WO2015121917A1 - Spmモータ用リング磁石、spmモータ用リング磁石の製造方法、spmモータ及びspmモータの製造方法 - Google Patents

Spmモータ用リング磁石、spmモータ用リング磁石の製造方法、spmモータ及びspmモータの製造方法 Download PDF

Info

Publication number
WO2015121917A1
WO2015121917A1 PCT/JP2014/053116 JP2014053116W WO2015121917A1 WO 2015121917 A1 WO2015121917 A1 WO 2015121917A1 JP 2014053116 W JP2014053116 W JP 2014053116W WO 2015121917 A1 WO2015121917 A1 WO 2015121917A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
spm motor
ring magnet
ring
magnetic field
Prior art date
Application number
PCT/JP2014/053116
Other languages
English (en)
French (fr)
Inventor
山本 貴士
克也 久米
利昭 奥野
出光 尾関
智弘 大牟礼
孝志 尾崎
啓介 太白
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to PCT/JP2014/053116 priority Critical patent/WO2015121917A1/ja
Priority to US15/118,144 priority patent/US20170170695A1/en
Priority to JP2014530027A priority patent/JPWO2015121917A1/ja
Publication of WO2015121917A1 publication Critical patent/WO2015121917A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/006Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of flat products, e.g. sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to an SPM motor ring magnet, an SPM motor ring magnet manufacturing method, an SPM motor using an SPM motor ring magnet, and an SPM motor manufacturing method.
  • the SPM (surface magnet type) motor which is one of the permanent magnet motors, is a motor in which a magnet is attached to the rotor surface, and can achieve high output and high efficiency with a relatively easy configuration. is there.
  • a powder sintering method As a method for producing a permanent magnet used for a permanent magnet motor, a powder sintering method has been generally used.
  • the powder sintering method first, magnet powder obtained by pulverizing raw materials by a jet mill (dry pulverization) or the like is manufactured. Thereafter, the magnet powder is put into a mold and press-molded into a desired shape. Then, it is manufactured by sintering the solid magnet powder formed into a desired shape at a predetermined temperature (for example, 1100 ° C. for Nd—Fe—B magnets) (for example, Japanese Patent Laid-Open No. 2-266503).
  • a predetermined temperature for example, 1100 ° C. for Nd—Fe—B magnets
  • the conventional SPM motor is configured by attaching a plurality of fan-shaped magnets 102 to the surface of the rotor 101 as shown in FIG.
  • the rotor 101 and the magnet 102 are fixed using an adhesive, but it is difficult to appropriately fix the magnet 102 to the rotor 101 using only the adhesive.
  • the protruding adhesive will adversely affect the motor.
  • the pressure-sensitive adhesive is small, the magnet 102 may be detached from the rotor 101 that rotates at high speed, or the magnet 102 may be misaligned.
  • the present invention has been made to solve the above-described conventional problems, and achieves higher output, higher efficiency, and lower torque ripple of the SPM motor by appropriately fixing it to the rotor of the SPM motor. It is an object of the present invention to provide an SPM motor ring magnet, a SPM motor ring magnet manufacturing method, an SPM motor ring magnet using the SPM motor ring magnet, and an SPM motor manufacturing method.
  • a ring magnet for an SPM motor includes a step of pulverizing magnet raw materials into magnet powder, a step of generating a mixture in which the pulverized magnet powder and a binder are mixed, and the mixture.
  • an engaged portion that engages with an engaging portion formed on the rotor surface is formed on a surface of the molded body that contacts the rotor surface.
  • the rotor of the SPM motor has a polygonal cross section with respect to the rotation shaft, and the ring-shaped hollow portion corresponds to the polygonal shape corresponding to the shape of the rotor. It is characterized by doing.
  • the ring magnet for an SPM motor is a radial anisotropic ring magnet or a polar anisotropic ring magnet.
  • the binder is made of a thermoplastic resin, and the residue of the green sheet generated by the step of forming the molded body is heated to convert the residue into the mixture. It is characterized by reuse.
  • the ring magnet for an SPM motor according to the present invention is characterized by being sintered by hot press sintering in the sintering step.
  • the ring magnet for an SPM motor according to the present invention is oriented in the in-plane direction of the green sheet in the magnetic field orientation step, and in the step of forming the molded body, the green sheet oriented in the thickness direction is oriented in the thickness direction.
  • a plurality of layers are stacked and fixed in a state of being curved so that the cross section thereof has an arc shape.
  • the SPM motor according to the present invention is characterized in that the ring magnet for an SPM motor described above is arranged on the rotor surface.
  • the method for manufacturing a ring magnet for an SPM motor includes a step of pulverizing a magnet raw material into magnet powder, a step of generating a mixture in which the pulverized magnet powder and a binder are mixed, and the mixture.
  • a plurality of sintered bodies sintered by the sintering process or a plurality of the molded bodies before being sintered by the sintering process are connected in a ring shape to form a ring shape. Magnet manufactured ring-shaped and being arranged on the rotor surface of the SPM motor.
  • an engaged portion that engages with an engaging portion formed on the rotor surface is formed on the surface of the molded body that contacts the rotor surface. It is characterized by doing.
  • the rotor of the SPM motor has a polygonal cross section with respect to the rotation shaft, and the ring-shaped hollow portion of the ring magnet for the SPM motor is The shape is a polygon corresponding to the shape of the rotor.
  • the SPM motor ring magnet manufacturing method according to the present invention is characterized in that the SPM motor ring magnet is a radial anisotropic ring magnet or a polar anisotropic ring magnet.
  • the binder is made of a thermoplastic resin, and the residue of the green sheet generated by the step of forming the molded body is heated to It is characterized by being reused into a mixture.
  • the method for manufacturing a ring magnet for an SPM motor according to the present invention is characterized in that in the sintering step, sintering is performed by hot press sintering.
  • the green sheet oriented in the in-plane direction of the green sheet and in the step of forming the formed body is magnetically oriented.
  • a plurality of sheets are stacked and fixed in a curved state so that the cross section in the thickness direction has an arc shape.
  • the SPM motor manufacturing method according to the present invention is characterized in that the SPM motor ring magnet manufactured by any one of the above manufacturing methods is disposed on the rotor surface.
  • a ring shape is formed by combining formed bodies obtained by cutting a plurality of stacked green sheets, so that any direction (for example, polar anisotropic or radial) It is possible to easily realize a large ring magnet having easy magnetization axes in the direction).
  • an anisotropic magnet such as a polar anisotropic magnet that needs to have an easy magnetization axis aligned with a complicated shape, the magnetic field orientation process can be simplified.
  • the degree of orientation can be improved without rotation of the magnet particles after orientation as compared with the case of using compacting or the like.
  • the permanent magnet is fixed to the rotor as a ring shape, it can be appropriately fixed to the rotor of the SPM motor as compared with the conventional case where the permanent magnet is fixed to the rotor surface. In addition, it is possible to prevent displacement. Therefore, it is possible to realize high output, high efficiency, and low torque ripple of the SPM motor.
  • green sheet molding since the number of current turns can be used, a large magnetic field strength can be secured when performing magnetic field orientation, and a long magnetic field application can be performed with a static magnetic field. Can be realized. Then, by processing the orientation direction after the orientation, it is possible to ensure a highly oriented orientation with little variation.
  • the realization of high orientation with little variation leads to a reduction in variation in shrinkage due to sintering. That is, the uniformity of the product shape after sintering can be ensured. As a result, the burden on the outer shape processing after sintering is reduced, and particularly in the case of a polar anisotropic ring magnet, it leads to securing a single sinusoidal fluctuation of the magnetic flux density. In addition, the stability of mass production can be expected to be greatly improved.
  • the engaged portion that engages with the engaging portion formed on the rotor surface is formed on the surface that contacts the rotor surface with respect to the molded body.
  • the rotor of the SPM motor has a polygonal cross section with respect to the rotation axis, and the ring-shaped hollow portion has a polygonal shape corresponding to the shape of the rotor. Therefore, when a permanent magnet is inserted around the rotor, even if a strong torque is generated in the SPM motor, it is possible to reliably prevent the displacement of the permanent magnet with respect to the rotor.
  • a radial anisotropic ring magnet or a polar anisotropic ring magnet can be easily realized by appropriately changing the orientation direction and the stacking mode of the green sheet. It becomes possible. Further, in the polar anisotropic ring magnet, it is possible to realize a magnetic flux density distribution having an ideal sine wave shape as compared with the conventional case.
  • the ring magnet for an SPM motor according to the present invention, even when a plurality of stacked green sheets are cut into a complicated shape, the remaining portion generated by the cutting is used as a part of the green sheet. Since reproduction is possible, it is possible to prevent a decrease in yield.
  • the ring magnet for SPM motor since sintering is performed by hot press sintering, it is possible to cause deformation such as warpage and dent after sintering due to uniform shrinkage due to sintering. Can be prevented. As a result, even when a ring magnet is formed from a plurality of sintered bodies or molded bodies, the ring magnet can be accurately manufactured.
  • the ring magnet for an SPM motor according to the present invention, it is possible to easily align the easy magnetization axes along the arc by laminating the green sheets in a curved shape.
  • the SPM motor according to the present invention it is possible to realize higher torque, smaller size, lower torque ripple, and higher efficiency of the motor as compared with the conventional motor.
  • a ring shape is manufactured by combining molded bodies obtained by cutting a plurality of stacked green sheets. Large radial magnets with easy magnetization axes in the radial direction). In particular, even with an anisotropic magnet such as a polar anisotropic magnet that needs to have an easy magnetization axis aligned with a complicated shape, the magnetic field orientation process can be simplified. In addition, since green sheet molding is used, the degree of orientation can be improved without rotation of the magnet particles after orientation as compared with the case of using compacting or the like.
  • the permanent magnet is fixed to the rotor as a ring shape, it can be appropriately fixed to the rotor of the SPM motor as compared with the conventional case where the permanent magnet is fixed to the rotor surface. In addition, it is possible to prevent displacement. Therefore, it is possible to realize high output, high efficiency, and low torque ripple of the SPM motor.
  • green sheet molding since the number of current turns can be used, a large magnetic field strength can be secured when performing magnetic field orientation, and a long magnetic field application can be performed with a static magnetic field. Can be realized. Then, by processing the orientation direction after the orientation, it is possible to ensure a highly oriented orientation with little variation.
  • the realization of high orientation with little variation leads to a reduction in variation in shrinkage due to sintering. That is, the uniformity of the product shape after sintering can be ensured. As a result, the burden on the outer shape processing after sintering is reduced, and particularly in the case of a polar anisotropic ring magnet, it leads to securing a single sinusoidal fluctuation of the magnetic flux density. In addition, the stability of mass production can be expected to be greatly improved.
  • an engaged portion that engages with an engaging portion formed on the rotor surface is formed on a surface that contacts the rotor surface with respect to the molded body. Therefore, it is possible to reliably prevent the displacement of the permanent magnet relative to the rotor by engaging the engaging portion and the engaged portion.
  • the engaged portion can be easily formed as compared with conventional compacting, and the formed engaged portion will not be greatly deformed in the subsequent manufacturing process. And the engaged portion can be appropriately engaged.
  • the rotor of the SPM motor has a polygonal cross section with respect to the rotation shaft, and the ring-shaped hollow portion of the ring magnet for the SPM motor is disposed on the rotor. Since the polygonal shape corresponding to the shape is used, when a permanent magnet is inserted around the rotor, even if a strong torque is generated in the SPM motor, it is possible to reliably prevent the displacement of the permanent magnet relative to the rotor. It becomes possible.
  • a radial anisotropic ring magnet or a polar anisotropic ring magnet can be easily manufactured by appropriately changing the orientation direction and the lamination mode of the green sheet. It becomes possible to do. Further, in the polar anisotropic ring magnet, it is possible to realize a magnetic flux density distribution having an ideal sine wave shape as compared with the conventional case.
  • a ring magnet for an SPM motor since sintering is performed by hot press sintering, deformation due to sintering becomes uniform, and thus deformation such as warpage and dent after sintering is obtained. It can be prevented from occurring. As a result, even when a ring magnet is formed from a plurality of sintered bodies or molded bodies, the ring magnet can be accurately manufactured.
  • FIG. 1 is an overall view showing a ring magnet for an SPM motor according to the present invention.
  • FIG. 2 is a view showing a sintered member constituting the ring magnet for the SPM motor.
  • FIG. 3 is a diagram showing the easy axis of magnetization of the sintered member.
  • FIG. 4 is a diagram showing the orientation direction of the polar anisotropic ring magnet and the magnetic flux density distribution.
  • FIG. 5 is a view showing a state in which the ring magnet for the SPM motor is fixed to the rotor.
  • FIG. 6 is a view showing a state in which a ring magnet for an SPM motor is fixed to a polygonal rotor.
  • FIG. 1 is an overall view showing a ring magnet for an SPM motor according to the present invention.
  • FIG. 2 is a view showing a sintered member constituting the ring magnet for the SPM motor.
  • FIG. 3 is a diagram showing the easy axis of magnetization of the sintered member.
  • FIG. 7 is an explanatory view showing a manufacturing process of a ring magnet for an SPM motor according to the present invention.
  • FIG. 8 is an explanatory view showing a green sheet forming step in particular in the manufacturing process of the ring magnet for the SPM motor according to the present invention.
  • FIG. 9 is an explanatory view showing a green sheet heating step and a magnetic field orientation step among the steps of manufacturing a ring magnet for an SPM motor according to the present invention.
  • FIG. 10 is a diagram showing an example in which the magnetic field is oriented in the in-plane vertical direction of the green sheet.
  • FIG. 11 is a diagram for explaining a temperature rising mode in the calcination step, among the manufacturing steps of the ring magnet for an SPM motor according to the present invention.
  • FIG. 12 is an explanatory view showing a manufacturing process of the SPM motor according to the present invention.
  • FIG. 13 is a diagram for explaining the effect of the present invention.
  • FIG. 14 is a diagram for explaining the effect of the present invention.
  • FIG. 15 is a diagram for explaining the effect of the present invention.
  • FIG. 16 is a diagram for explaining the effect of the present invention.
  • FIG. 17 is a view showing a modification of the present invention.
  • FIG. 18 is a diagram showing a modification of the present invention.
  • FIG. 19 is a diagram for explaining the problems of the prior art.
  • FIG. 1 is an overall view showing a permanent magnet 1 according to the present invention.
  • the permanent magnet 1 according to the present invention is a polar anisotropic ring magnet having an annular shape, and is also fixed to the surface of the rotor of the SPM motor as will be described later. But there is.
  • the following example demonstrates the example which used the permanent magnet 1 as the polar anisotropic ring magnet, about the shape and orientation of the permanent magnet 1, it changes with the deformation
  • a radial anisotropic ring magnet can be used.
  • the permanent magnet 1 is made of an Nd—Fe—B magnet.
  • the content of each component is Nd: 27 to 40 wt%, B: 0.8 to 2 wt%, and Fe (electrolytic iron): 60 to 70 wt%.
  • other elements such as Dy, Tb, Co, Cu, Al, Si, Ga, Nb, V, Pr, Mo, Zr, Ta, Ti, W, Ag, Bi, Zn, and Mg are added. May contain a small amount.
  • the permanent magnet 1 is constituted by a plurality of fan-shaped (segment-type) sintered members 2 which are combined with each other in an annular shape, fixed to each other with resin, and then magnetized.
  • the number of the sintered members 2 is a number corresponding to the number of poles of the permanent magnet 1. For example, when the number of poles of the permanent magnet 1 is eight, as shown in FIG. Consists of
  • each sintered member 2 constituting the permanent magnet 1 is formed by laminating a plurality of green sheets 3 as shown in FIG.
  • the green sheet 3 is formed by stacking and fixing a plurality of sheets in a curved state so that the cross section in the thickness direction has an arc shape.
  • the green sheet 3 is a thin film sheet member having a thickness of, for example, 0.05 mm to 10 mm (for example, 1 mm). And it is produced by shape
  • the green sheet 3 is oriented in the in-plane direction in the magnetic field orientation process as will be described later. Therefore, as shown in FIG. 3, the easy magnetization axis (C axis) of the sintered member 2 is formed in an arc shape along the in-plane direction of the green sheet 3, and as a result, the permanent member that combines the sintered members 2 is formed.
  • the orientation of the magnet 1 has polar anisotropy as shown in FIG.
  • the inner surface of the ring-shaped permanent magnet 1 (that is, the surface that comes into contact with the rotor surface when fixed to the SPM motor) is engaged with an engaging portion formed on the rotor surface.
  • the engaged portion 5 is formed.
  • the engaged portion 5 has a concave shape.
  • the engaged portions 5 are provided at a total of four locations of the permanent magnet 1, but the number can be changed as appropriate.
  • each sintered member 2 may be provided at a total of eight locations, or may be provided at only two locations.
  • the shape of the engaged portion 5 may be other shapes as long as it can be positioned with the rotor. For example, a wedge shape or a staircase shape may be used.
  • the engaging portion 7 formed on the outer surface of the rotor 6 and the engaged portion 5 are engaged.
  • the permanent magnet 1 is positioned with respect to the rotor 6.
  • the engaged portion 5 has a concave shape and the engaging portion 7 has a convex shape, but the engaged portion 5 may have a convex shape and the engaging portion 7 may have a concave shape.
