WO2015120809A1 - 一种由含砜基的芳香族聚合物制得的纤维、纱线、织物、制品及其制备方法 - Google Patents

一种由含砜基的芳香族聚合物制得的纤维、纱线、织物、制品及其制备方法 Download PDF

Info

Publication number
WO2015120809A1
WO2015120809A1 PCT/CN2015/072961 CN2015072961W WO2015120809A1 WO 2015120809 A1 WO2015120809 A1 WO 2015120809A1 CN 2015072961 W CN2015072961 W CN 2015072961W WO 2015120809 A1 WO2015120809 A1 WO 2015120809A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fiber
monomer
sulfone
fibers
Prior art date
Application number
PCT/CN2015/072961
Other languages
English (en)
French (fr)
Inventor
汪晓峰
陈晟晖
吴佳
Original Assignee
上海特安纶纤维有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海特安纶纤维有限公司 filed Critical 上海特安纶纤维有限公司
Publication of WO2015120809A1 publication Critical patent/WO2015120809A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • D01F6/805Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides from aromatic copolyamides
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/047Blended or other yarns or threads containing components made from different materials including aramid fibres
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/443Heat-resistant, fireproof or flame-retardant yarns or threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads

Definitions

  • the present invention relates to a fiber, a yarn, a fabric, an article made from a sulfone group-containing aromatic polymer, and a process for the preparation thereof.
  • the fiber has high flame retardancy and mechanical properties and can be widely used in the field of heat protection.
  • Aromatic polyamide compounds are generally widely used as fibers for industrial fibers and special clothing materials due to their excellent heat resistance.
  • PPTA terephthaloyl p-phenylenediamine
  • PMIA isophthalic acid diphenylenediamine
  • the monomer required for PPTA synthesis is a polycondensation of an aromatic diamine compound in the para position as an acid monomer and an acid chloride group-containing aromatic compound in the para position as an acid monomer.
  • the monomer required for PMIA synthesis is a meta-type aromatic diamine compound which is obtained by polycondensation of an acid monomer as an acid monomer with an amino acid group-containing aromatic compound.
  • CN1683431A discloses the use of a meta-type aromatic diamine compound as an amine monomer and a meta-acid chloride group-containing aromatic compound as an acid monomer, and a monomer containing a sulfone group and an amino group, and polycondensed to form a meta-fragrance.
  • a polyamide polymer discloses the use of a meta-type aromatic diamine compound as an amine monomer and a meta-acid chloride group-containing aromatic compound as an acid monomer, and a monomer containing a sulfone group and an amino group, and polycondensed to form a meta-fragrance.
  • a polyamide polymer discloses the use of a meta-type aromatic diamine compound as an amine monomer and a meta-acid chloride group-containing aromatic compound as an acid monomer, and a monomer containing a sulfone group and an amino group, and polycondensed to form a meta-fragrance.
  • CN101784710A discloses the use of a meta-type aromatic diamine compound as an amine monomer and a meta-acid group-containing aromatic compound as an acid monomer, and a monomer containing a sulfone group and an amino group, and polycondensed to form a meta-fragrance.
  • a polyamide polymer a para-type aromatic diamine compound is used as an acid monomer and a para-acid group-containing aromatic compound as an acid monomer, and a monomer containing a sulfone group and an amino group is added to form a polycondensation pair
  • An aromatic polyamide polymer and in its examples, it is disclosed that when an acid chloride group-containing aromatic compound is used as an acid monomer, a meta-type aromatic diamine compound and a para-aramid can be used.
  • a mixture of a family diamine compound is used as an amine monomer, and a monomer (B) containing a sulfone group and an amino group is added, and a polycondensation reaction is carried out to form an aromatic amide compound.
  • U.S. Patent No. 5,536, 408, A, and CN 101 235 552 A disclose the use of a para- or meta-acid group-containing aromatic compound as an acid monomer, an ortho-position (disclosed in US Pat. No. 5,536,408 A), a meta- or para-aromatic aromatic diamine compound as an amine monomer. And the third and fourth monomers are polycondensed to form an aromatic polyamide compound.
  • the above patent publications do not explicitly indicate meta-acid chloride group-containing aromatic compounds and para-aromatic diamine compounds, or para-acid chloride group-containing aromatic compounds and meta-aromatics.
  • the diamine compound can be condensed to form a polymer, and the polymer can form a fiber having high temperature resistance and good mechanical properties.
  • the present invention is directed to overcoming this technical bias by using a meta-diamine-containing aromatic monomer (A) and a para-dicarboxylic acid group-containing aromatic monomer or a halogenated product thereof (C).
  • a meta-diamine-containing aromatic monomer (A) and a para-dicarboxylic acid group-containing aromatic monomer or a halogenated product thereof (C) In the process of their polycondensation, a third monomer containing a sulfone group is added, and by controlling the content of the sulfone group in the polymer, the meta-diamine-containing aromatic monomer (A) and the para-containing dicarboxylic acid are realized.
  • the successful condensation of an acid group-containing aromatic monomer or its halogenated product (C) the obtained polymer satisfies the requirements for spinning and fiber formation, and the spun fiber has excellent flame retardancy and mechanical properties.
  • the aromatic monomer of the carboxylic acid group or its halogenated product (C) is used as a raw material, and the fiber has excellent heat resistance and mechanical properties.
  • the technical means adopted by the present invention is that the present invention provides a fiber obtained from a sulfone group-containing aromatic polymer, characterized in that the sulfone group-containing aromatic group
  • the polymer is polymerized from the following three monomers:
  • the sulfone group is contained in the polymer in an amount of 4 to 10% by mass.
  • the hydrogen on the aromatic ring of the meta-amino group-containing aromatic monomer A is independently selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 alkoxy, phenyl, acyloxy
  • One or more substituents of a nitro group, a dialkylamino group, a thioalkyl group, a carboxyl group, a sulfonyl group, or a carbonyl alkoxy group are substituted or unsubstituted.
  • the meta-diamine group-containing aromatic monomer A is m-phenylenediamine or a mixed meta-initiated aromatic diamine monomer containing 80% by mole or more of m-phenylenediamine.
  • the sulfone group- and amino group-containing monomer B is R,R'-diaminodiphenyl sulfone.
  • the R,R'-diaminodiphenyl sulfone is selected from the group consisting of 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone or a mixture thereof.
  • the hydrogen of the aromatic ring containing the dicarboxylic acid group or the halogen ring of the halogenated product C thereof is independently selected from halogen, C1-C4 alkyl, C1-C4 alkoxy.
  • One or more substituents of a phenyl group, an acyloxy group, a nitro group, a dialkylamino group, a thioalkyl group, a carboxyl group, a sulfonyl group, or a carbonyl alkoxy group are substituted or unsubstituted.
  • the para-containing dicarboxylic acid group-containing aromatic monomer or its halogenated product C is terephthaloyl chloride, or contains two or more mixed para-positions of terephthaloyl chloride.
  • the molar amount of the halogenated substance C is from 1:0.98 to 1:1.0, preferably 1:1.
  • the ratio of the molar amount of the diamine-containing aromatic monomer A to the sulfone group-containing and amino group-containing monomer B is 50-80:20-50, preferably 60-75:25: 40, more preferably 70-75: 25-30.
  • the fiber has a glass transition temperature of 300 ° C or higher, preferably a glass transition temperature of 320 ° C or higher, more preferably 340 ° C or higher, and most preferably 345 ° C or higher.
  • the fiber has a strength of 4 cN/dtex or more, preferably 4.5 cN/dtex or more.
  • the fibers are filaments or staple fibers.
  • the invention also relates to a method of making the fiber comprising the steps of:
  • the organic solvent in the step (i) is a polar organic solvent, preferably from N-methylpyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, dimethyl sulfoxide. One or more mixtures.
  • the temperature of the polycondensation reaction in step (i) may be ⁇ 60 ° C, preferably ⁇ 30 ° C, more preferably ⁇ 0 ° C.
  • the acid chloride group-containing monomer in the para position is first melted before the monomer is added.
  • a polymerization inhibitor is added to the reaction system of the step (i).
  • step (i) there is a base neutralization step between the step (i) and the step (i i).
  • the content of the copolymer in the spinning solution in the step (i) is from 5 to 40% by weight, preferably from 8 to 30% by weight, more preferably from 10 to 25% by weight.
  • the spinning solution in the step (i) has a relative viscosity of from 1.5 to 3, preferably from 1.7 to 2.4, more preferably from 1.8 to 2.1.
  • the spinning solution in the step (i) is passed through a precipitation step to remove salts in the spinning solution.
  • the step (ii) comprises solidifying the nascent fibers into a filament, stretching, washing, drying, stretching, Curl, cutting step.
  • the coagulation forming step includes a polar organic solvent and a metal halide in the coagulation bath; preferably, the polar organic solvent is contained in an amount of 40 to 70% by weight, and the metal halide is 0. -10wt%.
  • the stretching bath comprises a polar organic solvent and a metal halide in the stretching step; preferably, the polar organic solvent is contained in an amount of 5 to 65 wt%, and the metal halide content is 0. -10wt%.
  • the coagulation bath and the polar organic solvent in the stretching bath are each independently selected from the group consisting of N-methylpyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide
  • the coagulating bath and the polar organic solvent in the stretching bath may be the same or different.
  • the metal halide in the coagulation bath and the stretching bath is selected from one of calcium chloride, lithium chloride, magnesium chloride, aluminum chloride, calcium bromide, magnesium bromide, and aluminum bromide or More than one mixture, and the metal halide in the coagulation bath and the stretching bath may be the same or different.
  • the invention also relates to a yarn comprising the fibers.
  • the yarn further comprises a selected from the group consisting of polyaryletherketone, aramid, high molecular weight polyethylene, polyphenylene sulfide, polyetheretherketone, polyetherimide, polyaroyl. a fiber obtained by mixing one or more of imine, polybenzimidazole, polybenzoxazole, polyphenylene sulfone, polydiphenyl ether sulfone, polyphenylene, polyimide sulfone .
  • the invention also relates to a fabric comprising the fibers.
  • the fabric is a woven, knitted or nonwoven structure.
  • the fabric further comprises glass fiber, asbestos fiber, polybenzoxazole fiber, polybenzimidazole fiber, polybenzoxazole fiber, poly(arylene ether fiber) and aramid fiber, carbon fiber, PTFE fiber, One of boron fiber, metal fiber, ceramic fiber, calcium silicate fiber, silicon carbide fiber, metal puff, polyacrylonitrile fiber, aramid fiber, phenolic resin or a mixture thereof.
  • the invention also relates to a protective garment comprising the fibers.
  • the invention also relates to a filter felt comprising the fibers.
  • the invention also relates to a laminate comprising the fibers.
  • the invention also relates to a composite material comprising the fibers.
  • a meta-diamine-containing aromatic monomer (A), a sulfone group- and amino group-containing monomer (B), a para-dicarboxylic acid group-containing aromatic monomer or Its halogenated product (C) is used to prepare a sulfone group-containing aromatic polymer.
  • a mass percentage of the sulfone group in the polymer to be 5-18% to achieve a meta-diamine-containing aromatic monomer (A) and a para-dicarboxylic acid group-containing aromatic monomer or
