JP2999821B2 - Method for producing fine powder of perovskite compound - Google Patents

Method for producing fine powder of perovskite compound

Info

Publication number
JP2999821B2
JP2999821B2 JP2511240A JP51124090A JP2999821B2 JP 2999821 B2 JP2999821 B2 JP 2999821B2 JP 2511240 A JP2511240 A JP 2511240A JP 51124090 A JP51124090 A JP 51124090A JP 2999821 B2 JP2999821 B2 JP 2999821B2
Authority
JP
Japan
Prior art keywords
compound
group
atomic ratio
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2511240A
Other languages
Japanese (ja)
Inventor
雅典 衣笠
直人 坪本
修 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26520730&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2999821(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2511240A priority Critical patent/JP2999821B2/en
Priority claimed from PCT/JP1990/001032 external-priority patent/WO1991002697A1/en
Application granted granted Critical
Publication of JP2999821B2 publication Critical patent/JP2999821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、セラミックスの原料として使用されるペロ
ブスカイト型化合物微粉体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a fine perovskite compound powder used as a raw material for ceramics.

背景技術 近年、電子デバイスの小型軽量高性能化に伴い、その
コンデンサーやサーミスターなどに使用されるペロブス
カイト型化合物系のセラミックスも薄膜化、小型化が要
求され、セラミックス化する際の配合、成形、焼結など
の技術面で薄膜化、小型化の検討が行われてきた。
BACKGROUND ART In recent years, as electronic devices have become smaller, lighter, and more sophisticated, perovskite-type ceramics used in capacitors, thermistors, and the like have also been required to be thinner and smaller. In terms of technology such as sintering, thinning and miniaturization have been studied.

しかしながら、その原料として使用されているペロブ
スカイト型化合物は、固相反応で得られたものであり、
平均粒径が0.8μm以上あって、いかにセラミックス化
時の技術を駆使しようとも、得られるセラミックスは、
達成し得る小型化、薄膜化に限界があって、その目的を
充分に達成することができなかった。
However, the perovskite-type compound used as the raw material is obtained by a solid-phase reaction,
Regardless of the average particle size of 0.8 μm or more, no matter how much the technology at the time of ceramicization is used, the ceramics obtained are
There is a limit to the miniaturization and thinning that can be achieved, and it has not been possible to achieve its purpose sufficiently.

すなわち、従来使用のペロブスカイト型化合物は、M
g、Ca、Sr、Ba、Pbなどの金属元素(以下、A群元素と
いう)から選ばれる少なくとも1種の炭酸塩または酸化
物と、Ti、Zn、Hf、Snなどの金属元素(以下、B群元素
という)から選ばれる少なくとも1種の酸化物とを混合
し、これを1000℃以上の高温で熱処理してペロブスカイ
ト型化合物にした後、ボールミルなどで機械的に粉砕し
て製造されるものであるため、平均粒径が0.8μm以上
のものしか得られず、そのため、前述したように、それ
を原料に用いて成形したセラミックスは、小型化、薄膜
化が充分に達成できないという問題があった。
That is, the conventionally used perovskite compound is M
g, at least one carbonate or oxide selected from metal elements such as Ca, Sr, Ba, and Pb (hereinafter, referred to as group A elements) and metal elements such as Ti, Zn, Hf, and Sn (hereinafter, referred to as B It is manufactured by mixing at least one oxide selected from the group elements), heat-treating it at a high temperature of 1000 ° C or higher to form a perovskite-type compound, and then mechanically pulverizing it with a ball mill or the like. For this reason, an average particle diameter of only 0.8 μm or more can be obtained. Therefore, as described above, there has been a problem that ceramics molded using the raw material cannot be sufficiently reduced in size and thickness. .

そこで、そのような問題を解決するため、特開昭59−
39726号公報、特開昭61−91016号公報、特開昭60−9082
5号公報、特開昭61−31345号公報などには、湿式法で平
均粒径0.2μm以下の微粒子ペロブスカイト型化合物を
製造する方法が提案されている。
In order to solve such a problem, Japanese Patent Laid-Open No.
39726 JP, JP-A-61-91016, JP-A-60-9082
No. 5, JP-A-61-31345, etc., have proposed a method for producing a fine-particle perovskite compound having an average particle diameter of 0.2 μm or less by a wet method.

しかし、湿式法では、微粒子のペロブスカイト型化合
物を得ることができるものの、得られるペロブスカイト
型化合物は、固相反応で得られるペロブスカイト型化合
物に比べて、反応が充分に進行しておらず、また結晶構
造上、構造水を多量に含んでいて、結晶性の悪いものし
か得られないという欠点があった。
However, in the wet method, although fine perovskite-type compounds can be obtained, the obtained perovskite-type compounds are not sufficiently reacted compared to the perovskite-type compounds obtained by the solid-phase reaction, and the crystals are not crystallized. In terms of structure, there is a drawback that it contains a large amount of structural water and only those having poor crystallinity can be obtained.

したがって、湿式法によって得られた微粒子ペロブス
カイト型化合物は、粒成長の起こらない温度で焼し
て、薄膜セラミックス原料として使用するときに、水系
で分散、バインダーなどの配合を行うと、水可溶性成分
が、成形乾燥工程で析出し、得られるセラミックスは、
組成が不均一なものになり、物理的特性や電気的特性の
バラツキが多いという欠点があった。
Therefore, the fine-particle perovskite compound obtained by the wet method is baked at a temperature at which grain growth does not occur, and when used as a thin film ceramic material, when dispersed in an aqueous system and blended with a binder, the water-soluble component is reduced. In the molding and drying process, the resulting ceramic is
There is a disadvantage that the composition becomes non-uniform and the physical and electrical characteristics vary widely.

また、上記湿式法で得られた微粒子ペロブスカイト型
化合物を油系で分散、配合することも可能であるが、該
ペロブスカイト型化合物の反応進行度が低く、また結晶
性が不充分なため、焼成後のセラミックスは、前記水系
分散したものと同様に、物理的特性や電気的特性にバラ
ツキが生じる。
It is also possible to disperse and mix the particulate perovskite type compound obtained by the above wet method in an oil system, but the reaction progress rate of the perovskite type compound is low, and the crystallinity is insufficient. The ceramics have variations in physical characteristics and electrical characteristics as in the case of the aqueous dispersion.

上記欠点を解消するために、焼温度を上げて反応を
充分に進行させ、かつ結晶性を良好にすることも可能で
あるが、焼温度を上げると、粒子の成長が起こり、微
粒子としての特性が失われて、固相反応で得られたペロ
ブスカイト型化合物と同様のものになり、セラミックス
の薄膜化、小型化が充分に達成できなくなる。
In order to solve the above-mentioned drawbacks, it is possible to raise the baking temperature to allow the reaction to proceed sufficiently and to improve the crystallinity. However, when the baking temperature is increased, the particles grow, and the characteristics as fine particles are obtained. Is lost, and it becomes the same as the perovskite-type compound obtained by the solid-phase reaction, so that the ceramics cannot be sufficiently reduced in thickness and size.

また、固相反応によってえられる平均粒径の大きなペ
ロブスカイト型化合物を機械的粉砕で微粒子化する場合
には、どうしても粉砕媒体からの不純物の混入を避ける
ことができず、この混入物は分離不可能なためセラミッ
クス薄膜の形成し際して障害になるという問題がある。
In addition, when a perovskite compound having a large average particle size obtained by a solid-phase reaction is micronized by mechanical pulverization, it is inevitable to mix impurities from the pulverization medium, and the contaminants cannot be separated. Therefore, there is a problem that it becomes an obstacle when forming the ceramic thin film.

ペロブスカイト型化合物の中でも特にチタン酸バリウ
ムがセラミックスの原料としてよく用いられている。前
記固相反応によってえられるチタン酸バリウムは正方晶
であり、前記湿式法でえられるものは立方晶である。高
性能のセラミックス薄膜をうるには、緻密化の達成でき
る正方晶のチタン酸バリウムであって平均粒径の小さな
ものが好ましい。しかしながら、湿式法によれば平均粒
径の小さなチタン酸バリウムがえられるが、このものは
前述のごとき欠点を有しており、一方固相反応によって
えられるチタン酸バリウムは、正方晶であるが平均粒径
が大きく粉砕しなければならないという欠点を有してい
る。しかも粉砕してえられるチタン酸バリウムは、粒度
分布幅の広いものであり、粒径の均一なものはえられな
い。
Among the perovskite compounds, barium titanate is particularly often used as a raw material for ceramics. Barium titanate obtained by the solid phase reaction is tetragonal, and that obtained by the wet method is cubic. In order to obtain a high-performance ceramic thin film, it is preferable to use tetragonal barium titanate that can achieve densification and that has a small average particle size. However, according to the wet method, barium titanate having a small average particle size is obtained, which has the above-mentioned disadvantages.On the other hand, barium titanate obtained by a solid-phase reaction is a tetragonal crystal. It has the disadvantage that the average particle size is large and it has to be ground. Moreover, the barium titanate obtained by pulverization has a wide particle size distribution width, and cannot have a uniform particle size.

上述したように、固相反応では微粒子のペロブスカイ
ト型化合物を得ることができず、また従来の湿式法では
反応進行度や結晶性が不充分なペロブスカイト型化合物
した得られないため、特性の良好なセラミックスを得る
ことができないといった問題があった。
As described above, the perovskite compound in the form of fine particles cannot be obtained by the solid-phase reaction, and the perovskite compound having insufficient reaction progress or insufficient crystallinity cannot be obtained by the conventional wet method, so that the characteristics are good. There was a problem that ceramics could not be obtained.

したがって、本発明は、反応が充分に進行し、かつ結
晶性が良好な微粒子のペロブスカイト型化合物を容易に
製造し得る方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a method in which the reaction proceeds sufficiently and a fine-particle perovskite compound having good crystallinity can be easily produced.

発明の開示 本発明者らは、A群元素の化合物とB群元素の化合物
の混合水溶液をA群元素過剰のA/B原子比で湿式反応さ
せたA群元素過剰のペロブスカイト型化合物粉体が、A/
B原子比が1付近のペロブスカイト型化合物粉体に比べ
て、焼時の粒成長が高温で起こること、そして上記A
群元素過剰のペロブスカイト型化合物粉体を粒成長の起
こる前の温度で焼し、得られた焼物を酸溶液で洗浄
し、水洗、濾過して過剰のA群元素を取り除くことによ
り、反応が充分に進行し、かつ結晶性が良好なペロブス
カイト型化合物微粉体が容易に得られることを見出し、
本発明を完成するに至った。
DISCLOSURE OF THE INVENTION The present inventors have prepared a perovskite-type compound powder in excess of Group A elements by subjecting a mixed aqueous solution of a compound of Group A elements and a compound of Group B elements to a wet reaction at an A / B atomic ratio of excess of Group A elements. , A /
In comparison with the perovskite type compound powder having a B atomic ratio of about 1, the grain growth during firing occurs at a high temperature.
The perovskite-type compound powder in excess of group elements is burned at a temperature before grain growth occurs, and the obtained fired product is washed with an acid solution, washed with water, and filtered to remove excess group A elements, so that the reaction is sufficient. And found that a fine perovskite compound powder having good crystallinity can be easily obtained,
The present invention has been completed.

本発明は、Mg、Ca、Sr、Baなどのアルカリ土類金属元
素および(または)Pbなどの2価金属元素よりなるA群
元素の化合物から選ばれる少なくとも1種の化合物と、
Ti、Zr、Hf、Snなどの4価金属元素および(または)Z
n、Ni、Co、Mg、Fe、Sbなどの2価もしくは3価金属元
素とNb、Sbなどの5価金属元素との複合金属元素よりな
るB群元素の化合物から選ばれる少なくとも1種の化合
物とのA/B原子比がA群元素過剰の混合物水溶液を湿式
反応させ、得られたA/B原子比がA群元素過剰の反応生
成物粉体を粒子の成長が起こる前の温度で焼し、得ら
れた焼物を酸溶液で洗浄し、水洗、濾過して過剰のA
群元素を取り除くことを特徴とする平均粒径0.3μm以
下のペロブスカイト型化合物微粉体の製造方法を提供す
るものである。
The present invention relates to at least one compound selected from compounds of Group A elements consisting of alkaline earth metal elements such as Mg, Ca, Sr and Ba and / or divalent metal elements such as Pb;
Tetravalent metal elements such as Ti, Zr, Hf, Sn and / or Z
at least one compound selected from the group B compounds consisting of composite metal elements of divalent or trivalent metal elements such as n, Ni, Co, Mg, Fe, and Sb and pentavalent metal elements such as Nb and Sb An aqueous solution of the mixture in which the A / B atomic ratio with the A / B atom ratio is excessive is subjected to a wet reaction, and the obtained reaction product powder having the A / B atomic ratio in excess of the A group element is calcined at a temperature before particle growth occurs. The obtained calcined product was washed with an acid solution, washed with water, and filtered to remove excess A.
An object of the present invention is to provide a method for producing a fine perovskite compound powder having an average particle diameter of 0.3 μm or less, which is characterized by removing group elements.

