真(倍率5万倍)について、約500個の粒子から粒子径を計測するとともに、粒度分布(σ)を求めた。なお、一次粒子の平均粒径とは各々の粒子に対して写真から求まる面積と同等面積の円の直径を粒子径とし、それを測定全粒子に対して平均した粒子径である。視野による計測値の差が出にくくするため、低倍率で広く各視野を観察し、平均的と思える視野にて測定を行った。 The average particle diameter (x) of the primary particles of the barium titanate fine particle powder is about 500 particles in a photograph (magnification 50,000 times) observed with a scanning electron microscope (Hitachi, Ltd. S-4300). The diameter was measured and the particle size distribution (σ) was determined. The average particle size of primary particles is a particle size obtained by setting the diameter of a circle having an area equivalent to the area obtained from a photograph for each particle as the particle size and averaging it for all measured particles. In order to make it difficult for the difference in the measured values depending on the field of view, each field of view was observed widely at a low magnification, and the field of view was considered average.
 チタン酸バリウム微粒子粉末について、粉末X線回折で評価し、格子定数のc/a比、(111)面の半値幅(FWHM)を測定した。 The fine barium titanate powder was evaluated by powder X-ray diffraction, and the c / a ratio of the lattice constant and the full width at half maximum (FWHM) of the (111) plane were measured.
 比表面積値はBET法により測定した値で示した。 The specific surface area value is a value measured by the BET method.
 チタン酸バリウム微粒子粉末の比誘電率は下記評価方法によって測定した。
 即ち、チタン酸バリウム微粒子粉末2.5gと濃度3wt%のポリビニルアルコール水溶液0.5gとを混合したものを、100kg/cmの圧力で圧粉し、直径25mm、厚さ1~2mmの円盤状圧粉体を作製した。圧粉体は水分を含むため、50℃の乾燥空気中に12時間以上放置した。
 乾燥後の圧粉体の重量と体積から、チタン酸バリウム粒子粉末、PVAおよび空隙の体積比率を求めた。なお、圧粉体は、チタン酸バリウム微粒子粉末が41~55vol%、PVAが0.1~3vol%、残部が空隙となるように調整した。
 得られた圧粉体について、Agilent社製インピーダンスアナライザー E4991Aおよび誘電率測定フィクスチャー16453Aにより、室温約25℃、湿度約40%RHの環境下で10MHzにおける比誘電率を測定した。得られた比誘電率の測定結果には、チタン酸バリウム粒子粉末、PVAおよび空隙の各成分からの寄与を含んでいるため、本発明では対数混合則を用いて測定値からチタン酸バリウムのみの寄与を見積もった。
The relative dielectric constant of the barium titanate fine particle powder was measured by the following evaluation method.
That is, a mixture of 2.5 g of barium titanate fine particle powder and 0.5 g of a polyvinyl alcohol aqueous solution having a concentration of 3 wt% is compacted at a pressure of 100 kg / cm 2 , and has a disk shape with a diameter of 25 mm and a thickness of 1 to 2 mm. A green compact was produced. Since the green compact contains water, it was left in a dry air at 50 ° C. for 12 hours or more.
From the weight and volume of the green compact after drying, the volume ratio of barium titanate particle powder, PVA and voids was determined. The green compact was adjusted so that the barium titanate fine particle powder was 41 to 55 vol%, the PVA was 0.1 to 3 vol%, and the balance was a void.
With respect to the obtained green compact, the relative dielectric constant at 10 MHz was measured in an environment of room temperature of about 25 ° C. and humidity of about 40% RH using an impedance analyzer E4991A manufactured by Agilent and a dielectric constant measurement fixture 16453A. Since the measurement result of the obtained relative dielectric constant includes contributions from the respective components of barium titanate particle powder, PVA and voids, the present invention uses only the logarithmic mixing rule to determine only the barium titanate from the measured values. The contribution was estimated.
 実施例1:
 水酸化バリウム八水塩(関東化学(株)製、97%Ba(OH)・8HO試薬特級)1.12kgを水に溶解、精製したものを、塩化チタン水溶液688gに滴下・中和して水酸化チタンコロイドを得た。次に、水酸化バリウム八水塩1.28kgを水に溶解、精製したものを温度70℃、pH12.5で窒素雰囲気の反応容器中に保持した。次に、前記水酸化チタンコロイドを前記水酸化バリウム水溶液に2分間かけて投入した。該混合溶液を100℃で0.5時間かけてチタン酸バリウムを生成した。室温まで冷却した後、ヌッチェで濾液にBaイオンが認められなくなるまで水洗し、濾過、乾燥を行ってチタン酸バリウム微粒子粉末を得た。得られたチタン酸バリウム微粒子粉末の平均粒径は32nmであった。得られたチタン酸バリウム微粒子粉末の電子顕微鏡写真を図1に示す。