  • the halogenated product (C) is successfully condensed, and the polycondensate has good fiber-forming properties, and the spun fiber also has excellent heat resistance and mechanical properties.
  • the meta-diamine group-containing aromatic monomer (A) is preferably selected from the group consisting of m-phenylenediamine, 3,4'-diaminodiphenyl ether, and the like, and has a halogen on the aromatic ring, and the number of carbon atoms is A derivative of a substituent such as an alkyl group of 1-4.
  • the hydrogen on the aromatic ring of the meta-amino group-containing aromatic monomer (A) may be independently or unsubstituted by one or more of the following substituents including halogen , C1-C4 alkyl, C1-C4 alkoxy, phenyl, acyloxy, nitro, dialkylamino, thioalkyl, carboxy, sulfonyl, carbonyl alkoxy.
  • substituents including halogen , C1-C4 alkyl, C1-C4 alkoxy, phenyl, acyloxy, nitro, dialkylamino, thioalkyl, carboxy, sulfonyl, carbonyl alkoxy.
  • a mixed meta-aramid diamine monomer containing m-phenylenediamine or m-phenylenediamine containing 80% by mole or more, preferably 90% by mole or more is preferable.
  • the sulfone group- and amino group-containing monomer (B) is selected from the group consisting of R, R'-diaminodiphenyl sulfone (DDS), bis(aminophenoxyphenyl) sulfone (BAPS), or a mixture thereof.
  • the R,R'-diaminodiphenyl sulfone is selected from the group consisting of 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone or a mixture thereof.
  • a monomer containing only a sulfone group and an amino group of R, R'-diaminodiphenyl sulfone or a mixture of 80% by mole or more, preferably 90% by mole or more of R,R'-diaminodiphenyl sulfone is preferable.
  • the para-containing dicarboxylic acid group-containing aromatic monomer or its halogenated product (C) may, for example, be a para-isophthalic acid chloride, a terephthalic acid bromide or the like, having a halogen on these aromatic rings.
  • a derivative of a substituent such as an alkyl group having 1 to 4 carbon atoms.
  • the hydrogen on the aromatic ring of the dicarboxylic acid group-containing aromatic monomer or its halogenated product (C) may be independently substituted or unsubstituted by one or more of the following substituents: These substituents include halogen, C1-C4 alkyl, C1-C4 alkoxy, phenyl, acyloxy, nitro, dialkylamino, thioalkyl, carboxy, sulfonyl, carbonyl alkoxy.
  • the para- or dicarboxylic acid group-containing aromatic monomer or a halogenated product thereof is terephthalic acid chloride itself or contains 80% by mole or more, preferably 90% by mole or more of terephthaloyl chloride and the like.
  • Para-containing dicarboxylic acid group a mixture of aromatic monomers or their halogenated compounds (C).
  • benzene derivatives such as p-phenylenediamine, 2,5-diaminochlorobenzene, 2,5-diaminobromobenzene, and aminomethoxyaniline, , 5-naphthalenediamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminobenzophenone, 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenyl Methane, isophthalic acid chloride, 1,3-naphthalenedicarboxylic acid chloride, 3,3'-diphenyl phthalate chloride, 3,3
  • the organic solvent is preferably a polar organic solvent, which may be an amide-based organic solvent, a urea-based organic solvent, or a mixture thereof, preferably from N-methylpyrrolidone (NMP), N,N-dimethylacetamide (DMAc). , N,N-dimethylformamide (DMF), dimethyl sulfoxide, hexamethylphosphoric triamide (HMPA), N, N, N', N'-tetramethylurea (TMU) One or more mixtures.
  • NMP N-methylpyrrolidone
  • DMAc N,N-dimethylacetamide
  • DMF N,N-dimethylformamide
  • HMPA hexamethylphosphoric triamide
  • TNU hexamethylphosphoric triamide
  • amine monomer i.e., meta-diamine-containing aromatic monomer (A) and sulfone- and amino-containing monomer (B)
  • acid monomer para-position
  • the aromatic monomer containing a dicarboxylic acid group or a halogenated product thereof (C)) is equimolarly reacted, so that an amine monomer and an acid monomer, that is, a meta-diamine-containing aroma, are added in the same molar ratio.
  • Ratio of the molar amount of the monomer (A) to the sulfone group and the amino group-containing monomer (B) to the molar amount of the dicarboxylic acid group-containing aromatic monomer or its halogenated product (C) The range should be between 1:0.98 and 1:1.0, preferably 1:1.
  • the content of the sulfone group in the polymer is required to be in the range of 5 to 18% by weight. Too small or too large a content is a polymerization which results in the condensation polymerization of a meta-containing diamine-containing aromatic monomer (A) with a para- or dicarboxylic acid-containing aromatic monomer or a halogenated product (C) thereof.
  • the material does not meet the requirements for fiber formation.
  • the sulfone group-containing aromatic polymer can be adjusted by adjusting the ratio of the molar amount of the meta-amino group-containing aromatic monomer (A) to the sulfone group-containing and amino group-containing monomer (B).
  • the content of the sulfone group in the range is such that the ratio of the molar amount of the diamine-containing aromatic monomer (A) to the sulfone group-containing and amino group-containing monomer (B) is 50-80: 20-50. Preferably, 60-75:25:40, more preferably 70-75:25-30.
  • other methods may be employed, such as adding a sulfone group-containing monomer other than the sulfone group-containing group and the amino group-containing monomer (B), as long as the sulfone group content in the final polymer reaches 5 to 18% by weight. can.
  • the polymerization method of the present invention is not particularly limited, and for example, it can be produced by solution polymerization, interfacial polymerization or the like.
  • the process conditions for the polycondensation reaction may be carried out by a conventional process in the art, and the temperature of the polycondensation reaction may be ⁇ 60 ° C, preferably ⁇ 30 ° C, more preferably ⁇ 0 ° C.
  • the acid chloride group-containing monomer of the para position may be first melted prior to the addition of the monomer.
  • a polymerization inhibitor may be added before the end of the reaction to promote the end of the reaction, thereby controlling The degree of polymerization and molecular weight of the polymer.
  • the timing of the addition of the polymerization inhibitor can be self-controlled by those skilled in the art according to the production needs.
  • the acid generated during the polymerization reaction can corrode the polymerization equipment. Therefore, an inorganic or organic basic compound is added to the polymerization solution during or after the polymerization reaction to neutralize the acid generated by the polymerization reaction.
  • the molar amount of the base added is equal to the molar amount of the acid chloride group-containing monomer in the para position.
  • the base may be a basic inorganic compound, and may be selected from alkali metal carbonates or alkaline earth metal carbonates, alkaline earth metal hydrides, alkaline earth metal hydroxides or alkaline earth metal oxides such as sodium hydroxide, potassium hydroxide, One or a mixture of one or more of calcium hydroxide, calcium oxide, ammonium hydroxide, lithium carbonate, calcium carbonate, lithium hydride, lithium hydroxide, and lithium oxide, usually in an aqueous form, added to the base for acidic side Neutralization reaction of the product.
  • the basic compound can be an organic base such as diethylamine or tributylamine or other amines. The acidic by-products in the polycondensation reaction are converted into salts by neutralization with a base.
  • the amount of copolymer in the spinning solution is controlled to be from 5 to 40% by weight, more preferably from 8 to 30% by weight, most preferably from 10 to 25% by weight, in order to obtain excellent fiber characteristics. If the concentration of the finally obtained polymer is less than 5% by weight, the viscosity is too low to form a fiber. If the concentration of the polymer in the spinning solution is increased, the viscosity of the spinning solution is also increased. However, if the concentration of the polymer is too high, there is a problem that the viscosity in the spinning solution is low.
  • the molecular weight of the sulfone group-containing aromatic polymer obtained by polymerization in the present invention is also not particularly limited as long as it can form a fiber.
  • a polymer having a relative viscosity of from 1.0 to 3.0 is preferable, and a polymer having a range of from 1.3 to 2.2 is particularly preferable.
  • the spinning solution can be passed through a precipitation step to remove salts from the spinning solution.
  • the spinning solution containing the copolymer in the present invention can be spun into a yarn by any method.
  • wet spinning is a preferred spinning method.
  • the spinning method is well known in the art and is described in CN1683431A, CN101784710A, US5536408, CN101235552A. It is preferably produced by, for example, spinning, solidification, stretching, washing, drying, stretching, crimping, and cutting, which are described below.
  • the spinning device is not particularly limited, and a conventionally known wet spinning device can be used. Further, the number of spinning holes for the spinning spout is as long as the wet spinning can be stably performed.
  • the arrangement state, the shape of the pores, and the like are not particularly limited. For example, a porous spinning nozzle for short fibers having a number of holes of 500 to 30,000 and a spinning aperture of 0.05 to 0.2 mm can be used.
  • the nascent fibers ejected through the orifice are solidified in a coagulation bath containing an organic solvent and a metal halide. If a plurality of filaments are extruded at the same time, they can form a multifilament before, during or after the solidification step.
  • the coagulation bath contains a polar organic solvent and a metal halide.
  • the content of the polar organic solvent is 40 to 70% by weight, and the content of the metal halide is 0 to 10% by weight.
  • the fibers are stretched.
  • the fibers may be wet drawn using a stretching solution comprising water, a salt and a solvent; the salt is preferably a metal halide.
  • the polar organic solvent is contained in an amount of 5 to 65 wt%, and the metal halide is contained in an amount of 0 to 10 wt%.
  • the organic solvent used in the step (i) of preparing the fiber and the solidification and stretching of the fiber in the present invention is a polar organic solvent, that is, a solvent as a proton acceptor, for example, preferably from N-methylpyrrolidone (NMP), N,N-Dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide, hexamethylphosphoric triamide (HMPA), N, N, N', N One or more mixtures of '-tetramethylurea (TMU).
  • NMP N-methylpyrrolidone
  • DMAc N,N-Dimethylacetamide
  • DMF N,N-dimethylformamide
  • HMPA hexamethylphosphoric triamide
  • TNU hexamethylphosphoric triamide
  • the metal halide used in the fiber coagulation bath and stretching in the present invention may be a halogenated metal salt or a halogenated alkaline earth metal salt, such as a chloride or bromine salt of calcium, lithium, magnesium, aluminum or the like, that is, calcium chloride, Lithium chloride, magnesium chloride, aluminum chloride, calcium bromide, magnesium bromide, aluminum bromide, and the like. It is possible to add only one inorganic salt or two or more inorganic salts. These metal halides may be the same or different in the fiber coagulation bath and the stretching bath.
  • the fibers are washed, preferably in a manner that allows the fibers to contact one or more wash baths or wash tanks. Washing can be accomplished by immersing the fibers in a bath or by spraying the fibers with an aqueous solution.
  • the wash tank typically includes a closed box containing one or more rolls, wherein the yarn travels a plurality of times and travels through the rolls before exiting the closed box. As the yarn travels around the roll, the wash fluid is contacted with the fibers by spraying.
  • the washing fluid is continuously collected at the bottom of the washing tank and discharged from the bottom.
  • the temperature of the washing fluid is preferably above 40 °C. It is also possible to apply the washing fluid in the form of steam, but it is more convenient to use in liquid form.
  • the washing process is multistaged using a plurality of washing baths or washing tanks, and temperature conditions and concentration conditions of the amide solvent are controlled.