  • the permanent magnet 1 is fixed to the rotor 6 by inserting the rotor 6 into the hollow portion of the permanent magnet 1 after aligning the positions of the engaging portion 7 and the engaged portion 5 and then fixing them with an adhesive. Is desirable.
  • the cross section of the SPM motor with respect to the rotation axis of the rotor 6 is a polygonal shape
  • the ring-shaped hollow portion of the permanent magnet 1 is the shape of the rotor 6. It may be a polygonal shape corresponding to.
  • the definition of the polygon type can be changed, but the shape having the same number of vertices as the number of the sintered members 2 constituting the permanent magnet 1 (for example, an octagonal shape if the number of the sintered members 2 is eight). ),
  • the shapes of the sintered members 2 constituting the permanent magnet 1 can be made the same shape.
  • the permanent magnet 1 When the permanent magnet 1 is fixed to the surface of the rotor 6 of the SPM motor as shown in FIG. 6, the polygonal shape of the rotor 6 and the shape of the hollow portion of the permanent magnet 1 coincide with each other.
  • the permanent magnet 1 is positioned with respect to. Further, if the mode shown in FIG. 6 is adopted, even when a strong torque is generated in the SPM motor, the permanent magnet 1 can be appropriately fixed to the rotor 6 without causing shear fracture or the like. Become.
  • the permanent magnet 1 when the permanent magnet 1 is manufactured by green sheet molding, a resin, a long-chain hydrocarbon, a fatty acid methyl ester, a mixture thereof, or the like is used as the binder mixed with the magnet powder. Furthermore, when a resin is used for the binder, it is preferable to use a polymer that does not contain an oxygen atom in the structure and has a depolymerization property. Moreover, in order to recycle the residual material of the green sheet 3 generated when cutting the green sheet 3 laminated as described later into a desired shape (for example, a fan shape) or when the engaged portion 5 is cut, In order to perform magnetic field orientation in a state where the green sheet 3 is heated and softened, a thermoplastic resin is used.
  • the polymer which consists of 1 type, or 2 or more types of polymers or copolymers chosen from the monomer shown by the following general formula (1) corresponds.
  • R1 and R2 represent a hydrogen atom, a lower alkyl group, a phenyl group or a vinyl group.
  • polystyrene resin examples include polyisobutylene (PIB), which is a polymer of isobutylene, polyisoprene (isoprene rubber, IR), which is a polymer of isoprene, and polybutadiene (butadiene) that is a polymer of 1,3-butadiene.
  • PIB polyisobutylene
  • IR polyisoprene rubber
  • IR isoprene rubber
  • IR isoprene rubber
  • butadiene butadiene
  • Rubber, BR polystyrene as a polymer of styrene, styrene-isoprene block copolymer (SIS) as a copolymer of styrene and isoprene, butyl rubber (IIR) as a copolymer of isobutylene and isoprene, styrene and butadiene
  • SIS styrene-isoprene block copolymer
  • IIR butyl rubber
  • SBS styrene-butadiene block copolymer which is a copolymer of 2-methyl-1-pentene, a polymer of 2-methyl-1-pentene, and a polymer of 2-methyl-1-butene.
  • a 2-methyl-1-butene polymer resin a polymer of ⁇ -methylstyrene That there is ⁇ - methyl styrene polymer resin.
  • the resin used for the binder may include a small amount of a polymer or copolymer of a monomer containing an oxygen atom (for example, polybutyl methacrylate, polymethyl methacrylate, etc.).
  • a monomer that does not correspond to the general formula (1) may be partially copolymerized. Even in that case, it is possible to achieve the object of the present invention.
  • thermoplastic resin that softens at 250 ° C. or lower, more specifically a thermoplastic resin having a glass transition point or a melting point of 250 ° C. or lower in order to appropriately perform magnetic field orientation. .
  • a long chain hydrocarbon when used for the binder, it is preferable to use a long chain saturated hydrocarbon (long chain alkane) that is solid at room temperature and liquid at room temperature or higher. Specifically, it is preferable to use a long-chain saturated hydrocarbon having 18 or more carbon atoms. Then, when the green sheet is magnetically oriented as will be described later, the green sheet is heated and softened at a temperature equal to or higher than the melting point of the long-chain hydrocarbon, and magnetic field orientation is performed.
  • a long chain saturated hydrocarbon long chain alkane
  • a fatty acid ester when used as the binder, it is also preferable to use methyl stearate or methyl docosanoate which is solid at room temperature and liquid at room temperature or higher. Then, when the green sheet is magnetically oriented as will be described later, the green sheet is heated and softened at a temperature equal to or higher than the melting point of the fatty acid ester to perform the magnetic field orientation.
  • the amount of carbon and oxygen contained in the magnet can be reduced.
  • the amount of carbon remaining in the magnet after sintering is 2000 ppm or less, more preferably 1000 ppm or less.
  • the amount of oxygen remaining in the magnet after sintering is set to 5000 ppm or less, more preferably 2000 ppm or less.
  • the amount of the binder added is an amount that appropriately fills the gaps between the magnet particles in order to improve the thickness accuracy of the sheet when the slurry or the heated and melted compound is formed into a sheet.
  • the ratio of the binder to the total amount of magnet powder and binder is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, and even more preferably 3 wt% to 20 wt%.
  • FIG. 7 is an explanatory view showing a manufacturing process of the permanent magnet 1 according to the present embodiment.
  • an ingot made of a predetermined fraction of Nd—Fe—B (eg, Nd: 32.7 wt%, Fe (electrolytic iron): 65.96 wt%, B: 1.34 wt%) is manufactured. Thereafter, the ingot is roughly pulverized to a size of about 200 ⁇ m by a stamp mill or a crusher. Alternatively, the ingot is melted, flakes are produced by strip casting, and coarsely pulverized by hydrogen crushing. Thereby, coarsely pulverized magnet powder 10 is obtained.
  • Nd—Fe—B eg, Nd: 32.7 wt%, Fe (electrolytic iron): 65.96 wt%, B: 1.34 wt
  • the coarsely pulverized magnet powder 10 is finely pulverized by a wet method using a bead mill 11 or a dry method using a jet mill.
  • the coarsely pulverized magnet powder 10 is finely pulverized in a solvent to a predetermined particle size (for example, 0.1 ⁇ m to 5.0 ⁇ m) and the magnet powder is dispersed in the solvent.
  • the magnet powder contained in the solvent after the wet pulverization is dried by vacuum drying or the like, and the dried magnet powder is taken out.
  • Alcohols such as isopropyl alcohol, ethanol, methanol, Esters, such as ethyl acetate, Lower hydrocarbons, such as pentane and hexane, Aromatics, such as benzene, toluene, xylene , Ketones, mixtures thereof and the like.
  • the solvent which does not contain an oxygen atom in a solvent is used.
  • coarsely pulverized magnet powder is (a) in an atmosphere composed of an inert gas such as nitrogen gas, Ar gas, and He gas having substantially 0% oxygen content.
  • finely pulverized by a jet mill in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, and He gas having an oxygen content of 0.0001 to 0.5%, A fine powder having an average particle diameter of 0.7 ⁇ m to 5.0 ⁇ m.
  • the oxygen concentration of substantially 0% is not limited to the case where the oxygen concentration is completely 0%, but may contain oxygen in such an amount that a very small amount of oxide film is formed on the surface of the fine powder. Means good.
  • the magnet powder finely pulverized by the bead mill 11 or the like is molded into a desired shape.
  • the magnet powder is molded by molding a mixture of magnet powder and binder.
  • the mixture is once formed into a shape other than the final product shape, magnetic field orientation is performed, and then a punching process, a cutting process, a deformation process, and the like are performed to obtain a final product shape.
  • the mixture is once formed into a sheet shape (hereinafter referred to as a green sheet) and then processed into a final product shape.
  • the mixture when the mixture is formed into a sheet shape, for example, hot melt coating that forms a sheet shape after heating a compound in which a magnet powder and a binder are mixed, or a slurry containing a magnet powder, a binder, and an organic solvent.
  • hot melt coating that forms a sheet shape after heating a compound in which a magnet powder and a binder are mixed, or a slurry containing a magnet powder, a binder, and an organic solvent.
  • slurry coating or the like that forms a sheet by coating the substrate on a substrate.
  • a powdery mixture (compound) 12 composed of magnet powder and binder is prepared by mixing a binder with magnet powder finely pulverized by a bead mill 11 or the like.
  • a binder a resin, a long-chain hydrocarbon, a fatty acid ester, a mixture thereof, or the like is used as described above.
  • a resin a thermoplastic resin made of a depolymerizable polymer that does not contain an oxygen atom in the structure is used.
  • the resin when a long-chain hydrocarbon is used, the resin is solid at room temperature or above it is preferable to use a long-chain saturated hydrocarbon (long-chain alkane) that is liquid. Moreover, when using fatty acid ester, it is preferable to use methyl stearate, methyl docosanoate, or the like. Further, as described above, the amount of the binder added is such that the ratio of the binder to the total amount of the magnet powder and the binder in the compound 12 after the addition is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, still more preferably 3 wt%. % To 20 wt%.
  • an additive for promoting orientation may be added to the compound 12 in order to improve the degree of orientation in a magnetic field orientation step performed later.
  • a hydrocarbon-based additive is used, and it is particularly preferable to use an additive having polarity (specifically, an acid dissociation constant pKa of less than 41).
  • the addition amount of the additive depends on the particle diameter of the magnet powder, and it is necessary to increase the addition amount as the particle diameter of the magnet powder is smaller.
  • the specific addition amount is 0.1 to 10 parts, more preferably 1 to 8 parts, with respect to the magnet powder.
  • the additive added to the magnet powder adheres to the surface of the magnet particles and has a role of assisting the rotation of the magnet particles in the magnetic field orientation process described later.
  • orientation is easily performed when a magnetic field is applied, and the easy magnetization axis directions of the magnet particles can be aligned in the same direction (that is, the degree of orientation can be increased).
  • the frictional force at the time of orientation is increased and the orientation of the particles is lowered, so that the effect of adding the additive is further increased.
  • the binder is added in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.
  • the mixing of the magnet powder and the binder is performed, for example, by putting the magnet powder and the binder into a stirrer and stirring with the stirrer. In addition, heating and stirring may be performed to promote kneading properties.
  • the mixing of the magnet powder and the binder is preferably performed in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.
  • the binder is added to the solvent without kneading the magnet powder from the solvent used for pulverization, and then the solvent is volatilized. It is good also as a structure to obtain.
  • a green sheet is formed by forming the compound 12 into a sheet shape.
  • the compound 12 in hot melt coating, the compound 12 is heated to melt the compound 12 to form a fluid, and then the coating is applied on the support substrate 13 such as a separator. Then, the long sheet-like green sheet 14 is formed on the support base material 13 by heat dissipation and solidifying.
  • the temperature at which the compound 12 is heated and melted is 50 to 300 ° C., although it varies depending on the type and amount of the binder used. However, the temperature needs to be higher than the melting point of the binder to be used.
  • magnet powder and a binder are dispersed in a large amount of organic solvent, and the slurry is placed on a support substrate 13 such as a separator. Apply. Then, the green sheet 14 of a long sheet shape is formed on the support substrate 13 by drying and volatilizing the organic solvent.
  • the coating method of the melted compound 12 is preferably a method having excellent layer thickness controllability such as a slot die method or a calendar roll method.
  • a die method or comma coating method that is particularly excellent in layer thickness controllability that is, a method capable of applying a high-accuracy thickness layer on the surface of a substrate
  • coating is performed by extruding a heated compound 12 in a fluid state by a gear pump and inserting the compound 12 into a die.
  • the calendar roll method a certain amount of the compound 12 is charged into the gap between the two heated rolls, and the compound 12 melted by the heat of the roll is applied onto the support base 13 while rotating the roll.
  • the support base material 13 for example, a silicone-treated polyester film is used.
  • the green sheet is formed on the support substrate 13 by molding the compound 12 melted by extrusion molding or injection molding into a sheet shape and extruding the support substrate 13 instead of coating on the support substrate 13. 14 may be formed.
  • FIG. 8 is a schematic view showing a process of forming the green sheet 14 by the slot die method.
  • the die 15 used in the slot die system is formed by superimposing the blocks 16 and 17 on each other, and a slit 18 or a cavity (liquid reservoir) 19 is formed by a gap between the blocks 16 and 17.
  • the cavity 19 communicates with a supply port 20 provided in the block 17.
  • the supply port 20 is connected to a coating liquid supply system constituted by a gear pump (not shown) or the like, and the metered fluid-like compound 12 is quantified in the cavity 19 via the supply port 20. Supplied by a pump or the like.
  • the fluid-like compound 12 supplied to the cavity 19 is fed to the slit 18 and discharged from the discharge port 21 of the slit 18 with a predetermined application width with a uniform amount in the width direction at a constant amount per unit time.
  • the support base material 13 is continuously conveyed at a preset speed as the coating roll 22 rotates.
  • the ejected fluid compound 12 is applied to the support base material 13 with a predetermined thickness, and then heat-radiating and solidifying to form a long sheet-like green sheet 14 on the support base material 13. Is done.
  • the sheet thickness of the green sheet 14 after coating is measured, and the gap D between the die 15 and the support base 13 is feedback-controlled based on the measured value. desirable. Further, the fluctuation of the amount of the fluid compound 12 supplied to the die 15 is reduced as much as possible (for example, suppressed to fluctuation of ⁇ 0.1% or less), and the fluctuation of the coating speed is reduced as much as possible (for example, ⁇ 0. It is desirable to suppress the fluctuation to 1% or less. Thereby, it is possible to further improve the thickness accuracy of the green sheet 14.
  • the thickness accuracy of the formed green sheet 14 is within ⁇ 10%, more preferably within ⁇ 3%, and even more preferably within ⁇ 1% with respect to the design value (for example, 1 mm).
  • the design value for example, 1 mm.
  • the set thickness of the green sheet 14 is desirably set in the range of 0.05 mm to 20 mm. When the thickness is less than 0.05 mm, the productivity must be reduced because multiple layers must be stacked.
  • the green sheet 14 is first softened by heating the green sheet 14 that is continuously conveyed together with the support base material 13. Specifically, the green sheet 14 is softened until the viscosity becomes 1 to 1500 Pa ⁇ s, more preferably 1 to 500 Pa ⁇ s. Thereby, the magnetic field orientation can be appropriately performed.
  • the temperature and time for heating the green sheet 14 vary depending on the type and amount of the binder used, but for example, 100 to 250 ° C. and 0.1 to 60 minutes. However, in order to soften the green sheet 14, it is necessary to set the temperature to be equal to or higher than the glass transition point or melting point of the binder used.
  • a heating method for heating the green sheet 14 for example, there are a heating method using a hot plate and a heating method using a heat medium (silicone oil) as a heat source.
  • a heat medium silicone oil
  • magnetic field orientation is performed by applying a magnetic field to the in-plane direction and the length direction of the green sheet 14 softened by heating.
  • the intensity of the applied magnetic field is 5000 [Oe] to 150,000 [Oe], preferably 10,000 [Oe] to 120,000 [Oe].
  • the C axis (easy magnetization axis) of the magnet crystal included in the green sheet 14 is oriented in one direction.
  • the magnetic field may be applied in the in-plane direction and the width direction of the green sheet 14.
  • it is good also as a structure which orientates a magnetic field simultaneously with respect to the several green sheet 14.
  • a configuration in which a magnetic field is applied at the same time as the heating process may be performed, or a magnetic field may be applied after the heating process and before the green sheet solidifies. It is good also as performing the process to perform. Moreover, it is good also as a structure which magnetic field orientates before the green sheet 14 apply
  • FIG. 9 is a schematic view showing a heating process and a magnetic field orientation process of the green sheet 14.
  • FIG. 9 an example in which the magnetic field orientation process is performed simultaneously with the heating process will be described.
  • heating and magnetic field orientation on the green sheet 14 coated by the slot die method described above are performed on the long sheet-like green sheet 14 that is continuously conveyed by a roll. That is, an apparatus for performing heating and magnetic field orientation is disposed on the downstream side of the coating apparatus (die or the like), and is performed by a process continuous with the above-described coating process.
  • the solenoid 25 is disposed on the downstream side of the die 15 and the coating roll 22 so that the transported support base material 13 and the green sheet 14 pass through the solenoid 25.
  • the hot plates 26 are arranged in a pair above and below the green sheet 14 in the solenoid 25.
  • the green sheet 14 is heated by a pair of upper and lower hot plates 26 and an electric current is passed through the solenoid 25, so that the in-plane direction of the long green sheet 14 (that is, the sheet surface of the green sheet 14).
  • a magnetic field in the longitudinal direction Thereby, the continuously conveyed green sheet 14 is softened by heating, and a magnetic field is applied to the in-plane direction and the length direction of the softened green sheet 14 (in the direction of the arrow 27 in FIG. 9).
  • the surface of the green sheet 14 can be prevented from standing upright by setting the direction in which the magnetic field is applied to the in-plane direction. Moreover, it is preferable that the heat dissipation and solidification of the green sheet 14 performed after the magnetic field orientation is performed in a transported state. Thereby, the manufacturing process can be made more efficient.
  • a pair of magnetic field coils are arranged on the left and right of the green sheet 14 that is conveyed instead of the solenoid 25. And it becomes possible to generate a magnetic field in the in-plane direction and the width direction of the long sheet-like green sheet 14 by passing a current through each magnetic field coil.