Example 1:
Barium hydroxide octahydrate (manufactured by Kanto Chemical Co., Ltd., 97% Ba (OH) 2 / 8H 2 O reagent special grade) 1.12 kg dissolved in water and purified, dropped into 688 g of titanium chloride aqueous solution and neutralized Thus, a titanium hydroxide colloid was obtained. Next, 1.28 kg of barium hydroxide octahydrate dissolved and purified in water was kept in a reaction vessel in a nitrogen atmosphere at a temperature of 70 ° C. and a pH of 12.5. Next, the titanium hydroxide colloid was charged into the barium hydroxide aqueous solution over 2 minutes. The mixed solution produced barium titanate at 100 ° C. for 0.5 hour. After cooling to room temperature, it was washed with Nutsche until no Ba ions were observed in the filtrate, filtered and dried to obtain barium titanate fine particle powder. The average particle diameter of the obtained barium titanate fine particle powder was 32 nm. An electron micrograph of the obtained barium titanate fine particle powder is shown in FIG.
 得られた平均粒径が32nmのチタン酸バリウム粒子粉末を電気炉を用いて400℃下で空気中にて2時間、加熱した。得られた熱処理粉をSEMにより観察したところ、400℃での焼成では、一部に数10nm程度の大きさに融着した粒子がみられるが、粒径は60nm以下であり全体の粒子成長はわずかであった。得られたチタン酸バリウム微粒子粉末の電子顕微鏡写真を図2に示す。 The obtained barium titanate particle powder having an average particle diameter of 32 nm was heated in the air at 400 ° C. for 2 hours using an electric furnace. When the obtained heat-treated powder was observed by SEM, some particles fused to a size of about several tens of nanometers were seen in firing at 400 ° C., but the particle size was 60 nm or less, and the overall particle growth was It was slight. An electron micrograph of the obtained barium titanate fine particle powder is shown in FIG.
 実施例2:
 水熱反応の条件を変更して平均粒径が46nmのチタン酸バリウム粒子粉末を得、次いで、実施例1に記載と同様の方法により400℃の温度下で熱処理してチタン酸バリウム微粒子粉末を得た。得られたチタン酸バリウム微粒子粉末の諸特性を1に示す。
Example 2:
The barium titanate particle powder having an average particle size of 46 nm was obtained by changing the conditions of the hydrothermal reaction, and then heat-treated at a temperature of 400 ° C. by the same method as described in Example 1 to obtain the barium titanate fine particle powder. Obtained. Various characteristics of the obtained barium titanate fine particle powder are shown in 1.
 実施例3:
 水熱反応の条件を変更して平均粒径が51nmのチタン酸バリウム粒子粉末を得、次いで、実施例1に記載と同様の方法により400℃の温度下で熱処理してチタン酸バリウム微粒子粉末を得た。得られたチタン酸バリウム微粒子粉末の諸特性を表1に示す。
Example 3:
The barium titanate particle powder having an average particle diameter of 51 nm was obtained by changing the conditions of the hydrothermal reaction, and then heat-treated at a temperature of 400 ° C. by the same method as described in Example 1 to obtain the barium titanate fine particle powder. Obtained. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
 実施例4:
 熱処理温度を300℃に変更した以外は実施例1と同様にしてチタン酸バリウム微粒子粉末を得た。得られたチタン酸バリウム微粒子粉末の諸特性を表1に示す。
Example 4:
Barium titanate fine particle powder was obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 300 ° C. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
 実施例5:
 熱処理温度を300℃に変更した以外は実施例2と同様にしてチタン酸バリウム微粒子粉末を得た。得られたチタン酸バリウム微粒子粉末の諸特性を表1に示す。
Example 5:
Barium titanate fine particle powder was obtained in the same manner as in Example 2 except that the heat treatment temperature was changed to 300 ° C. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
 実施例6:
 水熱反応の条件を変更して平均粒径が20nmのチタン酸バリウム粒子粉末を得、次いで、実施例1に記載と同様の方法により300℃の温度下で熱処理してチタン酸バリウム微粒子粉末を得た。得られたチタン酸バリウム微粒子粉末の諸特性を表1に示す。
Example 6:
The barium titanate particle powder having an average particle diameter of 20 nm was obtained by changing the hydrothermal reaction conditions, and then heat-treated at a temperature of 300 ° C. in the same manner as described in Example 1 to obtain the barium titanate fine particle powder. Obtained. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