  • the fibers or multifilaments can be dried in a desiccator to remove moisture and other liquids.
  • a desiccator to remove moisture and other liquids.
  • One or more dryers can be used.
  • the dryer can be an oven, a hot plate, a heated roll, or the like.
  • the dryer can be nitrogen or other non-reactive atmosphere.
  • the drying step is usually carried out under atmospheric pressure. Then, if necessary, the drying step can also be carried out under reduced pressure.
  • the fibers are preferably subjected to hot stretching at a temperature of 260 ° C or higher, preferably 280 ° C or higher, more preferably 300 ° C or higher.
  • the hot drawing step can increase the elongation at break of the fiber and reduce the mechanical strain properties of the fiber filaments, increasing the modulus of the fiber.
  • heating is a multi-step process. For example, in the first step, the fiber or multifilament is heated under a certain tension at a temperature of 260-270 ° C, followed by a second heating step in which the fiber or multifilament is at a temperature of 280-290 ° C. Heating is carried out under a certain tension, followed by a third heating step in which the fibers or multifilaments are heated at a temperature of 300-320 ° C under a certain tension.
  • the fibers or multifilaments are wrapped around the winding device. If necessary, the filaments can be cut to obtain short fibers.
  • the fibers of the present invention may additionally include, but are not limited to, a component selected from the group consisting of heat stabilizers, antistatic agents, extenders, organic and/or inorganic pigments (such as TiO 2 , carbon black), and acid acceptors (such as magnesium oxide), stabilizers, metal oxides (such as zinc oxide), metal sulfides (such as zinc sulfide), metal carboxylates (such as alkaline earth metals and excessive metal stearates), antioxidants, flame retardants , smoke suppressant, particulate filler, nucleating agent (such as talc), mica, kaolin, or a mixture of two or more of the above.
  • the weight of the above ingredients, based on the total weight of the fibers is preferably from 0 to 30% by weight, more preferably from 0 to 25% by weight, most preferably from 0 to 20% by weight.
  • the fibers of the present invention are not limited to the above methods and systems.
  • it is also an alternative to use a solvent to dissolve the polymeric material to make the fiber prior to spinning.
  • the fiber of the present invention can also be produced by a spunbonding method, a meltblowing method, or the like.
  • the fibers of the present invention can have a very wide range of diameters depending on the production requirements, and the number average diameter is usually from 1 nm to 100 ⁇ m.
  • the nanoscale fibers may have a diameter of, for example, 2, 5, 10, 20, 50, 100 or 200 nm; the micron-sized fibers may have a diameter of 2, 5, 10, 20, 50 or 100 ⁇ m.
  • the fibers of the present invention can have different cross-sectional shapes such as circular, elliptical, star-shaped, core-shell, and the like.
  • the fiber of the present invention has a glass transition temperature of 300 ° C or higher, preferably a glass transition temperature of 320 ° C or higher, more preferably 340 ° C or higher, and most preferably 345 ° C or higher.
  • the fiber of the present invention has a strength of 4 cN/dtex or more, preferably 4.5 cN/dtex or more.
  • the invention also relates to a yarn comprising the fibers of the invention.
  • the yarn further comprises a material selected from the group consisting of polyaryletherketone, aramid, high molecular weight polyethylene, polyphenylene sulfide, polyetheretherketone, polyetherimide, polyaryleneimide, polybenzoate
  • a fiber obtained by mixing one or more of imidazole, polybenzoxazole, polyphenylene sulfone, polydiphenyl ether sulfone, polyphenylene, and polyimide sulfone.
  • the yarn is blended from the fiber comprising the above polymer and the fiber of the present invention in any ratio.
  • Fabric as used in the present invention includes any woven, knitted or nonwoven structure.
  • woven is meant any fabric weave, such as plain weave, satin weave, twill weave, and the like.
  • knit is meant any structure prepared by entanglement or interdigitation of one or more warp, fiber or multifilament yarns.
  • nonwoven is meant fiber networks, felts, and the like.
  • the present invention still further relates to fabrics for introducing the fibers of the present invention into a fabric.
  • the fabric comprises filaments or staple fibers of the invention.
  • the fabric containing the fiber of the present invention can be widely used in the field of industrial protection because of its excellent heat resistance. It can also be used in the aerospace, automotive, medical, military, security, chemical, pharmaceutical, and metallurgical industries.
  • the fabric may further comprise other conventional ingredients of the fabric, such as glass fibers, asbestos fibers, polybenzazole fibers, polybenzimidazole fibers, polybenzoxazole fibers, in addition to the fibers of the present invention, Polyaryl ether fiber and Aramid fiber, carbon fiber, PTFE fiber, boron fiber, metal fiber, ceramic fiber (such as silicon nitride, talc-glass fiber), calcium silicate fiber (such as wollastonite microfiber), silicon carbide fiber, metal expanded material and Mixture, polyacrylonitrile fiber, aramid fiber or phenolic resin.
  • other conventional ingredients of the fabric such as glass fibers, asbestos fibers, polybenzazole fibers, polybenzimidazole fibers, polybenzoxazole fibers, in addition to the fibers of the present invention, Polyaryl ether fiber and Aramid fiber, carbon fiber, PTFE fiber, boron fiber, metal fiber, ceramic fiber (such as silicon nitride, talc-glass fiber), calcium silicate fiber
  • the fibers of the present invention can also be used to make articles such as filter mats, laminates, composites, and the like.
  • the fibers of the present invention can be formed into filter mats that can be used in filtration devices that can be used in a variety of applications including, but not limited to, industrial use.
  • Factory filtration equipment such as power plants, coal-fired power plants, cement plants.
  • the fibers of the present invention may be chopped to obtain short fibers, pulp particles or short fibers, etc., which are mixed in a certain ratio and dispersed in water to form a fiber paper.
  • This fiber paper has excellent properties.
  • the prepreg may be formed by hot-pressing with a calender, impregnating the thermosetting epoxy resin varnish, and combining the prepreg layers to obtain a laminate containing the fibers of the present invention.
  • the laminate can be used as a circuit board, and for this purpose, a laminate structure for a circuit board excellent in electrical insulation performance can be provided.
  • the fiber produced as described above has various uses due to its excellent heat resistance and mechanical properties.
  • the short fibers obtained by chopping the fibers of the present invention and a resin are composited to form a fiber-reinforced composite material having excellent mechanical properties and heat resistance.
  • the washed and dried viscometer was placed vertically in a 25 ⁇ 0.1 ° C thermostat, and then the pure solvent (98% sulfuric acid) which had been kept warm (25 ⁇ 0.1 ° C) for 15 minutes was filtered into the viscometer with a 1 # sand core funnel.
  • the capillary diameter is 1.0 to 1.1 mm
  • the solvent flow rate t 0 (seconds) is measured, repeated three times, and the difference is not more than 0.5 second, and the arithmetic mean is taken.
  • Test instrument Rotating viscometer test temperature: 50 ° C
  • Test methods can be selected: traditional glass transition temperature, measured by differential scanning calorimetry (DSC); or dynamic glass transition, measured by dynamic thermomechanical analysis (DMA).
  • DSC differential scanning calorimetry
  • DMA dynamic thermomechanical analysis
  • the solvent N,N-dimethylacetamide was purified and dried.
  • the solvent was placed in a reactor equipped with a mechanical stirrer and a nitrogen inlet. 54.1 g of m-phenylenediamine and 124.2 g of 4,4'-diaminodiphenyl sulfone were dissolved in 2500 ml of the solvent, and 203.0 g of terephthaloyl chloride was added in a molten state at a polycondensation temperature of 60 ° C. After the polycondensation reaction was completed, a base was prepared. Neutralize, filter, defoam, and make the spinning solution.
  • the spinning solution is metered by a metering pump, filtered by a filter, and sprayed from a spinneret into a coagulation bath.
  • the spinneret has a number of spinning holes of 500 holes, a spinning aperture of 0.075 mm, a spinning speed of 30 m/min, and then solidification and drawing. Stretching, washing, drying, hot stretching, and crimping to obtain finished fibers.
  • the solvent N,N-dimethylacetamide was purified and dried.
  • the solvent was placed in a reactor equipped with a mechanical stirrer and a nitrogen inlet. 64.9 g of m-phenylenediamine and 99.3 g of 4,4'-diaminodiphenyl sulfone were dissolved in 3000 ml of the solvent, and 203.0 g of terephthaloyl chloride was added to the sheet at a polycondensation temperature of 0 ° C. After the polycondensation reaction was completed, a base was prepared. Neutralize, filter, defoam, and make the spinning solution.
  • the spinning solution is metered by a metering pump, filtered by a filter, and sprayed from a spinneret into a coagulation bath.
  • the spinneret has a number of spinning holes of 1,000 holes, a spinning aperture of 0.075 mm, a spinning speed of 20 m/min, and further solidification, stretching bath, water washing, drying, hot stretching, and crimping to obtain a finished fiber.
  • the solvent N,N-dimethylacetamide was purified and dried.
  • the solvent was placed in a reactor equipped with a mechanical stirrer and a nitrogen inlet.
  • 75.7 g of m-phenylenediamine and 74.5 g of 3,3'-diaminodiphenyl sulfone were dissolved in 1000 ml of the solvent, and 203.0 g of terephthalic acid chloride was added to the sheet at a polycondensation temperature of 30 ° C. After the polycondensation reaction was completed, the alkali was carried out. Neutralize, filter, defoam, and make the spinning solution.
  • the spinning solution is metered by a metering pump, filtered by a filter, and sprayed from a spinneret into a coagulation bath.
  • the spinneret has a number of spinning holes of 5,000 holes, a spinning aperture of 0.1 mm, a spinning speed of 5 m/min, and is subjected to solidification, stretching bath, water washing, drying, hot stretching, and crimping to obtain a finished fiber.
  • the solvent N,N-dimethylacetamide was purified and dried.
  • the solvent was placed in a reactor equipped with a mechanical stirrer and a nitrogen inlet. 86.5 g of m-phenylenediamine, 37.7 g of 4,4'-diaminodiphenyl sulfone, and 12.4 g of 3,3'-diaminodiphenyl sulfone were dissolved in 1000 ml of the solvent, and the film was added at a polycondensation temperature of -20 ° C. 203.0 g of terephthalic acid chloride was subjected to alkali neutralization after completion of the polycondensation reaction, and the mixture was filtered and defoamed to prepare the spinning solution.
  • the spinning solution is metered by a metering pump, filtered by a filter, and sprayed from a spinneret into a coagulation bath.
  • the spinneret has a spinning hole number of 30,000 holes, a spinning aperture of 0.08 mm, a spinning speed of 15 m/min, and is subjected to solidification, stretching bath, water washing, drying, hot stretching, and crimping to obtain a finished fiber.
  • the polymerization monomer used was 108.1 g of m-phenylenediamine, 203.0 g of terephthaloyl chloride, and the polymerization process and spinning process were the same as in Example 1.
  • the polymerization monomer used was 248.3 g of 4,4'-diaminodiphenyl sulfone, and 203.0 g of terephthaloyl chloride.
  • the polymerization process and spinning process were the same as in Example 2.
  • the polymerization monomer used was 108.1 g of m-phenylenediamine, 203.0 g of isophthaloyl chloride, and the polymerization process and spinning process were the same as in Example 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明涉及通过将间位的含有二胺基的单体、含砜基的单体和对位的含有酰氯基团的单体聚合,形成共聚物纺丝溶液,进而进行纺丝获得的纤维产品;包含该纤维的纱线、织物和制品,以及它们的制备方法。该纤维具有较高的阻燃性和力学性能,能够广泛应用于耐热防护领域中。