  • a magnetic field application device 30 using a pole piece or the like includes two ring-shaped coil portions 31 and 32 arranged in parallel so that the central axes are the same, and the coil portion 31. , 32 and two substantially cylindrical pole pieces 33, 34 respectively disposed in the ring holes, and are spaced apart from the conveyed green sheet 14 by a predetermined distance.
  • a magnetic field is produced
  • the magnetic field orientation direction is a direction perpendicular to the surface of the green sheet 14
  • the film 35 is also formed on the opposite surface of the green sheet 14 on which the support base material 13 is laminated as shown in FIG. Are preferably laminated. Accordingly, it is possible to prevent the surface of the green sheet 14 from standing upside down.
  • a heating method using the hot plate 26 instead of the heating method using the hot plate 26 described above, a heating method using a heat medium (silicone oil) as a heat source may be used.
  • a heat medium silicone oil
  • the green sheet 14 when the green sheet 14 is formed from a liquid material having high fluidity such as slurry by a general slot die method or doctor blade method without using hot melt molding, a magnetic field gradient is generated.
  • the magnetic powder contained in the green sheet 14 is attracted toward the stronger magnetic field, so that the slurry forming the green sheet 14 is closer to the liquid, that is, the thickness of the green sheet 14 is uneven. May occur.
  • the compound 12 when the compound 12 is molded into the green sheet 14 by hot melt molding as in the present invention, the viscosity near room temperature reaches several tens of thousands to several hundred thousand Pa ⁇ s, and the magnetism when passing through the magnetic field gradient is reached. There is no powder slippage. Furthermore, the viscosity of the binder is lowered by being transported and heated in a uniform magnetic field, and uniform C-axis orientation is possible only by the rotational torque in the uniform magnetic field.
  • the thickness exceeds 1 mm.
  • a liquid material having high fluidity such as a slurry containing an organic solvent by a general slot die method or doctor blade method without using hot melt molding
  • the thickness exceeds 1 mm.
  • foaming due to vaporization of the organic solvent contained in the slurry or the like during drying becomes a problem.
  • the drying time is prolonged to suppress foaming, the magnet powder is settled, and accordingly, the density distribution of the magnet powder is biased with respect to the direction of gravity, which causes warping after firing. Therefore, in the molding from the slurry, the upper limit value of the thickness is substantially regulated, so it is necessary to mold the green sheet with a thickness of 1 mm or less and then laminate it.
  • the green sheet 14 is deformed according to the direction of the easy axis of magnetization required for the final product. Further, a plurality of green sheets 14 deformed in the same shape are stacked and fixed to each other with resin or the like. For example, when the polar anisotropic ring magnet shown in FIGS. 1 and 2 is manufactured, the green sheets 14 that are magnetically oriented in the in-plane direction are curved and laminated so that the cross section in the thickness direction has an arc shape. .
  • the magnetic field is oriented in a direction perpendicular to the surface of the green sheet, and is laminated in a balm Kuchen shape along the arc of the ring.
  • the magnetic sheets may be oriented in the in-plane direction of the green sheet, and the green sheets may be laminated in the ring-shaped thickness direction.
  • the green sheet 14 may be laminated after being deformed, or may be deformed after being laminated. Further, when the green sheet 14 is deformed, the green sheet 14 may be heated so as to be easily deformed. Further, the deformation direction may be the thickness direction of the green sheet 14 as shown in FIG. 7 or the in-plane direction.
  • the formed body 40 is formed by cutting the laminate of the green sheets 14.
  • the shape of the molded body 40 varies depending on the final product shape, for example, when the polar anisotropic ring magnet shown in FIGS. 1 and 2 is manufactured, the fan-shaped shape shown in FIG. 7 is used. Further, the engaged portion 5 is similarly cut and formed on the fan-shaped inner surface.
  • the in-plane direction of the stacked green sheets 14 corresponds to the direction of the easy axis of magnetization. It is necessary to cut in consideration of the direction.
  • the ring-shaped hollow portion is formed into a polygonal shape corresponding to the shape of the rotor 6 as shown in FIG. 6, when the ring-shaped hollow portion is formed into a ring shape, the molded body 40 is formed so that the hollow portion has the polygonal shape. Is molded.
  • the remaining portion of the green sheet 14 generated by the process of cutting the laminate of the green sheets 14 can be reused as the melted compound 12 by heating to the melting point or higher of the binder. As a result, the reused remaining portion is reproduced as a part of the green sheet 14. Therefore, even if it is a case where it cuts into a complicated shape, a yield is not reduced.
  • a non-oxidizing atmosphere in which the molded body 40 is pressurized to atmospheric pressure, or a pressure higher or lower than atmospheric pressure (for example, 1.0 Pa or 1.0 MPa).
  • atmospheric pressure or a pressure higher or lower than atmospheric pressure (for example, 1.0 Pa or 1.0 MPa).
  • a binder decomposition temperature in a mixed gas atmosphere of an inert gas and an inert gas a temperature satisfying a condition equal to or higher than the thermal decomposition temperature of the additive if an additive that promotes orientation is added
  • the calcining process is performed by holding for 5 hours.
  • the supply amount of hydrogen during calcination is set to 5 L / min.
  • an organic compound such as a binder can be decomposed into a monomer by a depolymerization reaction or the like and scattered to be removed. That is, so-called decarbonization for reducing the amount of carbon in the molded body 40 is performed.
  • the calcining treatment is performed under the condition that the carbon content in the molded body 40 is 2000 ppm or less, more preferably 1000 ppm or less. Accordingly, the entire permanent magnet 1 can be densely sintered by the subsequent sintering process, and the residual magnetic flux density and coercive force are not reduced.
  • the pressurizing condition is a pressure higher than atmospheric pressure, more specifically 0.2 MPa or more, the effect of reducing the carbon amount can be expected.
  • the binder decomposition temperature is determined based on the analysis result of the binder decomposition product and decomposition residue. Specifically, a temperature range is selected in which decomposition products of the binder are collected, decomposition products other than the monomers are not generated, and products due to side reactions of the remaining binder components are not detected even in the analysis of the residues. Although it varies depending on the kind of the binder, it is set to 200 ° C. to 900 ° C., more preferably 400 ° C. to 600 ° C. (for example, 450 ° C.).
  • the heating rate is reduced as compared with a case where a general magnet is sintered.
  • the temperature rising rate is set to 2 ° C./min or less (for example, 1.5 ° C./min). Therefore, when performing the calcination treatment, as shown in FIG. 11, the temperature is increased at a predetermined temperature increase rate of 2 ° C./min or less, and after reaching a preset temperature (binder decomposition temperature), Calcination is performed by holding at the set temperature for several hours to several tens of hours.
  • the carbon in the molded body 40 is not removed rapidly but is removed in stages, so that the density of the sintered permanent magnet is increased ( That is, it is possible to reduce the air gap in the permanent magnet. And if a temperature increase rate shall be 2 degrees C / min or less, the density of the permanent magnet after sintering can be made 95% or more, and a high magnet characteristic can be anticipated.
  • NdH 3 (high activity) in the molded body 40 produced by the calcination treatment is changed stepwise from NdH 3 (high activity) ⁇ NdH 2 (low activity).
  • the activity of the molded body 40 activated by the calcination treatment is reduced.
  • the sintering process which sinters the molded object 40 calcined by the calcining process is performed.
  • a sintering method of the molded body 40 it is also possible to use pressure sintering which sinters in a state where the molded body 40 is pressed in addition to general vacuum sintering.
  • the temperature is raised to a firing temperature of about 800 ° C. to 1080 ° C. at a predetermined temperature increase rate and held for about 0.1 to 2 hours.
  • vacuum firing is performed, but the degree of vacuum is preferably 5 Pa or less, and preferably 10 ⁇ 2 Pa or less.
  • it is cooled and heat-treated again at 300 ° C. to 1000 ° C. for 2 hours.
  • a sintered body is produced.
  • pressure sintering examples include hot press sintering, hot isostatic pressing (HIP) sintering, ultrahigh pressure synthetic sintering, gas pressure sintering, and discharge plasma (SPS) sintering.
  • HIP hot isostatic pressing
  • SPS discharge plasma
  • uniaxial pressure sintering in which pressure is applied in a uniaxial direction in order to suppress grain growth of the magnet particles during sintering and to suppress warping generated in the magnet after sintering.
  • hot press sintering is used.
  • the pressurization direction at the time of pressure sintering is a direction perpendicular to the direction in which the magnetic field is applied (for example, the in-plane direction and the length direction of the green sheet). That is, pressure is applied in the direction perpendicular to the C-axis (easy magnetization axis) direction of the magnet particles oriented by the magnetic field orientation treatment.
  • the pressure value is set to 0.01 MPa to 100 MPa, for example, increased to 940 ° C. at 10 ° C./min in a vacuum atmosphere of several Pa or less, and then held for 5 minutes. It is preferable. Thereafter, it is cooled and heat-treated again at 300 ° C. to 1000 ° C. for 2 hours. As a result of sintering, a sintered body is produced.
  • a plurality of sintered bodies are combined into an annular shape and then fixed to each other with a resin or the like to form a ring-shaped sintered body 41.
  • the sintered body 41 may be formed by combining the molded body 40 before being sintered into an annular shape, forming a link shape, and sintering.
  • the rotor 6 is inserted into the hollow portion of the sintered body 41.
  • the inserted rotor 6 and the sintered body 41 are fixed to each other with an adhesive or the like.
  • it may be fixed to the surface of the rotor 6 and simultaneously formed into a ring shape.
  • the permanent magnet 1 is inserted around the rotor 6 with the polygonal shapes aligned with each other. .
  • magnetization is performed along the C axis so as to have polar anisotropy.
  • the polar anisotropic permanent magnet 1 is disposed on the surface of the rotor 6.
  • a magnetizing coil, a magnetizing yoke, a condenser magnetizing power supply device or the like is used for magnetizing the permanent magnet 1.
  • magnetization is performed along the C axis so as to be radial anisotropy.
  • the SPM motor 45 is manufactured by assembling members other than the rotor 6 such as the shaft 42 and the stator 43.
  • the magnetic flux density distribution can be brought close to the ideal sine wave shape shown in FIG.
  • the distribution has a substantially trapezoidal shape as shown in FIG.
  • the magnetic flux portion between the substantially trapezoidal shape and the sine wave shape is a portion that does not contribute to torque when, for example, a polar anisotropic ring magnet is used in an SPM motor. Therefore, the motor efficiency is reduced.
  • the magnet particles do not rotate after orientation and the degree of orientation can be improved as compared with the case of using compacting or the like.
  • the number of current turns can be used, a large magnetic field strength can be secured when performing magnetic field orientation, and a long magnetic field application can be performed with a static magnetic field. Can be realized.
  • the orientation direction after the orientation it is possible to ensure a highly oriented orientation with little variation.
  • the realization of high orientation with little variation leads to a reduction in variation in shrinkage due to sintering. That is, the uniformity of the product shape after sintering can be ensured.
  • the compound 12 is generated by pulverizing the magnet raw material into magnet powder and mixing the pulverized magnet powder and the binder. .
  • the green sheet 14 which shape
  • magnetic field orientation is performed by applying a magnetic field to the formed green sheet 14.
  • the laminated green sheets are cut into a fan shape and formed into an annular shape.
  • the permanent magnet 1 is manufactured by forming into a ring shape and then sintering.
  • a ring shape is manufactured by combining molded bodies obtained by cutting a plurality of stacked green sheets, so a large ring magnet with easy magnetization axes aligned in any direction (for example, polar anisotropy or radial direction) Can be easily manufactured.
  • a large ring magnet with easy magnetization axes aligned in any direction for example, polar anisotropy or radial direction
  • the magnetic field orientation process can be simplified.
  • the degree of orientation can be improved without rotation of the magnet particles after orientation as compared with the case of using compacting or the like.
  • the permanent magnet is fixed to the rotor as a ring shape, it can be appropriately fixed to the rotor of the SPM motor as compared with the conventional case where the permanent magnet is fixed to the rotor surface. In addition, it is possible to prevent displacement. Therefore, it is possible to realize high output, high efficiency, and low torque ripple of the SPM motor.
  • green sheet molding since the number of current turns can be used, a large magnetic field strength can be secured when performing magnetic field orientation, and a long magnetic field application can be performed with a static magnetic field. Can be realized. Then, by processing the orientation direction after the orientation, it is possible to ensure a highly oriented orientation with little variation.
  • the realization of high orientation with little variation leads to a reduction in variation in shrinkage due to sintering. That is, the uniformity of the product shape after sintering can be ensured. As a result, the burden on the outer shape processing after sintering is reduced, and particularly in the case of a polar anisotropic ring magnet, it leads to securing a single sinusoidal fluctuation of the magnetic flux density. In addition, the stability of mass production can be expected to be greatly improved.
  • the engaged portion 5 that engages with the engaging portion 7 formed on the rotor surface is formed on the surface that is in contact with the rotor surface, the engaged portion 7 and the engaged portion 5 are engaged with each other.
  • the engaged portion 5 can be easily formed as compared with the conventional green compact molding, and the formed engaged portion 5 is not greatly deformed in the subsequent manufacturing process. It becomes possible to appropriately engage the joint portion 7 and the engaged portion 5.
  • the section of the SPM motor with respect to the rotation axis of the rotor is polygonal, and the ring-shaped hollow portion of the permanent magnet 1 is a polygon corresponding to the shape of the rotor.
  • the permanent magnet 1 when the permanent magnet 1 is inserted around the rotor, it is possible to reliably prevent the displacement of the permanent magnet 1 with respect to the rotor even if a strong torque is generated in the SPM motor. Moreover, it becomes possible to easily manufacture a radial anisotropic ring magnet or a polar anisotropic ring magnet by appropriately changing the orientation direction and lamination mode of the green sheets. Further, in the polar anisotropic ring magnet, it is possible to realize a magnetic flux density distribution having an ideal sine wave shape as compared with the conventional case.
  • the pulverization condition, kneading condition, magnetic field orientation process, lamination condition, cutting condition, calcination condition, sintering condition, etc. of the magnet powder are not limited to the conditions described in the above examples.
  • the magnet raw material is pulverized by wet pulverization using a bead mill, but may be pulverized by dry pulverization using a jet mill.
  • the green sheet is formed by the slot die method, but other methods (for example, calendar roll method, comma coating method, extrusion molding, injection molding, mold molding, doctor blade method, etc.) can be used. It may be used to form a green sheet. However, it is desirable to use a method that can form a fluid compound on a substrate with high accuracy. Moreover, as long as the atmosphere at the time of calcination is a non-oxidizing atmosphere, the atmosphere may be other than a hydrogen atmosphere (for example, a nitrogen atmosphere, a He atmosphere, or an Ar atmosphere). Moreover, you may abbreviate
  • a hydrogen atmosphere for example, a nitrogen atmosphere, a He atmosphere, or an Ar atmosphere.
  • the deformation direction of the green sheet is the thickness direction of the green sheet, but it may be an in-plane direction.
  • a thin film permanent magnet in which the easy axis of magnetization is arranged with respect to the in-plane direction of the green sheet.
  • FIG. 18 it is possible to manufacture a cylindrical permanent magnet having an easy magnetization axis aligned in the tangential direction by deforming the green sheet into a cylindrical shape.
  • a wavy shaped permanent magnet is also possible to manufacture.
  • the molded object 40 is shape
  • stacked in order to manufacture a polar anisotropic ring magnet will be cut and shape
  • calcining is performed in a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas after molding the magnet powder.
  • the magnet powder before molding is calcined and calcined. It is good also as manufacturing a permanent magnet by shape
  • the surface area of the magnet to be calcined is increased compared to the case of calcining the molded magnet particles. can do. That is, the amount of carbon in the calcined body can be reduced more reliably.
  • the heating process and magnetic field orientation process of the green sheet 14 will be performed simultaneously, even if it performs a magnetic field orientation process after performing a heating process and before the green sheet 14 solidifies. good. Further, when the magnetic field orientation is performed before the coated green sheet 14 is solidified (that is, the green sheet 14 is already softened without performing the heating process), the heating process may be omitted. .
  • the coating process by the slot die method, the heating process, and the magnetic field orientation process are performed by a series of continuous processes, but may be configured not to be performed by the continuous processes. Moreover, it is good also as performing by the process which divided
  • the coated green sheet 14 can be cut to a predetermined length, and the green sheet 14 in a stationary state can be configured to perform magnetic field orientation by heating and applying a magnetic field. is there.
  • the Nd—Fe—B type magnet has been described as an example, but other magnets (for example, samarium type cobalt magnet, alnico magnet, ferrite magnet, etc.) may be used. Further, in the present invention, the Nd component is larger than the stoichiometric composition in the present invention, but it may be stoichiometric.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 SPMモータの高出力化、高効率化、低トルクリプル化を実現することを可能にしたSPMモータ用リング磁石及びSPMモータ用リング磁石の製造方法、並びにSPMモータ用リング磁石を用いたSPMモータ及びSPMモータの製造方法を提供する。磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末をシート状に成形したグリーンシート14を作製する。その後、成形したグリーンシート14に対して磁場を印加することにより磁場配向を行う。更に、磁場配向後のグリーンシート14を変形させた状態で複数枚積層して固定するとともに、該積層した複数枚のグリーンシートを扇型形状に切削して成形し、円環状に接続することによってリング形状とし、その後、焼結することにより永久磁石1を製造する。