 実施例7:
 平均粒径が32nmのチタン酸バリウム粒子粉末を実施例1に記載と同様の方法により100℃の温度下で熱処理し、比誘電率、c/a比、半値幅および比表面積を、実施例1に記載と同様の方法で評価を行った。得られたチタン酸バリウム微粒子粉末の諸特性を表1に示す。
Example 7:
Barium titanate particles having an average particle diameter of 32 nm were heat-treated at a temperature of 100 ° C. in the same manner as described in Example 1, and the relative permittivity, c / a ratio, half width and specific surface area were determined as in Example 1. Evaluation was performed in the same manner as described in 1. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
 比較例1:
 実施例1で得られた熱処理前の平均粒径が32nmのチタン酸バリウム粒子粉末の比誘電率、c/a比、半値幅および比表面積を、実施例1に記載と同様の方法で評価を行った。得られたチタン酸バリウム微粒子粉末の諸特性を表1に示す。
Comparative Example 1:
The relative dielectric constant, c / a ratio, half width and specific surface area of the barium titanate particles having an average particle diameter of 32 nm before heat treatment obtained in Example 1 were evaluated in the same manner as described in Example 1. went. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
 比較例2:
 実施例2で得られた熱処理前の平均粒径が46nmのチタン酸バリウム粒子粉末の比誘電率、c/a比、半値幅および比表面積を、実施例1に記載と同様の方法で評価を行った。得られたチタン酸バリウム微粒子粉末の諸特性を表1に示す。
Comparative Example 2:
The relative dielectric constant, c / a ratio, half width and specific surface area of the barium titanate particles having an average particle diameter of 46 nm before heat treatment obtained in Example 2 were evaluated in the same manner as described in Example 1. went. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
 比較例3:
 実施例3で得られた熱処理前の平均粒径が51nmのチタン酸バリウム粒子粉末の比誘電率、c/a比、半値幅および比表面積を、実施例1に記載と同様の方法で評価を行った。得られたチタン酸バリウム微粒子粉末の諸特性を表1に示す。
Comparative Example 3:
The relative dielectric constant, c / a ratio, half width and specific surface area of the barium titanate particles having an average particle diameter of 51 nm before heat treatment obtained in Example 3 were evaluated in the same manner as described in Example 1. went. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
 比較例4:
 平均粒径が32nmのチタン酸バリウム粒子粉末を実施例1に記載と同様の方法により700℃の温度下で熱処理し、比誘電率、c/a比、半値幅および比表面積を、実施例1に記載と同様の方法で評価を行った。高温での熱処理により、比誘電率が大きく増加しているが、平均粒径も大きく増加している。得られたチタン酸バリウム微粒子粉末の諸特性を表1に示す。
Comparative Example 4:
Barium titanate particles having an average particle diameter of 32 nm were heat-treated at a temperature of 700 ° C. in the same manner as described in Example 1, and the relative permittivity, c / a ratio, half width and specific surface area were determined as in Example 1. Evaluation was performed in the same manner as described in 1. Although the relative dielectric constant is greatly increased by the heat treatment at high temperature, the average particle size is also greatly increased. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
 比較例5:
 平均粒径が62nmの熱処理していないチタン酸バリウム粒子粉末の比誘電率、c/a比、半値幅および比表面積を、実施例1に記載と同様の方法で評価を行った。得られたチタン酸バリウム微粒子粉末の諸特性を表1に示す。
Comparative Example 5:
The relative dielectric constant, c / a ratio, half width and specific surface area of unheat-treated barium titanate particles having an average particle diameter of 62 nm were evaluated in the same manner as described in Example 1. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
 比較例6:
 平均粒径が64nmの熱処理していないチタン酸バリウム粒子粉末の比誘電率、c/a比、半値幅および比表面積を、実施例1に記載と同様の方法で評価を行った。得られたチタン酸バリウム微粒子粉末の諸特性を表1に示す。
Comparative Example 6:
The relative dielectric constant, c / a ratio, half width and specific surface area of unheat-treated barium titanate particles having an average particle size of 64 nm were evaluated in the same manner as described in Example 1. Various properties of the obtained barium titanate fine particle powder are shown in Table 1.