Description

一种由含砜基的芳香族聚合物制得的纤维、纱线、织物、制品及其制备方法 技术领域
本发明涉及一种由含砜基的芳香族聚合物制得的纤维、纱线、织物、制品及其制备方法。该纤维具有较高的阻燃性和力学性能,能够广泛应用于耐热防护领域中。
背景技术
芳香族聚酰胺化合物通常由于其优异的耐热性能而广泛被用作工业用纤维和特殊衣料用纤维等。如现有技术中的对苯二甲酰对苯二胺(PPTA)、间苯二甲酰间苯二胺(PMIA)。PPTA合成所需的单体是对位的芳香族二胺化合物作为胺单体与对位的含酰氯基团的芳香族化合物作为酸单体缩聚而成。PMIA合成所需的单体是间位的芳香族二胺化合物作为胺单体与间位的含酰氯基团的芳香族化合物作为酸单体缩聚而成。
CN1683431A公开了采用间位的芳香族二胺化合物作为胺单体与间位的含酰氯基团的芳香族化合物作为酸单体,并加入了含砜基和氨基的单体,缩聚形成间位芳香族聚酰胺聚合物。
CN101784710A公开了采用间位的芳香族二胺化合物作为胺单体与间位的含酰氯基团的芳香族化合物作为酸单体,并加入了含砜基和氨基的单体,缩聚形成间位芳香族聚酰胺聚合物;采用对位的芳香族二胺化合物作为胺单体与对位的含酰氯基团的芳香族化合物作为酸单体,并加入含砜基和氨基的单体,缩聚形成对位芳香族聚酰胺聚合物;并在其实施例中公开了当采用对位的含酰氯基团的芳香族化合物作为酸单体时,可以采用间位的芳香族二胺化合物和对位的芳香族二胺化合物的混合物作为胺单体,并加入含砜基和氨基的单体(B),缩聚反应形成芳香族酰胺化合物。
US5536408A、CN101235552A中均公开了采用对位或间位的含酰氯基团的芳香族化合物作为酸单体,邻位(US5536408A中公开)、间位或对位的芳香族二胺化合物作为胺单体,及第三种、第四种单体,缩聚形成芳香族聚酰胺化合物。但是上述专利公开文献中并没有明确指出间位的含酰氯基团的芳香族化合物和对位的芳香族二胺化合物,或是对位的含酰氯基团的芳香族化合物和间位的芳香族二胺化合物可以进行缩合制成聚合物,且该聚合物能够形成具有耐高温和良好力学性能的纤维。
现有技术中,对于制备芳香族聚酰胺时有一种技术偏见,即选择的含酰氯基团的芳香族化合物和芳香族二胺化合物必须同为对位,或者同为间位,若是选择间位的含酰氯基团的芳香族化合物和对位的芳香族二胺化合物,或是对位的含酰氯基团的芳香族化合物和间位的芳 香族二胺化合物作为原料,形成的聚合物达不到纺丝成纤的要求。
本发明旨在克服这一技术偏见,采用间位的含有二胺基的芳香族单体(A)和对位的含有二羧酸基团的芳香族单体或其卤代物(C),在它们缩聚的过程中加入含砜基的第三单体,并通过控制聚合物中砜基的含量,来实现间位的含有二胺基的芳香族单体(A)和对位的含有二羧酸基团的芳香族单体或其卤代物(C)的成功缩合,其制得的聚合物满足纺丝成纤要求,并且纺制的纤维具有优异的阻燃性能和力学性能。
发明内容
鉴于本领域中在制备芳族聚酰胺纤维时选择的聚合单体含酰氯基团的芳香族化合物和芳香族二胺化合物,必须同为对位,或者同为间位的技术局限,而提出本发明。
本发明的目的是提供一种芳族聚酰胺纤维,该纤维在原料选择上打破了传统的原料选择局限,采用间位的含有二胺基的芳香族单体(A)和对位的含有二羧酸基团的芳香族单体或其卤代物(C)作为原料,并且该纤维具有优异的耐热性能和力学性能。
为解决本发明所要解决的技术问题,本发明所采用的技术手段是,本发明提供一种由含砜基的芳香族聚合物制得的纤维,其特征在于,所述含砜基的芳香族聚合物由以下三种单体聚合而成:
间位的含有二胺基的芳香族单体A;
含砜基和氨基的单体B;
对位的含有二羧酸基团的芳香族单体或其卤代物C;
在所述含砜基的芳香族聚合物中,砜基在聚合物中的质量百分比含量为4-10%。
优选的,所述间位的含有二胺基的芳香族单体A的芳香环上的氢独立地被选自卤素、C1-C4烷基、C1-C4烷氧基、苯基、酰氧基、硝基、二烷基氨基、硫代烷基、羧基、磺酰基、羰基烷氧基中的一个或多个取代基所取代或不取代。
优选的,所述间位的含有二胺基的芳香族单体A为间苯二胺,或包含80摩尔%以上间苯二胺的混合间位芳香族二胺单体。
优选的,所述的含砜基和氨基的单体B为R,R’-二氨基二苯砜。
优选的,所述的R,R’-二氨基二苯砜选自3,3’-二氨基二苯砜、4,4’-二氨基二苯砜或它们的混合物。
优选的,所述的对位的含有二羧酸基团的芳香族单体或其卤代物C的芳香环上的氢独立地被选自卤素、C1-C4烷基、C1-C4烷氧基、苯基、酰氧基、硝基、二烷基氨基、硫代烷基、羧基、磺酰基、羰基烷氧基中的一个或多个取代基所取代或不取代。
优选的,所述的对位的含有二羧酸基团的芳香族单体或其卤代物C为对苯二甲酰氯,或包含80摩尔%以上对苯二甲酰氯的混合对位的含有二羧酸基团的芳香族单体或其卤代物。
优选的,所述间位的含有二胺基的芳香族单体A与含砜基和氨基的单体B的摩尔量之和与对位的含有二羧酸基团的芳香族单体或其卤代物C的摩尔量的比例为1:0.98-1:1.01,优选为1:1。
优选的,所述的间位的含有二胺基的芳香族单体A与含砜基和氨基的单体B的摩尔量之比为50-80:20-50,优选60-75:25:40,更优选70-75:25-30。
优选的,所述纤维具有300℃以上的玻璃化温度,优选320℃以上的玻璃化温度,更优选340℃以上,最优选345℃以上。
优选的,所述纤维具有4cN/dtex以上的强度,优选4.5cN/dtex以上。
在一些实施方式中,所述纤维为长丝或短纤。
本发明还涉及一种制备所述纤维的方法,包括下列步骤:
(i)将间位的含有二胺基的单体、含砜基和氨基的单体(B)、对位的含有酰氯基团的单体溶于有机溶剂中,进行缩聚反应,形成纺丝浆液;
(ii)将所述纺丝溶液纺制成纤维。
优选的,步骤(i)中的有机溶剂为极性有机溶剂,优选自N-甲基吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲亚砜中的一种或一种以上的混合物。
优选的,步骤(i)中缩聚反应的温度可为≤60℃,优选≤30℃,更优选≤0℃。
优选的,所述步骤(i)在加入单体之前,将所述对位的含有酰氯基团的单体先进行熔融。
优选的,所述步骤(i)的反应体系中加入阻聚剂。
优选的,所述步骤(i)和步骤(i i)之间还有碱中和步骤。
优选的,所述步骤(i)中纺丝溶液中共聚物的含量为5-40wt%,优选8-30wt%,更优选10-25wt%。
优选的,所述步骤(i)中纺丝溶液的相对粘度为1.5-3,优选1.7-2.4,更优选1.8-2.1。
优选的,所述步骤(i)中的纺丝溶液通过沉析步骤以除去纺丝溶液中的盐。
在一些实施方式中,所述步骤(ii)包括初生纤维凝固成丝、拉伸、水洗、干燥、拉伸、 卷曲、切断步骤。
在一些实施方式中,所述凝固成丝步骤中凝固浴中包含极性有机溶剂、金属卤化物;优选的,所述极性有机溶剂的含量为40-70wt%,金属卤化物的含量为0-10wt%。
在一些实施方式中,所述拉伸步骤中拉伸浴中包含极性有机溶剂、金属卤化物;优选的,所述极性有机溶剂的含量为5-65wt%,金属卤化物的含量为0-10wt%。
优选的,所述凝固浴和所述拉伸浴中的极性有机溶剂可各自独立的选自N-甲基吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲亚砜中的一种或一种以上的混合物,且所述凝固浴和所述拉伸浴中的极性有机溶剂可以相同也可以不同。
优选的,所述凝固浴和所述拉伸浴中的金属卤化物选自氯化钙、氯化锂、氯化镁、氯化铝、溴化钙、溴化镁、溴化铝中的一种或一种以上的混合物,且所述凝固浴和所述拉伸浴中的金属卤化物可以相同也可以不同。
本发明还涉及一种包含所述纤维的纱线。
在一些实施方式中,所述纱线中还含有由选自聚芳醚酮、芳族聚酰胺、高分子量聚乙烯、聚苯硫醚、聚醚醚酮、聚醚酰亚胺、聚芳酰亚胺、聚苯并咪唑、聚苯并悪唑、聚亚苯基砜、聚联苯醚砜、聚亚苯基、聚酰亚胺砜中的一种或一种以上的混合制得的纤维。
本发明还涉及一种包含所述纤维的织物。
在一些实施方式中,织物是机织、针织或非织造结构。
在一些实施方式中,所述织物还含有玻璃纤维、石棉纤维、聚苯并唑纤维、聚苯并咪唑纤维、聚苯并恶唑纤维、聚芳醚纤维和芳纶纤维、碳纤维、PTFE纤维、硼纤维、金属纤维、陶瓷纤维、硅酸钙纤维、碳化硅纤维、金属膨化物、聚丙烯腈纤维、芳香族聚酰胺纤维、酚类树脂中的一种或其混合物。
本发明还涉及一种包含所述纤维的防护服装。
本发明还涉及一种包含所述纤维的过滤毡。
本发明还涉及一种包含所述纤维的层压体。
本发明还涉及一种包含所述纤维的复合材料。
具体实施方式
通过参见本申请具体实施方式的内容可以更易于理解本发明,但是本发明并不限于本文所述和/或所示的具体方法、条件或参数,并且本文中所用的术语仅是为了以举例的方式描述具体实施方式,并不能限制本申请权利要求要求保护的技术方案。在下文中,将描述根据本发明的一种由含砜基的芳香族聚合物制得的纤维及其制备方法,以及包含本发明纤维的纱线、织物及制品。
1.制备包含含砜基的芳香族聚合物的纺丝溶液