本発明の他の観点によれば、平均粒径0.3μm以下の
チタン酸バリウム正方晶系結晶が提供される。
According to another aspect of the present invention, there is provided a barium titanate tetragonal crystal having an average particle size of 0.3 μm or less.

本発明において、上記反応に使用するA群元素の化合
物やB群元素の化合物の化合物形態としては、たとえ
ば、水酸化物、酸化物、有機金属化合物、塩などがあげ
られる。
In the present invention, examples of the compound form of the compound of the group A element and the compound of the group B element used in the above reaction include a hydroxide, an oxide, an organometallic compound, and a salt.

そして、上記A群元素の化合物とB群元素の化合物と
の反応にあたり、A群元素の化合物やB群元素の化合物
は、市販品をそのまま使用してもよいし、また、合成し
たものを用いてもよい。
In the reaction between the compound of the group A element and the compound of the group B element, the compound of the group A element or the compound of the group B element may be a commercially available product as it is, or a synthesized product may be used. You may.

B群元素の化合物としてB群元素の水酸化物または酸
化物を用いる場合は、それらの粒径が平均粒径で0.3μ
m以下、好ましくは0.1μm以下のものが適しており、
0.3μmより大きくなると反応が困難になる。
When a hydroxide or an oxide of a group B element is used as the compound of the group B element, the particle diameter thereof is 0.3 μm in average particle diameter.
m or less, preferably 0.1 μm or less,
If it exceeds 0.3 μm, the reaction becomes difficult.

また、反応に際して、A群元素の化合物、B群元素の
化合物とも、反応時に溶解するものを除いては、得よう
とするペロブスカイト型化合物微粉体の粒径以下のもの
を用いることが必要である。
In addition, in the reaction, it is necessary to use a compound of the group A element and a compound of the group B element which have a particle size equal to or smaller than the particle diameter of the perovskite-type compound fine powder to be obtained, except for those that dissolve during the reaction. .

反応にあたり、A群元素の化合物から選ばれる少なく
とも1種の化合物とB群元素の化合物から選ばれる少な
くとも1種の化合物は、A群元素過剰のA/B原子比に混
合される。本発明において、上記A/B原子比とはA群元
素とB群元素との原子比をいう。そして、上記の混合は
通常の混合方法によって行えばよい。
In the reaction, at least one compound selected from compounds of Group A elements and at least one compound selected from compounds of Group B elements are mixed in an A / B atomic ratio in excess of Group A elements. In the present invention, the A / B atomic ratio refers to an atomic ratio between a group A element and a group B element. The above mixing may be performed by a normal mixing method.

本発明において、湿式反応としては、共沈法、加水分
解法、水熱合成法、常圧加熱反応法などが採用される、 共沈法は、A群元素の塩類とB群元素の塩類または水
酸化物との混合溶液にアルカリを反応させて、A群元素
とB群元素の含水酸化物混合物または水酸化物混合物を
得たり、A群元素の塩類とB群元素の塩類との混合物を
シュウ酸、クエン酸などの有機酸に滴下して反応させ、
水不溶性の有機酸複合塩を得る方法である。
In the present invention, as a wet reaction, a coprecipitation method, a hydrolysis method, a hydrothermal synthesis method, a normal pressure heating reaction method, or the like is employed. The coprecipitation method includes a salt of a group A element and a salt of a group B element or By reacting an alkali with the mixed solution with hydroxide, a hydrated oxide mixture or a hydroxide mixture of the group A element and the group B element is obtained, or a mixture of the salt of the group A element and the salt of the group B element is obtained. Oxic acid, citric acid and other organic acids are allowed to react dropwise,
This is a method for obtaining a water-insoluble organic acid complex salt.

加水分解法は、金属アルコキシドの混合物アルコール
溶液に水を加えて加水分解を行う、ペロブスカイト型化
合物を得る方法である。
The hydrolysis method is a method for obtaining a perovskite compound by adding water to an alcohol solution of a mixture of metal alkoxides and performing hydrolysis.

水熱合成法は、A群元素の化合物から選ばれる少なく
とも1種の化合物と、B群元素の化合物から選ばれる少
なくとも1種の化合物との混合水溶液を反応が進行する
pH、通常はpH10以上にアルカリで調整し、アルカリ性混
合物水溶液を得、これを加圧下で通常100〜300℃の温度
で反応させる方法である。
In the hydrothermal synthesis method, a reaction proceeds in a mixed aqueous solution of at least one compound selected from compounds of Group A elements and at least one compound selected from compounds of Group B elements.
This is a method of adjusting the pH, usually pH 10 or higher, with an alkali to obtain an aqueous alkaline mixture solution, and reacting the aqueous solution under pressure at a temperature of usually 100 to 300 ° C.

常圧加熱反応法は、上記のアルカリ性混合物水溶液を
常圧下で沸騰させて反応させる方法である。
The normal pressure heating reaction method is a method in which the above-mentioned aqueous solution of the alkaline mixture is boiled under normal pressure to cause a reaction.

本発明では、これらすべての湿式法を採用することが
できる。つまり、得ようとするペロブスカイト型化合物
の種類や純度、使用するA群元素の化合物とB群元素の
化合物の種類に応じて反応方法を使い分ければよい。
In the present invention, all of these wet methods can be adopted. That is, the reaction method may be selected depending on the type and purity of the perovskite compound to be obtained, and the type of the compound of the group A element and the compound of the group B element to be used.

湿式法によって得られた反応生成物、すなわち、ペロ
ブスカイト型化合物、あるいは共沈水酸化物混合物、有
機酸複合塩などは、必要に応じて、水洗、濾過される。
これは、ペロブスカイト型化合物成分以外の化合物を湿
式反応させるために使用した場合に、焼後も残る元素
を除去するためである。たとえば、強アルカリ中で反応
させた場合には、Na、Kなどを除去する必要があるが、
これらの場合は、炭酸または酢酸などで中和し、水洗、
濾過すればよい。
The reaction product obtained by the wet method, that is, a perovskite-type compound, a coprecipitated hydroxide mixture, an organic acid complex salt, and the like are washed with water and filtered as necessary.
This is because, when a compound other than the perovskite-type compound component is used for performing a wet reaction, elements remaining after burning are removed. For example, when reacted in a strong alkali, it is necessary to remove Na, K, etc.
In these cases, neutralize with carbonic acid or acetic acid, wash with water,
What is necessary is just to filter.

本発明において、乾燥は通常の乾燥方法で行えばよい
が、過剰に使用した未反応のA群元素と反応生成物とが
均一な粉体で得られるようにするのが好ましい。このよ
うな乾燥方法としては、たとえば、噴霧乾燥を採用する
ことができるし、また、未反応のA群元素を炭酸イオ
ン、シュウ酸イオンなどで不溶化してから通常の濾過、
乾燥を行ってもよい。
In the present invention, drying may be performed by a usual drying method, but it is preferable that the unreacted Group A element and the reaction product used in excess are obtained as a uniform powder. As such a drying method, for example, spray drying can be adopted, or an unreacted group A element is insolubilized with a carbonate ion, an oxalate ion and the like, and then subjected to ordinary filtration,
Drying may be performed.

上記のようにして得られたA/B原子比がA群元素過剰
の反応生成物粉体は、粒子の成長が起こる前の温度で
焼される。ここで、本発明におけるA/B原子比がA群元
素過剰の反応生成物粉体の焼について詳述すると次の
とおりである。
The reaction product powder having an A / B atomic ratio in excess of the group A element obtained as described above is fired at a temperature before particle growth occurs. Here, the firing of the reaction product powder in which the A / B atomic ratio in the present invention is excessive in the group A element is described in detail as follows.

湿式法で得られる反応生成物は、反応生成物がペロブ
スカイト型化合物の場合、その種類によって多少異なる
が、通常は平均粒径が0.3μm以下で、ほとんどが0.05
〜0.15μmの粉体である。反応生成物が共沈水酸化物混
合物や有機酸複合塩の場合は、500〜900℃で熱処理する
と、平均粒径が0.3μm以下で、ほとんどが0.05〜0.15
μmのペロブスカイト型化合物粉体が得られる。そし
て、これらの反応生成物は、通常、付着水、構造水の除
去や、結晶化度の向上、未反応成分の反応の促進などの
目的で、焼される。
The reaction product obtained by the wet method, if the reaction product is a perovskite type compound, slightly varies depending on the type, but usually the average particle size is 0.3 μm or less, most of 0.05
~ 0.15 μm powder. When the reaction product is a coprecipitated hydroxide mixture or an organic acid complex salt, when heat-treated at 500 to 900 ° C., the average particle size is 0.3 μm or less, and most is 0.05 to 0.15.
A μm perovskite compound powder is obtained. These reaction products are usually baked for the purpose of removing adhering water and structural water, improving the crystallinity, and accelerating the reaction of unreacted components.

焼温度を高温にするほど、上記の目的は達成される
ことになるが、その反面、粒子の成長が起こる。そのた
め、通常は粒子の成長が起こる前の温度で焼される。
粒子の成長が起こる温度は、ペロブスカイト型化合物の
種類によって異なるが、同一のペロブスカイト型化合物
の場合は、A/B原子比によって変わり、A/B原子比がA群
元素過剰の場合、A/B原子比が1のものより、粒子の成
長が起こる温度が100〜300℃高温になる。したがって、
本発明では、従来のA/B原子比が1のものより高温で
焼することができ、通常、粒子成長の起こる温度より低
く、かつA/B=1.0のばあいに粒子成長が起こる温度より
高い温度で焼される。好ましくは、(粒子成長発生温
度−20℃)以下、なかんづく(粒子成長発生温度−50
℃)以下で、(粒子成長発生温度−300℃)以上、なか
んづく(粒子成長発生温度−200℃)以上の温度で焼
される。
The higher the baking temperature, the more the above-mentioned object is achieved, but on the other hand, the growth of particles occurs. As such, they are usually fired at a temperature before particle growth occurs.
The temperature at which particle growth occurs depends on the type of perovskite compound, but in the case of the same perovskite compound, it varies depending on the A / B atomic ratio. When the atomic ratio is 1, the temperature at which particle growth occurs is 100 to 300 ° C. higher. Therefore,
In the present invention, baking can be performed at a higher temperature than the conventional A / B atomic ratio of 1, usually lower than the temperature at which grain growth occurs, and lower than the temperature at which grain growth occurs when A / B = 1.0. Fired at high temperatures. Preferably, (particle growth occurrence temperature −20 ° C.) or less, particularly (particle growth occurrence temperature −50 ° C.)
(° C.) or lower, and is baked at a temperature equal to or higher than (particle growth occurrence temperature-300 ° C.), especially above (particle growth occurrence temperature-200 ° C.).

本発明において、A/B原子比がA群元素過剰のものと
は、A/B原子比が1.01〜1.40の範囲、好ましくは1.01〜
1.10の範囲のものである。すなわち、ベロブスカイト型
化合物の種類によっても異なるが、A/B原子比が1.01よ
り小さい場合は、粒子の成長が起こる温度を高くする効
果が小さく、またA/B原子比が1.40を超えると、ベロブ
スカイト型化合物以外の結晶化合物の生成が生じたり、
また後工程の酸処理によるA群元素過剰分の除去を考え
ると不経済であるからである。
In the present invention, the A / B atomic ratio is one in which the group A element is excessive, the A / B atomic ratio is in a range of 1.01 to 1.40, preferably 1.01 to 1.40.
It is in the range of 1.10. That is, although it differs depending on the type of the perovskite type compound, when the A / B atomic ratio is smaller than 1.01, the effect of increasing the temperature at which particle growth occurs is small, and when the A / B atomic ratio exceeds 1.40, The generation of crystalline compounds other than the perovskite-type compound occurs,
In addition, it is uneconomical in consideration of removing excess of group A element by acid treatment in the subsequent step.