Description

SPMモータ用リング磁石、SPMモータ用リング磁石の製造方法、SPMモータ及びSPMモータの製造方法
 本発明は、SPMモータ用リング磁石及びSPMモータ用リング磁石の製造方法、並びにSPMモータ用リング磁石を用いたSPMモータ及びSPMモータの製造方法に関する。
 近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。ここで、永久磁石モータの一つであるSPM(表面磁石形)モータは、ロータ表面に磁石が張り付けられたモータであり、比較的安易な構成で、高出力化、高効率化が実現可能である。
 また、永久磁石モータに用いられる永久磁石の製造方法としては、従来より粉末焼結法が一般的に用いられる。ここで、粉末焼結法は、先ず原材料をジェットミル(乾式粉砕)等により粉砕した磁石粉末を製造する。その後、その磁石粉末を型に入れて、所望の形状にプレス成形する。そして、所望形状に成形された固形状の磁石粉末を所定温度(例えばNd-Fe-B系磁石では1100℃)で焼結することにより製造する(例えば、特開平2-266503号公報)。
特開平2-266503号公報(第5頁)
 ここで、従来のSPMモータは、図19に示すように、ロータ101の表面に扇型形状の複数の磁石102を張り付けることにより構成される。一般的にロータ101と磁石102は粘着剤を用いて固定するが、粘着剤のみによってロータ101に対して磁石102を適切に固定することは難しかった。例えば、粘着剤を多く用いれば、はみ出した粘着剤がモータに悪影響を与えることとなる。一方で粘着剤が少なければ高速回転するロータ101から磁石102が外れたり、磁石102の位置ズレが発生する可能性もある。
 また、永久磁石モータでは低トルクリプル化についても求められているが、その為には磁石102の位置ズレを抑えることが重要である。例えば、トルクリプルを0.5%以下とする為には、設計位置に対して磁石102の位置ズレを5μm以下に抑えることが必要である。しかしながら、従来の粉末焼結法により作成された永久磁石をロータ表面に張り付ける構成では、上記問題を解決することができなかった。
 本発明は前記従来における問題点を解消するためになされたものであり、SPMモータのロータに対して適切に固定することによって、SPMモータの高出力化、高効率化、低トルクリプル化を実現することを可能にしたSPMモータ用リング磁石及びSPMモータ用リング磁石の製造方法、並びにSPMモータ用リング磁石を用いたSPMモータ及びSPMモータの製造方法を提供することを目的とする。
 前記目的を達成するため本発明に係るSPMモータ用リング磁石は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末とバインダーとが混合された混合物を生成する工程と、前記混合物をシート状に成形し、グリーンシートを作製する工程と、前記グリーンシートに対して磁場を印加することにより磁場配向する工程と、磁場配向された前記グリーンシートを変形させた状態で複数枚積層して固定するとともに、該積層した複数枚の前記グリーンシートを扇型形状に切削した成形体を成形する工程と、前記成形体を焼成温度で保持することにより焼結する工程と、により製造され、前記焼結工程によって焼結された複数の焼結体又は前記焼結工程によって焼結される前の複数の前記成形体を、円環状に接続することによってリング形状とし、SPMモータのロータ表面に配置されることを特徴とする。
 また、本発明に係るSPMモータ用リング磁石は、前記成形体の前記ロータ表面と接する面に、前記ロータ表面に形成された係合部と係合する被係合部が形成されていることを特徴とする。
 また、本発明に係るSPMモータ用リング磁石は、前記SPMモータのロータは、回転軸に対する断面が多角形形状であって、前記リング形状の中空部分を前記ロータの形状と対応する多角形形状とすることを特徴とする。
 また、本発明に係るSPMモータ用リング磁石は、ラジアル異方性リング磁石又は極異方性リング磁石であることを特徴とする。
 また、本発明に係るSPMモータ用リング磁石は、前記バインダーは熱可塑性樹脂からなり、前記成形体を成形する工程によって生じた前記グリーンシートの残余を加熱することにより、該残余を前記混合物へと再利用することを特徴とする。
 また、本発明に係るSPMモータ用リング磁石は、前記焼結工程では、ホットプレス焼結により焼結することを特徴とする。
 また、本発明に係るSPMモータ用リング磁石は、前記磁場配向する工程では、前記グリーンシートの面内方向に配向し、前記成形体を成形する工程では、磁場配向された前記グリーンシートを厚み方向の断面が円弧形状となるように湾曲させた状態で複数枚積層して固定することを特徴とする。
 また、本発明に係るSPMモータは、上記いずれかに記載のSPMモータ用リング磁石をロータ表面に配置したことを特徴とする。
 また、本発明に係るSPMモータ用リング磁石の製造方法は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末とバインダーとが混合された混合物を生成する工程と、前記混合物をシート状に成形し、グリーンシートを作製する工程と、前記グリーンシートに対して磁場を印加することにより磁場配向する工程と、磁場配向された前記グリーンシートを変形させた状態で複数枚積層して固定するとともに、該積層した複数枚の前記グリーンシートを扇型形状に切削した成形体を成形する工程と、前記成形体を焼成温度で保持することにより焼結する工程と、を有し、前記焼結工程によって焼結された複数の焼結体又は前記焼結工程によって焼結される前の複数の前記成形体を、円環状に接続することによってリング形状とし、製造されたリング形状の磁石はSPMモータのロータ表面に配置されることを特徴とする。
 また、本発明に係るSPMモータ用リング磁石の製造方法は、前記成形体に対して、前記ロータ表面と接する面に前記ロータ表面に形成された係合部と係合する被係合部を形成することを特徴とする。
 また、本発明に係るSPMモータ用リング磁石の製造方法は、前記SPMモータのロータは、回転軸に対する断面が多角形形状であって、前記SPMモータ用リング磁石の前記リング形状の中空部分を前記ロータの形状と対応する多角形形状とすることを特徴とする。
 また、本発明に係るSPMモータ用リング磁石の製造方法は、前記SPMモータ用リング磁石は、ラジアル異方性リング磁石又は極異方性リング磁石であることを特徴とする。
 また、本発明に係るSPMモータ用リング磁石の製造方法は、前記バインダーは熱可塑性樹脂からなり、前記成形体を成形する工程によって生じた前記グリーンシートの残余を加熱することにより、該残余を前記混合物へと再利用することを特徴とする。
 また、本発明に係るSPMモータ用リング磁石の製造方法は、前記焼結工程では、ホットプレス焼結により焼結することを特徴とする。
 また、本発明に係るSPMモータ用リング磁石の製造方法は、前記磁場配向する工程では、前記グリーンシートの面内方向に配向し、前記成形体を成形する工程では、磁場配向された前記グリーンシートを厚み方向の断面が円弧形状となるように湾曲させた状態で複数枚積層して固定することを特徴とする。
 更に、本発明に係るSPMモータの製造方法は、上記いずれかの製造方法で製造されたSPMモータ用リング磁石をロータ表面に配置することにより製造することを特徴とする。
 前記構成を有する本発明に係るSPMモータ用リング磁石によれば、積層した複数枚のグリーンシートを切削した成形体を組み合わせることによってリング形状とするので、任意の方向(例えば、極異方やラジアル方向)に磁化容易軸を揃えた大型のリング磁石を容易に実現することが可能となる。特に、極異方性磁石等の複雑な形状に磁化容易軸を揃える必要のある異方性磁石であっても、磁場配向の工程を簡略化することが可能となる。また、グリーンシート成形を用いるので、圧粉成形等を用いる場合と比較して、配向後に磁石粒子が回動することも無く、配向度についても向上させることが可能となる。また、永久磁石をリング形状としてロータに固定するので、従来のように永久磁石をロータ表面に張り付けて固定する場合と比較して、SPMモータのロータに対して適切に固定することが可能であり、位置ズレも防止することが可能となる。従って、SPMモータの高出力化、高効率化、低トルクリプル化を実現することが可能となる。
 また、グリーンシート成形では、電流のターン数を利用できるため磁場配向を行う際の磁場強度を大きく確保することができ、且つ静磁場で長時間の磁場印加を施せるので、バラつきの少ない高い配向度を実現することが可能となる。そして、配向後に配向方向を加工することによって、高配向かつバラつきの少ない配向を確保することが可能となる。
 更に、バラつきの少ない高配向が実現できる事は、焼結による収縮のバラつきの低減に繋がる。即ち、焼結後の製品形状の均一性が確保できる。その結果、焼結後の外形加工に対する負担が軽減され、特に極異方リング磁石では、磁束密度の単一正弦波変動の確保に繋がる。また、量産の安定性が大きく向上する事が期待できる。
 また、本発明に係るSPMモータ用リング磁石によれば、成形体に対して、ロータ表面と接する面にロータ表面に形成された係合部と係合する被係合部を形成するので、係合部と被係合部を係合させることによって、ロータに対する永久磁石の位置ズレの発生を確実に防止することが可能となる。また、グリーンシート成形では、従来の圧粉成形と比較して被係合部を容易に成形でき、成形した被係合部はその後の製造工程で大きな変形を生じることがないので、係合部と被係合部との係合を適切に行わせることが可能となる。
 また、本発明に係るSPMモータ用リング磁石によれば、SPMモータのロータは、回転軸に対する断面が多角形形状であって、リング形状の中空部分をロータの形状と対応する多角形形状とするので、ロータの周囲に永久磁石が挿入された場合に、SPMモータに強いトルクが生じたとしてもロータに対する永久磁石の位置ズレの発生を確実に防止することが可能となる。
 また、本発明に係るSPMモータ用リング磁石によれば、グリーンシートの配向方向や積層態様を適宜変更することによって、ラジアル異方性リング磁石又は極異方性リング磁石を容易に実現することが可能となる。また、極異方性リング磁石では、従来に比べて理想的な正弦波形状からなる磁束密度分布を実現することが可能となる。
 また、本発明に係るSPMモータ用リング磁石によれば、積層された複数枚のグリーンシートを複雑な形状に切削加工する場合であっても、切削により生じた残余部分をグリーンシートの一部として再生することが可能なので、歩留まりの低下を防止することが可能となる。
 また、本発明に係るSPMモータ用リング磁石によれば、ホットプレス焼結により焼結するので、焼結による収縮が均一となることにより、焼結後の反りや凹みなどの変形が生じることを防止できる。その結果、複数の焼結体又は成形体からリング磁石を成形する場合であっても、リング磁石を精度よく製造することが可能となる。
 また、本発明に係るSPMモータ用リング磁石によれば、グリーンシートを円弧状に湾曲させた状態で積層することによって、円弧に沿って磁化容易軸を揃えることが容易に可能となる。
 また、本発明に係るSPMモータによれば、従来に比べてモータの高トルク化、小型化、低トルクリプル化、高効率化を実現することが可能となる。
 また、本発明に係るSPMモータ用リング磁石の製造方法によれば、積層した複数枚のグリーンシートを切削した成形体を組み合わせることによってリング形状を製造するので、任意の方向(例えば、極異方やラジアル方向)に磁化容易軸を揃えた大型のリング磁石を容易に製造することが可能となる。特に、極異方性磁石等の複雑な形状に磁化容易軸を揃える必要のある異方性磁石であっても、磁場配向の工程を簡略化することが可能となる。また、グリーンシート成形を用いるので、圧粉成形等を用いる場合と比較して、配向後に磁石粒子が回動することも無く、配向度についても向上させることが可能となる。また、永久磁石をリング形状としてロータに固定するので、従来のように永久磁石をロータ表面に張り付けて固定する場合と比較して、SPMモータのロータに対して適切に固定することが可能であり、位置ズレも防止することが可能となる。従って、SPMモータの高出力化、高効率化、低トルクリプル化を実現することが可能となる。
 また、グリーンシート成形では、電流のターン数を利用できるため磁場配向を行う際の磁場強度を大きく確保することができ、且つ静磁場で長時間の磁場印加を施せるので、バラつきの少ない高い配向度を実現することが可能となる。そして、配向後に配向方向を加工することによって、高配向かつバラつきの少ない配向を確保することが可能となる。
 更に、バラつきの少ない高配向が実現できる事は、焼結による収縮のバラつきの低減に繋がる。即ち、焼結後の製品形状の均一性が確保できる。その結果、焼結後の外形加工に対する負担が軽減され、特に極異方リング磁石では、磁束密度の単一正弦波変動の確保に繋がる。また、量産の安定性が大きく向上する事が期待できる。
 また、本発明に係るSPMモータ用リング磁石の製造方法によれば、成形体に対して、ロータ表面と接する面にロータ表面に形成された係合部と係合する被係合部を形成するので、係合部と被係合部を係合させることによって、ロータに対する永久磁石の位置ズレの発生を確実に防止することが可能となる。また、グリーンシート成形では、従来の圧粉成形と比較して被係合部を容易に成形でき、成形した被係合部はその後の製造工程で大きな変形を生じることがないので、係合部と被係合部との係合を適切に行わせることが可能となる。
 また、本発明に係るSPMモータ用リング磁石の製造方法によれば、SPMモータのロータは、回転軸に対する断面が多角形形状であって、SPMモータ用リング磁石のリング形状の中空部分をロータの形状と対応する多角形形状とするので、ロータの周囲に永久磁石が挿入された場合に、SPMモータに強いトルクが生じたとしてもロータに対する永久磁石の位置ズレの発生を確実に防止することが可能となる。
 また、本発明に係るSPMモータ用リング磁石の製造方法によれば、グリーンシートの配向方向や積層態様を適宜変更することによって、ラジアル異方性リング磁石又は極異方性リング磁石を容易に製造することが可能となる。また、極異方性リング磁石では、従来に比べて理想的な正弦波形状からなる磁束密度分布を実現することが可能となる。
 また、本発明に係るSPMモータ用リング磁石の製造方法によれば、積層された複数枚のグリーンシートを複雑な形状に切削加工する場合であっても、切削により生じた残余部分をグリーンシートの一部として再生することが可能なので、歩留まりの低下を防止することが可能となる。
 また、本発明に係るSPMモータ用リング磁石の製造方法によれば、ホットプレス焼結により焼結するので、焼結による収縮が均一となることにより、焼結後の反りや凹みなどの変形が生じることを防止できる。その結果、複数の焼結体又は成形体からリング磁石を成形する場合であっても、リング磁石を精度よく製造することが可能となる。
 また、本発明に係るSPMモータ用リング磁石の製造方法によれば、グリーンシートを円弧状に湾曲させた状態で積層することによって、円弧に沿って磁化容易軸を揃えることが容易に可能となる。
 更に、本発明に係るSPMモータの製造方法によれば、従来に比べてモータの高トルク化、小型化、低トルクリプル化、高効率化を実現することが可能となる。