通过向有机溶剂中加入包括间位的含有二胺基的芳香族单体(A)、含砜基和氨基的单体(B)、对位的含有二羧酸基团的芳香族单体或其卤代物(C)来制备含砜基的芳香族聚合物。通过控制砜基在聚合物中的质量百分比含量为5-18%来实现间位的含有二胺基的芳香族单体(A)和对位的含有二羧酸基团的芳香族单体或其卤代物(C)的成功缩合,并且使该缩聚物具有良好的成纤性能,纺成的纤维也具有优异的耐热性能和力学性能。
所述的间位的含有二胺基的芳香族单体(A)优选自间苯二胺、3,4’-二氨基二苯醚等,以及在这些芳香环上具有卤素、碳原子数为1-4的烷基等取代基的衍生物。进一步的,所述间位的含有二胺基的芳香族单体(A)的芳香环上的氢可以独立地被以下一个或多个如下的取代基所取代或不取代,这些取代基包括卤素、C1-C4烷基、C1-C4烷氧基、苯基、酰氧基、硝基、二烷基氨基、硫代烷基、羧基、磺酰基、羰基烷氧基。其中,优选仅为间苯二胺或含有80摩尔%以上,优选90摩尔%以上的间苯二胺的混合间位芳香族二胺单体。
所述的含砜基和氨基的单体(B)有选自R,R’-二氨基二苯砜(DDS)、双(氨基苯氧基苯基)砜(BAPS)或其混合物。所述的R,R’-二氨基二苯砜选自3,3’-二氨基二苯砜、4,4’-二氨基二苯砜或它们的混合物。其中,优选仅为R,R’-二氨基二苯砜或含有80摩尔%以上,优选90摩尔%以上的R,R’-二氨基二苯砜的混合含砜基和氨基的单体。
所述的对位的含有二羧酸基团的芳香族单体或其卤代物(C)可以例如对位间苯二甲酸氯化物,对苯二甲酸溴化物等,在这些芳香环上具有卤素、碳原子数为1-4的烷基等取代基的衍生物。进一步的,所述对位的含有二羧酸基团的芳香族单体或其卤代物(C)的芳香环上的氢可以独立地被以下一个或多个如下的取代基所取代或不取代,这些取代基包括卤素、C1-C4烷基、C1-C4烷氧基、苯基、酰氧基、硝基、二烷基氨基、硫代烷基、羧基、磺酰基、羰基烷氧基。其中,优选所述对位的含有二羧酸基团的芳香族单体或其卤代物为对苯二甲酰氯本身或包含80摩尔%以上,优选90摩尔%以上的对苯二甲酰氯与其他对位的含有二羧酸基团的 芳香族单体或其卤代物(C)的混合物。
除了上述间位的含有二胺基的芳香族单体(A)、含砜基和氨基的单体(B)、对位的含有二羧酸基团的芳香族单体或其卤代物(C),本发明在聚合过程中还可以加入其它共聚成分,例如对苯二胺、2,5-二氨基氯苯、2,5-二氨基溴苯、氨基甲氧基苯胺等苯衍生物、1,5-萘二胺、4,4’-二氨基二苯醚、4,4’-二氨基二苯酮、4,4’-二氨基二苯基胺、4,4’-二氨基二苯基甲烷、间苯二甲酸氯化物、1,3-萘二甲酸氯化物、3,3’-联苯二甲酸氯化物、3,3’-二苯基醚二甲酸氯化物等。
有机溶剂优选极性有机溶剂,可以是基于酰胺的有机溶剂、基于尿素的有机溶剂,或者是他们的混合物,优选自N-甲基吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAc)、N,N-二甲基甲酰胺(DMF)、二甲亚砜、六甲基磷酰三胺(HMPA)、N,N,N’,N’-四甲基脲(TMU)中的一种或一种以上的混合物。
由于在本发明的缩聚反应中,胺单体(即间位的含有二胺基的芳香族单体(A)与含砜基和氨基的单体(B))和酸单体(对位的含有二羧酸基团的芳香族单体或其卤代物(C))是等摩尔反应的,因此以相同的摩尔比加入胺单体和酸单体,即间位的含有二胺基的芳香族单体(A)与含砜基和氨基的单体(B)的摩尔量之和与对位的含有二羧酸基团的芳香族单体或其卤代物(C)的摩尔量的比例范围应当在1:0.98-1:1.01,优选为1:1。
在所述含砜基的芳香族聚合物中,砜基在聚合物中的质量百分比含量需在5-18wt%的范围内。含量太小或含量过大都是导致间位的含有二胺基的芳香族单体(A)与对位的含有二羧酸基团的芳香族单体或其卤代物(C)缩聚形成的聚合物达不到成纤要求。优选的,可以通过调节间位的含有二胺基的芳香族单体(A)与含砜基和氨基的单体(B)的摩尔量之比来使所述含砜基的芳香族聚合物中砜基含量达到该数值范围,即间位的含有二胺基的芳香族单体(A)与含砜基和氨基的单体(B)的摩尔量之比为50-80:20-50,优选60-75:25:40,更优选70-75:25-30。当然,也可以采用其他方式,比如在体系中加入除含砜基和氨基的单体(B)的其他含砜基单体,只要最终聚合物中砜基含量达到该质量百分比5-18wt%即可。
本发明对于聚合方式没有特别的限定,例如可以通过以溶液聚合、界面聚合等方式进行制造。对于缩聚反应的工艺条件采用本领域的常规工艺即可,缩聚反应的温度可为≤60℃,优选≤30℃,更优选≤0℃。
在一些优选的实施方式中,可以在加入单体之前,将所述对位的含有酰氯基团的单体先进行熔融。
在一些优选的实施方式中,可在反应结束之前加入阻聚剂,以促使反应结束,从而控制 聚合物的聚合度和分子量。所述阻聚剂加入的时机可以是本领域技术人员根据生产需要自行掌握的。
在一些实施方式中,在聚合反应期间产生的酸,例如盐酸,会腐蚀聚合设备。因此,在聚合反应期间或之后,向聚合溶液中加入无机或有机碱性化合物,从而中和由聚合反应产生的酸。碱加入的摩尔量与对位的含有酰氯基团的单体的摩尔量相等。所述碱可以是碱性无机化合物,可以选自碱金属碳酸盐或碱土金属碳酸盐、碱土金属氢化物、碱土金属氢氧化物或者碱土金属氧化物,例如氢氧化钠、氢氧化钾、氢氧化钙、氧化钙、氢氧化铵、碳酸锂、碳酸钙、氢化锂、氢氧化锂、氧化锂中的一种或一种以上的混合物,通常以含水的形式,加入所述碱进行酸性副产物的中和反应。如果需要,所述碱性化合物可以为有机碱,例如二乙胺或三丁胺或者其他胺。通过碱中和,将缩聚反应中的酸性副产物转化成盐。
在一些优选的实施方式中,控制纺丝溶液中共聚物的含量为5-40wt%,更优选8-30wt%,最优选10-25wt%,以便获得优良的纤维特性。如果最终获得的聚合物的浓度小于5wt%,则粘度太低,而无法成纤。如果纺丝液中聚合物的浓度增加,那么纺丝液的粘度也会随之增加。但是,如果聚合物的浓度过高,则会导致纺丝液中粘度低的问题。
本发明中对于聚合所得的包含含砜基的芳香族聚合物的分子量也没有特别限定,只要能够形成纤维即可。通常为了得到优异性能的纤维,优选相对粘度为1.0-3.0的范围的聚合物,特别优选1.3-2.2的范围的聚合物。
在一些优选的实施方式中,可将所述纺丝溶液通过沉析步骤,以去除纺丝溶液中的盐。
2.制备包含含砜基的芳香族聚合物的纤维
本发明中的包含所述共聚物的纺丝溶液,可以使用任意方法纺制成丝。其中湿法纺丝是优选的纺丝方式。其该纺丝方法是本领域熟知的,在CN1683431A、CN101784710A、US5536408、CN101235552A中均有记载。优选经过例如以下说明的纺丝及凝固成丝、拉伸、水洗、干燥、拉伸、卷曲、切断等工序而制造的。
作为纺丝装置没有特别限定,可以使用以往公知的湿法纺丝装置。另外,只要是能够稳定进行湿法纺丝,则对纺丝喷口的纺丝孔数。排列状态、孔形状等无需特别限制,例如,可以使用孔数为500-30000个、纺丝孔径为0.05-0.2mm的短纤维用多孔纺丝喷口等。
经过喷丝孔喷出的初生纤维在含有有机溶剂和金属卤化物的凝固浴中凝固。如果同时挤出多根长丝,它们可以在凝固步骤之前、期间或之后形成复丝。凝固成丝步骤中凝固浴中包含极性有机溶剂、金属卤化物。极性有机溶剂的含量为40-70wt%,金属卤化物的含量为0-10wt%。
凝固浴之后,对纤维进行拉伸。所述纤维可以使用拉伸溶液进行湿拉伸,所述拉伸溶液包含水、盐和溶剂;所述盐优选金属卤化物。所述极性有机溶剂的含量为5-65wt%,金属卤化物的含量为0-10wt%。
本发明中制备纤维的步骤(i)中以及纤维凝固和拉伸时所采用的有机溶剂为极性有机溶剂,即那些作为质子受体的溶剂,例如优选自N-甲基吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAc)、N,N-二甲基甲酰胺(DMF)、二甲亚砜、六甲基磷酰三胺(HMPA)、N,N,N’,N’-四甲基脲(TMU)中的一种或一种以上的混合物。这些有机溶剂在制备纤维的步骤(i)中、凝固浴中、拉伸浴中可以是相同的也可以是不同的。
本发明中纤维凝固浴及拉伸中采用的金属卤化物,可以是卤代金属盐或卤代碱土金属盐,例如钙、锂、镁、铝等的氯盐或溴盐,即氯化钙、氯化锂、氯化镁、氯化铝、溴化钙、溴化镁、溴化铝等。可以只加入一种无机盐,也可以加入两种或更多的无机盐。这些金属卤化物在纤维凝固浴和拉伸浴中可以是相同的也可以是不同的。
拉伸之后,对纤维进行洗涤,洗涤的优选方式可使所述纤维与一个或多个洗涤浴或洗涤箱接触。洗涤可通过将所述纤维浸入浴中或者通过用水溶液喷雾所述纤维来完成。洗涤箱通常包括含有一个或多个辊的封闭箱,其中纱线在退出所述封闭箱之前多次环绕并穿越所述辊行进。当纱线环绕辊行进时,会通过喷雾的方式使洗涤流体与纤维接触。洗涤流体连续收集在洗涤箱的底部,并从底部排出箱体。洗涤流体的温度优选高于40℃。也可以是蒸汽形式来施用洗涤流体,但以液体形式使用更为方便。优选地,使用多个洗涤浴或洗涤箱,将清洗工序多阶段化,并控制温度条件和酰胺系溶剂的浓度条件。
洗涤之后,纤维或复丝可在干燥器中干燥以去除水分和其它液体。可使用一个或多个干燥器。在某些实施例中,所述干燥器可以是烘箱,热板、热辊等。干燥器中可以是氮气或其他非反应性气氛。所述干燥步骤通常在大气压下进行。然后,如果需要,所述干燥步骤也可以在减压下进行。