 比較例7:
 固相法により作製されたチタン酸バリウム粒子粉末に対して、実施例1に記載と同様の方法により比誘電率測定を行った。結果、10MHzでの比誘電率は約170であった。
Comparative Example 7:
The relative dielectric constant of the barium titanate particle powder prepared by the solid phase method was measured by the same method as described in Example 1. As a result, the relative dielectric constant at 10 MHz was about 170.
 実施例8:
 実施例1で得られたチタン酸バリウム粒子粉末を縦型ビーズミル(コトブキ技研工業株式会社製「ウルトラアペックスミル UAM-05」)のジルコニア製0.5リットル攪拌容器にジルコニアビーズ(粒径50μm)を攪拌容器の70vol%になるように入れ、分散剤としてED153(楠本化成製)、溶媒のPGMEAを混合した溶液を添加し、循環させながら1時間分散させて、チタン酸バリウム粒子粉末の分散体を得た。
Example 8:
The barium titanate particles obtained in Example 1 were placed in a zirconia 0.5-liter stirring vessel of a vertical bead mill (“Ultra Apex Mill UAM-05” manufactured by Kotobuki Giken Kogyo Co., Ltd.) with zirconia beads (particle size 50 μm). Add a solution in which ED153 (manufactured by Enomoto Kasei) and PGMEA as a solvent are mixed as a dispersant, and disperse for 1 hour while circulating to disperse the barium titanate particle powder dispersion. Obtained.
 実施例9:
 得られた分散体を、アクリル樹脂(SB-193岐阜セラツク製)と、チタン酸バリウム/バインダ(分散剤含む)=6/4の割合にて混合し、バーコーターにて、ルミラーU-46(東レ製)上に塗布し、膜厚3μm程度の塗膜を作製した。得られた塗膜について、日本電色工業株式会社製「ヘーズメーター NDH 2000」を用いて全光透過率とヘイズを測定した。
Example 9:
The obtained dispersion was mixed with an acrylic resin (SB-193 manufactured by Gifu Serask) at a ratio of barium titanate / binder (including dispersant) = 6/4, and a bar coater was used to mix Lumirror U-46 ( (Toray Industries, Inc.) was applied to produce a coating film having a thickness of about 3 μm. About the obtained coating film, the total light transmittance and haze were measured using Nippon Denshoku Industries Co., Ltd. "Haze meter NDH 2000".
 実施例10、11:
 実施例3、6のチタン酸バリウム粒子粉末を実施例8、実施例9の方法に従い、シート化を行った。得られたシートの諸特性を表2に示す。
Examples 10 and 11:
The barium titanate particle powders of Examples 3 and 6 were formed into sheets according to the methods of Examples 8 and 9. Various properties of the obtained sheet are shown in Table 2.
 比較例8、9:
 比較例1、2のチタン酸バリウム粒子粉末を実施例8、実施例9の方法に従い、シート化を行った。得られたシートの諸特性を表2に示す。
Comparative Examples 8 and 9:
The barium titanate particle powders of Comparative Examples 1 and 2 were formed into sheets according to the methods of Examples 8 and 9. Various properties of the obtained sheet are shown in Table 2.
 表2から明らかなとおり、本発明に係るチタン酸バリウム粒子粉末(実施例)を用いた塗膜(実施例9~11)では、全光透過率が85%以上であって、ヘイズも0.65以上であり、透明性に優れることが明らかになった。 As is apparent from Table 2, the coating films (Examples 9 to 11) using the barium titanate particles (Examples) according to the present invention had a total light transmittance of 85% or more and a haze of 0.1. It was found to be 65 or more and excellent in transparency.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に係るチタン酸バリウム粒子粉末は、凝集が抑制され分散性に優れているので、各種誘電材料に好適に用いることができる。
 本発明に係るチタン酸バリウム粒子粉末は高い誘電率を有するので、チタン酸バリウム粒子粉末と透明樹脂を混合させる場合、従来よりもチタン酸バリウム粒子粉末の使用量を抑えることができると考えられ、また、チタン酸バリウムが微細な粒子であることから、光学フィルム用途に必要とされる透明性の確保が容易になる。
The barium titanate particles according to the present invention can be suitably used for various dielectric materials because aggregation is suppressed and the dispersibility is excellent.
Since the barium titanate particle powder according to the present invention has a high dielectric constant, it is considered that when the barium titanate particle powder and the transparent resin are mixed, the amount of the barium titanate particle powder used can be suppressed than before, Moreover, since barium titanate is a fine particle, it becomes easy to ensure the transparency required for optical film applications.