A/B原子比と粒子の成長が起こる温度との関係を、具
体的に湿式法で製造した平均粒子径0.1μmの疑似立方
晶チタン酸バリウムを例にとって説明すると、Ba/Ti原
子比が1のものは800℃まで粒成長が起こらず、X線回
折にも、構造水の離脱のために生じる格子定数の収縮が
起こった疑似立方晶で推移する。そして、900℃以上で
焼すると、粒子の成長がみられ、1000℃の焼では平
均粒径0.5μm以上の正方晶チタン酸バリウムになる。
一方、Ba/Ti原子比がBa過剰の場合は、1000℃から1100
℃の焼において、0.1〜0.2μmの粒成長で正方晶のチ
タン酸バリウムが得られる。本発明においては、A群元
素過剰の反応生成物粉体を粒子の成長が起こる前の温度
で焼することを要件としているが、この粒子の成長が
起こる前の温度とは、粒子が平均粒径で0.3μmより大
きな粒子に成長を起こす前の温度という意味である。
The relationship between the A / B atomic ratio and the temperature at which the particle growth occurs will be specifically described using a pseudo cubic barium titanate having an average particle diameter of 0.1 μm produced by a wet method as an example. No crystal growth occurs up to 800 ° C., and the X-ray diffraction shifts to a pseudo-cubic crystal in which the lattice constant shrinks due to detachment of the structural water. Then, when baked at 900 ° C. or more, grain growth is observed, and when baked at 1000 ° C., it becomes tetragonal barium titanate having an average particle size of 0.5 μm or more.
On the other hand, if the Ba / Ti atomic ratio is Ba excess,
Upon firing at 0 ° C., tetragonal barium titanate is obtained with a grain growth of 0.1 to 0.2 μm. In the present invention, it is required that the reaction product powder in excess of the group A element be fired at a temperature before the growth of the particles. It means the temperature before growth of particles larger than 0.3 μm in diameter occurs.

なお、反応生成物のA/B原子比が1.01〜1.40の範囲に
なるようにするには、反応前のA/B原子比がA群元素過
剰の混合物水溶液においても、A/B原子比を1.01〜1.40
に調整することが必要である。
In order to make the A / B atomic ratio of the reaction product be in the range of 1.01 to 1.40, the A / B atomic ratio before the reaction is set to an A / B atomic ratio even in a mixture aqueous solution containing an excess of Group A elements. 1.01 to 1.40
It is necessary to adjust.

焼後は、得られた焼物を酸溶液で洗浄し、水洗、
濾過して、過剰のA群元素を取り除く。この際に使用す
る酸は、水可溶性の酸であればいずれも使用可能であ
り、たとえば酢酸などの有機酸や塩酸、硝酸、フッ酸な
どの無機酸が使用できる。ただし、塩として沈殿するも
のは使用することができない。
After baking, the obtained baking product is washed with an acid solution, washed with water,
Filter to remove excess Group A elements. Any acid can be used as long as it is a water-soluble acid. For example, organic acids such as acetic acid and inorganic acids such as hydrochloric acid, nitric acid and hydrofluoric acid can be used. However, those that precipitate as salts cannot be used.

酸溶液での焼物の洗浄は、通常の方法で行えばよ
く、たとえば、焼物をスラリー化し、必要に応じて加
熱し、酸をその中に滴下し、pHを調整する方法を採用で
きる。pHの調整範囲は、ベロブスカイト型化合物の種類
や使用する酸によって多少異なるが、通常、pH5〜10の
範囲である。また、焼物のA群元素の過剰度合が多い
場合は、はじめに塩酸などの強酸でpHを10近くまで落と
し、ついで酢酸などの弱酸で所望のpHに調整するのが効
果的である。
Washing of the baked goods with an acid solution may be performed by a usual method. For example, a method of slurrying the baked goods, heating if necessary, dropping an acid therein, and adjusting the pH can be adopted. The adjustment range of the pH slightly varies depending on the type of the perovskite compound and the acid used, but is usually in the range of pH 5 to 10. In addition, when the excess of the Group A element in the baked product is large, it is effective to first reduce the pH to about 10 with a strong acid such as hydrochloric acid and then adjust the pH to a desired pH with a weak acid such as acetic acid.

酸溶液で洗浄後は、常法により、デカンテーションを
繰り返し、ヌッチェなどで水洗、濾過し、乾燥すればよ
い。この酸洗浄後の水洗、濾過は、必ずしも、水洗、濾
過の順序で行うことを要求されるものではなく、濾過が
水洗より先になってもよいし、また、水洗や濾過をくり
返してもよい。
After washing with an acid solution, decantation may be repeated by a conventional method, followed by washing with Nutsche or the like, filtration, and drying. Water washing and filtration after this acid washing are not necessarily required to be performed in the order of water washing and filtration, and filtration may be performed prior to water washing, or water washing and filtration may be repeated. .

本発明によって得られる平均粒径0.3μm以下のベロ
ブスカイト型化合物微粉体(ベロブスカイト型化合物の
種類によって多少異なるが、ほとんどが平均粒径0.1μ
m前後である)は、従来の湿式法によるベロブスカイト
型化合物の微粉体に比べて、反応が充分に進行していて
未反応物が少なく、また結晶性が良好で結晶化度の高い
ものであり、物理的特性および電気的特性が良好で、か
つ、それらのバラツキが少ない、品質の安定したセラミ
ックスの成形を可能にする。特に薄膜セラミックスを成
形する場合においてその効果が顕著に発揮される。
Veroskite compound fine powder having an average particle diameter of 0.3 μm or less obtained by the present invention (although the average particle diameter varies slightly depending on the type of the
m), compared with the fine powder of a conventional bevelovskite-type compound obtained by a wet method, the reaction has progressed sufficiently, the number of unreacted substances is small, and the crystallinity is good and the degree of crystallinity is high. In addition, the present invention enables the molding of ceramics having good physical properties and electrical properties, and having little variation among them and having stable quality. In particular, when molding a thin film ceramic, the effect is remarkably exhibited.

特に、本発明の方法によってえられるチタン酸バリウ
ムは、平均粒径が0.3μm以下、なかんづく0.05〜0.25
μmの範囲内にあって、粒度分布幅が非常に狭くて粒径
の均一な正方晶の結晶粒子であるため、セラミックス材
料としてきわめて有用である。すなわち、正方晶のチタ
ン酸バリウムは立方晶のものよりも結晶が緻密であり、
また化学的に安定していて他の配合成分と反応しにくい
ため高性能のセラミックスがえられやすいという長所を
有している。また、粒径が小さくて均一であるので、セ
ラミックス薄膜の形成に適しており、たとえば薄くて高
容量のコンデンサーをうることができる。
In particular, barium titanate obtained by the method of the present invention has an average particle size of 0.3 μm or less, preferably 0.05 to 0.25
It is a tetragonal crystal particle having a very narrow particle size distribution width and a uniform particle size within the range of μm, and thus is extremely useful as a ceramic material. That is, the tetragonal barium titanate has a denser crystal than the cubic one,
In addition, it has the advantage that high-performance ceramics are easily obtained because they are chemically stable and do not easily react with other components. Further, since the particle diameter is small and uniform, it is suitable for forming a ceramic thin film, and for example, a thin and high-capacity capacitor can be obtained.

本発明の方法によってえられるチタン酸バリウムの粒
度分布曲線は極めてシャープであり、全粒子数の60%以
上、なかんづく70%以上が平均粒径の±0.05μmの範囲
内に存在する。しかも、0.3μm以上の粒径を有する粒
子は非常に少なく、平均粒径が0.25μm以下のばあい、
全粒子数5%以下であり、平均粒径が0.15μm以下のば
あいには、粒径0.3μm以上の粒子はほとんど存在しな
い。たとえば、平均粒径0.2μmのばあい、全粒子の90
%以上、なかんづく95%以上が0.1〜0.3μmの範囲内に
存在する。このような平均粒径が小さくて粒径の均一な
正方晶のチタン酸バリウムは、公知の方法では全くえる
ことのできなかった新規なものである。
The particle size distribution curve of barium titanate obtained by the method of the present invention is extremely sharp, and more than 60% of the total number of particles, especially more than 70%, exists within the range of ± 0.05 μm of the average particle size. Moreover, there are very few particles having a particle size of 0.3 μm or more, and when the average particle size is 0.25 μm or less,
When the total number of particles is 5% or less and the average particle size is 0.15 μm or less, there is almost no particle having a particle size of 0.3 μm or more. For example, when the average particle size is 0.2 μm, 90% of all particles
%, Especially 95% or more, is in the range of 0.1 to 0.3 μm. Such tetragonal barium titanate having a small average particle size and a uniform particle size is a novel one that could not be obtained by any known method.

本発明によるベロブスカイト型化合物微粉体からえら
れるセラミックスは、その優れた電気的特性、つまり、
優れた誘電性、圧電性、半導性などを利用して、エレク
トロニクス分野のコンデンサ、電波フィルター、着火素
子、サーミスタなどに好適に使用される。
Ceramics obtained from the belovskite type compound fine powder according to the present invention has excellent electrical properties, that is,
Utilizing excellent dielectric properties, piezoelectric properties, semiconductivity, etc., it is suitably used for capacitors, radio wave filters, ignition elements, thermistors, etc. in the electronics field.

発明を実施するための最良の形態 つぎに実施例をあげて本発明をさらに詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to examples.

実施例1 大阪チタニウム(株)製の四塩化チタン水溶液(Ti=
16.5重量%)200gを蒸留水1800mlに撹拌しながら加え、
希薄四塩化チタン水溶液にした後、5重量%アンモニア
水(林純薬工業(株)製、試薬特級)700mlを約1時間
かけて添加して、含水酸化チタンスラリーにし、ヌッチ
ェで水洗、濾過を行い、含水酸化チタンケーキにした。
この含水酸化チタンケーキは、TiO2の定量をICPで行っ
たところ、11.46重量%であった。
Example 1 An aqueous titanium tetrachloride solution (Ti =
16.5% by weight) was added to 1800 ml of distilled water with stirring.
After making the diluted titanium tetrachloride aqueous solution, 700 ml of 5% by weight aqueous ammonia (manufactured by Hayashi Junyaku Kogyo Co., Ltd., reagent grade) is added over about 1 hour to obtain a titanium oxide-containing slurry, washed with Nutsche, and filtered. This was performed to obtain a hydrous titanium oxide cake.
The content of TiO 2 in this hydrous titanium oxide cake determined by ICP was 11.46% by weight.

つぎに、上記含水酸化チタンケーキ240.02g(Ti:0.34
5モル)に蒸留水を加え、TiO2が60g/のスラリーに調
整した後、反応系を窒素雰囲気にし、Ba(OH)・8H2O
(林純薬工業(株)製、試薬特級)を141.2g(Ba:0.448
モル)加え、さらに蒸留水を加えて、0.7モル/(BaT
iO3換算)、Ba/Ti原子比1.30のスラリーに調整した。該
スラリーを沸騰温度まで約1時間かけて昇温し、沸騰温
度で約3時間反応を行った。室温まで自然冷却した後、
デカンテーションを繰り返し、ヌッチェで水洗、濾過を
行った。得られたケーキに蒸留水を加えて0.9モル/
(BaTiO3換算)に再スラリー化し、大川原化工機(株)
製スプレードライヤーを用いて、入口温度250℃、出口
温度120℃、アトマイザー回転数25000rpmで噴霧乾燥し
てチタン酸バリウム微粉体を得た。
Next, 240.02 g of the above-mentioned hydrous titanium oxide cake (Ti: 0.34
Distilled water was added to 5 moles), after the TiO 2 was adjusted to 60 g / slurry, the reaction system was blanketed with nitrogen, Ba (OH) 2 · 8H 2 O
141.2 g (Ba: 0.448) of reagent (special grade reagent made by Hayashi Junyaku Kogyo Co., Ltd.)
Mol), and further distilled water is added, and 0.7 mol / (BaT
iO 3 eq.), and adjusted to a slurry of Ba / Ti atomic ratio of 1.30. The temperature of the slurry was raised to the boiling temperature over about 1 hour, and the reaction was carried out at the boiling temperature for about 3 hours. After natural cooling to room temperature,
The decantation was repeated, washed with Nutsche and filtered. Distilled water was added to the obtained cake to obtain 0.9 mol /
Re-slurried to (BaTiO 3 equivalent), Okawara Kakoki Co., Ltd.
It was spray-dried with a spray dryer made at an inlet temperature of 250 ° C., an outlet temperature of 120 ° C. and an atomizer rotation speed of 25,000 rpm to obtain barium titanate fine powder.