図1は、本発明に係るSPMモータ用リング磁石を示した全体図である。 図2は、SPMモータ用リング磁石を構成する焼結部材を示した図である。 図3は、焼結部材の磁化容易軸方向を示した図である。 図4は、極異方性リング磁石の配向方向と磁束密度分布を示した図である。 図5は、SPMモータ用リング磁石をロータに固定した状態を示した図である。 図6は、SPMモータ用リング磁石を多角形形状からなるロータに固定した状態を示した図である。 図7は、本発明に係るSPMモータ用リング磁石の製造工程を示した説明図である。 図8は、本発明に係るSPMモータ用リング磁石の製造工程の内、特にグリーンシートの成形工程を示した説明図である。 図9は、本発明に係るSPMモータ用リング磁石の製造工程の内、特にグリーンシートの加熱工程及び磁場配向工程を示した説明図である。 図10は、グリーンシートの面内垂直方向に磁場を配向する例について示した図である。 図11は、本発明に係るSPMモータ用リング磁石の製造工程の内、特に仮焼工程の昇温態様について説明した図である。 図12は、本発明に係るSPMモータの製造工程を示した説明図である。 図13は、本発明の効果について説明した図である。 図14は、本発明の効果について説明した図である。 図15は、本発明の効果について説明した図である。 図16は、本発明の効果について説明した図である。 図17は、本発明の変形例について示した図である。 図18は、本発明の変形例について示した図である。 図19は、従来技術の問題点について説明した図である。
 以下、本発明に係るSPMモータ用リング磁石及びSPMモータ用リング磁石の製造方法について具体化した一実施形態について以下に図面を参照しつつ詳細に説明する。
[永久磁石の構成]
 先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示すように本発明に係る永久磁石1は円環形状を有する極異方性リング磁石であり、また、後述のようにSPMモータのロータ表面に固定されるSPMモータ用リング磁石でもある。尚、以下の実施例では永久磁石1を極異方性リング磁石とした例について説明するが、永久磁石1の形状や配向については後述のようにグリーンシートの変形態様、積層態様、切削態様によって適宜変更可能である。例えばラジアル異方性リング磁石とすることも可能である。
 また、本発明に係る永久磁石1はNd-Fe-B系磁石からなる。尚、各成分の含有量はNd:27~40wt%、B:0.8~2wt%、Fe(電解鉄):60~70wt%とする。また、磁気特性向上の為、Dy、Tb、Co、Cu、Al、Si、Ga、Nb、V、Pr、Mo、Zr、Ta、Ti、W、Ag、Bi、Zn、Mg等の他元素を少量含んでも良い。
 また、図2に示すように永久磁石1は複数の扇型形状(セグメント型)の焼結部材2が円環状に組み合わされた後に互いに樹脂等によって固定され、その後、着磁されることによって構成されている。尚、焼結部材2の数は永久磁石1の極数に応じた数となり、例えば永久磁石1の極数を8極とする場合には、図2に示すように8個の焼結部材2から構成される。
 更に、永久磁石1を構成する各焼結部材2は、図2に示すように複数枚のグリーンシート3が積層されることによって形成される。具体的には、グリーンシート3の厚み方向の断面が円弧形状となるように湾曲させた状態で複数枚積層して固定されることによって形成される。グリーンシート3は、例えば0.05mm~10mm(例えば1mm)の厚さを備えた薄膜状のシート部材である。そして、後述のように磁石粉末とバインダーとが混合された混合物(スラリーやコンパウンド)をシート状に成形することによって作製される。
 また、グリーンシート3は、後述のように磁場配向工程において面内方向に配向される。従って、図3に示すように焼結部材2の磁化容易軸(C軸)はグリーンシート3の面内方向に沿って円弧状に形成されることとなり、結果として焼結部材2を組み合わせた永久磁石1の配向は図4に示すような極異方性を有することとなる。
 また、図2に示すようにリング形状を有する永久磁石1の内側面(即ち、SPMモータに固定した際にロータ表面と接する面)には、ロータ表面に形成された係合部と係合する被係合部5が形成される。本実施形態では、被係合部5は凹形状を有する。尚、図2に示す例では、被係合部5は永久磁石1の計4箇所に設けているが、その数は適宜変更可能である。例えば各焼結部材2に1箇所ずつの計8箇所に設けても良いし、2箇所のみに設けても良い。また、被係合部5の形状についてもロータと位置決め可能な形状であれば他の形状としても良い。例えば、楔形や階段形状としても良い。
 そして、図5に示すように永久磁石1がSPMモータのロータ6の表面に固定された場合には、ロータ6の外側面に形成された係合部7と被係合部5が係合することによって、ロータ6に対して永久磁石1が位置決めされる。尚、本実施形態では、被係合部5を凹形状とし、係合部7を凸形状としているが、被係合部5を凸形状とし、係合部7を凹形状としても良い。また、ロータ6に対する永久磁石1の固定は、係合部7と被係合部5の位置を合わせて永久磁石1の中空部分にロータ6を挿入した後に、粘着剤を用いて互いに固定することが望ましい。
 一方で、上記係合部7や被係合部5を形成する代わりに、SPMモータのロータ6の回転軸に対する断面を多角形形状とし、永久磁石1のリング形状の中空部分をロータ6の形状と対応する多角形形状としても良い。尚、多角形の種類は定義変更可能であるが、永久磁石1を構成する焼結部材2の数と同数の頂点を有する形状(例えば、焼結部材2の数が8個であれば8角形)とすれば、永久磁石1を構成する各焼結部材2の形状を同一形状とすることが可能である。
 そして、図6に示すように永久磁石1がSPMモータのロータ6の表面に固定された場合には、ロータ6の多角形形状と永久磁石1の中空部分の形状が一致することによって、ロータ6に対して永久磁石1が位置決めされる。また、図6に示す態様とすれば、SPMモータに強いトルクが生じた場合であっても、剪断破壊等を生じることなく、ロータ6に対して永久磁石1を適切に固定することが可能となる。
 また、本発明では特にグリーンシート成形により永久磁石1を製造する場合において、磁石粉末に混合されるバインダーは、樹脂や長鎖炭化水素や脂肪酸メチルエステルやそれらの混合物等が用いられる。
 更に、バインダーに樹脂を用いる場合には、構造中に酸素原子を含まず、且つ解重合性のあるポリマーを用いるのが好ましい。また、後述のように積層されたグリーンシート3を所望形状(例えば扇型形状)に切削する際や被係合部5を切削する際に生じたグリーンシート3の残余物を再利用する為、及びグリーンシート3を加熱して軟化した状態で磁場配向を行う為に、熱可塑性樹脂が用いられる。具体的には以下の一般式(1)に示されるモノマーから選ばれる1種又は2種以上の重合体又は共重合体からなるポリマーが該当する。
Figure JPOXMLDOC01-appb-C000001
(但し、R1及びR2は、水素原子、低級アルキル基、フェニル基又はビニル基を表す)
 上記条件に該当するポリマーとしては、例えばイソブチレンの重合体であるポリイソブチレン(PIB)、イソプレンの重合体であるポリイソプレン(イソプレンゴム、IR)、1,3-ブタジエンの重合体であるポリブタジエン(ブタジエンゴム、BR)、スチレンの重合体であるポリスチレン、スチレンとイソプレンの共重合体であるスチレン-イソプレンブロック共重合体(SIS)、イソブチレンとイソプレンの共重合体であるブチルゴム(IIR)、スチレンとブタジエンの共重合体であるスチレン-ブタジエンブロック共重合体(SBS)、2-メチル-1-ペンテンの重合体である2-メチル-1-ペンテン重合樹脂、2-メチル-1-ブテンの重合体である2-メチル-1-ブテン重合樹脂、α-メチルスチレンの重合体であるα-メチルスチレン重合樹脂等がある。尚、α-メチルスチレン重合樹脂は柔軟性を与えるために低分子量のポリイソブチレンを添加することが望ましい。また、バインダーに用いる樹脂としては、酸素原子を含むモノマーの重合体又は共重合体(例えば、ポリブチルメタクリレートやポリメチルメタクリレート等)を少量含む構成としても良い。更に、上記一般式(1)に該当しないモノマーが一部共重合していても良い。その場合であっても、本願発明の目的を達成することが可能である。
 尚、バインダーに用いる樹脂としては、磁場配向を適切に行う為に250℃以下で軟化する熱可塑性樹脂、より具体的にはガラス転移点又は融点が250℃以下の熱可塑性樹脂を用いることが望ましい。
 一方、バインダーに長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。具体的には炭素数が18以上である長鎖飽和炭化水素を用いるのが好ましい。そして、後述のようにグリーンシートを磁場配向する際には、グリーンシートを長鎖炭化水素の融点以上で加熱して軟化した状態で磁場配向を行う。
 また、バインダーに脂肪酸エステルを用いる場合においても同様に、室温で固体、室温以上で液体であるステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。そして、後述のようにグリーンシートを磁場配向する際には、グリーンシートを脂肪酸エステルの融点以上で加熱して軟化した状態で磁場配向を行う。
 グリーンシートを作製する際に磁石粉末に混合されるバインダーとして上記条件を満たすバインダーを用いることによって、磁石内に含有する炭素量及び酸素量を低減させることが可能となる。具体的には、焼結後に磁石に残存する炭素量を2000ppm以下、より好ましくは1000ppm以下とする。また、焼結後に磁石に残存する酸素量を5000ppm以下、より好ましくは2000ppm以下とする。
 また、バインダーの添加量は、スラリーや加熱溶融したコンパウンドをシート状に成形する際にシートの厚み精度を向上させる為に、磁石粒子間の空隙を適切に充填する量とする。例えば、磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%~40wt%、より好ましくは2wt%~30wt%、更に好ましくは3wt%~20wt%とする。
[永久磁石の製造方法]
 次に、本発明に係る永久磁石1の製造方法について図7を用いて説明する。図7は本実施形態に係る永久磁石1の製造工程を示した説明図である。
 先ず、所定分率のNd-Fe-B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。それによって、粗粉砕磁石粉末10を得る。
 次いで、粗粉砕磁石粉末10をビーズミル11による湿式法又はジェットミルを用いた乾式法等によって微粉砕する。例えば、ビーズミル11による湿式法を用いた微粉砕では溶媒中で粗粉砕磁石粉末10を所定範囲の粒径(例えば0.1μm~5.0μm)に微粉砕するとともに溶媒中に磁石粉末を分散させる。その後、湿式粉砕後の溶媒に含まれる磁石粉末を真空乾燥などで乾燥させ、乾燥した磁石粉末を取り出す。また、粉砕に用いる溶媒の種類に特に制限はなく、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、酢酸エチル等のエステル類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなど芳香族類、ケトン類、それらの混合物等が使用できる。尚、好ましくは、溶媒中に酸素原子を含まない溶媒が用いられる。
 一方、ジェットミルによる乾式法を用いた微粉砕では、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001~0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミルにより微粉砕し、所定範囲の粒径(例えば0.7μm~5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。
 次に、ビーズミル11等で微粉砕された磁石粉末を所望形状に成型する。尚、磁石粉末の成形には、磁石粉末とバインダーとを混合した混合物を成形することにより行う。以下の実施例では、混合物を一旦最終製品形状以外に成形して磁場配向を行い、その後に打ち抜き加工、切削加工、変形加工等を行うことによって最終製品形状とする。特に、以下の実施例では混合物をシート形状(以下、グリーンシートという)に一旦成形した後に最終製品形状へと加工する。また、混合物を特にシート形状に成形する場合には、例えば磁石粉末とバインダーとが混合したコンパウンドを加熱した後にシート形状に成形するホットメルト塗工や、磁石粉末とバインダーと有機溶媒とを含むスラリーを基材上に塗工することによりシート状に成形するスラリー塗工等による成形がある。
 以下では、特にホットメルト塗工を用いたグリーンシート成形について説明する。
 先ず、ビーズミル11等で微粉砕された磁石粉末にバインダーを混合することにより、磁石粉末とバインダーからなる粉末状の混合物(コンパウンド)12を作製する。ここで、バインダーとしては、上述したように樹脂や長鎖炭化水素や脂肪酸エステルやそれらの混合物等が用いられる。例えば、樹脂を用いる場合には構造中に酸素原子を含まず、且つ解重合性のあるポリマーからなる熱可塑性樹脂を用い、一方、長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。また、脂肪酸エステルを用いる場合には、ステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。また、バインダーの添加量は、上述したように添加後のコンパウンド12における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%~40wt%、より好ましくは2wt%~30wt%、更に好ましくは3wt%~20wt%となる量とする。
 また、上記コンパウンド12には、後に行われる磁場配向工程での配向度を向上させる為に配向を助長する添加剤を添加しても良い。配向を助長する添加剤としては例えば炭化水素系の添加剤が用いられ、特に極性を有する(具体的には酸解離定数pKaが41未満の)添加剤を用いるのが望ましい。また、添加剤の添加量は磁石粉末の粒子径に依存し、磁石粉末の粒子径が小さい程、添加量を多くする必要がある。具体的な添加量としては、磁石粉末に対して0.1部~10部、より好ましくは1部~8部とする。そして、磁石粉末に添加された添加剤は、磁石粒子の表面に付着し、後述の磁場配向処理において、磁石粒子の回動を補助する役目を有する。その結果、磁場を印加した際に配向が容易に行われ、磁石粒子の磁化容易軸方向を同一方向に揃えること(即ち、配向度を高くすること)が可能となる。特に、磁石粉末にバインダーを添加する場合には、粒子表面にバインダーが存在するため、配向時の摩擦力が上がり、粒子の配向性が低下する為、添加剤を添加する効果がより大きくなる。
 尚、バインダーの添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。尚、磁石粉末とバインダーの混合は、例えば磁石粉末とバインダーをそれぞれ攪拌機に投入し、攪拌機で攪拌することにより行う。また、混練性を促進する為に加熱攪拌を行っても良い。また、磁石粉末とバインダーの混合は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行うことが望ましい。また、特に磁石粉末を湿式法で粉砕した場合においては、粉砕に用いた溶媒から磁石粉末を取り出すことなくバインダーを溶媒中に添加して混練し、その後に溶媒を揮発させ、後述のコンパウンド12を得る構成としても良い。
 続いて、コンパウンド12をシート状に成形することによりグリーンシートを作成する。特に、ホットメルト塗工では、コンパウンド12を加熱することによりコンパウンド12を溶融し、流体状にしてからセパレータ等の支持基材13上に塗工する。その後、放熱して凝固させることにより、支持基材13上に長尺シート状のグリーンシート14を形成する。尚、コンパウンド12を加熱溶融する際の温度は、用いるバインダーの種類や量によって異なるが50~300℃とする。但し、用いるバインダーの融点よりも高い温度とする必要がある。尚、スラリー塗工を用いる場合には、多量の有機溶媒中に磁石粉末とバインダー(更に配向を助長する添加剤を含めても良い)を分散させ、スラリーをセパレータ等の支持基材13上に塗工する。その後、乾燥して有機溶媒を揮発させることにより、支持基材13上に長尺シート状のグリーンシート14を形成する。