Claims (5)

  1.  一次粒子の平均粒径が20~60nmであり、比誘電率が300~800であることを特徴とするチタン酸バリウム微粒子粉末。 A barium titanate fine particle powder characterized by having an average primary particle diameter of 20 to 60 nm and a relative dielectric constant of 300 to 800.
  2.  一次粒子の粒度分布を一次粒子の平均粒径で除した値が0.20~0.25である請求項1記載のチタン酸バリウム微粒子粉末。 2. The fine barium titanate powder according to claim 1, wherein a value obtained by dividing the particle size distribution of the primary particles by the average particle size of the primary particles is 0.20 to 0.25.
  3.  格子定数比c/aが1.003未満である請求項1又は2記載のチタン酸バリウム微粒子粉末。 The barium titanate fine particle powder according to claim 1 or 2, wherein the lattice constant ratio c / a is less than 1.003.
  4.  請求項1~3のいずれかに記載のチタン酸バリウム微粒子粉末を含有する分散体。 A dispersion containing the barium titanate fine particle powder according to any one of claims 1 to 3.
  5.  請求項1~3のいずれかに記載のチタン酸バリウム微粒子粉末を含有する塗膜。 A coating film containing the barium titanate fine particle powder according to any one of claims 1 to 3.
PCT/JP2015/066867 2014-06-13 2015-06-11 Barium titanate fine particle powder, dispersion, and coating film WO2015190556A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016527858A JP6635031B2 (en) 2014-06-13 2015-06-11 Barium titanate fine particle powder, dispersion and coating film
CN201580030091.6A CN106458630A (en) 2014-06-13 2015-06-11 Barium titanate fine particle powder, dispersion, and coating film
KR1020167034040A KR102539617B1 (en) 2014-06-13 2015-06-11 Barium titanate fine particle powder, dispersion, and coating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-122892 2014-06-13
JP2014122892 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015190556A1 true WO2015190556A1 (en) 2015-12-17