得られたチタン酸バリウム微粉体は、ICPおよび螢光
X線分析でBa/Ti原子比を測定し、電子顕微鏡写真で粒
径を測定し、X線回折で結晶形を調べたところ、Ba/Ti
原子比1.031、平均粒径0.08μmで疑似立方晶であるこ
とが判明した。
The obtained barium titanate fine powder was measured for the Ba / Ti atomic ratio by ICP and X-ray fluorescence analysis, the particle size was measured by an electron micrograph, and the crystal form was examined by X-ray diffraction. Ti
It was found to be pseudo-cubic with an atomic ratio of 1.031 and an average particle size of 0.08 μm.

上記チタン酸バリウム微粉体を電気炉中、1000℃で3
時間焼し、自然冷却した後、得られた焼物に蒸留水
を加え、約0.7モル/(BaTiO3換算)のスラリーに調
整した。該スラリーを加温して60℃にし、10重量%酢酸
水溶液を滴下して、pHを8.0に調整し、約1時間保持し
た後、ヌッチェで水洗、濾過を行い、乾燥してチタン酸
バリウム微粉体を得た。
The above barium titanate fine powder is placed in an electric furnace at 1000 ° C. for 3 hours.
After calcination for a period of time and natural cooling, distilled water was added to the obtained baked product to prepare a slurry of about 0.7 mol / (in terms of BaTiO 3 ). The slurry was heated to 60 ° C., a 10% by weight aqueous acetic acid solution was added dropwise to adjust the pH to 8.0, and after maintaining for about 1 hour, washed with Nutsche, filtered and dried to obtain fine barium titanate powder. I got a body.

得られたチタン酸バリウム微粉体は、ICPおよび螢光
X線分析でBa/Ti原子比を測定し、電子顕微鏡写真およ
びX線回折分析により結晶形を調べたところ、Ba/Ti原
子比は1.002であり、結晶形は湿式法で製造された正方
晶チタン酸バリウム(BaTiO3)とピーク位置が一致し、
また電子顕微鏡観察において四角い形状で結晶エッジが
見られることから正方晶であることが判明した。
The obtained barium titanate fine powder was measured for the Ba / Ti atomic ratio by ICP and X-ray fluorescence analysis, and the crystal form was examined by electron micrograph and X-ray diffraction analysis. And the crystal form has the same peak position as tetragonal barium titanate (BaTiO 3 ) produced by the wet method,
In addition, a square crystal edge was observed in an electron microscope observation, which proved to be tetragonal.

さらに、えられたチタン酸バリウム微粉体の電子顕微
鏡写真から平均粒径および粒度分布を測定した。測定
は、電子顕微鏡写真に一定間隔で横線を引き、線上の粒
子3000個の径を測定して行なった。粒子形状が直方体で
あるので、一辺の長さを粒子径とした。粒度分布(全粒
子数に対する割合)および平均粒径の測定結果を以下に
示す。
Furthermore, the average particle size and the particle size distribution were measured from the electron micrograph of the obtained barium titanate fine powder. The measurement was performed by drawing a horizontal line at regular intervals on an electron micrograph and measuring the diameter of 3000 particles on the line. Since the particle shape was a rectangular parallelepiped, the length of one side was defined as the particle diameter. The measurement results of the particle size distribution (ratio to the total number of particles) and the average particle size are shown below.

(粒度分布) 0.3μm以上 4% 0.25〜0.3μm 11% 0.2〜0.25μm 36% 0.15〜0.2μm 34% 0.1〜0.15μm 12% 0.1μm以下 3% 平均粒径:0.2μm なお、以下の各実施例などにおいても、生成物の分
析、測定手段は、この実施例1の場合と同様である。
(Particle size distribution) 0.3 μm or more 4% 0.25 to 0.3 μm 11% 0.2 to 0.25 μm 36% 0.15 to 0.2 μm 34% 0.1 to 0.15 μm 12% 0.1 μm or less 3% Average particle size: 0.2 μm In the examples and the like, the means for analyzing and measuring the product is the same as that in the first embodiment.

実施例2 実施例1と同様の操作を経て、含水酸化チタン−Ba
(OH)・8H2O混合スラリーを0.7モル/(BaTiO3
算)、Ba/Ti原子比1.20で調整した後、該スラリー500ml
を耐熱性ニッケル合金製のオートクレーブ(容量1)
に仕込み、500rpmで撹拌しながら100℃/hrで昇温し、25
0℃で2時間反応を行った。
Example 2 The same operation as in Example 1 was carried out to obtain hydrous titanium oxide-Ba
(OH) 2 · 8H 2 O mixed slurry 0.7 mol / (BaTiO 3 equivalents), was prepared in Ba / Ti atomic ratio of 1.20, the slurry 500ml
With heat-resistant nickel alloy autoclave (capacity 1)
And heated at 100 ° C / hr while stirring at 500 rpm.
The reaction was performed at 0 ° C. for 2 hours.

反応後、実施例1と同様に水洗、濾過し、再スラリー
化した後、噴霧乾燥してチタン酸バリウム微粉体を得
た。得られたチタン酸バリウム微粉体は、Ba/Ti原子比
1.052、平均粒径0.1μmの疑似立方晶であった。
After the reaction, it was washed with water, filtered, reslurried as in Example 1, and then spray-dried to obtain barium titanate fine powder. The obtained barium titanate fine powder has a Ba / Ti atomic ratio.
1.052, pseudo-cubic with an average particle size of 0.1 μm.

上記チタン酸バリウム微粉体を電気炉中、1000℃で3
時間焼し、自然冷却した後、約0.7モル/(BaTiO3
換算)にスラリー化し、加温して60℃にした。該スラリ
ーに10重量%酢酸水溶液を滴下して、pHを8.0に調整
し、約1時間保持したのち、ヌッチェで水洗、濾過を行
い、乾燥してチタン酸バリウム微粉体をえた。
The above barium titanate fine powder is placed in an electric furnace at 1000 ° C. for 3 hours.
After baking for a time and cooling naturally, about 0.7 mol / (BaTiO 3
The slurry was heated to 60 ° C. A 10% by weight aqueous solution of acetic acid was added dropwise to the slurry to adjust the pH to 8.0, and after maintaining for about 1 hour, washed with Nutsche, filtered, and dried to obtain barium titanate fine powder.

えられたチタン酸バリウム微粉体は、Ba/Ti原子比1.0
00、平均粒径0.15μmの正方晶であった。粒度分布の測
定結果を以下に示す。
The obtained barium titanate fine powder has a Ba / Ti atomic ratio of 1.0.
00, which was tetragonal with an average particle size of 0.15 μm. The measurement results of the particle size distribution are shown below.

(粒度分布) 0.25μm以上 5% 0.2〜0.25μm 11% 0.15〜0.2μm 33% 0.1〜0.15μm 41% 0.1μm以下 10% 実施例3 純度99.99%のチタニウムイソプロポキシド(レアー
メタル(株)製)100gを150mlのイソプロピルアルコー
ル(林純薬工業(株)製、試薬特級)に溶解し、2時間
加熱還流した。窒素雰囲気中で、該チタニウムイソプロ
ポキシド溶液を80℃に保った45重量%Ba(OH)・8H2O
水溶液340.5gに1時間30分かけてローラポンプで徐々に
滴下し、滴下後、加水してスラリー濃度0.6モル/、B
a/Ti原子比1.4に調整した。以後、実施例1と同様に反
応を行い、水洗、濾過したのち、噴霧乾燥して、チタン
酸バリウム微粉体をえた。えられたチタン酸バリウム微
粉体は、Ba/Ti原子比1.101、平均粒径0.06μmの疑似立
方晶であった。
(Particle size distribution) 0.25 μm or more 5% 0.2 to 0.25 μm 11% 0.15 to 0.2 μm 33% 0.1 to 0.15 μm 41% 0.1 μm or less 10% Example 3 Titanium isopropoxide having a purity of 99.99% (manufactured by Rare Metal Co., Ltd.) 100 g was dissolved in 150 ml of isopropyl alcohol (manufactured by Hayashi Junyaku Kogyo Co., Ltd., reagent grade) and heated under reflux for 2 hours. In a nitrogen atmosphere, 45 weight kept the titanium isopropoxide solution 80 ℃% Ba (OH) 2 · 8H 2 O
The solution was gradually dropped into 340.5 g of the aqueous solution over 1 hour and 30 minutes by a roller pump.
The a / Ti atomic ratio was adjusted to 1.4. Thereafter, the reaction was carried out in the same manner as in Example 1, washed with water, filtered, and then spray-dried to obtain barium titanate fine powder. The obtained barium titanate fine powder was a pseudo cubic crystal having a Ba / Ti atomic ratio of 1.101 and an average particle size of 0.06 μm.

上記チタン酸バリウム微粉体を電気炉(モトヤマ
(株)製)中、1100℃で3時間焼し、自然冷却した
後、該焼物を約0.3モル/(BaTiO3換算)にスラリ
ー化し、加温して60℃に保った。このスラリーにINの塩
酸水溶液を滴下して、pHを9.7に調整した後、10重量%
酢酸水溶液を滴下して、pHを7.8に調整し、約1時間保
持した。その後、ヌッチェで水洗、濾過を行い、乾燥し
てチタン酸バリウム微粉体をえた。
The above barium titanate fine powder is baked in an electric furnace (manufactured by Motoyama Co., Ltd.) at 1100 ° C. for 3 hours, naturally cooled, and then the slurry is slurried to about 0.3 mol / (BaTiO 3 equivalent) and heated. And kept at 60 ° C. To this slurry, an aqueous hydrochloric acid solution of IN was added dropwise to adjust the pH to 9.7, and then 10% by weight.
The pH was adjusted to 7.8 by dropwise addition of an aqueous acetic acid solution, and the mixture was maintained for about 1 hour. Then, it was washed with Nutsche, filtered, and dried to obtain barium titanate fine powder.

えられたチタン酸バリウム微粉体は、Ba/Ti原子比0.9
990、平均粒径0.13μmの正方晶であった。粒度分布の
測定結果を以下に示す。
The obtained barium titanate fine powder has a Ba / Ti atomic ratio of 0.9.
990, a tetragonal crystal having an average particle size of 0.13 μm. The measurement results of the particle size distribution are shown below.

(粒度分布) 0.2μm以上 5% 0.15μm〜0.2μm 30% 0.10〜0.15μm 35% 0.10μm以下 10% 実施例4 窒素雰囲気中で、純度99.99%のバリウムイソプロポ
キシド(レアーメタル(株)製)75.83g(0.297モル)
と純度99.99%のチタニウムイソプロポキシド(レアー
メタル(株)製)92.75g(0.326モル)とを、350mlのイ
ソプロピルアルコールに溶解、2時間加熱還流した。該
溶液に蒸留水65mlを1時間かけて滴下し、アルコラート
を加水分解し、一旦室温まで冷却した後、加水してスラ
リー濃度を0.5モル/(BaTiO3換算)、Ba/Ti原子比1.
1に調整した。以後、実施例1と同様に反応を行い、ヌ
ッチェでの水洗、濾過を省略し、そのまま噴霧乾燥し
て、Ba/Ti原子比1.102、平均粒径0.05μmの疑似立方晶
チタン酸バリウム微粉体をえた。
(Particle size distribution) 0.2 μm or more 5% 0.15 μm to 0.2 μm 30% 0.10 to 0.15 μm 35% 0.10 μm or less 10% Example 4 Barium isopropoxide having a purity of 99.99% in a nitrogen atmosphere (manufactured by Rare Metal Co., Ltd.) 75.83 g (0.297 mol)
And 92.75 g (0.326 mol) of titanium isopropoxide having a purity of 99.99% (manufactured by Rare Metal Co., Ltd.) were dissolved in 350 ml of isopropyl alcohol and heated under reflux for 2 hours. To the solution was added dropwise 65 ml of distilled water over 1 hour to hydrolyze the alcoholate, and once cooled to room temperature, water was added to adjust the slurry concentration to 0.5 mol / (in terms of BaTiO 3 ), and the Ba / Ti atomic ratio was 1.
Adjusted to 1. Thereafter, the reaction was carried out in the same manner as in Example 1. The water washing with Nutsche and the filtration were omitted, and the mixture was spray-dried as it was to obtain a pseudo cubic barium titanate fine powder having a Ba / Ti atomic ratio of 1.102 and an average particle size of 0.05 μm. I got it.