 ここで、溶融したコンパウンド12の塗工方式は、スロットダイ方式やカレンダーロール方式等の層厚制御性に優れる方式を用いることが好ましい。特に、高い厚み精度を実現する為には、特に層厚制御性に優れた(即ち、基材の表面に高精度の厚さの層を塗工できる方式)であるダイ方式やコンマ塗工方式を用いることが望ましい。例えば、スロットダイ方式では、加熱して流体状にしたコンパウンド12をギアポンプにより押し出してダイに挿入することにより塗工を行う。また、カレンダーロール方式では、加熱した2本ロールのギャップにコンパウンド12を一定量仕込み、ロールを回転させつつ支持基材13上にロールの熱で溶融したコンパウンド12を塗工する。また、支持基材13としては、例えばシリコーン処理ポリエステルフィルムを用いる。更に、消泡剤を用いたり、加熱真空脱泡を行うこと等によって展開層中に気泡が残らないよう充分に脱泡処理することが好ましい。また、支持基材13上に塗工するのではなく、押出成型や射出成形によって溶融したコンパウンド12をシート状に成型するとともに支持基材13上に押し出すことによって、支持基材13上にグリーンシート14を成形する構成としても良い。
 以下に、図8を用いて特にスロットダイ方式によるグリーンシート14の形成工程についてより詳細に説明する。図8はスロットダイ方式によるグリーンシート14の形成工程を示した模式図である。
 図8に示すようにスロットダイ方式に用いられるダイ15は、ブロック16、17を互いに重ね合わせることにより形成されており、ブロック16、17との間の間隙によってスリット18やキャビティ(液溜まり)19を形成する。キャビティ19はブロック17に設けられた供給口20に連通される。そして、供給口20はギアポンプ(図示せず)等によって構成される塗布液の供給系へと接続されており、キャビティ19には供給口20を介して、計量された流体状のコンパウンド12が定量ポンプ等により供給される。更に、キャビティ19に供給された流体状のコンパウンド12はスリット18へ送液されて単位時間一定量で幅方向に均一な圧力でスリット18の吐出口21から予め設定された塗布幅により吐出される。一方で、支持基材13はコーティングロール22の回転に伴って予め設定された速度で連続搬送される。その結果、吐出した流体状のコンパウンド12が支持基材13に対して所定厚さで塗布され、その後、放熱して凝固することにより支持基材13上に長尺シート状のグリーンシート14が成形される。
 また、スロットダイ方式によるグリーンシート14の形成工程では、塗工後のグリーンシート14のシート厚みを実測し、実測値に基づいてダイ15と支持基材13間のギャップDをフィードバック制御することが望ましい。また、ダイ15に供給する流体状のコンパウンド12の量の変動は極力低下させ(例えば±0.1%以下の変動に抑える)、更に塗工速度の変動についても極力低下させる(例えば±0.1%以下の変動に抑える)ことが望ましい。それによって、グリーンシート14の厚み精度を更に向上させることが可能である。尚、形成されるグリーンシート14の厚み精度は、設計値(例えば1mm)に対して±10%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。尚、他方のカレンダーロール方式では、カレンダー条件を同様に実測値に基づいて制御することで、支持基材13へのコンパウンド12の転写膜厚を制御することが可能である。
 尚、グリーンシート14の設定厚みは、0.05mm~20mmの範囲で設定することが望ましい。厚みを0.05mmより薄くすると、多層積層しなければならないので生産性が低下することとなる。
 次に、上述したホットメルト塗工によって支持基材13上に形成されたグリーンシート14の磁場配向を行う。具体的には、先ず支持基材13とともに連続搬送されるグリーンシート14を加熱することによりグリーンシート14を軟化させる。具体的には、グリーンシート14の粘度が1~1500Pa・s、より好ましくは1~500Pa・sとなるまで軟化させる。それによって、磁場配向を適切に行わせることが可能となる。
尚、グリーンシート14を加熱する際の温度及び時間は、用いるバインダーの種類や量によって異なるが、例えば100~250℃で0.1~60分とする。但し、グリーンシート14を軟化させる為に、用いるバインダーのガラス転移点又は融点以上の温度とする必要がある。また、グリーンシート14を加熱する加熱方式としては、例えばホットプレートによる加熱方式や熱媒体(シリコーンオイル)を熱源に用いた加熱方式が有る。次に、加熱により軟化したグリーンシート14の面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行う。印加する磁場の強さは5000[Oe]~150000[Oe]、好ましくは、10000[Oe]~120000[Oe]とする。その結果、グリーンシート14に含まれる磁石結晶のC軸(磁化容易軸)が一方向に配向される。尚、磁場を印加する方向としてはグリーンシート14の面内方向且つ幅方向に対して磁場を印加することとしても良い。また、複数枚のグリーンシート14に対して同時に磁場を配向させる構成としても良い。
 更に、グリーンシート14に磁場を印加する際には、加熱工程と同時に磁場を印加する工程を行う構成としても良いし、加熱工程を行った後であってグリーンシートが凝固する前に磁場を印加する工程を行うこととしても良い。また、ホットメルト塗工により塗工されたグリーンシート14が凝固する前に磁場配向する構成としても良い。その場合には、加熱工程は不要となる。
 次に、図9を用いてグリーンシート14の加熱工程及び磁場配向工程についてより詳細に説明する。図9はグリーンシート14の加熱工程及び磁場配向工程を示した模式図である。尚、図9に示す例では、加熱工程と同時に磁場配向工程を行う例について説明する。
 図9に示すように、上述したスロットダイ方式により塗工されたグリーンシート14に対する加熱及び磁場配向は、ロールによって連続搬送された状態の長尺シート状のグリーンシート14に対して行う。即ち、加熱及び磁場配向を行う為の装置を塗工装置(ダイ等)の下流側に配置し、上述した塗工工程と連続した工程により行う。
 具体的には、ダイ15やコーティングロール22の下流側において、搬送される支持基材13及びグリーンシート14がソレノイド25内を通過するようにソレノイド25を配置する。更に、ホットプレート26をソレノイド25内においてグリーンシート14に対して上下一対に配置する。そして、上下一対に配置されたホットプレート26によりグリーンシート14を加熱するとともに、ソレノイド25に電流を流すことによって、長尺シート状のグリーンシート14の面内方向(即ち、グリーンシート14のシート面に平行な方向)で且つ長さ方向に磁場を生じさせる。それによって、連続搬送されるグリーンシート14を加熱により軟化させるとともに、軟化したグリーンシート14の面内方向且つ長さ方向(図9の矢印27方向)に対して磁場を印加し、グリーンシート14に対して適切に均一な磁場を配向させることが可能となる。特に、磁場を印加する方向を面内方向とすることによって、グリーンシート14の表面が逆立つことを防止できる。
 また、磁場配向した後に行うグリーンシート14の放熱及び凝固は、搬送状態で行うことが好ましい。それによって、製造工程をより効率化することが可能となる。
 尚、磁場配向をグリーンシート14の面内方向且つ幅方向に対して行う場合には、ソレノイド25の代わりに搬送されるグリーンシート14の左右に一対の磁場コイルを配置するように構成する。そして、各磁場コイルに電流を流すことによって、長尺シート状のグリーンシート14の面内方向で且つ幅方向に磁場を生じさせることが可能となる。
 また、磁場配向をグリーンシート14の面に対して垂直方向とすることも可能である。磁場配向をグリーンシート14の面に対して垂直方向に対して行う場合には、例えばポールピース等を用いた磁場印加装置により行う。具体的には、図10に示すようにポールピース等を用いた磁場印加装置30は、中心軸が同一になるように平行配置された2つのリング状のコイル部31、32と、コイル部31、32のリング孔にそれぞれ配置された2つの略円柱状のポールピース33、34とを有し、搬送されるグリーンシート14に対して所定間隔離間されて配置される。そして、コイル部31、32に電流を流すことにより、グリーンシート14の面に対して垂直方向に磁場を生成し、グリーンシート14の磁場配向を行う。尚、磁場配向方向をグリーンシート14の面に対して垂直方向とする場合には、図10に示すようにグリーンシート14に対して支持基材13が積層された反対側の面にもフィルム35を積層することが好ましい。それによって、グリーンシート14の表面の逆立ちを防止することが可能となる。
 また、上述したホットプレート26による加熱方式の代わりに熱媒体(シリコーンオイル)を熱源とした加熱方式を用いても良い。
 ここで、ホットメルト成形を用いずに一般的なスロットダイ方式やドクターブレード方式等によりスラリー等の流動性の高い液状物によってグリーンシート14を成形した場合には、磁場の勾配が生じているところにグリーンシート14が搬入されると、磁場が強い方にグリーンシート14に含まれる磁石粉末が引き寄せられることとなり、グリーンシート14を形成するスラリーの液寄り、即ち、グリーンシート14の厚みの偏りが生じる虞がある。それに対して、本発明のようにコンパウンド12をホットメルト成形によりグリーンシート14に成形する場合には、室温付近での粘度は数万~数十万Pa・sに達し、磁場勾配通過時の磁性粉末の寄りが生じることが無い。更に、均一磁場中に搬送され、加熱されることでバインダーの粘度低下が生じ、均一磁場中の回転トルクのみで、一様なC軸配向が可能となる。
 また、ホットメルト成形を用いずに一般的なスロットダイ方式やドクターブレード方式等により有機溶媒を含むスラリー等の流動性の高い液状物によってグリーンシート14を成形した場合には、厚さ1mmを越えるシートを作成しようとすると乾燥時においてスラリー等に含まれる有機溶媒が気化することによる発泡が課題となる。更に、発泡を抑制する為に乾燥時間を長時間化すれば、磁石粉末の沈降が生じ、それに伴って重力方向に対する磁石粉末の密度分布の偏りが生じ、焼成後の反りの原因となる。従って、スラリーからの成形では、厚みの上限値が実質上規制される為、1mm以下の厚みでグリーンシートを成形し、その後に積層する必要がある。しかし、その場合にはバインダー同士の絡まり合いが乏しくなり、その後の脱バインダー工程(仮焼処理)で層間剥離を生じ、それがC軸(磁化容易軸)配向性の低下、即ち残留磁束密度(Br)の低下原因となる。それに対して、本発明のようにコンパウンド12をホットメルト成形によりグリーンシート14に成形する場合には、有機溶媒を含まないので、厚さ1mmを越えるシートを作成した場合でも上述したような発泡の懸念が解消する。そして、バインダーが十分に絡まり合った状態にあるので、脱バインダー工程での層間剥離が生じる虞が無い。
 また、複数枚のグリーンシート14に対して同時に磁場を印加させる場合には、例えばグリーンシート14を複数枚(例えば6枚)積層した状態で連続搬送し、積層したグリーンシート14がソレノイド25内を通過するように構成する。それによって生産性を向上させることが可能となる。
 続いて、磁場配向を行ったグリーンシート14を加工の行い易い一定のサイズにカットした後に、最終的な製品で要求される磁化容易軸の方向に応じてグリーンシート14を変形させる。更に、同形状に変形させた複数枚のグリーンシート14を積層し、樹脂などで互いに固定する。例えば、図1及び図2に示す極異方性リング磁石を製造する際には、面内方向に磁場配向されたグリーンシート14を厚み方向の断面が円弧形状となるように湾曲させ、積層する。一方、ラジアル異方性リング磁石を製造する場合には、グリーンシートの面に対して垂直方向に磁場配向し、バームクーヘン形状でリングの円孤に沿って湾曲させて積層する。また、グリーンシートの面内方向に磁場配向し、リング形状の厚さ方向にグリーンシートを積層させても良い。
 尚、グリーンシート14を変形した後に積層しても良いし、積層した後に変形させても良い。また、グリーンシート14を変形させる際には、変形し易いようにグリーンシート14を加熱しても良い。また、変形方向は図7に示すようなグリーンシート14の厚さ方向でも良いし、面内方向としても良い。
 次に、グリーンシート14の積層体を切削することによって成形体40を成形する。尚、成形体40の形状は最終的な製品形状によって異なるが、例えば、図1及び図2に示す極異方性リング磁石を製造する際には、図7に示す扇型形状とする。また、扇型形状の内側面には被係合部5を同じく切削して成形する。尚、グリーンシート14の面内方向に磁場配向させた場合には、積層されたグリーンシート14の面内方向が磁化容易軸の方向に対応するので、最終的な製品で要求される磁化容易軸の方向を考慮して切削する必要がある。例えば、極異方性リング磁石を製造する際には、扇型形状の外周側を中心とした円弧状にグリーンシート14が積層されるように切削する。
 尚、図6に示すようにリング形状の中空部分をロータ6の形状と対応する多角形形状とする場合には、リング形状とした場合に中空部分が該多角形形状となるように成形体40を成形する。
 また、グリーンシート14の積層体を切削する工程によって生じたグリーンシート14の残余部分については、バインダーの融点以上に加熱することによって溶融されたコンパウンド12として再利用することが可能である。その結果、再利用された残余部分は、グリーンシート14の一部として再生されることとなる。従って、複雑な形状に切削加工した場合であっても、歩留まりを低下させることが無い。
 続いて、成形された成形体40を大気圧、又は大気圧より高い圧力や低い圧力(例えば、1.0Paや1.0MPa)に加圧した非酸化性雰囲気(特に本発明では水素雰囲気又は水素と不活性ガスの混合ガス雰囲気)においてバインダー分解温度(配向を助長する添加剤を添加していた場合には該添加剤の熱分解温度以上の条件も満たす温度)で数時間~数十時間(例えば5時間)保持することにより仮焼処理を行う。水素雰囲気下で行う場合には、例えば仮焼中の水素の供給量は5L/minとする。仮焼処理を行うことによって、バインダー等の有機化合物を解重合反応等によりモノマーに分解し飛散させて除去することが可能となる。即ち、成形体40中の炭素量を低減させる所謂脱カーボンが行われることとなる。また、仮焼処理は、成形体40中の炭素量が2000ppm以下、より好ましくは1000ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。また、上述した仮焼処理を行う際の加圧条件を大気圧より高い圧力で行う場合には、15MPa以下とすることが望ましい。尚、加圧条件は大気圧より高い圧力、より具体的には0.2MPa以上とすれば特に炭素量軽減の効果が期待できる。
 尚、バインダー分解温度は、バインダー分解生成物および分解残渣の分析結果に基づき決定する。具体的にはバインダーの分解生成物を補集し、モノマー以外の分解生成物が生成せず、かつ残渣の分析においても残留するバインダー成分の副反応による生成物が検出されない温度範囲が選ばれる。バインダーの種類により異なるが200℃~900℃、より好ましくは400℃~600℃(例えば450℃)とする。