Family

ID=54833643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066867 WO2015190556A1 (en) 2014-06-13 2015-06-11 Barium titanate fine particle powder, dispersion, and coating film

Country Status (5)

Country Link
JP (1) JP6635031B2 (en)
KR (1) KR102539617B1 (en)
CN (2) CN112830512A (en)
TW (1) TWI702188B (en)
WO (1) WO2015190556A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140305A1 (en) * 2015-03-05 2016-09-09 戸田工業株式会社 Barium titanate particle powder, and dispersion and coating film containing said powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186315A1 (en) * 2017-04-04 2018-10-11 デンカ株式会社 Powder mixture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330824A (en) * 1991-04-19 1993-12-14 Teika Corp Barium titanate and its production
JP2002211926A (en) * 2000-11-13 2002-07-31 Toda Kogyo Corp Spherical barium titanate particulate powder and method for producing the same
JP2005272295A (en) * 2004-02-26 2005-10-06 Dowa Mining Co Ltd Tetragonal barium titanate particles, method for manufacturing the same and ceramic capacitor
JP2005289668A (en) * 2004-03-31 2005-10-20 Toda Kogyo Corp Tetragonal barium titanate particulate powder and method for manufacturing the same
JP2007137759A (en) * 2005-10-19 2007-06-07 Toda Kogyo Corp Barium titanate particulate powder and dispersion
JP2009234842A (en) * 2008-03-26 2009-10-15 Toda Kogyo Corp Dispersion of barium titanate fine powder and method for producing the same
WO2009125680A2 (en) * 2008-03-19 2009-10-15 日本化学工業株式会社 Manufacturing method for dielectric material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2999821B2 (en) * 1989-08-21 2000-01-17 テイカ株式会社 Method for producing fine powder of perovskite compound
JP2512407B2 (en) * 1990-12-20 1996-07-03 太陽誘電株式会社 Manufacturing method for laminated porcelain capacitors
JP3780405B2 (en) * 2000-08-11 2006-05-31 株式会社村田製作所 Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same
US6733740B1 (en) * 2000-10-12 2004-05-11 Cabot Corporation Production of dielectric particles
JP2004161533A (en) * 2002-11-13 2004-06-10 Toda Kogyo Corp Method for producing barium titanate particle powder
WO2005054134A1 (en) * 2003-12-05 2005-06-16 Jsr Corporation Method for producing composition for forming dielectric film, composition for forming dielectric film, dielectric film and method for producing same
WO2005097704A1 (en) * 2004-04-07 2005-10-20 Techpowder S.A. Production of barium titanate compounds
EP1777198A1 (en) * 2005-10-19 2007-04-25 Toda Kogyo Corporation Fine barium titanate particles
CN101100310A (en) * 2007-06-27 2008-01-09 浙江大学 Preparation method for nanometer barium titanate
KR101587933B1 (en) * 2009-07-09 2016-01-22 고쿠리츠 다이가쿠 호진 도호쿠 다이가쿠 High-refractive index powder and production method and application of same
CN101786656B (en) * 2010-03-26 2011-05-25 湘潭大学 Preparation method of Barium Titanate nano-powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330824A (en) * 1991-04-19 1993-12-14 Teika Corp Barium titanate and its production
JP2002211926A (en) * 2000-11-13 2002-07-31 Toda Kogyo Corp Spherical barium titanate particulate powder and method for producing the same
JP2005272295A (en) * 2004-02-26 2005-10-06 Dowa Mining Co Ltd Tetragonal barium titanate particles, method for manufacturing the same and ceramic capacitor
JP2005289668A (en) * 2004-03-31 2005-10-20 Toda Kogyo Corp Tetragonal barium titanate particulate powder and method for manufacturing the same
JP2007137759A (en) * 2005-10-19 2007-06-07 Toda Kogyo Corp Barium titanate particulate powder and dispersion
WO2009125680A2 (en) * 2008-03-19 2009-10-15 日本化学工業株式会社 Manufacturing method for dielectric material
JP2009234842A (en) * 2008-03-26 2009-10-15 Toda Kogyo Corp Dispersion of barium titanate fine powder and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140305A1 (en) * 2015-03-05 2016-09-09 戸田工業株式会社 Barium titanate particle powder, and dispersion and coating film containing said powder