以後、実施例3と同様に、焼、酸処理を行い、Ba/T
i原子比1.000、平均粒径0.10μmの正方晶チタン酸バリ
ウム微粉体を得た。粒度分布は以下のとおりである。
Thereafter, in the same manner as in Example 3, baking and acid treatment are performed, and Ba / T
A fine powder of tetragonal barium titanate having an i atomic ratio of 1.000 and an average particle size of 0.10 μm was obtained. The particle size distribution is as follows.

(粒度分布) 0.15μm以上 8% 0.1〜0.15μm 41% 0.05〜0.1μm 51% 実施例5 大阪チタニウム(株)製の四塩化チタン水溶液(Ti=
16.5重量%、0.688モル)200gを蒸留水300ml中に撹拌し
ながら加え、希薄四塩化チタン水溶液にした。つぎに18
5g(0.756モル)の塩化バリウム(BaCl2・2H2O)を2000
mlの蒸留水中に溶解し、この水溶液を20℃に保持しなが
ら、該水溶液に上記の希薄四塩化チタン水溶液を徐々に
加えた。一方、シュウ酸[(COOH)・2H2O]189g(1.
5モル)を1000mlの蒸留水に加えて、水溶液にし、80℃
に保温した。このシュウ酸水溶液中に上記の四塩化チタ
ン−塩化バリウムの混合水溶液を3時間かけて滴下し、
白色沈殿物をえた。デカンテーションをくり返し、ヌッ
チェで水洗、濾過した後、乾燥して、BaTiO(C2O4
・4H2O複合塩粉体をえた。これを600℃で10時間焼
し、Ba/Ti原子比1.05、平均粒径0.2μmの疑似立方晶チ
タン酸バリウム微粉体をえた。
(Particle size distribution) 0.15 μm or more 8% 0.1-0.15 μm 41% 0.05-0.1 μm 51% Example 5 Titanium tetrachloride aqueous solution (Ti =
200 g (16.5% by weight, 0.688 mol) was added to 300 ml of distilled water with stirring to obtain a dilute aqueous titanium tetrachloride solution. Then 18
5 g (0.756 mol) of barium chloride (BaCl 2 .2H 2 O)
The dilute titanium tetrachloride aqueous solution was gradually added to the aqueous solution while maintaining the aqueous solution at 20 ° C. Meanwhile, oxalic acid [(COOH) 2 · 2H 2 O] 189g (1.
5 mol) in 1000 ml of distilled water to make an aqueous solution,
Was kept warm. The mixed solution of titanium tetrachloride and barium chloride was dropped into the oxalic acid aqueous solution over 3 hours,
A white precipitate was obtained. Repeat the decantation, wash with Nutsche, filter, dry and dry BaTiO (C 2 O 4 ) 2
・ 4H 2 O composite salt powder was obtained. This was baked at 600 ° C. for 10 hours to obtain a pseudo cubic barium titanate fine powder having a Ba / Ti atomic ratio of 1.05 and an average particle size of 0.2 μm.

以後、実施例2と同様に、焼、酸処理を行い、Ba/T
i原子比1.001、平均粒径0.22μmの正方晶チタン酸バリ
ウム微粉体をえた。粒度分布は以下のとおりである。
Thereafter, in the same manner as in Example 2, baking and acid treatment are performed, and Ba / T
A fine powder of tetragonal barium titanate having an i atomic ratio of 1.001 and an average particle size of 0.22 μm was obtained. The particle size distribution is as follows.

(粒度分布) 0.3μm以上 3% 0.25μm〜0.3μm 33% 0.2〜0.25μm 34% 0.15〜0.2μm 30% 実施例6 実施例1と同様にしてえた含水酸化チタンケーキ(1
1.46重量%)200gに蒸留水を加えてスラリー濃度60g/
に調整した。反応系を窒素雰囲気にした後、上記スラリ
ーにSr(OH)・8H2O(林純薬工業(株)製、試薬特
級)107.1gを添加、混合した。最終スラリー濃度を0.5
モル/(SrTiO3換算)に加水調整し、以後、実施例1
と同様に反応を行い、反応後、ヌッチェで水洗、濾過
し、噴霧乾燥してSr/Ti原子比1.07、平均粒径0.06μm
の疑似立方晶チタン酸ストロンチウム微粉体をえた。
(Particle size distribution) 0.3 μm or more 3% 0.25 μm to 0.3 μm 33% 0.2 to 0.25 μm 34% 0.15 to 0.2 μm 30% Example 6 Hydrous titanium oxide cake obtained in the same manner as in Example 1 (1
1.46% by weight) Add distilled water to 200g and slurry concentration 60g /
Was adjusted. The reaction system was blanketed with nitrogen, the slurry Sr (OH) 2 · 8H 2 O ( HayashiJunyaku Kogyo Co., reagent special grade) added 107.1 g, was mixed. Final slurry concentration of 0.5
The amount of water was adjusted to mol / (SrTiO 3 conversion).
The reaction is carried out in the same manner as above, after the reaction, washed with Nutsche, filtered, spray-dried and Sr / Ti atomic ratio 1.07, average particle size 0.06 μm
Quasi-cubic strontium titanate fine powder was obtained.

上記チタン酸ストロンチウム微粉体を1150℃で3時間
焼し、実施例1と同様にpH7.6に調整した後、酸処
理、水洗、濾過、乾燥をして、Sr/Ti原子比0.998、平均
粒径0.1μmの立方晶チタン酸ストロンチウム微粉体を
得た。
The above strontium titanate fine powder was baked at 1150 ° C. for 3 hours, adjusted to pH 7.6 in the same manner as in Example 1, then acid-treated, washed with water, filtered and dried to obtain a Sr / Ti atomic ratio of 0.998 and an average particle size of 0.998. A cubic strontium titanate fine powder having a diameter of 0.1 μm was obtained.

実施例7 実施例1と同様にしてえた含水酸化チタンケーキ(1
1.46重量%、0.286モル)200gに蒸留水を加えてスラリ
ー濃度60g/に調整した。反応系を窒素雰囲気にした
後、上記スラリーにBa(OH)・8H2O(林純薬工業
(株)製、試薬特級)79.0g(0.25モル)とSr(OH)
・8H2O(林純薬工業(株)製、試薬特級)27.4g(0.1モ
ル)を添加した。
Example 7 Hydrous titanium oxide cake obtained in the same manner as in Example 1 (1
Distilled water was added to 200 g of 1.46% by weight (0.286 mol) to adjust the slurry concentration to 60 g /. The reaction system was blanketed with nitrogen, the above slurry Ba (OH) 2 · 8H 2 O ( HayashiJunyaku Kogyo Co., reagent grade) 79.0 g (0.25 mol) and Sr (OH) 2
· 8H 2 O (HayashiJunyaku Kogyo Co., reagent grade) was added 27.4 g (0.1 mol).

以後、実施例1と同様に反応を行い、反応後、ヌッチ
ェで水洗、濾過し、噴霧乾燥して、Ba/Ti原子比0.780、
Sr/Ti原子比0.314、(Ba+Sr)/Ti原子比1.094で、平均
粒径0.05μmの疑似立方晶チタン酸バリウム・ストロン
チウム化合物微粉体をえた。
Thereafter, the reaction was carried out in the same manner as in Example 1. After the reaction, the reaction product was washed with water by Nutsche, filtered, and spray-dried to obtain a Ba / Ti atomic ratio of 0.780.
A pseudo-cubic barium strontium titanate-strontium compound fine powder having an Sr / Ti atomic ratio of 0.314 and an (Ba + Sr) / Ti atomic ratio of 1.094 and an average particle diameter of 0.05 μm was obtained.

上記チタン酸バリウム・ストロンチウム化合物微粉体
を1050℃で3時間焼し、実施例1と同様にpH8.0に調
整した後、酸処理、水洗、濾過、乾燥して、Ba/Ti原子
比0.7031、Sr/Ti原子比2.998、(Ba+Sr)/Ti原子比1.0
029で、平均粒径0.08μmの立方晶チタン酸バリウム・
ストロンチウム化合物微粉体をえた。
The barium strontium titanate compound fine powder was baked at 1050 ° C. for 3 hours, adjusted to pH 8.0 in the same manner as in Example 1, then acid-treated, washed with water, filtered, and dried to obtain a Ba / Ti atomic ratio of 0.7031, Sr / Ti atomic ratio 2.998, (Ba + Sr) / Ti atomic ratio 1.0
029, cubic barium titanate having an average particle size of 0.08 μm
A strontium compound fine powder was obtained.

実施例8 2の純水中に、ZrOCl2・8H2O(林純薬工業(株)
製、試薬特級)129g(0.4モル)を添加し、溶解した
後、該溶液に大阪チタニウム(株)製の四塩化チタン水
溶液(Ti=16.5重量%)470g(1.6モル)を添加し、溶
解した。
Pure water Example 8 2, ZrOCl 2 · 8H 2 O ( HayashiJunyaku Industry Co.,
129 g (0.4 mol) manufactured by Osaka Titanium Co., Ltd. (Ti = 16.5% by weight) was added and dissolved in the solution. .

上記水溶液に5重量%アンモニア水(林純薬工業
(株)製、試薬特級)を約1時間かけて添加し、スラリ
ーをpH7.5に調整し、含水酸化チタンジルコニウム共沈
殿物をえた後、ヌッチェで水洗、濾過を行い、含水酸化
チタンジルコニウムケーキをえた。この含水酸化チタン
ジルコニウムケーキは、ICPによりTiO2、ZrO2の定量を
行ったところ、TiO210重量%、ZrO23.9重量%であっ
た。
To the above aqueous solution, 5% by weight aqueous ammonia (manufactured by Hayashi Junyaku Kogyo Co., Ltd., reagent grade) was added over about 1 hour, the slurry was adjusted to pH 7.5, and a hydrous titanium zirconium coprecipitate was obtained. After washing with Nutsche and filtration, a hydrous titanium zirconium cake was obtained. The hydrous titanium oxide, zirconium cake was subjected to TiO 2, ZrO 2 of quantified by ICP, TiO 2 10 wt% and a ZrO 2 3.9% by weight.

つぎに、上記含水酸化チタンジルコニウムケーキ250g
(Ti:0.313モル、Zr:0.079モル)に蒸留水を加え、0.7
モル/(TiO2+ZrO2換算)スラリーに調整した後、反
応系を窒素雰囲気にし、Ba(OH)・8H2O(林純薬工業
(株)製、試薬特級)173g(Ba:0.55モル)を加え、Ba/
(Ti+Zr)原子比1.40の反応条件にした。
Next, the above-mentioned hydrous titanium oxide zirconium cake 250g
(Ti: 0.313 mol, Zr: 0.079 mol) and distilled water
Mol / (TiO 2 + ZrO 2 conversion) after adjusting the slurry, the reaction system was blanketed with nitrogen, Ba (OH) 2 · 8H 2 O ( HayashiJunyaku Kogyo Co., reagent special grade) 173 g (Ba: 0.55 mole ) And add Ba /
The reaction conditions were such that the (Ti + Zr) atomic ratio was 1.40.