干燥步骤之后,优选对纤维进行热拉伸,加热温度可以达到260℃以上,优选280℃以上,更优选300℃以上。该热拉伸步骤可以增加纤维的断裂延伸度,并减少纤维长丝的机械应变性能,提高纤维的模量。在一些实施方式中,加热是多步方法。例如,在第一步中,将所述纤维或复丝在260-270℃的温度下在一定张力下加热,接着进行第二加热步骤,其中将纤维或复丝在280-290℃的温度下在一定张力下加热,接着进行第三加热步骤,其中将纤维或复丝在300-320℃的温度下在一定张力下加热。
最后,将纤维或复丝在卷绕装置上缠绕包装。如有需要,可以将长丝切断得到短纤维。
本发明所述的纤维也可另外包括但不限于选自下列的成分:热稳定剂、抗静电剂、增量剂、有机和/或无机颜料(如TiO2、碳黑)、吸酸剂(如氧化镁)、稳定剂、金属氧化物(如氧化锌)、金属硫化物(如硫化锌)、金属羧酸盐(如碱土金属和过度金属的硬脂酸盐)、抗氧化剂、阻燃剂、抑烟剂、颗粒填充剂、成核剂(如滑石粉)、云母、高岭土,或上述两种或两种以上的混合物。上述成分的重量,基于纤维的总重量优选为0-30wt%,更优选0-25wt%,最优选0-20wt%。
本发明的纤维并不限于上面的方法和体系。例如,在纺丝前,使用溶剂以溶解聚合物材料来制造纤维也是可以选择的方式。本发明的纤维还可以采用纺粘法、熔喷法等来制备。
本发明的纤维可以根据生产需要具有非常广的直径范围,数均直径通常从1nm至100μm。纳米级的纤维可以具有例如2、5、10、20、50、100或200nm的直径;微米级的纤维可以具有2、5、10、20、50或100μm的直径。
本发明的纤维可具有不同的横截面形状,如圆形、椭圆形、星形、核壳等。
本发明所述纤维具有300℃以上的玻璃化温度,优选320℃以上的玻璃化温度,更优选340℃以上,最优选345℃以上。本发明所述纤维具有4cN/dtex以上的强度,优选4.5cN/dtex以上。
3.包含本发明纤维的纱线
本发明还涉及一种包含本发明纤维的纱线。所述纱线中还含有由选自聚芳醚酮、芳族聚酰胺、高分子量聚乙烯、聚苯硫醚、聚醚醚酮、聚醚酰亚胺、聚芳酰亚胺、聚苯并咪唑、聚苯并悪唑、聚亚苯基砜、聚联苯醚砜、聚亚苯基、聚酰亚胺砜中的一种或一种以上的混合制得的纤维。由包含上述聚合物的纤维与本发明的纤维以任意比例混纺制成纱线。
4.包含本发明纤维的织物
本发明中所述的“织物”,包括任何机织、针织或非织造结构。所谓“机织”包括任何织物编织,例如平纹、缎纹、斜纹编织结构等。所谓“针织”包括任何将一个或多个经线、纤维或复丝纱线相互环连或相互交叉而制备的结构。所谓“非织造”包括纤维网络、毡等。
在另一些实施方式中,本发明还进一步涉及织物,将本发明所述的纤维引入至织物中。所述织物包含本发明的长丝或短纤。含有本发明纤维的织物由于具有优异的耐热性能可以广泛地应用于工业防护领域。也可用于航空、汽车、医药、军事、安全、化学、药物和冶金学工业。
所述织物可进一步包含织物的其他的常规成分,如除了本发明的纤维外,还可以包含例如玻璃纤维、石棉纤维、聚苯并唑纤维、聚苯并咪唑纤维、聚苯并恶唑纤维、聚芳醚纤维和 芳纶纤维、碳纤维、PTFE纤维、硼纤维、金属纤维、陶瓷纤维(如氮化硅、滑石-玻璃纤维)、硅酸钙纤维(如钙硅石微纤维)、碳化硅纤维、金属膨化物及其混合物、聚丙烯腈纤维、芳香族聚酰胺纤维或酚类树脂。
5.包含本发明纤维的制品
本发明的纤维还可以用来制作成过滤毡、层压体、复合材料等制品。
在另一些实施方式中,可以将本发明所述的纤维制成过滤毡,所述过滤毡可应用于过滤装置中,所述过滤装饰可被用于多种应用,包括但不限于用于工业工厂的过滤装置,如发电厂、燃煤发电厂、水泥厂。
在另一些实施方式中,可以将本发明的纤维切短得到短纤维与纸浆状粒子或短纤维等以一定比例进行混合,使其分散在水中,制成纤维纸。这种纤维纸具有优异的性能。进一步的,可以利用压延机进行热压加工,使其浸渍热固性环氧树脂清漆形成预浸渍体,将预浸渍体层合并成型,得到含有本发明纤维的层压体。该层压体可以用作电路基板,为此,可提供电绝缘性能优异的电路基板用层压体结构物。
如上所述制得的纤维,由于其优异的耐热性能和力学性能,其具有各种各样的用途。例如:将本发明的纤维切短得到的短纤维和树脂复合形成纤维增强的复合材料,该复合材料具有优异的力学性能和耐热性能。
实施例
下面,用实施例进一步说明本发明。实施例中的各项性能参数,按以下方法进行测定。
(a)聚合物的相对粘度
一、试样的处理
1、打碎
2、洗涤
3、烘干(110度下烘2.5小时)
二、测试
a空白测定(溶剂流出的时间测定)
将洗净干燥的粘度计垂直放在25±0.1℃的恒温槽中,然后将已保温(25±0.1℃)15分钟的纯溶剂(98%硫酸)用1#砂芯漏斗滤入粘度计中(毛细管直径为1.0~1.1mm),然后测其溶剂流速t0(秒),重复三次,差值不超过0.5秒,取其算术平均值。
b试样测定(浓度为0.5%)
精确称取干燥聚合物0.1250克,置于25毫升的容量瓶中,先加入适量的98%的浓硫酸(AR),轻摇,可静置溶解,必要时可保温溶解(置于50~60℃的浴温中加速溶解,注意,水温不能超过60℃),待全部溶解后,把容量瓶放在25±0.1℃的恒温槽中保持15分钟,然后用98%的浓硫酸加至刻度,并摇匀,然后用1#砂芯漏斗滤入清洁干燥的乌式粘度计中,用同样方法测得溶液流速t(秒),重复三次,差值不超过0.5秒,取其算术平均值。
c相对粘度计算
相对粘度ηr=t/t0
(b)纺丝溶液表观粘度
测试仪器:旋转粘度计测试温度:50℃
将纺丝溶液倒入测试器皿中,控制水浴温度为50℃,平衡若干分钟,用温度计测试纺丝溶液温度达到50℃时,将合适的旋转转子放入纺丝溶液中,设置合适的转速,开始测试并记录测试值。
(c)单丝纤度
测试方法参见:GB/T14335
(d)纤维强度
测试方法参见:GB/T14337
(e)纤维断裂伸长率
测试方法参见:GB/T14337
(f)纤维玻璃化温度
测试方法可选择:传统的玻璃化转变温度,由差示扫描热量法(DSC)测得;或则是动态玻璃化转变,由动态热机械分析(DMA)测得。
实施例1
将溶剂N,N-二甲基乙酰胺纯化并且干燥。将该溶剂置于配制有机械搅拌器和氮气入口的反应器中。将54.1g间苯二胺、124.2g 4,4’-二氨基二苯砜溶解于2500ml所述溶剂中,缩聚温度60℃时加入熔融态203.0g对苯二甲酰氯,缩聚反应完成后进行碱中和,过滤、脱泡、制成所述纺丝溶液。将上述纺丝溶液经计量泵计量、过滤器过滤、从喷丝头喷入凝固浴中。该喷丝头的纺丝孔数为500孔,纺丝孔径为0.075mm,纺丝速度为30m/min,再经过凝固、拉 伸浴、水洗、干燥、热拉伸、卷曲,得到成品纤维。
实施例2
将溶剂N,N-二甲基乙酰胺纯化并且干燥。将该溶剂置于配制有机械搅拌器和氮气入口的反应器中。将64.9g间苯二胺、99.3g 4,4’-二氨基二苯砜溶解于3000ml所述溶剂中,缩聚温度0℃时加入片状203.0g对苯二甲酰氯,缩聚反应完成后进行碱中和,过滤、脱泡、制成所述纺丝溶液。将上述纺丝溶液经计量泵计量、过滤器过滤、从喷丝头喷入凝固浴中。该喷丝头的纺丝孔数为1000孔,纺丝孔径为0.075mm,纺丝速度为20m/min,再经过凝固、拉伸浴、水洗、干燥、热拉伸、卷曲,得到成品纤维。
实施例3
将溶剂N,N-二甲基乙酰胺纯化并且干燥。将该溶剂置于配制有机械搅拌器和氮气入口的反应器中。将75.7g间苯二胺、74.5g 3,3’-二氨基二苯砜溶解于1000ml所述溶剂中,缩聚温度30℃时加入片状203.0g对苯二甲酰氯,缩聚反应完成后进行碱中和,过滤、脱泡、制成所述纺丝溶液。将上述纺丝溶液经计量泵计量、过滤器过滤、从喷丝头喷入凝固浴中。该喷丝头的纺丝孔数为5000孔,纺丝孔径为0.1mm,纺丝速度为5m/min,再经过凝固、拉伸浴、水洗、干燥、热拉伸、卷曲,得到成品纤维。
实施例4
将溶剂N,N-二甲基乙酰胺纯化并且干燥。将该溶剂置于配制有机械搅拌器和氮气入口的反应器中。将86.5g间苯二胺、37.7g 4,4’-二氨基二苯砜、12.4g 3,3’-二氨基二苯砜溶解于1000ml所述溶剂中,缩聚温度-20℃时加入片状203.0g对苯二甲酰氯,缩聚反应完成后进行碱中和,过滤、脱泡、制成所述纺丝溶液。将上述纺丝溶液经计量泵计量、过滤器过滤、从喷丝头喷入凝固浴中。该喷丝头的纺丝孔数为30000孔,纺丝孔径为0.08mm,纺丝速度为15m/min,再经过凝固、拉伸浴、水洗、干燥、热拉伸、卷曲,得到成品纤维。
对比例1
采用的聚合单体为108.1g间苯二胺,203.0g对苯二甲酰氯,聚合工艺和纺丝工艺与实施例1相同。
对比例2
采用的聚合单体是248.3g 4,4’-二氨基二苯砜,203.0g对苯二甲酰氯,聚合工艺和纺丝工艺与实施例2相同。
对比例3
采用的聚合单体是108.1g间苯二胺,203.0g间苯二甲酰氯,聚合工艺和纺丝工艺与实施例3相同。
表1 纤维性能比较
Figure PCTCN2015072961-appb-000001
基于以上实施例应该明确的是,在不脱离本发明的精神或范围的情况下,可以对本发明进行各种改进和变变型。因此,本发明意在涵盖基于本发明的改进和变型,只要这些改进和变型落在所附的权利要求及其等同替代技术手段的范围内。