Also Published As

Publication number Publication date
KR20170020763A (en) 2017-02-24
KR102539617B1 (en) 2023-06-07
JP6635031B2 (en) 2020-01-22
JPWO2015190556A1 (en) 2017-04-20
CN112830512A (en) 2021-05-25
TW201602006A (en) 2016-01-16
CN106458630A (en) 2017-02-22
TWI702188B (en) 2020-08-21

Similar Documents

Publication Publication Date Title
Ge et al. Preparation and characterization of PS‐PMMA/ZnO nanocomposite films with novel properties of high transparency and UV‐shielding capacity
JP2009107857A (en) Dispersible silica nano hollow particles and method for producing dispersion liquid of silica nano hollow particles
WO2016140305A1 (en) Barium titanate particle powder, and dispersion and coating film containing said powder
US9120681B2 (en) Method for production of zinc oxide particles
WO2015190556A1 (en) Barium titanate fine particle powder, dispersion, and coating film
WO2018230472A1 (en) Method for producing hexagonal plate-shaped zinc oxide
TWI593629B (en) Magnesium hydroxide particle and resin composition comprising the same
WO2013146223A1 (en) Magnesium hydroxide particles and resin composition containing same
JP5267775B2 (en) Dispersion of fine barium titanate powder and method for producing the same
JP2016193825A (en) Granule and method for producing the same
JP5031744B2 (en) Aqueous dispersion composition for UV shielding
JP2015044922A (en) Heat ray-shielding dispersion material, coating liquid for forming heat ray-shielding dispersion material, and heat ray-shielding body
JP6631656B2 (en) Inorganic oxide dispersion with high transparency
WO2021095771A1 (en) Barium sulfate dispersion, coating material, coating film, and film
CN101240124A (en) Hydrophobic metal and metal oxide particles with unique optical properties
JP2010146878A (en) Conductive zinc oxide particulate and its manufacturing method
JP2008095029A (en) Manufacturing method of organic pigment dispersion
WO2023063281A1 (en) Powder and dispersion of fine strontium titanate particles, and resin composition
JP2018092691A (en) ε-IRON OXIDE TYPE FERROMAGNETIC POWDER, PROCESS FOR PRODUCING THE SAME, AND ε-IRON OXIDE TYPE FERROMAGNETIC POWDER-CONTAINING COMPOSITION
WO2023008395A1 (en) Strontium titanate fine-particle powder and method for producing same, dispersion, and resin composition
JP5212589B2 (en) Black fine composite particle powder, dispersion containing the black fine composite particle powder, and method for producing black fine composite particle powder
WO2021100763A1 (en) Inorganic oxide dispersion and paint
JP2009013005A (en) Alumina ultrafine particle-dispersed solution and alumina ultrafine particle-dispersed molding
WO2022249730A1 (en) Liquid dispersion of fluoride particles, composition for forming optical film, and optical film
WO2017110053A1 (en) Composite particles in which titanium dioxide microparticles are dispersed, and cosmetic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527858

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167034040

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15807339

Country of ref document: EP

Kind code of ref document: A1