上記スラリーを沸騰温度まで約1時間かけて昇温し、
沸騰温度で約3時間反応を行ったのち、室温まで自然冷
却し、デカンテーションをくり返し、ヌッチェで水洗、
濾過を行った。えられたケーキに蒸留水を加えて0.7モ
ル/[Ba(Ti0.8Zr0.2)O3換算]に再スラリー化し、
酢酸でスラリーをpH9.0に調整し、約1時間攪拌したの
ち、ヌッチェで水洗、濾過を行った。
Raise the slurry to the boiling temperature over about 1 hour,
After reacting for about 3 hours at boiling temperature, cool naturally to room temperature, repeat decantation, wash with Nutsche,
Filtration was performed. Distilled water was added to the obtained cake to reslurry to 0.7 mol / [Ba (Ti 0.8 Zr 0.2 ) O 3 conversion]
The slurry was adjusted to pH 9.0 with acetic acid, stirred for about 1 hour, washed with Nutsche, and filtered.

これをさらに蒸留水を加えて0.9モル/[Ba(Ti0.8
Zr0.2)03換算]に再スラリー化し、大川原化工機
(株)製スプレードライヤーを用い、入口温度250℃、
出口温度120℃、アトマイザー回転数25000rpmで噴霧乾
燥して、Ba/Ti原子比1.333、Ba/Zr原子比5.556、Ba/(T
i+Zr)原子比1.075で、平均粒径0.07μmの疑似立方晶
チタン・ジルコン酸バリウム化合物微粉体をえた。
This was further added with distilled water to give 0.9 mol / [Ba (Ti 0.8
Zr 0.2 ) 03 conversion], and using an Okawara Kakoki Co., Ltd. spray dryer, inlet temperature 250 ° C,
Spray drying is performed at an outlet temperature of 120 ° C and an atomizer rotation speed of 25000 rpm, and a Ba / Ti atomic ratio of 1.333, a Ba / Zr atomic ratio of 5.556, and Ba / (T
(i + Zr) A pseudo-cubic titanium / barium zirconate compound fine powder having an atomic ratio of 1.075 and an average particle size of 0.07 μm was obtained.

以後、1200℃で焼したほかは実施例と同様に処理
し、Ba/Ti原子比1.245、Ba/Zr原子比5.025、Ba/(Ti+Z
r)原子比0.9980で、平均粒径0.2μmの立方晶チタン・
ジルコン酸バリウム化合物微粉体をえた。
Thereafter, the same treatment as in Example 1 was carried out except for baking at 1200 ° C., and the Ba / Ti atomic ratio was 1.245, the Ba / Zr atomic ratio was 5.025, and the Ba / (Ti + Z
r) Cubic titanium with an atomic ratio of 0.9980 and an average particle size of 0.2 μm
A barium zirconate compound fine powder was obtained.

実施例9 0.1NのHCl酸性溶液を0℃に保温、攪拌しつつ、その
中に135.5gのSnCl4(林純薬工業(株)製、試薬特級)
を添加し、溶解し、SnCl4水溶液にした。該水溶液に、
大阪チタニウム(株)製の四塩化チタン水溶液(Ti:16.
5重量%)557.4gを溶解混合した。
Example 9 While keeping a 0.1N HCl acidic solution at 0 ° C. and stirring, 135.5 g of SnCl 4 (reagent grade, manufactured by Hayashi Junyaku Co., Ltd.) was added thereto.
Was added and dissolved to make a SnCl 4 aqueous solution. In the aqueous solution,
Titanium tetrachloride aqueous solution (Ti: 16.
557.4 g) were dissolved and mixed.

上記混合水溶液に5重量%アンモニア水を加えてpH7.
51に中和調整し、30分間熟成して、スズ・チタン含水酸
化物の沈殿物をえた後、ヌッチェで水洗、濾過を行い、
スズ・チタン含水酸化物ケーキをえた。
5 wt% ammonia water was added to the above mixed aqueous solution to adjust the pH to 7.
After neutralizing and adjusting to 51, aging for 30 minutes, obtaining a precipitate of tin / titanium hydrated oxide, washing with Nutsche, filtering,
A tin / titanium hydrate cake was obtained.

上記スズ・チタン含水酸化物ケーキ500gに蒸留水を加
え、全量を1にし、スラリー化した後、ICPによりTi
とSnの濃度を測定したところ、Ti:0.425モル/、Sn:
0.106モル/であった。
Distilled water was added to 500 g of the above-mentioned tin / titanium hydrated oxide cake to make the total amount thereof 1 and slurried.
When the concentration of Sn was measured, Ti: 0.425 mol /, Sn:
0.106 mol /.

反応系を窒素雰囲気にした後、上記スラリーにBa(O
H)・8H2O(林純薬工業(株)製、試薬特級)201gを
加え、Ba/(Ti+Sn)原子比1.2に調整した後、以後、実
施例1と同様に反応を行い、水洗、濾過、噴霧乾燥をし
て、Ba/Ti原子比1.299、Ba/Sn原子比5.263、Ba/(Ti+S
n)原子比1.0417で、平均粒径0.09μmの疑似立方晶チ
タン・スズ酸バリウム化合物微粉体をえた。
After the reaction system was set to a nitrogen atmosphere, Ba (O
H) 2 · 8H 2 O (HayashiJunyaku Kogyo Co., reagent special grade) 201g was added, was adjusted to Ba / (Ti + Sn) atomic ratio of 1.2, thereafter, the reaction was carried out in the same manner as in Example 1, washed with water , Filtration and spray drying to obtain a Ba / Ti atomic ratio of 1.299, a Ba / Sn atomic ratio of 5.263, and Ba / (Ti + S
n) Pseudo cubic titanium / barium stannate compound fine powder having an atomic ratio of 1.0417 and an average particle size of 0.09 μm was obtained.

上記チタン・スズ酸バリウム化合物微粉体を1100℃
で、3時間焼し、実施例1と同様にpH8.2に調整し
て、酸処理を行い、水洗、濾過、乾燥をして、Ba/Ti原
子比1.253、Ba/Sn原子比5.025、Ba/(Ti+Sn)原子比1.
003で、平均粒径0.11μmの立方晶チタン・スズ酸バリ
ウム化合物微粉体をえた。
The above titanium / barium stannate compound fine powder is 1100 ° C
And baked for 3 hours, adjusted to pH 8.2 in the same manner as in Example 1, subjected to an acid treatment, washed with water, filtered, and dried to obtain a Ba / Ti atomic ratio of 1.253, a Ba / Sn atomic ratio of 5.025, and a Ba / Sn atomic ratio of 5.025. / (Ti + Sn) atomic ratio 1.
In 003, a cubic titanium / barium stannate compound fine powder having an average particle size of 0.11 μm was obtained.

実施例10 実施例1と同様にしてえた含水酸化チタンケーキ240.
2g(Ti:0.345モル)に蒸留水を加え、TiO2が50g/のス
ラリーに調整した後、反応系を窒素雰囲気にし、Ba/Ti
原子比0.95、Ca/Ti原子比0.15、(Ba+Ca)/Ti原子比1.
05になるようにBa(OH)・8H2OおよびCaCl2を加え
た。
Example 10 Hydrous titanium oxide cake 240 obtained in the same manner as in Example 1.
2 g (Ti: 0.345 mole) of distilled water was added, after TiO 2 was adjusted to 50 g / slurry, the reaction system was blanketed with nitrogen, Ba / Ti
Atomic ratio 0.95, Ca / Ti atomic ratio 0.15, (Ba + Ca) / Ti atomic ratio 1.
So that 05 was added Ba (OH) 2 · 8H 2 O and CaCl 2.

上記スラリーに、NaOHを加え、スラリーのpHを14にし
た後、実施例1と同様に反応を行なった。
After NaOH was added to the slurry to adjust the pH of the slurry to 14, a reaction was carried out in the same manner as in Example 1.

上記反応生成物スラリーを60℃に保ったのち、炭酸ガ
スを吹き込んでpH6以下に調整し、水洗、デカンテーシ
ョン、濾過を行なった。えられたケーキを実施例1と同
条件で噴霧乾燥してチタン酸バリウム・カルシウム化合
物微粉体をえた。えられたチタン酸バリウム・カルシウ
ム化合物微粉体は、Ba/Ti原子比0.941、Ca/Ti原子比0.1
02、(Ba+Ca)/Ti原子比1.043の原子比構成で、平均粒
径0.07μmの疑似立方晶であった。
After maintaining the above reaction product slurry at 60 ° C., carbon dioxide gas was blown into the slurry to adjust the pH to 6 or less, followed by washing with water, decantation, and filtration. The obtained cake was spray-dried under the same conditions as in Example 1 to obtain a barium / calcium titanate compound fine powder. The obtained barium calcium titanate compound fine powder has a Ba / Ti atomic ratio of 0.941 and a Ca / Ti atomic ratio of 0.1.
02. A pseudo-cubic crystal having an atomic ratio of (Ba + Ca) / Ti atomic ratio of 1.043 and an average particle size of 0.07 μm.

上記チタン酸バリウム・カルシウム化合物微粉体を実
施例1と同様に、焼、酸処理を行ない、Ba/Ti原子比
0.902、Ca/Ti原子比0.101、(Ba+Ca)/Ti原子比1.003
で、平均粒径0.1μmのチタン酸バリウム・カルシウム
化合物微粉体をえた。
The barium / calcium titanate compound fine powder was baked and acid-treated in the same manner as in Example 1 to obtain a Ba / Ti atomic ratio.
0.902, atomic ratio of Ca / Ti 0.101, atomic ratio of (Ba + Ca) / Ti 1.003
Thus, a barium / calcium titanate compound fine powder having an average particle size of 0.1 μm was obtained.

実施例11 実施例1と同様にしてえた含水酸化チタンケーキ240.
2g(Ti:0.345モル)に蒸留水を加え、TiO2が50g/のス
ラリーに調整した後、反応系を窒素雰囲気にし、Ba/Ti
原子比0.95、Mg/Ti原子比0.10、(Ba+Mg)/Ti原子比1.
05になるようにBa(OH)・8H2OおよびMgCl2・6H2Oを
加えた。
Example 11 Hydrous titanium oxide cake 240 obtained in the same manner as in Example 1.
2 g (Ti: 0.345 mole) of distilled water was added, after TiO 2 was adjusted to 50 g / slurry, the reaction system was blanketed with nitrogen, Ba / Ti
Atomic ratio 0.95, Mg / Ti atomic ratio 0.10, (Ba + Mg) / Ti atomic ratio 1.
Ba (OH) 2 .8H 2 O and MgCl 2 .6H 2 O were added to make 05.

以後、実施例10と同様に反応を行ない、Ba/Ti原子比
0.93、Mg/Ti原子比0.105、(Ba+Mg)/Ti原子比1.035
で、平均粒径0.06μmの疑似立方晶チタン酸バリウム・
マグネシウム化合物微粉体をえた。
Thereafter, the reaction was carried out in the same manner as in Example 10, and the Ba / Ti atomic ratio
0.93, Mg / Ti atomic ratio 0.105, (Ba + Mg) / Ti atomic ratio 1.035
And a pseudo-cubic barium titanate with an average particle size of 0.06 μm
A magnesium compound fine powder was obtained.

上記チタン酸バリウム・マグネシウム化合物微粉体を
実施例1と同様に、焼、酸処理を行ない、Ba/Ti原子
比0.900、Mg/Ti原子比0.101(Ba+Mg)/Ti原子比1.001
で、平均粒径0.12μmの立方晶チタン酸バリウム・マグ
ネシウム化合物微粉体をえた。
The barium / magnesium titanate compound fine powder was baked and acid-treated in the same manner as in Example 1 to obtain a Ba / Ti atomic ratio of 0.900 and a Mg / Ti atomic ratio of 0.101 (Ba + Mg) / Ti atomic ratio of 1.001.
Thus, a cubic barium magnesium titanate compound fine powder having an average particle size of 0.12 μm was obtained.

実施例12 大阪チタニウム(株)製の四塩化チタン水溶液(Ti:1
6.5重量%)284g(Ti:0.98モル)を蒸留水1.2に撹拌
しながら加え、希薄四塩化チタン水溶液にした後、0℃
に保温して、日本精鉱(株)製のSbCl3を9.2g(Sb:0.04
モル)加え、溶解混合した。
Example 12 An aqueous titanium tetrachloride solution (Ti: 1) manufactured by Osaka Titanium Co., Ltd.
284 g (Ti: 0.98 mol) was added to distilled water 1.2 with stirring to obtain a dilute titanium tetrachloride aqueous solution.
9.2 g of SbCl 3 (Sb: 0.04
Mol), and dissolved and mixed.