Claims (35)

  1. 一种由含砜基的芳香族聚合物制得的纤维,其特征在于,所述含砜基的芳香族聚合物由以下三种单体聚合而成:
    间位的含有二胺基的芳香族单体A;
    含砜基和氨基的单体B;
    对位的含有二羧酸基团的芳香族单体或其卤代物C;
    在所述含砜基的芳香族聚合物中,砜基在聚合物中的质量百分比含量为4-10%。
  2. 根据权利要求1所述的纤维,所述间位的含有二胺基的芳香族单体A的芳香环上的氢独立地被选自卤素、C1-C4烷基、C1-C4烷氧基、苯基、酰氧基、硝基、二烷基氨基、硫代烷基、羧基、磺酰基、羰基烷氧基中的一个或多个取代基所取代或不取代。
  3. 根据权利要求1或2所述的纤维,所述间位的含有二胺基的芳香族单体A为间苯二胺,或包含80摩尔%以上间苯二胺的混合间位芳香族二胺单体。
  4. 根据权利要求1-3任一项所述的纤维,所述的含砜基和氨基的单体B为R,R’-二氨基二苯砜。
  5. 根据权利要求4所述的纤维,所述的R,R’-二氨基二苯砜选自3,3’-二氨基二苯砜、4,4’-二氨基二苯砜或它们的混合物。
  6. 根据权利要求1-5任一项所述的纤维,所述的对位的含有二羧酸基团的芳香族单体或其卤代物C的芳香环上的氢独立地被选自卤素、C1-C4烷基、C1-C4烷氧基、苯基、酰氧基、硝基、二烷基氨基、硫代烷基、羧基、磺酰基、羰基烷氧基中的一个或多个取代基所取代或不取代。
  7. 根据权利要求1-6任一项所述的纤维,所述的对位的含有二羧酸基团的芳香族单体或其卤代物C为对苯二甲酰氯,或包含80摩尔%以上对苯二甲酰氯的混合对位的含有二羧酸基团的芳香族单体或其卤代物。
  8. 根据权利要求1-7任一项所述的纤维,所述间位的含有二胺基的芳香族单体A与含砜基和氨基的单体B的摩尔量之和与对位的含有二羧酸基团的芳香族单体或其卤代物C的摩尔量的比例为1:0.98-1:1.01,优选为1:1。
  9. 根据权利要求1-8任一项所述的纤维,所述的间位的含有二胺基的芳香族单体A与含砜基和氨基的单体B的摩尔量之比为50-80:20-50,优选60-75:25:40,更优选70-75:25-30。
  10. 根据权利要求1-9任一项所述的纤维,所述纤维具有300℃以上的玻璃化温度,优选320℃以上的玻璃化温度,更优选340℃以上,最优选345℃以上。
  11. 根据权利要求1-10任一项所述的纤维,所述纤维具有4cN/dtex以上的强度,优选 4.5cN/dtex以上。
  12. 根据权利要求1-11任一项所述的纤维,所述纤维为长丝或短纤。
  13. 一种制备权利要求1-12任一项所述纤维的方法,包括下列步骤:
    (i)将间位的含有二胺基的单体、含砜基和氨基的单体(B)、对位的含有酰氯基团的单体溶于有机溶剂中,进行缩聚反应,形成纺丝浆液;
    (ii)将所述纺丝溶液纺制成纤维。
  14. 根据权利要求13所述的方法,步骤(i)中的有机溶剂为极性有机溶剂,优选自N-甲基吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲亚砜中的一种或一种以上的混合物。
  15. 根据权利要求13或14所述的方法,步骤(i)中缩聚反应的温度可为≤60℃,优选≤30℃,更优选≤0℃。
  16. 根据权利要求13-15任一项所述的方法,所述步骤(i)在加入单体之前,将所述对位的含有酰氯基团的单体先进行熔融。
  17. 根据权利要求13-16任一项所述的方法,所述步骤(i)的反应体系中加入阻聚剂。
  18. 根据权利要求13-17任一项所述的方法,所述步骤(i)和步骤(ii)之间还有碱中和步骤。
  19. 根据权利要求13-18任一项所述的方法,所述步骤(i)中纺丝溶液中共聚物的含量为5-40wt%,优选8-30wt%,更优选10-25wt%。
  20. 根据权利要求13-19任一项所述的方法,所述步骤(i)中纺丝溶液的相对粘度为1.5-3,优选1.7-2.4,更优选1.8-2.1。
  21. 根据权利要求13-20任一项所述的方法,所述步骤(i)中的纺丝溶液通过沉析步骤以除去纺丝溶液中的盐。
  22. 根据权利要求13-21任一项所述的方法,所述步骤(ii)包括初生纤维凝固成丝、拉伸、水洗、干燥、拉伸、卷曲、切断步骤。
  23. 根据权利要求22中所述的方法,所述凝固成丝步骤中凝固浴中包含极性有机溶剂、金属卤化物;优选的,所述极性有机溶剂的含量为40-70wt%,金属卤化物的含量为0-10wt%。
  24. 根据权利要求22或23任一项所述的方法,所述拉伸步骤中拉伸浴中包含极性有机溶剂、金属卤化物;优选的,所述极性有机溶剂的含量为5-65wt%,金属卤化物的含量为0-10wt%。
  25. 根据权利要求23或24所述的方法,所述凝固浴和所述拉伸浴中的极性有机溶剂可各自独立的选自N-甲基吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、二甲亚砜中的一种或 一种以上的混合物,且所述凝固浴和所述拉伸浴中的极性有机溶剂可以相同也可以不同。
  26. 根据权利要求23-25任一项所述的方法,所述凝固浴和所述拉伸浴中的金属卤化物选自氯化钙、氯化锂、氯化镁、氯化铝、溴化钙、溴化镁、溴化铝中的一种或一种以上的混合物,且所述凝固浴和所述拉伸浴中的金属卤化物可以相同也可以不同。
  27. 一种包含权利要求1-12任一项所述纤维的纱线。
  28. 根据权利要求27所述的纱线,其中还含有由选自聚芳醚酮、芳族聚酰胺、高分子量聚乙烯、聚苯硫醚、聚醚醚酮、聚醚酰亚胺、聚芳酰亚胺、聚苯并咪唑、聚苯并悪唑、聚亚苯基砜、聚联苯醚砜、聚亚苯基、聚酰亚胺砜中的一种或一种以上的混合制得的纤维。
  29. 一种包含权利要求1-12任一项所述纤维的织物。
  30. 根据权利要求29所述的织物,所述织物是机织、针织或非织造结构。
  31. 根据权利要求29或30所述的织物,所述织物还含有玻璃纤维、石棉纤维、聚苯并唑纤维、聚苯并咪唑纤维、聚苯并恶唑纤维、聚芳醚纤维和芳纶纤维、碳纤维、PTFE纤维、硼纤维、金属纤维、陶瓷纤维、硅酸钙纤维、碳化硅纤维、金属膨化物、聚丙烯腈纤维、芳香族聚酰胺纤维、酚类树脂中的一种或其混合物。
  32. 一种包含权利要求1-12任一项所述纤维的防护服装。
  33. 一种包含权利要求1-12任一项所述纤维的过滤毡。
  34. 一种包含权利要求1-12任一项所述纤维的层压体。
  35. 一种包含权利要求1-12任一项所述纤维的复合材料。
PCT/CN2015/072961 2014-02-14 2015-02-13 一种由含砜基的芳香族聚合物制得的纤维、纱线、织物、制品及其制备方法 WO2015120809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410051597.2 2014-02-14
CN201410051597.2A CN104846468B (zh) 2014-02-14 2014-02-14 一种由含砜基的芳香族聚合物制得的纤维、纱线、织物、制品及其制备方法