 また、上記仮焼処理は、一般的な磁石の焼結を行う場合と比較して、昇温速度を小さくするのが好ましい。具体的には、昇温速度を2℃/min以下(例えば1.5℃/min)とする。従って、仮焼処理を行う場合には、図11に示すように2℃/min以下の所定の昇温速度で昇温し、予め設定された設定温度(バインダー分解温度)に到達した後に、該設定温度で数時間~数十時間保持することにより仮焼処理を行う。上記のように仮焼処理において昇温速度を小さくすることによって、成形体40中の炭素が急激に除去されず、段階的に除去されるので、焼結後の永久磁石の密度を上昇させる(即ち、永久磁石中の空隙を減少させる)ことが可能となる。そして、昇温速度を2℃/min以下とすれば、焼結後の永久磁石の密度を95%以上とすることができ、高い磁石特性が期待できる。
 また、仮焼処理によって仮焼された成形体40を続いて真空雰囲気で保持することにより脱水素処理を行っても良い。脱水素処理では、仮焼処理によって生成された成形体40中のNdH(活性度大)を、NdH(活性度大)→NdH(活性度小)へと段階的に変化させることによって、仮焼処理により活性化された成形体40の活性度を低下させる。それによって、仮焼処理によって仮焼された成形体40をその後に大気中へと移動させた場合であっても、Ndが酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。また、磁石結晶の構造をNdH等からNdFe14B構造へと戻す効果も期待できる。
 続いて、仮焼処理によって仮焼された成形体40を焼結する焼結処理を行う。尚、成形体40の焼結方法としては、一般的な真空焼結以外に成形体40を加圧した状態で焼結する加圧焼結等も用いることが可能である。例えば、真空焼結で焼結を行う場合には、所定の昇温速度で800℃~1080℃程度の焼成温度まで昇温し、0.1~2時間程度保持する。この間は真空焼成となるが真空度としては5Pa以下、好ましくは10-2Pa以下とすることが好ましい。その後冷却し、再び300℃~1000℃で2時間熱処理を行う。そして、焼結の結果、焼結体が製造される。
 一方、加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、焼結時の磁石粒子の粒成長を抑制するとともに焼結後の磁石に生じる反りを抑える為に、一軸方向に加圧する一軸加圧焼結を用いることが好ましい。例えば、ホットプレス焼結を用いる。尚、加圧焼結をする際の加圧方向は、磁場を印加した方向(例えばグリーンシートの面内方向且つ長さ方向)に対して垂直方向とすることが好ましい。即ち、磁場配向処理によって配向された磁石粒子のC軸(磁化容易軸)方向と垂直方向に加圧することとなる。また、加圧焼結で焼結を行う場合には、加圧値を例えば0.01MPa~100MPaとし、数Pa以下の真空雰囲気で940℃まで10℃/分で上昇させ、その後5分保持することが好ましい。その後冷却し、再び300℃~1000℃で2時間熱処理を行う。そして、焼結の結果、焼結体が製造される。
 その後、図12に示すように複数の焼結体を円環状に組み合わせた後に互いに樹脂等によって固定し、リング形状の焼結体41を形成する。尚、焼結される前の成形体40を円環状に組み合わせ、リンク形状とした後に焼結し、焼結体41を形成しても良い。
 その後、焼結体41の中空部分にロータ6を挿入する。尚、ロータ6を挿入する際には、ロータ6に形成された係合部7と、焼結体41に形成された被係合部5とを係合させた状態で挿入する。また、挿入されたロータ6と焼結体41は粘着剤等により互いに固定する。尚、焼結体41をリング形状にしてからロータ6と固定するのではなく、ロータ6の表面に固定すると同時にリング形状に形成することとしても良い。
 尚、図6に示すようにリング形状の中空部分をロータ6の形状と対応する多角形形状とする場合には、多角形形状を互いに合わせた状態でロータ6の周囲に永久磁石1を挿入する。
 その後、極異方性となるようにC軸に沿って着磁を行う。その結果、極異方性の永久磁石1がロータ6の表面に配置されたSPMモータを製造することが可能となる。尚、永久磁石1の着磁には、例えば着磁コイル、着磁ヨーク、コンデンサー式着磁電源装置等が用いられる。また、ラジアル異方性の永久磁石1を製造する場合には、ラジアル異方性となるようにC軸に沿って着磁を行う。
 その後、シャフト42やステータ43等のロータ6以外の部材を組み付けることによりSPMモータ45が製造される。
 そして、上記製造方法によって作成された極異方性の永久磁石1では、磁束密度分布を図4に示す理想的な正弦波形状に近づけることが可能となる。一方、従来の磁石の製法では理想的な正弦波形状に近づけるのは限界があり、図13に示すような略台形形状の分布となっていた。ここで、図14に示すように略台形形状と正弦波形状との間にある磁束部分は、例えば極異方リング磁石をSPMモータに用いた場合には、トルクに寄与しない部分となる。従って、モータの効率が低下する原因となっていた。
 また、従来では圧粉成形による成形中に磁場を印加するので、図15に示すように配向後に付加された圧力によって磁石粒子が回動し、各粒子の磁化容易軸が同一方向とならず、配向度が低下する問題もあった。更に、圧粉成形では、配向の不十分さ、不均一性から、ロット毎に焼結による収縮率がバラつきが生じ、焼結による収縮を考慮した金型設計が精度良くできない問題もあった。ここで、一般的に磁石の成形では、焼結による収縮を考慮して焼結前の成形体の成形を行う必要がある。例えば、図16に示すように最終製品形状を円環形状とする場合に、初めから円環形状のキャビティを用いて圧粉成形すると、焼結による収縮によって焼結後に円環形状とならない。従って、焼結による収縮を予め考慮してキャビティの形状を設計する必要があるが、ロット毎に焼結による収縮率にバラつきが生じると、その設計が精度良くできない。その結果、焼結後の製品形状が不均一となり、焼結後に外形加工の工程が新たに生じる等の問題があった。
 それに対して本願発明では、グリーンシート成形を用いるので、圧粉成形等を用いる場合と比較して、配向後に磁石粒子が回動することも無く、配向度についても向上させることが可能となる。
 また、グリーンシート成形では、電流のターン数を利用できるため磁場配向を行う際の磁場強度を大きく確保することができ、且つ静磁場で長時間の磁場印加を施せるので、バラつきの少ない高い配向度を実現することが可能となる。そして、配向後に配向方向を加工することによって、高配向かつバラつきの少ない配向を確保することが可能となる。
 更に、バラつきの少ない高配向が実現できる事は、焼結による収縮のバラつきの低減に繋がる。即ち、焼結後の製品形状の均一性が確保できる。その結果、焼結後の外形加工に対する負担が軽減され、特に極異方リング磁石では、磁束密度の単一正弦波変動の確保に繋がる。また、量産の安定性が大きく向上する事が期待できる。
 以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、磁石原料を磁石粉末に粉砕し、粉砕された磁石粉末とバインダーとを混合することによりコンパウンド12を生成する。そして、生成したコンパウンド12をホットメルト成形によって支持基材13上にシート状に成形したグリーンシート14を作製する。その後、成形したグリーンシート14に対して磁場を印加することにより磁場配向を行う。更に、磁場配向後のグリーンシート14を変形させた状態で複数枚積層して固定するとともに、該積層した複数枚のグリーンシートを扇型形状に切削して成形し、円環状に接続することによってリング形状とし、その後、焼結することにより永久磁石1を製造する。その結果、積層した複数枚のグリーンシートを切削した成形体を組み合わせることによってリング形状を製造するので、任意の方向(例えば、極異方やラジアル方向)に磁化容易軸を揃えた大型のリング磁石を容易に製造することが可能となる。特に、極異方性磁石等の複雑な形状に磁化容易軸を揃える必要のある異方性磁石であっても、磁場配向の工程を簡略化することが可能となる。また、グリーンシート成形を用いるので、圧粉成形等を用いる場合と比較して、配向後に磁石粒子が回動することも無く、配向度についても向上させることが可能となる。また、永久磁石をリング形状としてロータに固定するので、従来のように永久磁石をロータ表面に張り付けて固定する場合と比較して、SPMモータのロータに対して適切に固定することが可能であり、位置ズレも防止することが可能となる。従って、SPMモータの高出力化、高効率化、低トルクリプル化を実現することが可能となる。
 また、グリーンシート成形では、電流のターン数を利用できるため磁場配向を行う際の磁場強度を大きく確保することができ、且つ静磁場で長時間の磁場印加を施せるので、バラつきの少ない高い配向度を実現することが可能となる。そして、配向後に配向方向を加工することによって、高配向かつバラつきの少ない配向を確保することが可能となる。
 更に、バラつきの少ない高配向が実現できる事は、焼結による収縮のバラつきの低減に繋がる。即ち、焼結後の製品形状の均一性が確保できる。その結果、焼結後の外形加工に対する負担が軽減され、特に極異方リング磁石では、磁束密度の単一正弦波変動の確保に繋がる。また、量産の安定性が大きく向上する事が期待できる。
 また、成形体に対して、ロータ表面と接する面にロータ表面に形成された係合部7と係合する被係合部5を形成するので、係合部7と被係合部5を係合させることによって、ロータに対する永久磁石1の位置ズレの発生を確実に防止することが可能となる。また、グリーンシート成形では、従来の圧粉成形と比較して被係合部5を容易に成形でき、成形した被係合部5はその後の製造工程で大きな変形を生じることがないので、係合部7と被係合部5との係合を適切に行わせることが可能となる。
 また、被係合部5や係合部7を設ける代わりに、SPMモータのロータの回転軸に対する断面を多角形形状とし、永久磁石1のリング形状の中空部分をロータの形状と対応する多角形形状とすれば、ロータの周囲に永久磁石1が挿入された場合に、SPMモータに強いトルクが生じたとしてもロータに対する永久磁石1の位置ズレの発生を確実に防止することが可能となる。
 また、グリーンシートの配向方向や積層態様を適宜変更することによって、ラジアル異方性リング磁石又は極異方性リング磁石を容易に製造することが可能となる。また、極異方性リング磁石では、従来に比べて理想的な正弦波形状からなる磁束密度分布を実現することが可能となる。
 また、積層された複数枚のグリーンシートを複雑な形状に切削加工する場合であっても、切削により生じた残余部分をグリーンシートの一部として再生することが可能なので、歩留まりの低下を防止することが可能となる。
 また、ホットプレス焼結により焼結するので、焼結による収縮が均一となることにより、焼結後の反りや凹みなどの変形が生じることを防止できる。その結果、複数の焼結体又は成形体からリング磁石を成形する場合であっても、リング磁石を精度よく製造することが可能となる。
 また、グリーンシートを円弧状に湾曲させた状態で積層することによって、円弧に沿って磁化容易軸を揃えることが容易に可能となる。
 また、上記永久磁石をロータ表面に配置したSPMモータによれば、従来に比べてモータの高トルク化、小型化、低トルクリプル化、高効率化を実現することが可能となる。
 尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
 例えば、磁石粉末の粉砕条件、混練条件、磁場配向工程、積層条件、切削条件、仮焼条件、焼結条件などは上記実施例に記載した条件に限られるものではない。例えば、上記実施例ではビーズミルを用いた湿式粉砕により磁石原料を粉砕しているが、ジェットミルによる乾式粉砕により粉砕することとしても良い。また、上記実施例では、スロットダイ方式によりグリーンシートを形成しているが、他の方式(例えばカレンダーロール方式、コンマ塗工方式、押出成型、射出成型、金型成型、ドクターブレード方式等)を用いてグリーンシートを形成しても良い。但し、流体状のコンパウンドを基材上に高精度に成形することが可能な方式を用いることが望ましい。また、仮焼を行う際の雰囲気は非酸化性雰囲気であれば水素雰囲気以外(例えば窒素雰囲気、He雰囲気等、Ar雰囲気等)で行っても良い。また、仮焼処理を省略しても良い。その場合には、焼結処理の過程で脱炭素が行われることとなる。
 また、上記実施例では、グリーンシートの変形方向はグリーンシートの厚さ方向としているが、面内方向としても良い。その結果、例えば図17に示すようにグリーンシートの面内方向に対して磁化容易軸が湾曲して配列された薄膜の永久磁石を製造することも可能である。また、図18に示すようにグリーンシートを円筒状に変形させることによって、接線方向に磁化容易軸を揃えた円筒状の永久磁石を製造することも可能である。更に、波打ち形状の永久磁石を製造することも可能である。また、上記実施例では、グリーンシートを積層した後に切削加工することによって成形体40を成形することとしているが、図17や図18のような薄膜形状の永久磁石を製造する場合には積層工程を行わずに、1枚のグリーンシートから成形体を成形することとしても良い。
 更に、上記実施例では、極異方性リング磁石を製造する為に積層されたグリーンシートを切削して扇型形状(セグメント型)に成形することとしているが、用途によって成形する形状は様々に変更することが可能である。例えば、蒲鉾型形状、台形形状、直方体形状等に成形することとしても良い。それにより、IPMモータ等に形成されたスロット(収容部)に収容する為の永久磁石を製造することも可能である。
 また、上記実施例では、磁石粉末を成形した後に水素雰囲気又は水素と不活性ガスの混合ガス雰囲気において仮焼を行っているが、成形前の磁石粉末に対して仮焼処理を行い、仮焼体である磁石粉末を成形体に成形し、その後に焼結を行うことによって永久磁石を製造することとしても良い。このような構成とすれば、粉末状の磁石粒子に対して仮焼を行うので、成形後の磁石粒子に対して仮焼を行う場合と比較して、仮焼対象となる磁石の表面積を大きくすることができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。但し、バインダーを仮焼処理で熱分解させる為に、成形後に仮焼処理を行うことが望ましい。
 また、上記実施例では、グリーンシート14の加熱工程と磁場配向工程とを同時に行うこととしているが、加熱工程を行った後であってグリーンシート14が凝固する前に磁場配向工程を行っても良い。また、塗工されたグリーンシート14が凝固する前(即ち、加熱工程を行わなくてもグリーンシート14が既に軟化された状態)に磁場配向を行う場合には、加熱工程を省略しても良い。
 また、上記実施例では、スロットダイ方式による塗工工程と加熱工程と磁場配向工程とを連続した一連の工程により行っているが、連続した工程により行わないように構成しても良い。また、塗工工程までの第1工程と、加熱工程以降の第2工程とに分けて、夫々連続した工程により行うこととしても良い。その場合には、塗工されたグリーンシート14を所定長さに切断し、静止した状態のグリーンシート14に対して加熱及び磁場印加を行うことにより磁場配向を行うように構成することが可能である。
 また、本発明ではNd-Fe-B系磁石を例に挙げて説明したが、他の磁石(例えばサマリウム系コバルト磁石、アルニコ磁石、フェライト磁石等)を用いても良い。また、磁石の合金組成は本発明ではNd成分を量論組成より多くしているが、量論組成としても良い。
  1     永久磁石
  2     焼結部材
  5     被係合部
  6     ロータ
  7     係合部
  11    ジェットミル
  12    コンパウンド
  13    支持基材
  14    グリーンシート
  15    ダイ
  25    ソレノイド
  26    ホットプレート
  37    加熱装置
  40    成形体
  41    焼結体
  45    SPMモータ