上記混合水溶液5重量%アンモニア水を1時間かけて
添加し、pH7に調整して白色共沈殿物を得た。上記白色
共沈殿物をヌッチェで水洗、濾過した後、得られたケー
キに蒸留水を加えて、全量を1.6にスラリー化した。
上記スラリーは、ICPによりTiとSbの濃度を測定したと
ころ、Ti濃度は0.576モル/であり、Sb濃度は0.024モ
ル/であった。
5% by weight of the above mixed aqueous solution was added over 1 hour to adjust the pH to 7, thereby obtaining a white coprecipitate. After the white coprecipitate was washed with Nutsche and filtered, distilled water was added to the obtained cake to make a total slurry of 1.6.
When the concentrations of Ti and Sb in the slurry were measured by ICP, the Ti concentration was 0.576 mol / and the Sb concentration was 0.024 mol /.

反応系を窒素雰囲気にした後、上記スラリーにBa(O
H)・8H2Oを加え、Ba/(Ti+Sb)原子比を1.3に調整
した。以後、実施例1と同様に反応を行い、水洗、濾
過、乾燥をして、Ba/Ti原子比1.053、Ba/Sb原子比28.5
7、Ba/(Ti+Sb)原子比1.015で、平均粒径0.07μmの
疑似立方晶チタン・アンチモン酸バリウム化合物微粉体
を得た。
After the reaction system was set to a nitrogen atmosphere, Ba (O
H) 2 · 8H 2 O was added and adjusted Ba / (Ti + Sb) atomic ratio of 1.3. Thereafter, the reaction was carried out in the same manner as in Example 1, washed with water, filtered and dried to obtain a Ba / Ti atomic ratio of 1.053 and a Ba / Sb atomic ratio of 28.5.
7. A pseudo-cubic titanium / barium antimonate compound fine powder having an atomic ratio of Ba / (Ti + Sb) of 1.015 and an average particle size of 0.07 μm was obtained.

得られたチタン・アンチモン酸バリウム化合物微粉体
を実施例9と同様に焼、酸処理を行うことにより、Ba
/Ti原子比1.020、Ba/Sb原子比24.94、Ba/(Ti+Sb)原
子比0.980で、平均粒径0.13μmの立方晶チタン・アン
チモン酸バリウム化合物微粉体を得た。
The obtained titanium-barium antimonate compound fine powder was baked and subjected to an acid treatment in the same manner as in Example 9 to obtain Ba
A cubic titanium-barium antimonate compound fine powder having an atomic ratio of Ti / Ti of 1.020, an atomic ratio of Ba / Sb of 24.94, an atomic ratio of Ba / (Ti + Sb) of 0.980, and an average particle size of 0.13 µm was obtained.

実施例13 大阪チタニウム(株)製の四塩化チタン水溶液(Ti:1
6.5重量%)275.70g(Ti:0.95モル)と五塩化ニオブ
(三津和化学薬品(株)製)6.75g(Nb:0.025モル)とF
eCl3・6H2O(林純薬工業(株)製、試薬特級)6.76g(F
e:0.025モル)とを0℃に保温した1.5の0.1N塩酸溶液
に溶解混合した。該混合水溶液に5重量%アンモニア水
を約1時間かけて添加し、pH7に調整して共沈殿物を得
た。上記共沈殿物をヌッチェで水洗、濾過して得たケー
キに蒸留水を加えて全量を1.8にし、スラリー化し
た。ICPにより上記スラリーのTi、Nb、Feの濃度を測定
したところ、Tiの濃度は0.527モル/、Nbの濃度は0.0
138モル/で、Feの濃度は0.0137モル/であった。
Example 13 An aqueous solution of titanium tetrachloride (Ti: 1) manufactured by Osaka Titanium Co., Ltd.
6.5% by weight) 275.70 g (Ti: 0.95 mol) and 6.75 g (Nb: 0.025 mol) of niobium pentachloride (manufactured by Mitsui Chemicals, Inc.) and F
eCl 3 · 6H 2 O (HayashiJunyaku Kogyo Co., reagent special grade) 6.76 g (F
e: 0.025 mol) was dissolved and mixed in a 0.1N hydrochloric acid solution of 1.5 kept at 0 ° C. To the mixed aqueous solution was added 5% by weight aqueous ammonia over about 1 hour to adjust the pH to 7, thereby obtaining a coprecipitate. The above coprecipitate was washed with Nutsche and filtered, and distilled water was added to the cake to make the total amount 1.8, thereby forming a slurry. When the concentrations of Ti, Nb, and Fe in the slurry were measured by ICP, the concentration of Ti was 0.527 mol /, and the concentration of Nb was 0.0
The concentration of Fe was 0.0137 mol / at 138 mol /.

反応系を窒素雰囲気にした後、上記スラリーにBa(O
H)・8H2Oを加え、Ba/(Ti+Nb+Fe)原子比を1.0235
に調整し、以後、実施例1と同様に反応を行い、Ba/Ti
原子比1.074、Ba/Nb原子比43.48、Ba/Fe原子比43.48、B
a/(Ti+Nb+Fe)原子比1.0235で、平均粒径0.09μmの
疑似立方晶チタン・ニオブ鉄酸バリウム化合物微粉体を
得た。
After the reaction system was set to a nitrogen atmosphere, Ba (O
H) 2 · 8H 2 O was added, 1.0235 and Ba / (Ti + Nb + Fe ) atomic ratio
After that, the reaction was carried out in the same manner as in Example 1 to obtain Ba / Ti
Atomic ratio 1.074, Ba / Nb atomic ratio 43.48, Ba / Fe atomic ratio 43.48, B
A pseudo-cubic titanium / barium niobium ferrate fine powder having an a / (Ti + Nb + Fe) atomic ratio of 1.0235 and an average particle size of 0.09 μm was obtained.

上記チタン・ニオブ鉄酸バリウム化合物微粉体を実施
例2と同様に、焼、酸処理を行うことにより、Ba/Ti
原子比1.052、Ba/Nb原子比40、Ba/鉄原子比40、Ba/(Ti
+Nb+Fe)原子比0.994で、平均粒径0.12μmの立方晶
チタン・ニオブ鉄酸バリウム化合物微粉体を得た。
The titanium / niobium barium ferrate compound fine powder was baked and acid-treated in the same manner as in Example 2 to obtain a Ba / Ti
Atomic ratio 1.052, Ba / Nb atomic ratio 40, Ba / iron atomic ratio 40, Ba / (Ti
(+ Nb + Fe) atomic ratio of 0.994 and cubic titanium / niobium barium ferrate compound fine powder having an average particle size of 0.12 μm were obtained.

比較例1 実施例1と同様に反応を行った後、水洗、濾過し、得
られたチタン酸バリウムケーキを0.6モル/に再スラ
リー化し、酢酸でpH8に調整した。ヌッチェで水洗、濾
過し、乾燥をしてBa/Ti原子比1.001、平均粒径0.08μm
の疑似立方晶チタン酸バリウム微粉体を得た。
Comparative Example 1 After the reaction was carried out in the same manner as in Example 1, the obtained barium titanate cake was re-slurried to 0.6 mol /, and the pH was adjusted to 8 with acetic acid. Wash with Nutsche, filter, dry and dry to Ba / Ti atomic ratio 1.001, average particle size 0.08μm
Of cubic barium titanate fine powder was obtained.

上記チタン酸バリウム微粉体を焼温度を変えて3時
間焼した。得られたチタン酸バリウムの平均粒径と結
晶系との関係は次のとおりである。
The barium titanate fine powder was baked for 3 hours while changing the baking temperature. The relationship between the average particle size of the obtained barium titanate and the crystal system is as follows.

焼温度 平均粒径 結晶形 800℃ 0.09μm 疑似立方晶 900℃ 0.14μm 疑似立方晶 1000℃ 0.5 μm 正方晶 1100℃ 0.7 μm 正方晶 1200℃ 0.9 μm 正方晶 上記の焼温度と平均粒径、結晶形の関係から、実施
例1〜実施例5で得たチタン酸バリウムと同じ粒径の微
粉体を得る場合、Ba/Ti原子比を1に制御した従来の湿
式法によるチタン酸バリウムは、900℃以下で焼しな
ければならないことがわかる。したがって、結晶形も疑
似立方晶のものしか得られない。
Baking temperature Average particle size Crystal form 800 ° C 0.09μm Pseudo cubic 900 ° C 0.14μm Pseudo cubic 1000 ° C 0.5μm tetragonal 1100 ° C 0.7μm tetragonal 1200 ° C 0.9μm tetragon In the case of obtaining fine powder having the same particle size as the barium titanate obtained in Examples 1 to 5, barium titanate by a conventional wet method in which the Ba / Ti atomic ratio is controlled to 1 is 900 ° C. It turns out that you have to bake below. Therefore, only a pseudo-cubic crystal form can be obtained.

実施例14 実施例1で得た正方晶チタン酸バリウム微粉体を850
℃で3時間焼し、五十嵐機械(株)製の「ウルトラビ
スコミルVVM−2L」で湿式粉砕、分散をおこなった。そ
の後、樹脂性ボール・ポットを用いて12時間ボールミル
粉砕をした。
Example 14 The tetragonal barium titanate fine powder obtained in Example 1 was mixed with 850
C. for 3 hours, and wet pulverized and dispersed by "Ultra Viscomil VVM-2L" manufactured by Igarashi Kikai Co., Ltd. Thereafter, ball milling was performed for 12 hours using a resinous ball pot.

ポリエチレングリコール、ブチルベンジルフタレー
ト、非イオンオクチルフェノキシエタノール、アクリル
樹脂系エマルジョン、ワックス系エマルジョンをそれぞ
れチタン酸バリウムに対して固形分換算で3重量%、2
重量%、0.2重量%、8重量%、0.1重量%添加し、さら
に24時間ボールミル混合をした。
Polyethylene glycol, butylbenzyl phthalate, nonionic octylphenoxyethanol, acrylic resin emulsion, and wax emulsion were each 3% by weight in terms of solid content based on barium titanate,
% By weight, 0.2% by weight, 8% by weight, and 0.1% by weight, and further ball-mixed for 24 hours.

得られたスラリーを攪拌しながら、真空脱泡し、粘度
を10000cpsに調整した後、ドクターブレードで、薄膜成
形してグリーンシートを得た。
The resulting slurry was degassed under vacuum while stirring to adjust the viscosity to 10,000 cps, and then formed into a thin film with a doctor blade to obtain a green sheet.

上記グリーンシートを700kg/cm2圧で、5枚重ねた
後、200℃から500℃まで20℃/hrでゆっくり昇温し、脱
脂した後、1150℃で2時間焼成して、チタン酸バリウム
薄膜焼結体を得た。
After stacking 5 of the above green sheets at 700 kg / cm 2 pressure, slowly raise the temperature from 200 ° C to 500 ° C at 20 ° C / hr, degrease, and fire at 1150 ° C for 2 hours to obtain a barium titanate thin film A sintered body was obtained.

比較品として、比較例1で得たチタン酸バリウム(た
だし、900℃として焼したもの)を前記と同様に成
形、焼成した。
As a comparative product, barium titanate obtained in Comparative Example 1 (fired at 900 ° C.) was molded and fired in the same manner as described above.

上記薄膜焼結体を作製するにあたって原料として使用
した実施例1および比較例1のチタン酸バリウムを、ボ
ールミルで12時間粉砕した後、その水可溶性成分をICP
で分析した結果を表1に示す。
The barium titanate of Example 1 and Comparative Example 1 used as a raw material for producing the thin film sintered body was pulverized by a ball mill for 12 hours, and the water-soluble component was subjected to ICP.
Table 1 shows the results of the analysis.

また、薄膜成形して得られたグリーンシートの厚みの
バラツキを表2に示す。
Table 2 shows the variation in the thickness of the green sheet obtained by forming the thin film.

得られた焼結体の焼成線収縮率のバラツキ(試料各10
点)を表3に示す。
Variation in the firing line shrinkage of the obtained sintered body (10 for each sample)
Table 3) is shown in Table 3.