Publications (1)

Publication Number Publication Date
WO2015120809A1 true WO2015120809A1 (zh) 2015-08-20

Family

ID=53799606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072961 WO2015120809A1 (zh) 2014-02-14 2015-02-13 一种由含砜基的芳香族聚合物制得的纤维、纱线、织物、制品及其制备方法

Country Status (2)

Country Link
CN (1) CN104846468B (zh)
WO (1) WO2015120809A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105801880A (zh) * 2016-05-11 2016-07-27 上海瀚海检测技术股份有限公司 聚芳醚酮体系中环氧树脂的分离方法
CN114606598A (zh) * 2022-04-18 2022-06-10 江苏新视界先进功能纤维创新中心有限公司 一种杂环间位芳纶及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498535A (zh) * 2016-11-18 2017-03-15 上海特安纶纤维有限公司 氢键惰性稀释剂改性聚对苯二甲酰间苯二胺纤维及其制备方法和制品
CN109705579A (zh) * 2018-12-25 2019-05-03 杨记周 一种混凝土建筑模板材料及其制备方法
TWI690633B (zh) * 2019-10-04 2020-04-11 財團法人紡織產業綜合研究所 熔噴不織布
CN111979627B (zh) * 2020-05-12 2021-07-20 江苏百护纺织科技有限公司 具有阻燃性的纱线、面料、服装和阻燃工作服

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264925C (zh) * 2003-09-29 2006-07-19 上海大学 聚砜酰胺/粘土纳米复合材料的制备方法
CN101235552A (zh) * 2008-02-29 2008-08-06 上海大学 无规共聚聚砜酰胺纺丝液及其制备方法
CN101784704A (zh) * 2007-08-22 2010-07-21 纳幕尔杜邦公司 由得自二氨基二苯砜的纤维和改性聚丙烯腈纤维制得的阻燃短纤纱和由其制得的织物和衣服以及它们的制备方法
US7955692B2 (en) * 2007-08-22 2011-06-07 E. I. Du Pont De Nemours And Company Protective garment comprising fibers comprising copolymers containing structures derived from a plurality of amine monomers including 4,4′ diamino diphenyl sulfone

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537830B2 (en) * 2007-08-22 2009-05-26 E.I. Du Pont De Nemours And Company Flame resistant spun staple yarns made from blends of fibers derived from diamino diphenyl sulfone, low thermal shrinkage fibers, flame resistant fibers, and antistatic fibers and fabrics and garments made therefrom and methods for making same
US20090053961A1 (en) * 2007-08-22 2009-02-26 Vlodek Gabara Fibers comprising copolymers containing structures derived from 4,4' diamino diphenyl sulfone and a plurality of acid monomers and methods of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264925C (zh) * 2003-09-29 2006-07-19 上海大学 聚砜酰胺/粘土纳米复合材料的制备方法
CN101784704A (zh) * 2007-08-22 2010-07-21 纳幕尔杜邦公司 由得自二氨基二苯砜的纤维和改性聚丙烯腈纤维制得的阻燃短纤纱和由其制得的织物和衣服以及它们的制备方法
US7955692B2 (en) * 2007-08-22 2011-06-07 E. I. Du Pont De Nemours And Company Protective garment comprising fibers comprising copolymers containing structures derived from a plurality of amine monomers including 4,4′ diamino diphenyl sulfone
CN101235552A (zh) * 2008-02-29 2008-08-06 上海大学 无规共聚聚砜酰胺纺丝液及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105801880A (zh) * 2016-05-11 2016-07-27 上海瀚海检测技术股份有限公司 聚芳醚酮体系中环氧树脂的分离方法
CN105801880B (zh) * 2016-05-11 2018-05-08 上海瀚海检测技术股份有限公司 聚芳醚酮体系中环氧树脂的分离方法
CN114606598A (zh) * 2022-04-18 2022-06-10 江苏新视界先进功能纤维创新中心有限公司 一种杂环间位芳纶及其制备方法
CN114606598B (zh) * 2022-04-18 2023-11-07 江苏新视界先进功能纤维创新中心有限公司 一种杂环间位芳纶及其制备方法

Also Published As

Publication number Publication date
CN104846468A (zh) 2015-08-19
CN104846468B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2015120809A1 (zh) 一种由含砜基的芳香族聚合物制得的纤维、纱线、织物、制品及其制备方法
WO2015120810A1 (zh) 一种基于芳香族聚酰胺和聚芳砜的共混纤维、纱线、织物、制品及其制备方法
WO2001061086A1 (fr) Fibre de polyamide entierement aromatique de type meta-aramide et procede pour produire ladite fibre
WO2011118022A1 (ja) メタ型全芳香族ポリアミド繊維
JP2010163506A (ja) 芳香族コポリアミドの製造方法
JP3995532B2 (ja) 緻密なメタ型全芳香族ポリアミド繊維の製造法
JP2011037984A (ja) 芳香族コポリアミドの製造方法
JP2001303365A (ja) メタ型全芳香族ポリアミド繊維の製造法及びそれによって得られる繊維
JP6917027B2 (ja) ポリイミド繊維およびその製造方法
WO2007052825A1 (ja) ドープおよび該ドープを用いた繊維の製造方法
US4081430A (en) Aromatic polyamide crystalline complex and the method for producing the same
JP2012229509A (ja) メタ型全芳香族ポリアミド繊維布帛
Liu et al. Improved properties of aromatic polyamide tape-casting films
JP2006299079A (ja) ポリイミド前駆体成形物の製造方法
JP2020147861A (ja) パラ型全芳香族ポリアミド繊維及びその製造方法
JP4563827B2 (ja) 芳香族コポリアミド繊維の製造方法
EP2861649B1 (en) Sulfonated naphthalene polyoxadiazole polymers
JP7315378B2 (ja) メタ型全芳香族ポリアミド繊維及びその製造方法
JP2021095663A (ja) パラ型全芳香族ポリアミド繊維及びその製造方法、並びにパラ型全芳香族ポリアミド樹脂塗工液の製造方法
CN116490546A (zh) 耐热性高韧性纤维及其制造方法和耐热性高韧性膜
JP2007154355A (ja) メタ型芳香族ポリアミド繊維及びその製造法
KR20230065340A (ko) 내열성 고터프니스 섬유, 그 제조 방법 및 내열성 고터프니스 필름
JP2011202293A (ja) 芳香族コポリアミド防弾材料
US9150693B2 (en) Preparation of sulfonated naphthalene polyoxadiazoles polymers
JPS59622B2 (ja) 耐熱性不織布及び紙状物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749145

Country of ref document: EP

Kind code of ref document: A1