Claims (16)

  1.  磁石原料を磁石粉末に粉砕する工程と、
     前記粉砕された磁石粉末とバインダーとが混合された混合物を生成する工程と、
     前記混合物をシート状に成形し、グリーンシートを作製する工程と、
     前記グリーンシートに対して磁場を印加することにより磁場配向する工程と、
     磁場配向された前記グリーンシートを変形させた状態で複数枚積層して固定するとともに、該積層した複数枚の前記グリーンシートを扇型形状に切削した成形体を成形する工程と、
     前記成形体を焼成温度で保持することにより焼結する工程と、により製造され、
     前記焼結工程によって焼結された複数の焼結体又は前記焼結工程によって焼結される前の複数の前記成形体を、円環状に接続することによってリング形状とし、
     SPMモータのロータ表面に配置されることを特徴とするSPMモータ用リング磁石。
  2.  前記成形体は、前記ロータ表面と接する面に前記ロータ表面に形成された係合部と係合する被係合部が形成されていることを特徴とする請求項1に記載のSPMモータ用リング磁石。
  3.  前記SPMモータのロータは、回転軸に対する断面が多角形形状であって、
     前記リング形状の中空部分を前記ロータの形状と対応する多角形形状とすることを特徴とする請求項1に記載のSPMモータ用リング磁石。
  4.  ラジアル異方性リング磁石又は極異方性リング磁石であることを特徴とする請求項1乃至請求項3のいずれかに記載のSPMモータ用リング磁石。
  5.  前記バインダーは熱可塑性樹脂からなり、
     前記成形体を成形する工程によって生じた前記グリーンシートの残余を加熱することにより、該残余を前記混合物へと再利用することを特徴とする請求項1乃至請求項4のいずれかに記載のSPMモータ用リング磁石。
  6.  前記焼結工程では、ホットプレス焼結により焼結することを特徴とする請求項1乃至請求項5のいずれかに記載のSPMモータ用リング磁石。
  7.  前記磁場配向する工程では、前記グリーンシートの面内方向に配向し、
     前記成形体を成形する工程では、磁場配向された前記グリーンシートを厚み方向の断面が円弧形状となるように湾曲させた状態で複数枚積層して固定することを特徴とする請求項1乃至請求項6のいずれかに記載のSPMモータ用リング磁石。
  8.  請求項1乃至請求項7のいずれかに記載のSPMモータ用リング磁石をロータ表面に配置したことを特徴とするSPMモータ。
  9.  磁石原料を磁石粉末に粉砕する工程と、
     前記粉砕された磁石粉末とバインダーとが混合された混合物を生成する工程と、
     前記混合物をシート状に成形し、グリーンシートを作製する工程と、
     前記グリーンシートに対して磁場を印加することにより磁場配向する工程と、
     磁場配向された前記グリーンシートを変形させた状態で複数枚積層して固定するとともに、該積層した複数枚の前記グリーンシートを扇型形状に切削した成形体を成形する工程と、
     前記成形体を焼成温度で保持することにより焼結する工程と、を有し、
     前記焼結工程によって焼結された複数の焼結体又は前記焼結工程によって焼結される前の複数の前記成形体を、円環状に接続することによってリング形状とし、
     製造されたリング形状の磁石はSPMモータのロータ表面に配置されることを特徴とするSPMモータ用リング磁石の製造方法。
  10.  前記成形体に対して、前記ロータ表面と接する面に前記ロータ表面に形成された係合部と係合する被係合部を形成することを特徴とする請求項9に記載のSPMモータ用リング磁石の製造方法。
  11.  前記SPMモータのロータは、回転軸に対する断面が多角形形状であって、
     前記SPMモータ用リング磁石の前記リング形状の中空部分を前記ロータの形状と対応する多角形形状とすることを特徴とする請求項9に記載のSPMモータ用リング磁石の製造方法。
  12.  前記SPMモータ用リング磁石は、ラジアル異方性リング磁石又は極異方性リング磁石であることを特徴とする請求項9乃至請求項11のいずれかに記載のSPMモータ用リング磁石の製造方法。
  13.  前記バインダーは熱可塑性樹脂からなり、
     前記成形体を成形する工程によって生じた前記グリーンシートの残余を加熱することにより、該残余を前記混合物へと再利用することを特徴とする請求項9乃至請求項12のいずれかに記載のSPMモータ用リング磁石の製造方法。
  14.  前記焼結工程では、ホットプレス焼結により焼結することを特徴とする請求項9乃至請求項13のいずれかに記載のSPMモータ用リング磁石の製造方法。
  15.  前記磁場配向する工程では、前記グリーンシートの面内方向に配向し、
     前記成形体を成形する工程では、磁場配向された前記グリーンシートを厚み方向の断面が円弧形状となるように湾曲させた状態で複数枚積層して固定することを特徴とする請求項9乃至請求項14のいずれかに記載のSPMモータ用リング磁石の製造方法。
  16.  請求項9乃至請求項15のいずれかの製造方法で製造されたSPMモータ用リング磁石をロータ表面に配置することにより製造することを特徴とするSPMモータの製造方法。
PCT/JP2014/053116 2014-02-12 2014-02-12 Spmモータ用リング磁石、spmモータ用リング磁石の製造方法、spmモータ及びspmモータの製造方法 WO2015121917A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/053116 WO2015121917A1 (ja) 2014-02-12 2014-02-12 Spmモータ用リング磁石、spmモータ用リング磁石の製造方法、spmモータ及びspmモータの製造方法
US15/118,144 US20170170695A1 (en) 2014-02-12 2014-02-12 Ring magnet for spm motor, production method for ring magnet for spm motor, spm motor, and production method for spm motor
JP2014530027A JPWO2015121917A1 (ja) 2014-02-12 2014-02-12 Spmモータ用リング磁石、spmモータ用リング磁石の製造方法、spmモータ及びspmモータの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053116 WO2015121917A1 (ja) 2014-02-12 2014-02-12 Spmモータ用リング磁石、spmモータ用リング磁石の製造方法、spmモータ及びspmモータの製造方法

Publications (1)

Publication Number Publication Date
WO2015121917A1 true WO2015121917A1 (ja) 2015-08-20

Family

ID=53799687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053116 WO2015121917A1 (ja) 2014-02-12 2014-02-12 Spmモータ用リング磁石、spmモータ用リング磁石の製造方法、spmモータ及びspmモータの製造方法

Country Status (3)

Country Link
US (1) US20170170695A1 (ja)
JP (1) JPWO2015121917A1 (ja)
WO (1) WO2015121917A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038162A (ja) * 2016-08-31 2018-03-08 株式会社ダイドー電子 極異方磁石及び永久磁石型モータジェネレータ
WO2018186478A1 (ja) * 2017-04-07 2018-10-11 日東電工株式会社 希土類焼結磁石、希土類焼結体の製造方法、希土類焼結磁石の製造方法及び希土類焼結磁石を用いたリニアモータ
CN109412295A (zh) * 2018-11-13 2019-03-01 淮海机电科技股份有限公司 一种稳定性强的电动车永磁同步电机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11203062B2 (en) * 2018-07-11 2021-12-21 G. B. Kirby Meacham Additive metal manufacturing process
FR3132975A1 (fr) 2022-02-18 2023-08-25 Safran Procede de fabrication d’un aimant multipolaire a flux oriente

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121206A (en) * 1981-01-20 1982-07-28 Matsushita Electric Ind Co Ltd Manufacture of roll type magnet
JPS59126602A (ja) * 1983-01-10 1984-07-21 Hitachi Metals Ltd 永久磁石の製造方法
JPS59230457A (ja) * 1983-06-13 1984-12-25 Matsushita Electric Ind Co Ltd ブラシレス電動機の回転子
JPS63119508A (ja) * 1986-11-07 1988-05-24 Sankyo Seiki Mfg Co Ltd ラジアル異方性円筒状フエライトマグネツト
JP2005304136A (ja) * 2004-04-08 2005-10-27 Hitachi Ltd 永久磁石式回転電機
JP2006258616A (ja) * 2005-03-17 2006-09-28 Tdk Corp 配向度評価方法、希土類焼結磁石及びその製造方法
JP2009027847A (ja) * 2007-07-20 2009-02-05 Daido Steel Co Ltd 永久磁石およびこれを用いた埋込磁石型モータ
JP2013219322A (ja) * 2012-03-12 2013-10-24 Nitto Denko Corp 希土類永久磁石及び希土類永久磁石の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829277A (en) * 1986-11-20 1989-05-09 General Motors Corporation Isotropic rare earth-iron field magnets for magnetic resonance imaging
US6635120B2 (en) * 2000-09-14 2003-10-21 Hitachi Metals, Ltd. Method for producing sintered rare earth magnet and sintered ring magnet
JP2005268386A (ja) * 2004-03-17 2005-09-29 Mitsubishi Electric Corp リング型焼結磁石およびその製造方法
EP1995854B1 (en) * 2006-03-16 2016-09-07 Panasonic Corporation Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121206A (en) * 1981-01-20 1982-07-28 Matsushita Electric Ind Co Ltd Manufacture of roll type magnet
JPS59126602A (ja) * 1983-01-10 1984-07-21 Hitachi Metals Ltd 永久磁石の製造方法
JPS59230457A (ja) * 1983-06-13 1984-12-25 Matsushita Electric Ind Co Ltd ブラシレス電動機の回転子
JPS63119508A (ja) * 1986-11-07 1988-05-24 Sankyo Seiki Mfg Co Ltd ラジアル異方性円筒状フエライトマグネツト
JP2005304136A (ja) * 2004-04-08 2005-10-27 Hitachi Ltd 永久磁石式回転電機
JP2006258616A (ja) * 2005-03-17 2006-09-28 Tdk Corp 配向度評価方法、希土類焼結磁石及びその製造方法
JP2009027847A (ja) * 2007-07-20 2009-02-05 Daido Steel Co Ltd 永久磁石およびこれを用いた埋込磁石型モータ
JP2013219322A (ja) * 2012-03-12 2013-10-24 Nitto Denko Corp 希土類永久磁石及び希土類永久磁石の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038162A (ja) * 2016-08-31 2018-03-08 株式会社ダイドー電子 極異方磁石及び永久磁石型モータジェネレータ
WO2018186478A1 (ja) * 2017-04-07 2018-10-11 日東電工株式会社 希土類焼結磁石、希土類焼結体の製造方法、希土類焼結磁石の製造方法及び希土類焼結磁石を用いたリニアモータ
CN110622262A (zh) * 2017-04-07 2019-12-27 日东电工株式会社 稀土类烧结磁体、稀土类烧结体的制造方法、稀土类烧结磁体的制造方法及使用了稀土类烧结磁体的线性马达
JPWO2018186478A1 (ja) * 2017-04-07 2020-05-14 日東電工株式会社 希土類焼結磁石、希土類焼結体の製造方法、希土類焼結磁石の製造方法及び希土類焼結磁石を用いたリニアモータ
CN110622262B (zh) * 2017-04-07 2022-11-15 日东电工株式会社 稀土类烧结磁体及其制造方法、以及线性马达
JP7223686B2 (ja) 2017-04-07 2023-02-16 日東電工株式会社 希土類焼結磁石、希土類焼結体の製造方法、希土類焼結磁石の製造方法及び希土類焼結磁石を用いたリニアモータ
CN109412295A (zh) * 2018-11-13 2019-03-01 淮海机电科技股份有限公司 一种稳定性强的电动车永磁同步电机

Also Published As

Publication number Publication date
JPWO2015121917A1 (ja) 2017-03-30
US20170170695A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2015186551A1 (ja) 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
WO2013137134A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5969781B2 (ja) 希土類永久磁石の製造方法
WO2015121917A1 (ja) Spmモータ用リング磁石、spmモータ用リング磁石の製造方法、spmモータ及びspmモータの製造方法
WO2015182545A1 (ja) 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
WO2013137132A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5411957B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP6251545B2 (ja) 加圧焼結装置及び加圧焼結方法
JP6502015B2 (ja) 永久磁石の製造方法
WO2015121915A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2016042763A (ja) 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2015186333A (ja) 永久磁石及び永久磁石の製造方法
JP2016032023A (ja) 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
JP6408820B2 (ja) 回転電機用永久磁石、回転電機用永久磁石の製造方法、回転電機及び回転電機の製造方法
WO2015121914A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5969782B2 (ja) 希土類永久磁石の製造方法
JP2016032024A (ja) 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
WO2015121916A1 (ja) 永久磁石、永久磁石の製造方法、spmモータ及びspmモータの製造方法
JP2016042531A (ja) 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
JP2015207687A (ja) 永久磁石及び永久磁石の製造方法
JP6556983B2 (ja) 永久磁石の製造方法及び回転電機の製造方法
JP2013191609A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013191610A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2015121913A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013191608A (ja) 希土類永久磁石及び希土類永久磁石の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014530027

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882274

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15118144

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882274

Country of ref document: EP

Kind code of ref document: A1