得られた焼結体各10点ずつについて電気的特性(20℃
での誘電率および誘電損失)を横河ヒューレットパッカ
ード社製LCRメーター4272Aで測定した結果を表4に示
す。
The electrical characteristics (20 ° C
Table 4 shows the results obtained by measuring the dielectric constant and the dielectric loss using a LCR meter 4272A manufactured by Yokogawa Hewlett-Packard Company.

表1に示すように、実施例1のチタン酸バリウムは、
従来の湿式法に相当する比較例1のチタン酸バリウムに
比べて、水可溶性成分が少なく、反応が充分に進行して
いることろ示していた。
As shown in Table 1, barium titanate of Example 1
Compared with the barium titanate of Comparative Example 1 corresponding to the conventional wet method, the amount of water-soluble components was smaller, indicating that the reaction was proceeding sufficiently.

また、表2〜3に示すように、実施例1のチタン酸バ
リウムを用いた場合には、比較例1のチタン酸バリウム
を用いた場合に比べて、グリーンシートの厚さのバラツ
キおよび焼成線収縮率のバラツキが少ない。これは、実
施例1のチタン酸バリウムが比較例1のチタン酸バリウ
ムに比べて、反応が充分に進行していて組成が均質であ
り、かつ分散が良好であることを示している。
Further, as shown in Tables 2 and 3, when the barium titanate of Example 1 was used, the variation in the thickness of the green sheet and the firing line were larger than when barium titanate of Comparative Example 1 was used. Small variation in shrinkage. This indicates that the barium titanate of Example 1 had a sufficiently advanced reaction, had a uniform composition, and had better dispersion than the barium titanate of Comparative Example 1.

さらに、表4に示すように、実施例1のチタン酸バリ
ウムを用いた焼結体は、比較例1のチタン酸バリウムを
用いた焼結体に比べて、電気的特性が良好で、かつその
バラツキも少ない。つまり、誘電率が大きく、誘電損失
が小さく、かつ、そのバラツキが少ない。これは、実施
例1のチタン酸バリウムが比較例1のチタン酸バリウム
に比べて、反応が充分に進行した組成が均質なもので、
かつ、その結晶性が良好であって、高密度に焼結できる
ことを示している。
Further, as shown in Table 4, the sintered body using barium titanate of Example 1 had better electrical characteristics and a higher electrical property than the sintered body using barium titanate of Comparative Example 1. There is little variation. That is, the dielectric constant is large, the dielectric loss is small, and the variation is small. This is because the barium titanate of Example 1 has a more homogeneous composition than the barium titanate of Comparative Example 1, and the reaction has proceeded sufficiently.
In addition, the crystallinity is good, indicating that high-density sintering is possible.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−297214(JP,A) 米国特許4636378(US,A) 欧州公開141551(EP,A1) 仏国公開2601352(FR,A) (58)調査した分野(Int.Cl.7,DB名) C01G 19/00,23/00,25/00 C01B 13/36 C01G 30/02 C01G 49/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-297214 (JP, A) US Patent 4,636,378 (US, A) European publication 141551 (EP, A1) French publication 2601352 (FR, A) (58) ) Fields investigated (Int.Cl. 7 , DB name) C01G 19 / 00,23 / 00,25 / 00 C01B 13/36 C01G 30/02 C01G 49/00

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mg、Ca、Sr、Baなどのアルカリ土類金属元
素および(または)Pbなどの2価金属元素よりなるA群
元素の化合物から選ばれる少なくとも1種の化合物と、
Ti、Zr、Hf、Snなどの4価金属元素および(または)Z
n、-Ni、Co、Mg、Fe、Sbなどの2価もしくは3価金属元
素とNb、Sbなどの5価金属元素との複合金属元素よりな
るB群元素の化合物から選ばれる少なくとも1種の化合
物とのA/B原子比がA群元素過剰の混合物水溶液を湿式
反応させ、得られたA/B原子比がA群元素過剰の反応生
成物粉体を粒子の成長が起こる前の温度で焼し、得ら
れた焼物を酸溶液で洗浄し、水洗、濾過して過剰のA
群元素を取り除くことを特徴とする平均粒径0.3μm以
下のペロブスカイト型化合物微粉体の製造方法。
At least one compound selected from the group A compounds consisting of alkaline earth metal elements such as Mg, Ca, Sr and Ba and / or divalent metal elements such as Pb,
Tetravalent metal elements such as Ti, Zr, Hf, Sn and / or Z
n, - Ni, Co, Mg , Fe, at least one selected from compounds of divalent or trivalent metallic element and Nb, a composite metal elements consisting of group B element and pentavalent metal element such as Sb, such as Sb An aqueous solution of the mixture in which the A / B atomic ratio with the compound is excessive in the group A element is subjected to a wet reaction, and the obtained reaction product powder in which the A / B atomic ratio is excessive in the group A element is obtained at a temperature before the particle growth occurs. Baking, and the obtained baking product is washed with an acid solution, washed with water, and filtered to remove excess A
A method for producing fine perovskite compound powder having an average particle diameter of 0.3 μm or less, characterized by removing group elements.
【請求項2】A群元素の化合物が水酸化物および(また
は)酸化物であり、B群元素の化合物が水酸化物および
(または)酸化物である請求項1記載のペロブスカイト
型化合物微粉体の製造方法。
2. The perovskite compound fine powder according to claim 1, wherein the compound of the group A element is a hydroxide and / or an oxide, and the compound of the group B element is a hydroxide and / or an oxide. Manufacturing method.
【請求項3】A群元素の化合物が水酸化物および(また
は)酸化物であり、B群元素の化合物が有機金属化合物
である請求項1記載のペロブスカイト型化合物微粉体の
製造方法。
3. The method according to claim 1, wherein the compound of the group A element is a hydroxide and / or an oxide, and the compound of the group B element is an organometallic compound.
【請求項4】A群元素化合物が有機金属化合物であり、
B群元素の化合物が水酸化物および(または)酸化物で
ある請求項1記載のペロブスカイト型化合物微粉体の製
造方法。
4. The group A element compound is an organometallic compound,
The method for producing a fine perovskite compound powder according to claim 1, wherein the compound of Group B element is a hydroxide and / or an oxide.
【請求項5】A群元素の化合物が有機金属化合物であ
り、B群元素の化合物が有機金属化合物である請求項1
記載のペロブスカイト型化合物微粉体の製造方法。
5. The compound of Group A element is an organometallic compound, and the compound of Group B element is an organometallic compound.
The method for producing the perovskite compound fine powder described above.
【請求項6】A群元素の化合物が水酸化バリウムで、B
群元素の化合物が含水酸化チタンであり、ペロブスカイ
ト型化合物が正方晶チタン酸バリウムである請求項1記
載のペロブスカイト型化合物微粉体の製造方法。
6. The compound of Group A element is barium hydroxide and B is
The method for producing fine perovskite compound powder according to claim 1, wherein the compound of the group element is hydrous titanium oxide, and the perovskite compound is tetragonal barium titanate.
【請求項7】A群元素の化合物が水酸化バリウムで、B
群元素の化合物が含水酸化チタンであり、ペロブスカイ
ト型化合物が平均粒径0.05〜0.3μmの正方晶チタン酸
バリウムである請求項1記載のペロブスカイト型化合物
微粉体の製造方法。
7. The compound of Group A element is barium hydroxide and B is
The method for producing fine perovskite compound powder according to claim 1, wherein the compound of the group element is hydrous titanium oxide, and the perovskite compound is tetragonal barium titanate having an average particle size of 0.05 to 0.3 µm.
【請求項8】A群元素の化合物が水酸化ストロンチウム
で、B群元素の化合物が含水酸化チタンであり、ペロブ
スカイト型化合物がチタン酸ストロンチウムである請求
項1記載のペロブスカイト型化合物微粉体の製造方法。
8. The method for producing fine perovskite compound powder according to claim 1, wherein the compound of the group A element is strontium hydroxide, the compound of the group B element is hydrous titanium oxide, and the perovskite compound is strontium titanate. .
【請求項9】平均粒径が0.3μm以下のチタン酸バリウ
ム正方晶系結晶。
9. A tetragonal barium titanate crystal having an average particle size of 0.3 μm or less.
【請求項10】平均粒径が0.05〜0.25μmの範囲内にあ
る請求項9記載のチタン酸バリウム正方晶系結晶。
10. The tetragonal barium titanate crystal according to claim 9, wherein the average particle size is in the range of 0.05 to 0.25 μm.
【請求項11】平均粒径が0.1〜0.25μmの範囲内にあ
り、かつ0.3μm以上の粒径を有する粒子の割合が0〜
5%である請求項9記載のチタン酸バリウム正方晶系結
晶。
11. The ratio of particles having an average particle size in the range of 0.1 to 0.25 μm and having a particle size of 0.3 μm or more is 0 to 10.
The tetragonal barium titanate crystal according to claim 9, which is 5%.
JP2511240A 1989-08-21 1990-08-13 Method for producing fine powder of perovskite compound Expired - Fee Related JP2999821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2511240A JP2999821B2 (en) 1989-08-21 1990-08-13 Method for producing fine powder of perovskite compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP21519889 1989-08-21
JP1-215198 1989-08-21
PCT/JP1990/001032 WO1991002697A1 (en) 1989-08-21 1990-08-13 Method of producing pulverized perovskite compound
JP2511240A JP2999821B2 (en) 1989-08-21 1990-08-13 Method for producing fine powder of perovskite compound

Publications (1)

Publication Number Publication Date
JP2999821B2 true JP2999821B2 (en) 2000-01-17

Family

ID=26520730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2511240A Expired - Fee Related JP2999821B2 (en) 1989-08-21 1990-08-13 Method for producing fine powder of perovskite compound

Country Status (1)

Country Link
JP (1) JP2999821B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079720A (en) * 2009-10-09 2011-04-21 Murata Mfg Co Ltd Method for manufacturing dielectric ceramic composition
JP2011184247A (en) * 2010-03-09 2011-09-22 Murata Mfg Co Ltd Barium titanate-based ceramic powder and method for producing the same
CN112830512A (en) * 2014-06-13 2021-05-25 户田工业株式会社 Barium titanate fine particle powder, dispersion, and method for producing coating film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011079720A (en) * 2009-10-09 2011-04-21 Murata Mfg Co Ltd Method for manufacturing dielectric ceramic composition
JP2011184247A (en) * 2010-03-09 2011-09-22 Murata Mfg Co Ltd Barium titanate-based ceramic powder and method for producing the same
CN112830512A (en) * 2014-06-13 2021-05-25 户田工业株式会社 Barium titanate fine particle powder, dispersion, and method for producing coating film

Similar Documents

Publication Publication Date Title
US5445806A (en) Process for preparing fine powder of perovskite-type compound
EP0641740B1 (en) Process for the synthesis of crystalline ceramic powders of perovskite compounds
KR950011831B1 (en) Barium titanate based dielectric compositions
JP3798652B2 (en) Production method of barium titanate powder by oxalate process
JPH0459261B2 (en)
JP5353728B2 (en) Method for producing the composition
EP0439620B1 (en) Method of producing pulverized perovskite compound
JP4556398B2 (en) Method for producing the composition
KR101158953B1 (en) Method for producing composition
WO2004092070A1 (en) Perovskite titanium-containing composite oxide particle, production process and uses thereof
JP3319807B2 (en) Perovskite-type compound fine particle powder and method for producing the same
JP2999821B2 (en) Method for producing fine powder of perovskite compound
JP3772354B2 (en) Manufacturing method of ceramic powder
JP3216160B2 (en) Method for producing perovskite-type composite oxide powder
JPH0612917A (en) Dielectric porcelain and its manufacture
JP6573653B2 (en) Method for producing perovskite-type barium titanate powder
JPH0769645A (en) Production of lead-containing multiple oxide
JPWO2003004415A1 (en) Barium titanate powder and method for producing the same
JPH0676258B2 (en) Method for manufacturing ceramic dielectric
JPS6328844B2 (en)
JPH0818866B2 (en) Ceramic dielectric composition
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
KR20060102928A (en) Manufacturing method of barium titanate powder
JPH07142207A (en) Barium titanate semiconductor ceramic and its manufacture
KR100558460B1 (en) A Method for Producing the Barium Titanate Based Powder by Oxalate Process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees